lagarith.c 21 KB
Newer Older
1 2 3 4
/*
 * Lagarith lossless decoder
 * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
 *
5
 * This file is part of Libav.
6
 *
7
 * Libav is free software; you can redistribute it and/or
8 9 10 11
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
12
 * Libav is distributed in the hope that it will be useful,
13 14 15 16 17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with Libav; if not, write to the Free Software
19 20 21 22
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
23
 * @file
24 25 26 27 28 29 30 31 32
 * Lagarith lossless decoder
 * @author Nathan Caldwell
 */

#include "avcodec.h"
#include "get_bits.h"
#include "mathops.h"
#include "dsputil.h"
#include "lagarithrac.h"
33
#include "thread.h"
34 35

enum LagarithFrameType {
36 37 38 39 40 41 42 43 44 45 46
    FRAME_RAW           = 1,    /**< uncompressed */
    FRAME_U_RGB24       = 2,    /**< unaligned RGB24 */
    FRAME_ARITH_YUY2    = 3,    /**< arithmetic coded YUY2 */
    FRAME_ARITH_RGB24   = 4,    /**< arithmetic coded RGB24 */
    FRAME_SOLID_GRAY    = 5,    /**< solid grayscale color frame */
    FRAME_SOLID_COLOR   = 6,    /**< solid non-grayscale color frame */
    FRAME_OLD_ARITH_RGB = 7,    /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
    FRAME_ARITH_RGBA    = 8,    /**< arithmetic coded RGBA */
    FRAME_SOLID_RGBA    = 9,    /**< solid RGBA color frame */
    FRAME_ARITH_YV12    = 10,   /**< arithmetic coded YV12 */
    FRAME_REDUCED_RES   = 11,   /**< reduced resolution YV12 frame */
47 48 49 50 51
};

typedef struct LagarithContext {
    AVCodecContext *avctx;
    DSPContext dsp;
52 53
    int zeros;                  /**< number of consecutive zero bytes encountered */
    int zeros_rem;              /**< number of zero bytes remaining to output */
54 55
    uint8_t *rgb_planes;
    int rgb_stride;
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
} LagarithContext;

/**
 * Compute the 52bit mantissa of 1/(double)denom.
 * This crazy format uses floats in an entropy coder and we have to match x86
 * rounding exactly, thus ordinary floats aren't portable enough.
 * @param denom denominator
 * @return 52bit mantissa
 * @see softfloat_mul
 */
static uint64_t softfloat_reciprocal(uint32_t denom)
{
    int shift = av_log2(denom - 1) + 1;
    uint64_t ret = (1ULL << 52) / denom;
    uint64_t err = (1ULL << 52) - ret * denom;
    ret <<= shift;
    err <<= shift;
    err +=  denom / 2;
    return ret + err / denom;
}

/**
 * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
 * Used in combination with softfloat_reciprocal computes x/(double)denom.
 * @param x 32bit integer factor
 * @param mantissa mantissa of f with exponent 0
 * @return 32bit integer value (x*f)
 * @see softfloat_reciprocal
 */
static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
{
    uint64_t l = x * (mantissa & 0xffffffff);
    uint64_t h = x * (mantissa >> 32);
    h += l >> 32;
    l &= 0xffffffff;
    l += 1 << av_log2(h >> 21);
    h += l >> 32;
    return h >> 20;
}

static uint8_t lag_calc_zero_run(int8_t x)
{
    return (x << 1) ^ (x >> 7);
}

static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
{
    static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
    int i;
    int bit     = 0;
    int bits    = 0;
    int prevbit = 0;
    unsigned val;

    for (i = 0; i < 7; i++) {
        if (prevbit && bit)
            break;
        prevbit = bit;
        bit = get_bits1(gb);
        if (bit && !prevbit)
            bits += series[i];
    }
    bits--;
    if (bits < 0 || bits > 31) {
        *value = 0;
        return -1;
    } else if (bits == 0) {
        *value = 0;
        return 0;
    }

    val  = get_bits_long(gb, bits);
    val |= 1 << bits;

