snow.txt 21.1 KB
Newer Older
Michael Niedermayer's avatar
Michael Niedermayer committed
1
=============================================
2
Snow Video Codec Specification Draft 20080110
Michael Niedermayer's avatar
Michael Niedermayer committed
3 4
=============================================

5 6
Introduction:
=============
7 8
This specification describes the Snow bitstream syntax and semantics as
well as the formal Snow decoding process.
9 10

The decoding process is described precisely and any compliant decoder
11
MUST produce the exact same output for a spec-conformant Snow stream.
12 13
For encoding, though, any process which generates a stream compliant to
the syntactical and semantic requirements and which is decodable by
Michael Niedermayer's avatar
Michael Niedermayer committed
14
the process described in this spec shall be considered a conformant
15
Snow encoder.
Michael Niedermayer's avatar
Michael Niedermayer committed
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Definitions:
============

MUST    the specific part must be done to conform to this standard
SHOULD  it is recommended to be done that way, but not strictly required

ilog2(x) is the rounded down logarithm of x with basis 2
ilog2(0) = 0

Type definitions:
=================

b   1-bit range coded
u   unsigned scalar value range coded
s   signed scalar value range coded


Bitstream syntax:
=================

frame:
    header
    prediction
    residual

header:
    keyframe                            b   MID_STATE
    if(keyframe || always_reset)
        reset_contexts
    if(keyframe){
        version                         u   header_state
        always_reset                    b   header_state
        temporal_decomposition_type     u   header_state
        temporal_decomposition_count    u   header_state
        spatial_decomposition_count     u   header_state
        colorspace_type                 u   header_state
53 54 55 56
        if (nb_planes > 2) {
            chroma_h_shift              u   header_state
            chroma_v_shift              u   header_state
        }
Michael Niedermayer's avatar
Michael Niedermayer committed
57 58 59 60
        spatial_scalability             b   header_state
        max_ref_frames-1                u   header_state
        qlogs
    }
Michael Niedermayer's avatar
Michael Niedermayer committed
61
    if(!keyframe){
62 63
        update_mc                       b   header_state
        if(update_mc){
64
            for(plane=0; plane<nb_plane_types; plane++){
Michael Niedermayer's avatar
Michael Niedermayer committed
65 66 67 68 69 70
                diag_mc                 b   header_state
                htaps/2-1               u   header_state
                for(i= p->htaps/2; i; i--)
                    |hcoeff[i]|         u   header_state
            }
        }
71 72 73 74 75
        update_qlogs                    b   header_state
        if(update_qlogs){
            spatial_decomposition_count u   header_state
            qlogs
        }
Michael Niedermayer's avatar
Michael Niedermayer committed
76
    }
Michael Niedermayer's avatar
Michael Niedermayer committed
77 78 79 80 81 82 83 84

    spatial_decomposition_type          s   header_state
    qlog                                s   header_state
    mv_scale                            s   header_state
    qbias                               s   header_state
    block_max_depth                     s   header_state

qlogs:
85
    for(plane=0; plane<nb_plane_types; plane++){
Michael Niedermayer's avatar
Michael Niedermayer committed
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        quant_table[plane][0][0]        s   header_state
        for(level=0; level < spatial_decomposition_count; level++){
            quant_table[plane][level][1]s   header_state
            quant_table[plane][level][3]s   header_state
        }
    }

reset_contexts
    *_state[*]= MID_STATE

prediction:
    for(y=0; y<block_count_vertical; y++)
        for(x=0; x<block_count_horizontal; x++)
            block(0)

