alac.c 27.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/*
 * ALAC (Apple Lossless Audio Codec) decoder
 * Copyright (c) 2005 David Hammerton
 * All rights reserved.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */

/**
 * @file alac.c
 * ALAC (Apple Lossless Audio Codec) decoder
 * @author 2005 David Hammerton
 *
 * For more information on the ALAC format, visit:
 *  http://crazney.net/programs/itunes/alac.html
 *
 * Note: This decoder expects a 36- (0x24-)byte QuickTime atom to be
 * passed through the extradata[_size] fields. This atom is tacked onto
 * the end of an 'alac' stsd atom and has the following format:
 *  bytes 0-3   atom size (0x24), big-endian
 *  bytes 4-7   atom type ('alac', not the 'alac' tag from start of stsd)
 *  bytes 8-35  data bytes needed by decoder
 */


#include "avcodec.h"
39
#include "bitstream.h"
40 41 42

#define ALAC_EXTRADATA_SIZE 36

43 44 45 46 47 48 49
typedef struct {

    AVCodecContext *avctx;
    GetBitContext gb;
    /* init to 0; first frame decode should initialize from extradata and
     * set this to 1 */
    int context_initialized;
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77

    int samplesize;
    int numchannels;
    int bytespersample;

    /* buffers */
    int32_t *predicterror_buffer_a;
    int32_t *predicterror_buffer_b;

    int32_t *outputsamples_buffer_a;
    int32_t *outputsamples_buffer_b;

    /* stuff from setinfo */
    uint32_t setinfo_max_samples_per_frame; /* 0x1000 = 4096 */    /* max samples per frame? */
    uint8_t setinfo_7a; /* 0x00 */
    uint8_t setinfo_sample_size; /* 0x10 */
    uint8_t setinfo_rice_historymult; /* 0x28 */
    uint8_t setinfo_rice_initialhistory; /* 0x0a */
    uint8_t setinfo_rice_kmodifier; /* 0x0e */
    uint8_t setinfo_7f; /* 0x02 */
    uint16_t setinfo_80; /* 0x00ff */
    uint32_t setinfo_82; /* 0x000020e7 */
    uint32_t setinfo_86; /* 0x00069fe4 */
    uint32_t setinfo_8a_rate; /* 0x0000ac44 */
    /* end setinfo stuff */

} ALACContext;

78
static void allocate_buffers(ALACContext *alac)
79 80 81 82 83 84 85 86
{
    alac->predicterror_buffer_a = av_malloc(alac->setinfo_max_samples_per_frame * 4);
    alac->predicterror_buffer_b = av_malloc(alac->setinfo_max_samples_per_frame * 4);

    alac->outputsamples_buffer_a = av_malloc(alac->setinfo_max_samples_per_frame * 4);
    alac->outputsamples_buffer_b = av_malloc(alac->setinfo_max_samples_per_frame * 4);
}

87
void alac_set_info(ALACContext *alac)
88
{
89
    unsigned char *ptr = alac->avctx->extradata;
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

    ptr += 4; /* size */
    ptr += 4; /* alac */
    ptr += 4; /* 0 ? */

    alac->setinfo_max_samples_per_frame = BE_32(ptr); /* buffer size / 2 ? */
    ptr += 4;
    alac->setinfo_7a = *ptr++;
    alac->setinfo_sample_size = *ptr++;
    alac->setinfo_rice_historymult = *ptr++;
    alac->setinfo_rice_initialhistory = *ptr++;
    alac->setinfo_rice_kmodifier = *ptr++;
    alac->setinfo_7f = *ptr++;
    alac->setinfo_80 = BE_16(ptr);
    ptr += 2;
    alac->setinfo_82 = BE_32(ptr);
    ptr += 4;
    alac->setinfo_86 = BE_32(ptr);
    ptr += 4;
    alac->setinfo_8a_rate = BE_32(ptr);
    ptr += 4;

    allocate_buffers(alac);
}

/* hideously inefficient. could use a bitmask search,
 * alternatively bsr on x86,
 */
static int count_leading_zeros(int32_t input)
{
    int i = 0;
    while (!(0x80000000 & input) && i < 32) {
        i++;
        input = input << 1;
    }
    return i;
}