    *value = val - 1;

    return 0;
}

static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
{
    int i, j, scale_factor;
    unsigned prob, cumulative_target;
    unsigned cumul_prob = 0;
    unsigned scaled_cumul_prob = 0;

    rac->prob[0] = 0;
    rac->prob[257] = UINT_MAX;
    /* Read probabilities from bitstream */
    for (i = 1; i < 257; i++) {
        if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
            av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
            return -1;
        }
        if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
            av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
            return -1;
        }
        cumul_prob += rac->prob[i];
        if (!rac->prob[i]) {
            if (lag_decode_prob(gb, &prob)) {
                av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
                return -1;
            }
            if (prob > 257 - i)
                prob = 257 - i;
            for (j = 0; j < prob; j++)
                rac->prob[++i] = 0;
        }
    }

    if (!cumul_prob) {
        av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
        return -1;
    }

    /* Scale probabilities so cumulative probability is an even power of 2. */
    scale_factor = av_log2(cumul_prob);

    if (cumul_prob & (cumul_prob - 1)) {
        uint64_t mul = softfloat_reciprocal(cumul_prob);
        for (i = 1; i < 257; i++) {
            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
            scaled_cumul_prob += rac->prob[i];
        }

        scale_factor++;
        cumulative_target = 1 << scale_factor;

        if (scaled_cumul_prob > cumulative_target) {
            av_log(rac->avctx, AV_LOG_ERROR,
                   "Scaled probabilities are larger than target!\n");
            return -1;
        }

        scaled_cumul_prob = cumulative_target - scaled_cumul_prob;

        for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
            if (rac->prob[i]) {
                rac->prob[i]++;
                scaled_cumul_prob--;
            }
            /* Comment from reference source:
             * if (b & 0x80 == 0) {     // order of operations is 'wrong'; it has been left this way
Diego Biurrun's avatar
Diego Biurrun committed
200 201
             *                          // since the compression change is negligible and fixing it
             *                          // breaks backwards compatibility
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
             *      b =- (signed int)b;
             *      b &= 0xFF;
             * } else {
             *      b++;
             *      b &= 0x7f;
             * }
             */
        }
    }

    rac->scale = scale_factor;

    /* Fill probability array with cumulative probability for each symbol. */
    for (i = 1; i < 257; i++)
        rac->prob[i] += rac->prob[i - 1];

    return 0;
}

static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
                                      uint8_t *diff, int w, int *left,
                                      int *left_top)
{
    /* This is almost identical to add_hfyu_median_prediction in dsputil.h.
     * However the &0xFF on the gradient predictor yealds incorrect output
     * for lagarith.
     */
    int i;
    uint8_t l, lt;

    l  = *left;
    lt = *left_top;

    for (i = 0; i < w; i++) {
        l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
        lt = src1[i];
        dst[i] = l;
    }

    *left     = l;
    *left_top = lt;
}

static void lag_pred_line(LagarithContext *l, uint8_t *buf,
                          int width, int stride, int line)
{
    int L, TL;

    if (!line) {
        /* Left prediction only for first line */
        L = l->dsp.add_hfyu_left_prediction(buf + 1, buf + 1,
                                            width - 1, buf[0]);
    } else {
255 256 257 258 259 260
        /* Left pixel is actually prev_row[width] */
        L = buf[width - stride - 1];

        if (line == 1) {
            /* Second line, left predict first pixel, the rest of the line is median predicted
             * NOTE: In the case of RGB this pixel is top predicted */
261
            TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
262 263 264 265
        } else {
            /* Top left is 2 rows back, last pixel */
            TL = buf[width - (2 * stride) - 1];
        }
266

267 268 269
        add_lag_median_prediction(buf, buf - stride, buf,
                                  width, &L, &TL);
    }
270 271
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
                               int width, int stride, int line,
                               int is_luma)
{
    int L, TL;

    if (!line) {
        if (is_luma) {
            buf++;
            width--;
        }
        l->dsp.add_hfyu_left_prediction(buf + 1, buf + 1, width - 1, buf[0]);
        return;
    }
    if (line == 1) {
        const int HEAD = is_luma ? 4 : 2;
        int i;

