dxa.c 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Feeble Files/ScummVM DXA decoder
 * Copyright (c) 2007 Konstantin Shishkov
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
23
 * @file
24 25 26 27 28 29
 * DXA Video decoder
 */

#include <stdio.h>
#include <stdlib.h>

30
#include "libavutil/intreadwrite.h"
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
#include "avcodec.h"

#include <zlib.h>

/*
 * Decoder context
 */
typedef struct DxaDecContext {
    AVCodecContext *avctx;
    AVFrame pic, prev;

    int dsize;
    uint8_t *decomp_buf;
    uint32_t pal[256];
} DxaDecContext;

static const int shift1[6] = { 0, 8, 8, 8, 4, 4 };
static const int shift2[6] = { 0, 0, 8, 4, 0, 4 };

static int decode_13(AVCodecContext *avctx, DxaDecContext *c, uint8_t* dst, uint8_t *src, uint8_t *ref)
{
    uint8_t *code, *data, *mv, *msk, *tmp, *tmp2;
    int i, j, k;
    int type, x, y, d, d2;
    int stride = c->pic.linesize[0];
    uint32_t mask;

    code = src  + 12;
    data = code + ((avctx->width * avctx->height) >> 4);
    mv   = data + AV_RB32(src + 0);
    msk  = mv   + AV_RB32(src + 4);

    for(j = 0; j < avctx->height; j += 4){
        for(i = 0; i < avctx->width; i += 4){
            tmp  = dst + i;
            tmp2 = ref + i;
            type = *code++;
            switch(type){
            case 4: // motion compensation
                x = (*mv) >> 4;    if(x & 8) x = 8 - x;
                y = (*mv++) & 0xF; if(y & 8) y = 8 - y;
                tmp2 += x + y*stride;
            case 0: // skip
            case 5: // skip in method 12
                for(y = 0; y < 4; y++){
                    memcpy(tmp, tmp2, 4);
                    tmp  += stride;
                    tmp2 += stride;
                }
                break;
            case 1:  // masked change
            case 10: // masked change with only half of pixels changed
            case 11: // cases 10-15 are for method 12 only
            case 12:
            case 13:
            case 14:
            case 15:
                if(type == 1){
                    mask = AV_RB16(msk);
                    msk += 2;
                }else{
                    type -= 10;
                    mask = ((msk[0] & 0xF0) << shift1[type]) | ((msk[0] & 0xF) << shift2[type]);
                    msk++;
                }
                for(y = 0; y < 4; y++){
                    for(x = 0; x < 4; x++){
                        tmp[x] = (mask & 0x8000) ? *data++ : tmp2[x];
                        mask <<= 1;
                    }
                    tmp  += stride;
                    tmp2 += stride;
                }
                break;
            case 2: // fill block
                for(y = 0; y < 4; y++){
                    memset(tmp, data[0], 4);
                    tmp += stride;
                }
                data++;
                break;
            case 3: // raw block
                for(y = 0; y < 4; y++){
                    memcpy(tmp, data, 4);
                    data += 4;
                    tmp  += stride;
                }
                break;
            case 8: // subblocks - method 13 only
                mask = *msk++;
                for(k = 0; k < 4; k++){
                    d  = ((k & 1) << 1) + ((k & 2) * stride);
                    d2 = ((k & 1) << 1) + ((k & 2) * stride);
                    tmp2 = ref + i + d2;
                    switch(mask & 0xC0){
                    case 0x80: // motion compensation
                        x = (*mv) >> 4;    if(x & 8) x = 8 - x;
                        y = (*mv++) & 0xF; if(y & 8) y = 8 - y;
                        tmp2 += x + y*stride;
                    case 0x00: // skip
                        tmp[d + 0         ] = tmp2[0];
                        tmp[d + 1         ] = tmp2[1];
                        tmp[d + 0 + stride] = tmp2[0 + stride];
                        tmp[d + 1 + stride] = tmp2[1 + stride];
                        break;
                    case 0x40: // fill
                        tmp[d + 0         ] = data[0];
                        tmp[d + 1         ] = data[0];
                        tmp[d + 0 + stride] = data[0];
                        tmp[d + 1 + stride] = data[0];
                        data++;
                        break;
                    case 0xC0: // raw
                        tmp[d + 0         ] = *data++;
                        tmp[d + 1         ] = *data++;
                        tmp[d + 0 + stride] = *data++;
                        tmp[d + 1 + stride] = *data++;
                        break;
                    }
                    mask <<= 2;
                }
                break;
            case 32: // vector quantization - 2 colors
                mask = AV_RB16(msk);
                msk += 2;
                for(y = 0; y < 4; y++){
                    for(x = 0; x < 4; x++){
                        tmp[x] = data[mask & 1];
                        mask >>= 1;
                    }
                    tmp  += stride;
                    tmp2 += stride;
                }
                data += 2;
                break;
            case 33: // vector quantization - 3 or 4 colors
            case 34:
                mask = AV_RB32(msk);
                msk += 4;
                for(y = 0; y < 4; y++){
                    for(x = 0; x < 4; x++){
                        tmp[x] = data[mask & 3];
                        mask >>= 2;
                    }
                    tmp  += stride;
                    tmp2 += stride;
                }
                data += type - 30;
                break;
            default:
                av_log(avctx, AV_LOG_ERROR, "Unknown opcode %d\n", type);
                return -1;
            }
        }
        dst += stride * 4;
        ref += stride * 4;
    }
    return 0;
}