128
void bastardized_rice_decompress(ALACContext *alac,
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
                                 int32_t *output_buffer,
                                 int output_size,
                                 int readsamplesize, /* arg_10 */
                                 int rice_initialhistory, /* arg424->b */
                                 int rice_kmodifier, /* arg424->d */
                                 int rice_historymult, /* arg424->c */
                                 int rice_kmodifier_mask /* arg424->e */
        )
{
    int output_count;
    unsigned int history = rice_initialhistory;
    int sign_modifier = 0;

    for (output_count = 0; output_count < output_size; output_count++) {
        int32_t x = 0;
        int32_t x_modified;
        int32_t final_val;

        /* read x - number of 1s before 0 represent the rice */
148
        while (x <= 8 && get_bits1(&alac->gb)) {
149 150 151 152 153 154 155 156
            x++;
        }


        if (x > 8) { /* RICE THRESHOLD */
          /* use alternative encoding */
            int32_t value;

157
            value = get_bits(&alac->gb, readsamplesize);
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

            /* mask value to readsamplesize size */
            if (readsamplesize != 32)
                value &= (0xffffffff >> (32 - readsamplesize));

            x = value;
        } else {
          /* standard rice encoding */
            int extrabits;
            int k; /* size of extra bits */

            /* read k, that is bits as is */
            k = 31 - rice_kmodifier - count_leading_zeros((history >> 9) + 3);

            if (k < 0) 
                k += rice_kmodifier;
            else 
                k = rice_kmodifier;

            if (k != 1) {
178
                extrabits = show_bits(&alac->gb, k);
179 180 181 182 183 184

                /* multiply x by 2^k - 1, as part of their strange algorithm */
                x = (x << k) - x;

                if (extrabits > 1) {
                    x += extrabits - 1;
185 186 187 188
                    get_bits(&alac->gb, k);
                } else {
                    get_bits(&alac->gb, k - 1);
                }
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
            }
        }

        x_modified = sign_modifier + x;
        final_val = (x_modified + 1) / 2;
        if (x_modified & 1) final_val *= -1;

        output_buffer[output_count] = final_val;

        sign_modifier = 0;

        /* now update the history */
        history += (x_modified * rice_historymult)
                 - ((history * rice_historymult) >> 9);

        if (x_modified > 0xffff)
            history = 0xffff;

        /* special case: there may be compressed blocks of 0 */
        if ((history < 128) && (output_count+1 < output_size)) {
            int block_size;

            sign_modifier = 1;

            x = 0;
214
            while (x <= 8 && get_bits1(&alac->gb)) {
215 216 217 218
                x++;
            }

            if (x > 8) {
219
                block_size = get_bits(&alac->gb, 16);
220 221 222 223 224 225 226
                block_size &= 0xffff;
            } else {
                int k;
                int extrabits;

                k = count_leading_zeros(history) + ((history + 16) >> 6 /* / 64 */) - 24;

227
                extrabits = show_bits(&alac->gb, k);
228 229 230 231 232 233 234

                block_size = (((1 << k) - 1) & rice_kmodifier_mask) * x
                           + extrabits - 1;

                if (extrabits < 2) {
                    x = 1 - extrabits;
                    block_size += x;
235 236 237
                    get_bits(&alac->gb, k - 1);
                } else {
                    get_bits(&alac->gb, k);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
                }
            }

            if (block_size > 0) {
                memset(&output_buffer[output_count+1], 0, block_size * 4);
                output_count += block_size;