block(level):
102
    mvx_diff=mvy_diff=y_diff=cb_diff=cr_diff=0
Michael Niedermayer's avatar
Michael Niedermayer committed
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    if(keyframe){
        intra=1
    }else{
        if(level!=max_block_depth){
            s_context= 2*left->level + 2*top->level + topleft->level + topright->level
            leaf                        b   block_state[4 + s_context]
        }
        if(level==max_block_depth || leaf){
            intra                       b   block_state[1 + left->intra + top->intra]
            if(intra){
                y_diff                  s   block_state[32]
                cb_diff                 s   block_state[64]
                cr_diff                 s   block_state[96]
            }else{
                ref_context= ilog2(2*left->ref) + ilog2(2*top->ref)
                if(ref_frames > 1)
                    ref                 u   block_state[128 + 1024 + 32*ref_context]
                mx_context= ilog2(2*abs(left->mx - top->mx))
                my_context= ilog2(2*abs(left->my - top->my))
                mvx_diff                s   block_state[128 + 32*(mx_context + 16*!!ref)]
                mvy_diff                s   block_state[128 + 32*(my_context + 16*!!ref)]
            }
        }else{
            block(level+1)
            block(level+1)
            block(level+1)
            block(level+1)
        }
    }


residual:
135
    residual2(luma)
136 137 138 139
    if (nb_planes > 2) {
        residual2(chroma_cr)
        residual2(chroma_cb)
    }
140 141 142 143 144 145 146 147 148 149 150

residual2:
    for(level=0; level<spatial_decomposition_count; level++){
        if(level==0)
            subband(LL, 0)
        subband(HL, level)
        subband(LH, level)
        subband(HH, level)
    }

subband:
Michael Niedermayer's avatar
Michael Niedermayer committed
151 152
    FIXME

153
nb_plane_types = gray ? 1 : 2;
Michael Niedermayer's avatar
Michael Niedermayer committed
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

Tag description:
----------------

version
    0
    this MUST NOT change within a bitstream

always_reset
    if 1 then the range coder contexts will be reset after each frame

temporal_decomposition_type
    0

temporal_decomposition_count
    0

spatial_decomposition_count
    FIXME

colorspace_type
175 176 177 178 179
    0   unspecified YcbCr
    1   Gray
    2   Gray + Alpha
    3   GBR
    4   GBRA
Michael Niedermayer's avatar
Michael Niedermayer committed
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    this MUST NOT change within a bitstream

chroma_h_shift
    log2(luma.width / chroma.width)
    this MUST NOT change within a bitstream

chroma_v_shift
    log2(luma.height / chroma.height)
    this MUST NOT change within a bitstream

spatial_scalability
    0

max_ref_frames
    maximum number of reference frames
    this MUST NOT change within a bitstream

Michael Niedermayer's avatar
Michael Niedermayer committed
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
update_mc
    indicates that motion compensation filter parameters are stored in the
    header

diag_mc
    flag to enable faster diagonal interpolation
    this SHOULD be 1 unless it turns out to be covered by a valid patent

htaps
    number of half pel interpolation filter taps, MUST be even, >0 and <10

hcoeff
    half pel interpolation filter coefficients, hcoeff[0] are the 2 middle
    coefficients [1] are the next outer ones and so on, resulting in a filter
    like: ...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ...
    the sign of the coefficients is not explicitly stored but alternates
    after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,...
    hcoeff[0] is not explicitly stored but found by subtracting the sum
    of all stored coefficients with signs from 32
    hcoeff[0]= 32 - hcoeff[1] - hcoeff[2] - ...
    a good choice for hcoeff and htaps is
    htaps= 6
    hcoeff={40,-10,2}
    an alternative which requires more computations at both encoder and
    decoder side and may or may not be better is
    htaps= 8
    hcoeff={42,-14,6,-2}


Michael Niedermayer's avatar
Michael Niedermayer committed
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
ref_frames
    minimum of the number of available reference frames and max_ref_frames
    for example the first frame after a key frame always has ref_frames=1

spatial_decomposition_type
    wavelet type
    0 is a 9/7 symmetric compact integer wavelet
    1 is a 5/3 symmetric compact integer wavelet
    others are reserved
    stored as delta from last, last is reset to 0 if always_reset || keyframe

qlog
    quality (logarthmic quantizer scale)
    stored as delta from last, last is reset to 0 if always_reset || keyframe

mv_scale
    stored as delta from last, last is reset to 0 if always_reset || keyframe
Luca Barbato's avatar
Luca Barbato committed
243
    FIXME check that everything works fine if this changes between frames
Michael Niedermayer's avatar
Michael Niedermayer committed
244 245 246 247 248 249 250 251 252 253 254 255

