ac3enc_template.c 15.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * AC-3 encoder float/fixed template
 * Copyright (c) 2000 Fabrice Bellard
 * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * AC-3 encoder float/fixed template
 */

#include <stdint.h>

31
#include "libavutil/attributes.h"
32
#include "libavutil/internal.h"
33 34

#include "audiodsp.h"
35 36 37
#include "internal.h"
#include "ac3enc.h"
#include "eac3enc.h"
38

39

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
{
    int ch;

    FF_ALLOC_OR_GOTO(s->avctx, s->windowed_samples, AC3_WINDOW_SIZE *
                     sizeof(*s->windowed_samples), alloc_fail);
    FF_ALLOC_OR_GOTO(s->avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
                     alloc_fail);
    for (ch = 0; ch < s->channels; ch++) {
        FF_ALLOCZ_OR_GOTO(s->avctx, s->planar_samples[ch],
                          (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
                          alloc_fail);
    }

    return 0;
alloc_fail:
    return AVERROR(ENOMEM);
}


Justin Ruggles's avatar
Justin Ruggles committed
60
/*
61
 * Copy input samples.
62 63
 * Channels are reordered from Libav's default order to AC-3 order.
 */
64
static void copy_input_samples(AC3EncodeContext *s, SampleType **samples)
65
{
66
    int ch;
67

68
    /* copy and remap input samples */
69 70
    for (ch = 0; ch < s->channels; ch++) {
        /* copy last 256 samples of previous frame to the start of the current frame */
71
        memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_BLOCK_SIZE * s->num_blocks],
72 73
               AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));

74 75 76 77
        /* copy new samples for current frame */
        memcpy(&s->planar_samples[ch][AC3_BLOCK_SIZE],
               samples[s->channel_map[ch]],
               AC3_BLOCK_SIZE * s->num_blocks * sizeof(s->planar_samples[0][0]));
78 79 80 81
    }
}


Justin Ruggles's avatar
Justin Ruggles committed
82
/*
83 84 85 86
 * Apply the MDCT to input samples to generate frequency coefficients.
 * This applies the KBD window and normalizes the input to reduce precision
 * loss due to fixed-point calculations.
 */
87
static void apply_mdct(AC3EncodeContext *s)
88 89 90 91
{
    int blk, ch;

    for (ch = 0; ch < s->channels; ch++) {
92
        for (blk = 0; blk < s->num_blocks; blk++) {
93 94 95
            AC3Block *block = &s->blocks[blk];
            const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];

96
#if CONFIG_AC3ENC_FLOAT
97 98
            s->fdsp.vector_fmul(s->windowed_samples, input_samples,
                                s->mdct_window, AC3_WINDOW_SIZE);
99
#else
100 101
            s->ac3dsp.apply_window_int16(s->windowed_samples, input_samples,
                                         s->mdct_window, AC3_WINDOW_SIZE);
102 103

            if (s->fixed_point)
104
                block->coeff_shift[ch+1] = normalize_samples(s);
105
#endif
106

107 108
            s->mdct.mdct_calcw(&s->mdct, block->mdct_coef[ch+1],
                               s->windowed_samples);
109 110 111 112 113
        }
    }
}


Justin Ruggles's avatar
Justin Ruggles committed
114
/*
115 116
 * Calculate coupling channel and coupling coordinates.
 */
117
static void apply_channel_coupling(AC3EncodeContext *s)
118
{
119
    LOCAL_ALIGNED_16(CoefType, cpl_coords,      [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
120 121
#if CONFIG_AC3ENC_FLOAT
    LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
122 123 124
#else
    int32_t (*fixed_cpl_coords)[AC3_MAX_CHANNELS][16] = cpl_coords;
#endif
125 126
    int blk, ch, bnd, i, j;
    CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
127
    int cpl_start, num_cpl_coefs;
128 129

    memset(cpl_coords,       0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
130 131 132
#if CONFIG_AC3ENC_FLOAT
    memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
#endif
133

134 135 136 137 138 139
    /* align start to 16-byte boundary. align length to multiple of 32.
        note: coupling start bin % 4 will always be 1 */
    cpl_start     = s->start_freq[CPL_CH] - 1;
    num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
    cpl_start     = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;

140
    /* calculate coupling channel from fbw channels */
141
    for (blk = 0; blk < s->num_blocks; blk++) {
142
        AC3Block *block = &s->blocks[blk];
143
        CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
144 145
        if (!block->cpl_in_use)
            continue;
146
        memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
147
        for (ch = 1; ch <= s->fbw_channels; ch++) {
148
            CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
149 150 151 152 153 154
            if (!block->channel_in_cpl[ch])
                continue;
            for (i = 0; i < num_cpl_coefs; i++)
                cpl_coef[i] += ch_coef[i];
        }

155
        /* coefficients must be clipped in order to be encoded */
156
        clip_coefficients(&s->adsp, cpl_coef, num_cpl_coefs);
157 158 159 160 161 162 163 164 165
    }