        L  = buf[width - stride - 1];
        TL = buf[HEAD  - stride - 1];
        for (i = 0; i < HEAD; i++) {
            L += buf[i];
            buf[i] = L;
        }
        buf   += HEAD;
        width -= HEAD;
    } else {
        TL = buf[width - (2 * stride) - 1];
        L  = buf[width - stride - 1];
    }
    l->dsp.add_hfyu_median_prediction(buf, buf - stride, buf, width,
                                      &L, &TL);
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
static int lag_decode_line(LagarithContext *l, lag_rac *rac,
                           uint8_t *dst, int width, int stride,
                           int esc_count)
{
    int i = 0;
    int ret = 0;

    if (!esc_count)
        esc_count = -1;

    /* Output any zeros remaining from the previous run */
handle_zeros:
    if (l->zeros_rem) {
        int count = FFMIN(l->zeros_rem, width - i);
        memset(dst + i, 0, count);
        i += count;
        l->zeros_rem -= count;
    }

    while (i < width) {
        dst[i] = lag_get_rac(rac);
        ret++;

        if (dst[i])
            l->zeros = 0;
        else
            l->zeros++;

        i++;
        if (l->zeros == esc_count) {
            int index = lag_get_rac(rac);
            ret++;

            l->zeros = 0;

            l->zeros_rem = lag_calc_zero_run(index);
            goto handle_zeros;
        }
    }
    return ret;
}

static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
349 350
                                    const uint8_t *src, const uint8_t *src_end,
                                    int width, int esc_count)
351 352 353 354
{
    int i = 0;
    int count;
    uint8_t zero_run = 0;
355
    const uint8_t *src_start = src;
356 357 358 359 360 361 362
    uint8_t mask1 = -(esc_count < 2);
    uint8_t mask2 = -(esc_count < 3);
    uint8_t *end = dst + (width - 2);

output_zeros:
    if (l->zeros_rem) {
        count = FFMIN(l->zeros_rem, width - i);
363 364 365 366 367
        if (end - dst < count) {
            av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
            return AVERROR_INVALIDDATA;
        }

368 369 370 371 372 373 374 375 376
        memset(dst, 0, count);
        l->zeros_rem -= count;
        dst += count;
    }

    while (dst < end) {
        i = 0;
        while (!zero_run && dst + i < end) {
            i++;
377 378
            if (src + i >= src_end)
                return AVERROR_INVALIDDATA;
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
            zero_run =
                !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
        }
        if (zero_run) {
            zero_run = 0;
            i += esc_count;
            memcpy(dst, src, i);
            dst += i;
            l->zeros_rem = lag_calc_zero_run(src[i]);

            src += i + 1;
            goto output_zeros;
        } else {
            memcpy(dst, src, i);
            src += i;
394
            dst += i;
395 396
        }
    }
397
    return src_start - src;
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
}



static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
                                  int width, int height, int stride,
                                  const uint8_t *src, int src_size)
{
    int i = 0;
    int read = 0;
    uint32_t length;
    uint32_t offset = 1;
    int esc_count = src[0];
    GetBitContext gb;
    lag_rac rac;
413
    const uint8_t *src_end = src + src_size;
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429

    rac.avctx = l->avctx;
    l->zeros = 0;

    if (esc_count < 4) {
        length = width * height;
        if (esc_count && AV_RL32(src + 1) < length) {
            length = AV_RL32(src + 1);
            offset += 4;
        }

        init_get_bits(&gb, src + offset, src_size * 8);

        if (lag_read_prob_header(&rac, &gb) < 0)
            return -1;

430
        ff_lag_rac_init(&rac, &gb, length - stride);
431 432 433 434 435 436 437 438 439 440 441 442 443

        for (i = 0; i < height; i++)
            read += lag_decode_line(l, &rac, dst + (i * stride), width,
                                    stride, esc_count);