qbias
    dequantization bias
    stored as delta from last, last is reset to 0 if always_reset || keyframe

block_max_depth
    maximum depth of the block tree
    stored as delta from last, last is reset to 0 if always_reset || keyframe

quant_table
    quantiztation table

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

Highlevel bitstream structure:
=============================
 --------------------------------------------
|                   Header                   |
 --------------------------------------------
|    ------------------------------------    |
|   |               Block0               |   |
|   |             split?                 |   |
|   |     yes              no            |   |
|   |  .........         intra?          |   |
|   | : Block01 :    yes         no      |   |
|   | : Block02 :  .......   ..........  |   |
|   | : Block03 : :  y DC : : ref index: |   |
|   | : Block04 : : cb DC : : motion x : |   |
|   |  .........  : cr DC : : motion y : |   |
|   |              .......   ..........  |   |
|    ------------------------------------    |
|    ------------------------------------    |
|   |               Block1               |   |
|                    ...                     |
 --------------------------------------------
| ------------   ------------   ------------ |
|| Y subbands | | Cb subbands| | Cr subbands||
||  ---  ---  | |  ---  ---  | |  ---  ---  ||
|| |LL0||HL0| | | |LL0||HL0| | | |LL0||HL0| ||
||  ---  ---  | |  ---  ---  | |  ---  ---  ||
||  ---  ---  | |  ---  ---  | |  ---  ---  ||
|| |LH0||HH0| | | |LH0||HH0| | | |LH0||HH0| ||
||  ---  ---  | |  ---  ---  | |  ---  ---  ||
||  ---  ---  | |  ---  ---  | |  ---  ---  ||
|| |HL1||LH1| | | |HL1||LH1| | | |HL1||LH1| ||
||  ---  ---  | |  ---  ---  | |  ---  ---  ||
||  ---  ---  | |  ---  ---  | |  ---  ---  ||
|| |HH1||HL2| | | |HH1||HL2| | | |HH1||HL2| ||
||    ...     | |    ...     | |    ...     ||
| ------------   ------------   ------------ |
 --------------------------------------------

Decoding process:
=================

                                         ------------
                                        |            |
                                        |  Subbands  |
                   ------------         |            |
                  |            |         ------------
                  |  Intra DC  |               |
                  |            |    LL0 subband prediction
                   ------------                |
                                \        Dequantizaton
 -------------------             \             |
|  Reference frames |             \           IDWT
| -------   ------- |    Motion    \           |
||Frame 0| |Frame 1|| Compensation  .   OBMC   v      -------
| -------   ------- | --------------. \------> + --->|Frame n|-->output
| -------   ------- |                                 -------
||Frame 2| |Frame 3||<----------------------------------/
|        ...        |
 -------------------


Michael Niedermayer's avatar
Michael Niedermayer committed
318 319
Range Coder:
============
320 321 322

Binary Range Coder:
-------------------
323 324 325
The implemented range coder is an adapted version based upon "Range encoding:
an algorithm for removing redundancy from a digitised message." by G. N. N.
Martin.
326
The symbols encoded by the Snow range coder are bits (0|1). The
327 328 329
associated probabilities are not fix but change depending on the symbol mix
seen so far.

Michael Niedermayer's avatar
Michael Niedermayer committed
330

331
bit seen | new state
332
---------+-----------------------------------------------
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    0    | 256 - state_transition_table[256 - old_state];
    1    |       state_transition_table[      old_state];

state_transition_table = {
  0,   0,   0,   0,   0,   0,   0,   0,  20,  21,  22,  23,  24,  25,  26,  27,
 28,  29,  30,  31,  32,  33,  34,  35,  36,  37,  37,  38,  39,  40,  41,  42,
 43,  44,  45,  46,  47,  48,  49,  50,  51,  52,  53,  54,  55,  56,  56,  57,
 58,  59,  60,  61,  62,  63,  64,  65,  66,  67,  68,  69,  70,  71,  72,  73,
 74,  75,  75,  76,  77,  78,  79,  80,  81,  82,  83,  84,  85,  86,  87,  88,
 89,  90,  91,  92,  93,  94,  94,  95,  96,  97,  98,  99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118,
119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133,
134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149,
150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164,
165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179,
180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194,
195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209,
210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225,
226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240,
241, 242, 243, 244, 245, 246, 247, 248, 248,   0,   0,   0,   0,   0,   0,   0};