191
static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt)
192
{
193 194
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
195
    DxaDecContext * const c = avctx->priv_data;
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
    uint8_t *outptr, *srcptr, *tmpptr;
    unsigned long dsize;
    int i, j, compr;
    int stride;
    int orig_buf_size = buf_size;
    int pc = 0;

    /* make the palette available on the way out */
    if(buf[0]=='C' && buf[1]=='M' && buf[2]=='A' && buf[3]=='P'){
        int r, g, b;

        buf += 4;
        for(i = 0; i < 256; i++){
            r = *buf++;
            g = *buf++;
            b = *buf++;
            c->pal[i] = (r << 16) | (g << 8) | b;
        }
        pc = 1;
        buf_size -= 768+4;
    }

    if(avctx->get_buffer(avctx, &c->pic) < 0){
        av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
        return -1;
    }
    memcpy(c->pic.data[1], c->pal, AVPALETTE_SIZE);
    c->pic.palette_has_changed = pc;

    outptr = c->pic.data[0];
    srcptr = c->decomp_buf;
    tmpptr = c->prev.data[0];
    stride = c->pic.linesize[0];

    if(buf[0]=='N' && buf[1]=='U' && buf[2]=='L' && buf[3]=='L')
        compr = -1;
    else
        compr = buf[4];

    dsize = c->dsize;
    if((compr != 4 && compr != -1) && uncompress(c->decomp_buf, &dsize, buf + 9, buf_size - 9) != Z_OK){
        av_log(avctx, AV_LOG_ERROR, "Uncompress failed!\n");
        return -1;
    }
    switch(compr){
    case -1:
        c->pic.key_frame = 0;
243
        c->pic.pict_type = AV_PICTURE_TYPE_P;
244 245 246 247 248
        if(c->prev.data[0])
            memcpy(c->pic.data[0], c->prev.data[0], c->pic.linesize[0] * avctx->height);
        else{ // Should happen only when first frame is 'NULL'
            memset(c->pic.data[0], 0, c->pic.linesize[0] * avctx->height);
            c->pic.key_frame = 1;
249
            c->pic.pict_type = AV_PICTURE_TYPE_I;
250 251 252 253 254 255 256
        }
        break;
    case 2:
    case 3:
    case 4:
    case 5:
        c->pic.key_frame = !(compr & 1);
257
        c->pic.pict_type = (compr & 1) ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I;
258 259 260 261 262 263 264 265 266 267 268 269 270 271
        for(j = 0; j < avctx->height; j++){
            if(compr & 1){
                for(i = 0; i < avctx->width; i++)
                    outptr[i] = srcptr[i] ^ tmpptr[i];
                tmpptr += stride;
            }else
                memcpy(outptr, srcptr, avctx->width);
            outptr += stride;
            srcptr += avctx->width;
        }
        break;
    case 12: // ScummVM coding
    case 13:
        c->pic.key_frame = 0;
272
        c->pic.pict_type = AV_PICTURE_TYPE_P;
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
        decode_13(avctx, c, c->pic.data[0], srcptr, c->prev.data[0]);
        break;
    default:
        av_log(avctx, AV_LOG_ERROR, "Unknown/unsupported compression type %d\n", buf[4]);
        return -1;
    }

    FFSWAP(AVFrame, c->pic, c->prev);
    if(c->pic.data[0])
        avctx->release_buffer(avctx, &c->pic);

    *data_size = sizeof(AVFrame);
    *(AVFrame*)data = c->prev;

    /* always report that the buffer was completely consumed */
    return orig_buf_size;
}

291
static av_cold int decode_init(AVCodecContext *avctx)
292
{
293
    DxaDecContext * const c = avctx->priv_data;
294 295 296 297

    c->avctx = avctx;
    avctx->pix_fmt = PIX_FMT_PAL8;

298 299 300
    avcodec_get_frame_defaults(&c->pic);
    avcodec_get_frame_defaults(&c->prev);

301 302 303 304 305 306 307 308 309
    c->dsize = avctx->width * avctx->height * 2;
    if((c->decomp_buf = av_malloc(c->dsize)) == NULL) {
        av_log(avctx, AV_LOG_ERROR, "Can't allocate decompression buffer.\n");
        return -1;
    }

    return 0;
}

310
static av_cold int decode_end(AVCodecContext *avctx)
311
{
312
    DxaDecContext * const c = avctx->priv_data;
313 314 315 316 317 318 319 320 321 322

    av_freep(&c->decomp_buf);
    if(c->prev.data[0])
        avctx->release_buffer(avctx, &c->prev);
    if(c->pic.data[0])
        avctx->release_buffer(avctx, &c->pic);

    return 0;
}

323
AVCodec ff_dxa_decoder = {
324
    "dxa",
325
    AVMEDIA_TYPE_VIDEO,
326 327 328 329 330
    CODEC_ID_DXA,
    sizeof(DxaDecContext),
    decode_init,
    NULL,
    decode_end,
331
    decode_frame,
332
    CODEC_CAP_DR1,
333
    .long_name = NULL_IF_CONFIG_SMALL("Feeble Files/ScummVM DXA"),
334 335
};