    /* calculate energy in each band in coupling channel and each fbw channel */
    /* TODO: possibly use SIMD to speed up energy calculation */
    bnd = 0;
    i = s->start_freq[CPL_CH];
    while (i < s->cpl_end_freq) {
        int band_size = s->cpl_band_sizes[bnd];
        for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
166
            for (blk = 0; blk < s->num_blocks; blk++) {
167 168 169 170 171 172 173 174 175 176 177 178 179
                AC3Block *block = &s->blocks[blk];
                if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
                    continue;
                for (j = 0; j < band_size; j++) {
                    CoefType v = block->mdct_coef[ch][i+j];
                    MAC_COEF(energy[blk][ch][bnd], v, v);
                }
            }
        }
        i += band_size;
        bnd++;
    }

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    /* calculate coupling coordinates for all blocks for all channels */
    for (blk = 0; blk < s->num_blocks; blk++) {
        AC3Block *block  = &s->blocks[blk];
        if (!block->cpl_in_use)
            continue;
        for (ch = 1; ch <= s->fbw_channels; ch++) {
            if (!block->channel_in_cpl[ch])
                continue;
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
                                                          energy[blk][CPL_CH][bnd]);
            }
        }
    }

195
    /* determine which blocks to send new coupling coordinates for */
196
    for (blk = 0; blk < s->num_blocks; blk++) {
197 198 199
        AC3Block *block  = &s->blocks[blk];
        AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;

200 201
        memset(block->new_cpl_coords, 0, sizeof(block->new_cpl_coords));

202 203 204 205 206 207
        if (block->cpl_in_use) {
            /* send new coordinates if this is the first block, if previous
             * block did not use coupling but this block does, the channels
             * using coupling has changed from the previous block, or the
             * coordinate difference from the last block for any channel is
             * greater than a threshold value. */
208 209 210
            if (blk == 0 || !block0->cpl_in_use) {
                for (ch = 1; ch <= s->fbw_channels; ch++)
                    block->new_cpl_coords[ch] = 1;
211 212
            } else {
                for (ch = 1; ch <= s->fbw_channels; ch++) {
213 214 215
                    if (!block->channel_in_cpl[ch])
                        continue;
                    if (!block0->channel_in_cpl[ch]) {
216
                        block->new_cpl_coords[ch] = 1;
217 218 219
                    } else {
                        CoefSumType coord_diff = 0;
                        for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
220 221
                            coord_diff += FFABS(cpl_coords[blk-1][ch][bnd] -
                                                cpl_coords[blk  ][ch][bnd]);
222 223
                        }
                        coord_diff /= s->num_cpl_bands;
224
                        if (coord_diff > NEW_CPL_COORD_THRESHOLD)
225
                            block->new_cpl_coords[ch] = 1;
226 227 228 229 230 231 232 233 234 235
                    }
                }
            }
        }
    }

    /* calculate final coupling coordinates, taking into account reusing of
       coordinates in successive blocks */
    for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
        blk = 0;
236
        while (blk < s->num_blocks) {
237
            int av_uninit(blk1);
238 239 240 241 242 243 244 245
            AC3Block *block  = &s->blocks[blk];

            if (!block->cpl_in_use) {
                blk++;
                continue;
            }

            for (ch = 1; ch <= s->fbw_channels; ch++) {
246
                CoefSumType energy_ch, energy_cpl;
247 248
                if (!block->channel_in_cpl[ch])
                    continue;
249
                energy_cpl = energy[blk][CPL_CH][bnd];
250 251
                energy_ch = energy[blk][ch][bnd];
                blk1 = blk+1;
252
                while (blk1 < s->num_blocks && !s->blocks[blk1].new_cpl_coords[ch]) {
253 254
                    if (s->blocks[blk1].cpl_in_use) {
                        energy_cpl += energy[blk1][CPL_CH][bnd];
255
                        energy_ch += energy[blk1][ch][bnd];
256
                    }
257 258 259 260 261 262 263 264 265
                    blk1++;
                }
                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
            }
            blk = blk1;
        }
    }

    /* calculate exponents/mantissas for coupling coordinates */
266
    for (blk = 0; blk < s->num_blocks; blk++) {
267
        AC3Block *block = &s->blocks[blk];
268
        if (!block->cpl_in_use)
269 270
            continue;

271
#if CONFIG_AC3ENC_FLOAT
272 273 274
        s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
                                   cpl_coords[blk][1],
                                   s->fbw_channels * 16);
275
#endif
276 277 278 279 280 281 282
        s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
                                    fixed_cpl_coords[blk][1],
                                    s->fbw_channels * 16);

        for (ch = 1; ch <= s->fbw_channels; ch++) {
            int bnd, min_exp, max_exp, master_exp;

283 284 285
            if (!block->new_cpl_coords[ch])
                continue;