354 355 356
FIXME


Diego Biurrun's avatar
Diego Biurrun committed
357
Range Coding of integers:
358
-------------------------
359 360
FIXME

361

Michael Niedermayer's avatar
Michael Niedermayer committed
362 363 364 365 366
Neighboring Blocks:
===================
left and top are set to the respective blocks unless they are outside of
the image in which case they are set to the Null block

Diego Biurrun's avatar
Diego Biurrun committed
367
top-left is set to the top left block unless it is outside of the image in
Michael Niedermayer's avatar
Michael Niedermayer committed
368 369
which case it is set to the left block

Diego Biurrun's avatar
Diego Biurrun committed
370
if this block has no larger parent block or it is at the left side of its
Michael Niedermayer's avatar
Michael Niedermayer committed
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
parent block and the top right block is not outside of the image then the
top right block is used for top-right else the top-left block is used

Null block
y,cb,cr are 128
level, ref, mx and my are 0


Motion Vector Prediction:
=========================
1. the motion vectors of all the neighboring blocks are scaled to
compensate for the difference of reference frames

scaled_mv= (mv * (256 * (current_reference+1) / (mv.reference+1)) + 128)>>8

2. the median of the scaled left, top and top-right vectors is used as
motion vector prediction

3. the used motion vector is the sum of the predictor and
   (mvx_diff, mvy_diff)*mv_scale


Intra DC Predicton:
======================
the luma and chroma values of the left block are used as predictors

the used luma and chroma is the sum of the predictor and y_diff, cb_diff, cr_diff
398
to reverse this in the decoder apply the following:
399 400 401
block[y][x].dc[0] = block[y][x-1].dc[0] +  y_diff;
block[y][x].dc[1] = block[y][x-1].dc[1] + cb_diff;
block[y][x].dc[2] = block[y][x-1].dc[2] + cr_diff;
402
block[*][-1].dc[*]= 128;
Michael Niedermayer's avatar
Michael Niedermayer committed
403 404 405 406


Motion Compensation:
====================
Michael Niedermayer's avatar
Michael Niedermayer committed
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493

Halfpel interpolation:
----------------------
halfpel interpolation is done by convolution with the halfpel filter stored
in the header:

horizontal halfpel samples are found by
H1[y][x] =    hcoeff[0]*(F[y][x  ] + F[y][x+1])
            + hcoeff[1]*(F[y][x-1] + F[y][x+2])
            + hcoeff[2]*(F[y][x-2] + F[y][x+3])
            + ...
h1[y][x] = (H1[y][x] + 32)>>6;

vertical halfpel samples are found by
H2[y][x] =    hcoeff[0]*(F[y  ][x] + F[y+1][x])
            + hcoeff[1]*(F[y-1][x] + F[y+2][x])
            + ...
h2[y][x] = (H2[y][x] + 32)>>6;

vertical+horizontal halfpel samples are found by
H3[y][x] =    hcoeff[0]*(H2[y][x  ] + H2[y][x+1])
            + hcoeff[1]*(H2[y][x-1] + H2[y][x+2])
            + ...
H3[y][x] =    hcoeff[0]*(H1[y  ][x] + H1[y+1][x])
            + hcoeff[1]*(H1[y+1][x] + H1[y+2][x])
            + ...
h3[y][x] = (H3[y][x] + 2048)>>12;


                   F   H1  F
                   |   |   |
                   |   |   |
                   |   |   |
                   F   H1  F
                   |   |   |
                   |   |   |
                   |   |   |
   F-------F-------F-> H1<-F-------F-------F
                   v   v   v
                  H2   H3  H2
                   ^   ^   ^
   F-------F-------F-> H1<-F-------F-------F
                   |   |   |
                   |   |   |
                   |   |   |
                   F   H1  F
                   |   |   |
                   |   |   |
                   |   |   |
                   F   H1  F


unavailable fullpel samples (outside the picture for example) shall be equal
to the closest available fullpel sample