            }

            if (block_size > 0xffff)
                sign_modifier = 0;

            history = 0;
        }
    }
}

#define SIGN_EXTENDED32(val, bits) ((val << (32 - bits)) >> (32 - bits))

#define SIGN_ONLY(v) \
                     ((v < 0) ? (-1) : \
                                ((v > 0) ? (1) : \
                                           (0)))

static void predictor_decompress_fir_adapt(int32_t *error_buffer,
                                           int32_t *buffer_out,
                                           int output_size,
                                           int readsamplesize,
                                           int16_t *predictor_coef_table,
                                           int predictor_coef_num,
                                           int predictor_quantitization)
{
    int i;

    /* first sample always copies */
    *buffer_out = *error_buffer;

    if (!predictor_coef_num) {
        if (output_size <= 1) return;
        memcpy(buffer_out+1, error_buffer+1, (output_size-1) * 4);
        return;
    }

    if (predictor_coef_num == 0x1f) { /* 11111 - max value of predictor_coef_num */
      /* second-best case scenario for fir decompression,
       * error describes a small difference from the previous sample only
       */
        if (output_size <= 1) return;
        for (i = 0; i < output_size - 1; i++) {
            int32_t prev_value;
            int32_t error_value;

            prev_value = buffer_out[i];
            error_value = error_buffer[i+1];
            buffer_out[i+1] = SIGN_EXTENDED32((prev_value + error_value), readsamplesize);
        }
        return;
    }

    /* read warm-up samples */
    if (predictor_coef_num > 0) {
        int i;
        for (i = 0; i < predictor_coef_num; i++) {
            int32_t val;

            val = buffer_out[i] + error_buffer[i+1];

            val = SIGN_EXTENDED32(val, readsamplesize);

            buffer_out[i+1] = val;
        }
    }

#if 0
    /* 4 and 8 are very common cases (the only ones i've seen). these
     * should be unrolled and optimised
     */
    if (predictor_coef_num == 4) {
        /* FIXME: optimised general case */
        return;
    }

    if (predictor_coef_table == 8) {
        /* FIXME: optimised general case */
        return;
    }
#endif


    /* general case */
    if (predictor_coef_num > 0) {
        for (i = predictor_coef_num + 1;
             i < output_size;
             i++) {
            int j;
            int sum = 0;
            int outval;
            int error_val = error_buffer[i];

            for (j = 0; j < predictor_coef_num; j++) {
                sum += (buffer_out[predictor_coef_num-j] - buffer_out[0]) *
                       predictor_coef_table[j];
            }

            outval = (1 << (predictor_quantitization-1)) + sum;
            outval = outval >> predictor_quantitization;
            outval = outval + buffer_out[0] + error_val;
            outval = SIGN_EXTENDED32(outval, readsamplesize);

            buffer_out[predictor_coef_num+1] = outval;

            if (error_val > 0) {
                int predictor_num = predictor_coef_num - 1;

                while (predictor_num >= 0 && error_val > 0) {
                    int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
                    int sign = SIGN_ONLY(val);

                    predictor_coef_table[predictor_num] -= sign;

                    val *= sign; /* absolute value */

                    error_val -= ((val >> predictor_quantitization) *
                                  (predictor_coef_num - predictor_num));

                    predictor_num--;
                }
            } else if (error_val < 0) {
                int predictor_num = predictor_coef_num - 1;

                while (predictor_num >= 0 && error_val < 0) {
                    int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
                    int sign = - SIGN_ONLY(val);

                    predictor_coef_table[predictor_num] -= sign;

                    val *= sign; /* neg value */

                    error_val -= ((val >> predictor_quantitization) *
                                  (predictor_coef_num - predictor_num));

                    predictor_num--;
                }
            }

            buffer_out++;
        }
    }
}

void deinterlace_16(int32_t *buffer_a, int32_t *buffer_b,
                    int16_t *buffer_out,
                    int numchannels, int numsamples,
                    uint8_t interlacing_shift,
392 393
                    uint8_t interlacing_leftweight)
{
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
    int i;
    if (numsamples <= 0) return;