        if (read > length)
            av_log(l->avctx, AV_LOG_WARNING,
                   "Output more bytes than length (%d of %d)\n", read,
                   length);
    } else if (esc_count < 8) {
        esc_count -= 4;
        if (esc_count > 0) {
            /* Zero run coding only, no range coding. */
444 445 446 447 448 449 450
            for (i = 0; i < height; i++) {
                int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
                                                   src_end, width, esc_count);
                if (res < 0)
                    return res;
                src += res;
            }
451
        } else {
452 453
            if (src_size < width * height)
                return AVERROR_INVALIDDATA; // buffer not big enough
454 455 456 457 458 459 460
            /* Plane is stored uncompressed */
            for (i = 0; i < height; i++) {
                memcpy(dst + (i * stride), src, width);
                src += width;
            }
        }
    } else if (esc_count == 0xff) {
461
        /* Plane is a solid run of given value */
462
        for (i = 0; i < height; i++)
463 464 465 466 467
            memset(dst + i * stride, src[1], width);
        /* Do not apply prediction.
           Note: memset to 0 above, setting first value to src[1]
           and applying prediction gives the same result. */
        return 0;
468 469 470 471 472 473
    } else {
        av_log(l->avctx, AV_LOG_ERROR,
               "Invalid zero run escape code! (%#x)\n", esc_count);
        return -1;
    }

474
    if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
475 476 477 478 479 480 481 482 483 484
        for (i = 0; i < height; i++) {
            lag_pred_line(l, dst, width, stride, i);
            dst += stride;
        }
    } else {
        for (i = 0; i < height; i++) {
            lag_pred_line_yuy2(l, dst, width, stride, i,
                               width == l->avctx->width);
            dst += stride;
        }
485 486 487 488 489 490 491 492 493 494 495 496 497 498
    }

    return 0;
}

/**
 * Decode a frame.
 * @param avctx codec context
 * @param data output AVFrame
 * @param data_size size of output data or 0 if no picture is returned
 * @param avpkt input packet
 * @return number of consumed bytes on success or negative if decode fails
 */
static int lag_decode_frame(AVCodecContext *avctx,
499
                            void *data, int *got_frame, AVPacket *avpkt)
500 501 502 503
{
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
    LagarithContext *l = avctx->priv_data;
504 505
    ThreadFrame frame = { .f = data };
    AVFrame *const p  = data;
506 507
    uint8_t frametype = 0;
    uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
508
    uint32_t offs[4];
509
    uint8_t *srcs[4], *dst;
510
    int i, j, planes = 3;
511 512 513 514 515 516 517 518 519

    p->key_frame = 1;

    frametype = buf[0];

    offset_gu = AV_RL32(buf + 1);
    offset_bv = AV_RL32(buf + 5);

    switch (frametype) {
520
    case FRAME_SOLID_RGBA:
521
        avctx->pix_fmt = AV_PIX_FMT_RGB32;
522

523
        if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
524 525 526 527 528 529 530 531 532 533 534 535
            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
            return -1;
        }

        dst = p->data[0];
        for (j = 0; j < avctx->height; j++) {
            for (i = 0; i < avctx->width; i++)
                AV_WN32(dst + i * 4, offset_gu);
            dst += p->linesize[0];
        }
        break;
    case FRAME_ARITH_RGBA:
536
        avctx->pix_fmt = AV_PIX_FMT_RGB32;
537 538 539 540
        planes = 4;
        offset_ry += 4;
        offs[3] = AV_RL32(buf + 9);
    case FRAME_ARITH_RGB24:
541 542
    case FRAME_U_RGB24:
        if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
543
            avctx->pix_fmt = AV_PIX_FMT_RGB24;
544

545
        if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
546 547 548
            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
            return -1;
        }
549

550 551
        offs[0] = offset_bv;
        offs[1] = offset_gu;
552
        offs[2] = offset_ry;
553 554 555