Smaller pel interpolation:
--------------------------
if diag_mc is set then points which lie on a line between 2 vertically,
horiziontally or diagonally adjacent halfpel points shall be interpolated
linearls with rounding to nearest and halfway values rounded up.
points which lie on 2 diagonals at the same time should only use the one
diagonal not containing the fullpel point



           F-->O---q---O<--h1->O---q---O<--F
           v \           / v \           / v
           O   O       O   O   O       O   O
           |         /     |     \         |
           q       q       q       q       q
           |     /         |         \     |
           O   O       O   O   O       O   O
           ^ /           \ ^ /           \ ^
          h2-->O---q---O<--h3->O---q---O<--h2
           v \           / v \           / v
           O   O       O   O   O       O   O
           |     \         |         /     |
           q       q       q       q       q
           |         \     |     /         |
           O   O       O   O   O       O   O
           ^ /           \ ^ /           \ ^
           F-->O---q---O<--h1->O---q---O<--F



the remaining points shall be bilinearly interpolated from the
Michael Niedermayer's avatar
Michael Niedermayer committed
494 495
up to 4 surrounding halfpel and fullpel points, again rounding should be to
nearest and halfway values rounded up
Michael Niedermayer's avatar
Michael Niedermayer committed
496

497
compliant Snow decoders MUST support 1-1/8 pel luma and 1/2-1/16 pel chroma
Michael Niedermayer's avatar
Michael Niedermayer committed
498 499 500 501 502
interpolation at least


Overlapped block motion compensation:
-------------------------------------
Michael Niedermayer's avatar
Michael Niedermayer committed
503 504 505 506
FIXME

LL band prediction:
===================
Michael Niedermayer's avatar
Michael Niedermayer committed
507 508 509 510 511 512 513 514 515 516 517 518 519 520
Each sample in the LL0 subband is predicted by the median of the left, top and
left+top-topleft samples, samples outside the subband shall be considered to
be 0. To reverse this prediction in the decoder apply the following.
for(y=0; y<height; y++){
    for(x=0; x<width; x++){
        sample[y][x] += median(sample[y-1][x],
                               sample[y][x-1],
                               sample[y-1][x]+sample[y][x-1]-sample[y-1][x-1]);
    }
}
sample[-1][*]=sample[*][-1]= 0;
width,height here are the width and height of the LL0 subband not of the final
video

Michael Niedermayer's avatar
Michael Niedermayer committed
521 522 523 524 525 526 527

Dequantizaton:
==============
FIXME

Wavelet Transform:
==================
528 529 530 531 532

Snow supports 2 wavelet transforms, the symmetric biorthogonal 5/3 integer
transform and a integer approximation of the symmetric biorthogonal 9/7
daubechies wavelet.

Michael Niedermayer's avatar
Michael Niedermayer committed
533 534 535 536 537 538 539 540 541
2D IDWT (inverse discrete wavelet transform)
--------------------------------------------
The 2D IDWT applies a 2D filter recursively, each time combining the
4 lowest frequency subbands into a single subband until only 1 subband
remains.
The 2D filter is done by first applying a 1D filter in the vertical direction
and then applying it in the horizontal one.
 ---------------    ---------------    ---------------    ---------------
|LL0|HL0|       |  |   |   |       |  |       |       |  |       |       |
Michael Niedermayer's avatar
Michael Niedermayer committed
542
|---+---|  HL1  |  | L0|H0 |  HL1  |  |  LL1  |  HL1  |  |       |       |
Michael Niedermayer's avatar
Michael Niedermayer committed
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
|LH0|HH0|       |  |   |   |       |  |       |       |  |       |       |
|-------+-------|->|-------+-------|->|-------+-------|->|   L1  |  H1   |->...
|       |       |  |       |       |  |       |       |  |       |       |
|  LH1  |  HH1  |  |  LH1  |  HH1  |  |  LH1  |  HH1  |  |       |       |
|       |       |  |       |       |  |       |       |  |       |       |
 ---------------    ---------------    ---------------    ---------------