    /* weighted interlacing */
    if (interlacing_leftweight) {
        for (i = 0; i < numsamples; i++) {
            int32_t difference, midright;
            int16_t left;
            int16_t right;

            midright = buffer_a[i];
            difference = buffer_b[i];


            right = midright - ((difference * interlacing_leftweight) >> interlacing_shift);
            left = (midright - ((difference * interlacing_leftweight) >> interlacing_shift))
                 + difference;

            buffer_out[i*numchannels] = left;
            buffer_out[i*numchannels + 1] = right;
        }

        return;
    }

    /* otherwise basic interlacing took place */
    for (i = 0; i < numsamples; i++) {
        int16_t left, right;

        left = buffer_a[i];
        right = buffer_b[i];

        buffer_out[i*numchannels] = left;
        buffer_out[i*numchannels + 1] = right;
    }
}

431 432 433
static int alac_decode_frame(AVCodecContext *avctx,
                             void *outbuffer, int *outputsize,
                             uint8_t *inbuffer, int input_buffer_size)
434
{
435
    ALACContext *alac = avctx->priv_data;
436

437
    int channels;
438
    int32_t outputsamples;
439

440 441 442 443
    /* short-circuit null buffers */
    if (!inbuffer || !input_buffer_size)
        return input_buffer_size;

444
    /* initialize from the extradata */
445 446
    if (!alac->context_initialized) {
        if (alac->avctx->extradata_size != ALAC_EXTRADATA_SIZE) {
447 448 449 450
            av_log(NULL, AV_LOG_ERROR, "alac: expected %d extradata bytes\n", 
                ALAC_EXTRADATA_SIZE);
            return input_buffer_size;
        }
451 452
        alac_set_info(alac);
        alac->context_initialized = 1;
453
    }
454 455

    outputsamples = alac->setinfo_max_samples_per_frame;
456

457
    init_get_bits(&alac->gb, inbuffer, input_buffer_size * 8);
458

459
    channels = get_bits(&alac->gb, 3);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475

    *outputsize = outputsamples * alac->bytespersample;

    switch(channels) {
    case 0: { /* 1 channel */
        int hassize;
        int isnotcompressed;
        int readsamplesize;

        int wasted_bytes;
        int ricemodifier;


        /* 2^result = something to do with output waiting.
         * perhaps matters if we read > 1 frame in a pass?
         */
476
        get_bits(&alac->gb, 4);
477

478
        get_bits(&alac->gb, 12); /* unknown, skip 12 bits */
479

480
        hassize = get_bits(&alac->gb, 1); /* the output sample size is stored soon */
481

482
        wasted_bytes = get_bits(&alac->gb, 2); /* unknown ? */
483

484
        isnotcompressed = get_bits(&alac->gb, 1); /* whether the frame is compressed */
485 486 487 488

        if (hassize) {
            /* now read the number of samples,
             * as a 32bit integer */
489
            outputsamples = get_bits(&alac->gb, 32);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
            *outputsize = outputsamples * alac->bytespersample;
        }

        readsamplesize = alac->setinfo_sample_size - (wasted_bytes * 8);

        if (!isnotcompressed) {
         /* so it is compressed */
            int16_t predictor_coef_table[32];
            int predictor_coef_num;
            int prediction_type;
            int prediction_quantitization;
            int i;

            /* skip 16 bits, not sure what they are. seem to be used in
             * two channel case */
505 506
            get_bits(&alac->gb, 8);
            get_bits(&alac->gb, 8);
507

508 509
            prediction_type = get_bits(&alac->gb, 4);
            prediction_quantitization = get_bits(&alac->gb, 4);
510

511 512
            ricemodifier = get_bits(&alac->gb, 3);
            predictor_coef_num = get_bits(&alac->gb, 5);
513 514 515