        if (!l->rgb_planes) {
            l->rgb_stride = FFALIGN(avctx->width, 16);
556
            l->rgb_planes = av_malloc(l->rgb_stride * avctx->height * planes + 1);
557 558 559 560 561
            if (!l->rgb_planes) {
                av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n");
                return AVERROR(ENOMEM);
            }
        }
562
        for (i = 0; i < planes; i++)
563
            srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride;
564 565 566 567 568 569 570 571
        if (offset_ry >= buf_size ||
            offset_gu >= buf_size ||
            offset_bv >= buf_size ||
            (planes == 4 && offs[3] >= buf_size)) {
            av_log(avctx, AV_LOG_ERROR,
                    "Invalid frame offsets\n");
            return AVERROR_INVALIDDATA;
        }
572
        for (i = 0; i < planes; i++)
573 574 575
            lag_decode_arith_plane(l, srcs[i],
                                   avctx->width, avctx->height,
                                   -l->rgb_stride, buf + offs[i],
576
                                   buf_size - offs[i]);
577
        dst = p->data[0];
578
        for (i = 0; i < planes; i++)
579 580 581 582 583 584 585 586 587
            srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height;
        for (j = 0; j < avctx->height; j++) {
            for (i = 0; i < avctx->width; i++) {
                uint8_t r, g, b, a;
                r = srcs[0][i];
                g = srcs[1][i];
                b = srcs[2][i];
                r += g;
                b += g;
588 589 590 591 592 593 594 595
                if (frametype == FRAME_ARITH_RGBA) {
                    a = srcs[3][i];
                    AV_WN32(dst + i * 4, MKBETAG(a, r, g, b));
                } else {
                    dst[i * 3 + 0] = r;
                    dst[i * 3 + 1] = g;
                    dst[i * 3 + 2] = b;
                }
596 597
            }
            dst += p->linesize[0];
598
            for (i = 0; i < planes; i++)
599 600 601
                srcs[i] += l->rgb_stride;
        }
        break;
602
    case FRAME_ARITH_YUY2:
603
        avctx->pix_fmt = AV_PIX_FMT_YUV422P;
604

605
        if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
            return -1;
        }

        if (offset_ry >= buf_size ||
            offset_gu >= buf_size ||
            offset_bv >= buf_size) {
            av_log(avctx, AV_LOG_ERROR,
                   "Invalid frame offsets\n");
            return AVERROR_INVALIDDATA;
        }

        lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
                               p->linesize[0], buf + offset_ry,
                               buf_size - offset_ry);
        lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
                               avctx->height, p->linesize[1],
623 624 625
                               buf + offset_gu, buf_size - offset_gu);
        lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
                               avctx->height, p->linesize[2],
626 627
                               buf + offset_bv, buf_size - offset_bv);
        break;
628
    case FRAME_ARITH_YV12:
629
        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
630

631
        if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
632 633 634 635
            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
            return -1;
        }

636 637 638 639 640 641 642 643
        if (offset_ry >= buf_size ||
            offset_gu >= buf_size ||
            offset_bv >= buf_size) {
            av_log(avctx, AV_LOG_ERROR,
                   "Invalid frame offsets\n");
            return AVERROR_INVALIDDATA;
        }

644 645
        lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
                               p->linesize[0], buf + offset_ry,
646
                               buf_size - offset_ry);
647 648
        lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
                               avctx->height / 2, p->linesize[2],
649
                               buf + offset_gu, buf_size - offset_gu);
650 651
        lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
                               avctx->height / 2, p->linesize[1],
652
                               buf + offset_bv, buf_size - offset_bv);
653 654 655 656 657 658 659
        break;
    default:
        av_log(avctx, AV_LOG_ERROR,
               "Unsupported Lagarith frame type: %#x\n", frametype);
        return -1;
    }

660
    *got_frame = 1;
661 662 663 664 665 666 667 668 669

    return buf_size;
}

static av_cold int lag_decode_init(AVCodecContext *avctx)
{
    LagarithContext *l = avctx->priv_data;
    l->avctx = avctx;

670
    ff_dsputil_init(&l->dsp, avctx);
671 672 673 674 675 676 677 678

    return 0;
}

static av_cold int lag_decode_end(AVCodecContext *avctx)
{
    LagarithContext *l = avctx->priv_data;

679
    av_freep(&l->rgb_planes);
680 681 682 683

    return 0;
}

684
AVCodec ff_lagarith_decoder = {
685
    .name           = "lagarith",
686
    .long_name      = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
687
    .type           = AVMEDIA_TYPE_VIDEO,
688
    .id             = AV_CODEC_ID_LAGARITH,
689 690 691 692
    .priv_data_size = sizeof(LagarithContext),
    .init           = lag_decode_init,
    .close          = lag_decode_end,
    .decode         = lag_decode_frame,
693
    .capabilities   = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
694
};