1D Filter:
----------
1. interleave the samples of the low and high frequency subbands like
s={L0, H0, L1, H1, L2, H2, L3, H3, ... }
note, this can end with a L or a H, the number of elements shall be w
s[-1] shall be considered equivalent to s[1  ]
s[w ] shall be considered equivalent to s[w-2]

2. perform the lifting steps in order as described below

5/3 Integer filter:
1. s[i] -= (s[i-1] + s[i+1] + 2)>>2; for all even i < w
2. s[i] += (s[i-1] + s[i+1]    )>>1; for all odd  i < w

\ | /|\ | /|\ | /|\ | /|\
 \|/ | \|/ | \|/ | \|/ |
  +  |  +  |  +  |  +  |   -1/4
 /|\ | /|\ | /|\ | /|\ |
/ | \|/ | \|/ | \|/ | \|/
  |  +  |  +  |  +  |  +   +1/2


573
Snow's 9/7 Integer filter:
Michael Niedermayer's avatar
Michael Niedermayer committed
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
1. s[i] -= (3*(s[i-1] + s[i+1])         + 4)>>3; for all even i < w
2. s[i] -=     s[i-1] + s[i+1]                 ; for all odd  i < w
3. s[i] += (   s[i-1] + s[i+1] + 4*s[i] + 8)>>4; for all even i < w
4. s[i] += (3*(s[i-1] + s[i+1])            )>>1; for all odd  i < w

\ | /|\ | /|\ | /|\ | /|\
 \|/ | \|/ | \|/ | \|/ |
  +  |  +  |  +  |  +  |   -3/8
 /|\ | /|\ | /|\ | /|\ |
/ | \|/ | \|/ | \|/ | \|/
 (|  + (|  + (|  + (|  +   -1
\ + /|\ + /|\ + /|\ + /|\  +1/4
 \|/ | \|/ | \|/ | \|/ |
  +  |  +  |  +  |  +  |   +1/16
 /|\ | /|\ | /|\ | /|\ |
/ | \|/ | \|/ | \|/ | \|/
  |  +  |  +  |  +  |  +   +3/2
591

592 593 594 595
optimization tips:
following are exactly identical
(3a)>>1 == a + (a>>1)
(a + 4b + 8)>>4 == ((a>>2) + b + 2)>>2
Michael Niedermayer's avatar
Michael Niedermayer committed
596

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
16bit implementation note:
The IDWT can be implemented with 16bits, but this requires some care to
prevent overflows, the following list, lists the minimum number of bits needed
for some terms
1. lifting step
A= s[i-1] + s[i+1]                              16bit
3*A + 4                                         18bit
A + (A>>1) + 2                                  17bit

3. lifting step
s[i-1] + s[i+1]                                 17bit

4. lifiting step
3*(s[i-1] + s[i+1])                             17bit


Michael Niedermayer's avatar
Michael Niedermayer committed
613 614 615 616 617 618 619 620 621
TODO:
=====
Important:
finetune initial contexts
flip wavelet?
try to use the wavelet transformed predicted image (motion compensated image) as context for coding the residual coefficients
try the MV length as context for coding the residual coefficients
use extradata for stuff which is in the keyframes now?
the MV median predictor is patented IIRC
Michael Niedermayer's avatar
Michael Niedermayer committed
622
implement per picture halfpel interpolation
Michael Niedermayer's avatar
Michael Niedermayer committed
623
try different range coder state transition tables for different contexts
Michael Niedermayer's avatar
Michael Niedermayer committed
624 625

Not Important:
626
compare the 6 tap and 8 tap hpel filters (psnr/bitrate and subjective quality)
Michael Niedermayer's avatar
Michael Niedermayer committed
627 628 629 630 631 632 633 634 635 636 637 638
spatial_scalability b vs u (!= 0 breaks syntax anyway so we can add a u later)


Credits:
========
Michael Niedermayer
Loren Merritt


Copyright:
==========
GPL + GFDL + whatever is needed to make this a RFC