            /* read the predictor table */
            for (i = 0; i < predictor_coef_num; i++) {
516
                predictor_coef_table[i] = (int16_t)get_bits(&alac->gb, 16);
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
            }

            if (wasted_bytes) {
                /* these bytes seem to have something to do with
                 * > 2 channel files.
                 */
                av_log(NULL, AV_LOG_ERROR, "FIXME: unimplemented, unhandling of wasted_bytes\n");
            }

            bastardized_rice_decompress(alac,
                                        alac->predicterror_buffer_a,
                                        outputsamples,
                                        readsamplesize,
                                        alac->setinfo_rice_initialhistory,
                                        alac->setinfo_rice_kmodifier,
                                        ricemodifier * alac->setinfo_rice_historymult / 4,
                                        (1 << alac->setinfo_rice_kmodifier) - 1);

            if (prediction_type == 0) {
              /* adaptive fir */
                predictor_decompress_fir_adapt(alac->predicterror_buffer_a,
                                               alac->outputsamples_buffer_a,
                                               outputsamples,
                                               readsamplesize,
                                               predictor_coef_table,
                                               predictor_coef_num,
                                               prediction_quantitization);
            } else {
                av_log(NULL, AV_LOG_ERROR, "FIXME: unhandled prediction type: %i\n", prediction_type);
                /* i think the only other prediction type (or perhaps this is just a
                 * boolean?) runs adaptive fir twice.. like:
                 * predictor_decompress_fir_adapt(predictor_error, tempout, ...)
                 * predictor_decompress_fir_adapt(predictor_error, outputsamples ...)
                 * little strange..
                 */
            }

        } else {
          /* not compressed, easy case */
            if (readsamplesize <= 16) {
                int i;
                for (i = 0; i < outputsamples; i++) {
559
                    int32_t audiobits = get_bits(&alac->gb, readsamplesize);
560 561 562 563 564 565 566 567 568 569

                    audiobits = SIGN_EXTENDED32(audiobits, readsamplesize);

                    alac->outputsamples_buffer_a[i] = audiobits;
                }
            } else {
                int i;
                for (i = 0; i < outputsamples; i++) {
                    int32_t audiobits;

570
                    audiobits = get_bits(&alac->gb, 16);
571 572 573 574 575
                    /* special case of sign extension..
                     * as we'll be ORing the low 16bits into this */
                    audiobits = audiobits << 16;
                    audiobits = audiobits >> (32 - readsamplesize);

576
                    audiobits |= get_bits(&alac->gb, readsamplesize - 16);
577 578 579 580 581 582 583 584 585 586 587 588

                    alac->outputsamples_buffer_a[i] = audiobits;
                }
            }
            /* wasted_bytes = 0; // unused */
        }

        switch(alac->setinfo_sample_size) {
        case 16: {
            int i;
            for (i = 0; i < outputsamples; i++) {
                int16_t sample = alac->outputsamples_buffer_a[i];
589
                sample = be2me_16(sample);
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
                ((int16_t*)outbuffer)[i * alac->numchannels] = sample;
            }
            break;
        }
        case 20:
        case 24:
        case 32:
            av_log(NULL, AV_LOG_ERROR, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
            break;
        default:
            break;
        }
        break;
    }
    case 1: { /* 2 channels */
        int hassize;
        int isnotcompressed;
        int readsamplesize;

        int wasted_bytes;

        uint8_t interlacing_shift;
        uint8_t interlacing_leftweight;

        /* 2^result = something to do with output waiting.
         * perhaps matters if we read > 1 frame in a pass?
         */
617
        get_bits(&alac->gb, 4);
618

619
        get_bits(&alac->gb, 12); /* unknown, skip 12 bits */
620

621
        hassize = get_bits(&alac->gb, 1); /* the output sample size is stored soon */
622