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
            /* determine master exponent */
            min_exp = max_exp = block->cpl_coord_exp[ch][0];
            for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
                int exp = block->cpl_coord_exp[ch][bnd];
                min_exp = FFMIN(exp, min_exp);
                max_exp = FFMAX(exp, max_exp);
            }
            master_exp = ((max_exp - 15) + 2) / 3;
            master_exp = FFMAX(master_exp, 0);
            while (min_exp < master_exp * 3)
                master_exp--;
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
                                                        master_exp * 3, 0, 15);
            }
            block->cpl_master_exp[ch] = master_exp;

            /* quantize mantissas */
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                int cpl_exp  = block->cpl_coord_exp[ch][bnd];
                int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
                if (cpl_exp == 15)
                    cpl_mant >>= 1;
                else
                    cpl_mant -= 16;

                block->cpl_coord_mant[ch][bnd] = cpl_mant;
            }
        }
    }

    if (CONFIG_EAC3_ENCODER && s->eac3)
        ff_eac3_set_cpl_states(s);
}


Justin Ruggles's avatar
Justin Ruggles committed
322
/*
323 324
 * Determine rematrixing flags for each block and band.
 */
325
static void compute_rematrixing_strategy(AC3EncodeContext *s)
326 327 328
{
    int nb_coefs;
    int blk, bnd, i;
329
    AC3Block *block, *block0;
330 331 332 333

    if (s->channel_mode != AC3_CHMODE_STEREO)
        return;

334
    for (blk = 0; blk < s->num_blocks; blk++) {
335 336 337 338 339 340 341 342 343 344 345 346
        block = &s->blocks[blk];
        block->new_rematrixing_strategy = !blk;

        block->num_rematrixing_bands = 4;
        if (block->cpl_in_use) {
            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
            if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
                block->new_rematrixing_strategy = 1;
        }
        nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);

347 348 349 350 351
        if (!s->rematrixing_enabled) {
            block0 = block;
            continue;
        }

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
        for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
            /* calculate calculate sum of squared coeffs for one band in one block */
            int start = ff_ac3_rematrix_band_tab[bnd];
            int end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
            CoefSumType sum[4] = {0,};
            for (i = start; i < end; i++) {
                CoefType lt = block->mdct_coef[1][i];
                CoefType rt = block->mdct_coef[2][i];
                CoefType md = lt + rt;
                CoefType sd = lt - rt;
                MAC_COEF(sum[0], lt, lt);
                MAC_COEF(sum[1], rt, rt);
                MAC_COEF(sum[2], md, md);
                MAC_COEF(sum[3], sd, sd);
            }

            /* compare sums to determine if rematrixing will be used for this band */
            if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
                block->rematrixing_flags[bnd] = 1;
            else
                block->rematrixing_flags[bnd] = 0;

            /* determine if new rematrixing flags will be sent */
            if (blk &&
                block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
                block->new_rematrixing_strategy = 1;
            }
        }
        block0 = block;
    }
}
383 384


385 386
int AC3_NAME(encode_frame)(AVCodecContext *avctx, AVPacket *avpkt,
                           const AVFrame *frame, int *got_packet_ptr)
387 388 389 390
{
    AC3EncodeContext *s = avctx->priv_data;
    int ret;

391
    if (s->options.allow_per_frame_metadata) {
392
        ret = ff_ac3_validate_metadata(s);
393 394 395 396 397 398 399
        if (ret)
            return ret;
    }

    if (s->bit_alloc.sr_code == 1 || s->eac3)
        ff_ac3_adjust_frame_size(s);

400
    copy_input_samples(s, (SampleType **)frame->extended_data);
401 402 403

    apply_mdct(s);

404 405 406
    if (s->fixed_point)
        scale_coefficients(s);

407
    clip_coefficients(&s->adsp, s->blocks[0].mdct_coef[1],
408
                      AC3_MAX_COEFS * s->num_blocks * s->channels);
409 410 411 412 413 414 415 416 417

    s->cpl_on = s->cpl_enabled;
    ff_ac3_compute_coupling_strategy(s);

    if (s->cpl_on)
        apply_channel_coupling(s);

    compute_rematrixing_strategy(s);

418 419 420
    if (!s->fixed_point)
        scale_coefficients(s);

421 422 423 424 425 426 427 428 429 430
    ff_ac3_apply_rematrixing(s);

    ff_ac3_process_exponents(s);

    ret = ff_ac3_compute_bit_allocation(s);
    if (ret) {
        av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
        return ret;
    }

431 432
    ff_ac3_group_exponents(s);

433 434
    ff_ac3_quantize_mantissas(s);

435 436 437 438 439
    if ((ret = ff_alloc_packet(avpkt, s->frame_size))) {
        av_log(avctx, AV_LOG_ERROR, "Error getting output packet\n");
        return ret;
    }
    ff_ac3_output_frame(s, avpkt->data);
440

441
    if (frame->pts != AV_NOPTS_VALUE)
442
        avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);
443 444 445

    *got_packet_ptr = 1;
    return 0;
446
}