623
        wasted_bytes = get_bits(&alac->gb, 2); /* unknown ? */
624

625
        isnotcompressed = get_bits(&alac->gb, 1); /* whether the frame is compressed */
626 627 628 629

        if (hassize) {
            /* now read the number of samples,
             * as a 32bit integer */
630
            outputsamples = get_bits(&alac->gb, 32);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
            *outputsize = outputsamples * alac->bytespersample;
        }

        readsamplesize = alac->setinfo_sample_size - (wasted_bytes * 8) + 1;

        if (!isnotcompressed) {
         /* compressed */
            int16_t predictor_coef_table_a[32];
            int predictor_coef_num_a;
            int prediction_type_a;
            int prediction_quantitization_a;
            int ricemodifier_a;

            int16_t predictor_coef_table_b[32];
            int predictor_coef_num_b;
            int prediction_type_b;
            int prediction_quantitization_b;
            int ricemodifier_b;

            int i;

652 653
            interlacing_shift = get_bits(&alac->gb, 8);
            interlacing_leftweight = get_bits(&alac->gb, 8);
654 655

            /******** channel 1 ***********/
656 657
            prediction_type_a = get_bits(&alac->gb, 4);
            prediction_quantitization_a = get_bits(&alac->gb, 4);
658

659 660
            ricemodifier_a = get_bits(&alac->gb, 3);
            predictor_coef_num_a = get_bits(&alac->gb, 5);
661 662 663

            /* read the predictor table */
            for (i = 0; i < predictor_coef_num_a; i++) {
664
                predictor_coef_table_a[i] = (int16_t)get_bits(&alac->gb, 16);
665 666 667
            }

            /******** channel 2 *********/
668 669
            prediction_type_b = get_bits(&alac->gb, 4);
            prediction_quantitization_b = get_bits(&alac->gb, 4);
670

671 672
            ricemodifier_b = get_bits(&alac->gb, 3);
            predictor_coef_num_b = get_bits(&alac->gb, 5);
673 674 675

            /* read the predictor table */
            for (i = 0; i < predictor_coef_num_b; i++) {
676
                predictor_coef_table_b[i] = (int16_t)get_bits(&alac->gb, 16);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
            }

            /*********************/
            if (wasted_bytes) {
              /* see mono case */
                av_log(NULL, AV_LOG_ERROR, "FIXME: unimplemented, unhandling of wasted_bytes\n");
            }

            /* channel 1 */
            bastardized_rice_decompress(alac,
                                        alac->predicterror_buffer_a,
                                        outputsamples,
                                        readsamplesize,
                                        alac->setinfo_rice_initialhistory,
                                        alac->setinfo_rice_kmodifier,
                                        ricemodifier_a * alac->setinfo_rice_historymult / 4,
                                        (1 << alac->setinfo_rice_kmodifier) - 1);

            if (prediction_type_a == 0) {
              /* adaptive fir */
                predictor_decompress_fir_adapt(alac->predicterror_buffer_a,
                                               alac->outputsamples_buffer_a,
                                               outputsamples,
                                               readsamplesize,
                                               predictor_coef_table_a,
                                               predictor_coef_num_a,
                                               prediction_quantitization_a);
            } else {
              /* see mono case */
                av_log(NULL, AV_LOG_ERROR, "FIXME: unhandled prediction type: %i\n", prediction_type_a);
            }

            /* channel 2 */
            bastardized_rice_decompress(alac,
                                        alac->predicterror_buffer_b,
                                        outputsamples,
                                        readsamplesize,
                                        alac->setinfo_rice_initialhistory,
                                        alac->setinfo_rice_kmodifier,
                                        ricemodifier_b * alac->setinfo_rice_historymult / 4,
                                        (1 << alac->setinfo_rice_kmodifier) - 1);

            if (prediction_type_b == 0) {
              /* adaptive fir */
                predictor_decompress_fir_adapt(alac->predicterror_buffer_b,
                                               alac->outputsamples_buffer_b,
                                               outputsamples,
                                               readsamplesize,
                                               predictor_coef_table_b,
                                               predictor_coef_num_b,
                                               prediction_quantitization_b);
            } else {
                av_log(NULL, AV_LOG_ERROR, "FIXME: unhandled prediction type: %i\n", prediction_type_b);
            }
        } else { 
         /* not compressed, easy case */
            if (alac->setinfo_sample_size <= 16) {
                int i;
                for (i = 0; i < outputsamples; i++) {
                    int32_t audiobits_a, audiobits_b;

738 739
                    audiobits_a = get_bits(&alac->gb, alac->setinfo_sample_size);
                    audiobits_b = get_bits(&alac->gb, alac->setinfo_sample_size);
740 741 742 743 744 745 746 747 748 749 750 751

                    audiobits_a = SIGN_EXTENDED32(audiobits_a, alac->setinfo_sample_size);
                    audiobits_b = SIGN_EXTENDED32(audiobits_b, alac->setinfo_sample_size);

                    alac->outputsamples_buffer_a[i] = audiobits_a;
                    alac->outputsamples_buffer_b[i] = audiobits_b;
                }
            } else {
                int i;
                for (i = 0; i < outputsamples; i++) {
                    int32_t audiobits_a, audiobits_b;

752
                    audiobits_a = get_bits(&alac->gb, 16);
753 754
                    audiobits_a = audiobits_a << 16;
                    audiobits_a = audiobits_a >> (32 - alac->setinfo_sample_size);
755
                    audiobits_a |= get_bits(&alac->gb, alac->setinfo_sample_size - 16);
756

757
                    audiobits_b = get_bits(&alac->gb, 16);
758 759
                    audiobits_b = audiobits_b << 16;
                    audiobits_b = audiobits_b >> (32 - alac->setinfo_sample_size);
760
                    audiobits_b |= get_bits(&alac->gb, alac->setinfo_sample_size - 16);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794

                    alac->outputsamples_buffer_a[i] = audiobits_a;
                    alac->outputsamples_buffer_b[i] = audiobits_b;
                }
            }
            /* wasted_bytes = 0; */
            interlacing_shift = 0;
            interlacing_leftweight = 0;
        }

        switch(alac->setinfo_sample_size) {
        case 16: {
            deinterlace_16(alac->outputsamples_buffer_a,
                           alac->outputsamples_buffer_b,
                           (int16_t*)outbuffer,
                           alac->numchannels,
                           outputsamples,
                           interlacing_shift,
                           interlacing_leftweight);
            break;
        }
        case 20:
        case 24:
        case 32:
            av_log(NULL, AV_LOG_ERROR, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
            break;
        default:
            break;
        }

        break;
    }
    }

795
    return input_buffer_size;
796 797 798 799
}

static int alac_decode_init(AVCodecContext * avctx)
{
800 801 802
    ALACContext *alac = avctx->priv_data;
    alac->avctx = avctx;
    alac->context_initialized = 0;
803

804 805 806
    alac->samplesize = alac->avctx->bits_per_sample;
    alac->numchannels = alac->avctx->channels;
    alac->bytespersample = (alac->samplesize / 8) * alac->numchannels;
807 808 809 810 811 812

    return 0;
}

static int alac_decode_close(AVCodecContext *avctx)
{
813
    ALACContext *alac = avctx->priv_data;
814

815 816
    av_free(alac->predicterror_buffer_a);
    av_free(alac->predicterror_buffer_b);
817

818 819
    av_free(alac->outputsamples_buffer_a);
    av_free(alac->outputsamples_buffer_b);
820 821 822 823 824 825 826 827 828 829 830 831 832 833

    return 0;
}

AVCodec alac_decoder = {
    "alac",
    CODEC_TYPE_AUDIO,
    CODEC_ID_ALAC,
    sizeof(ALACContext),
    alac_decode_init,
    NULL,
    alac_decode_close,
    alac_decode_frame,
};