mpegaudiodec.c 80 KB
Newer Older
Fabrice Bellard's avatar
Fabrice Bellard committed
1 2
/*
 * MPEG Audio decoder
3
 * Copyright (c) 2001, 2002 Fabrice Bellard.
Fabrice Bellard's avatar
Fabrice Bellard committed
4
 *
5 6 7 8
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
Fabrice Bellard's avatar
Fabrice Bellard committed
9
 *
10
 * This library is distributed in the hope that it will be useful,
Fabrice Bellard's avatar
Fabrice Bellard committed
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
Fabrice Bellard's avatar
Fabrice Bellard committed
14
 *
15 16 17
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
Fabrice Bellard's avatar
Fabrice Bellard committed
18
 */
Michael Niedermayer's avatar
Michael Niedermayer committed
19 20 21 22 23 24

/**
 * @file mpegaudiodec.c
 * MPEG Audio decoder.
 */ 

25
//#define DEBUG
Fabrice Bellard's avatar
Fabrice Bellard committed
26
#include "avcodec.h"
27
#include "mpegaudio.h"
28
#include "dsputil.h"
Fabrice Bellard's avatar
Fabrice Bellard committed
29 30

/*
31 32 33
 * TODO:
 *  - in low precision mode, use more 16 bit multiplies in synth filter
 *  - test lsf / mpeg25 extensively.
Fabrice Bellard's avatar
Fabrice Bellard committed
34 35
 */

36 37
/* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
   audio decoder */
38 39 40
#ifdef CONFIG_MPEGAUDIO_HP
#define USE_HIGHPRECISION
#endif
41 42 43 44 45 46 47 48 49 50 51

#ifdef USE_HIGHPRECISION
#define FRAC_BITS   23   /* fractional bits for sb_samples and dct */
#define WFRAC_BITS  16   /* fractional bits for window */
#else
#define FRAC_BITS   15   /* fractional bits for sb_samples and dct */
#define WFRAC_BITS  14   /* fractional bits for window */
#endif

#define FRAC_ONE    (1 << FRAC_BITS)

52 53
#define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
#define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
54 55 56 57 58 59
#define FIX(a)   ((int)((a) * FRAC_ONE))
/* WARNING: only correct for posititive numbers */
#define FIXR(a)   ((int)((a) * FRAC_ONE + 0.5))
#define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)

#if FRAC_BITS <= 15
60
typedef int16_t MPA_INT;
61
#else
62
typedef int32_t MPA_INT;
63 64 65 66
#endif

/****************/

Fabrice Bellard's avatar
Fabrice Bellard committed
67 68 69
#define HEADER_SIZE 4
#define BACKSTEP_SIZE 512

70 71
struct GranuleDef;

Fabrice Bellard's avatar
Fabrice Bellard committed
72
typedef struct MPADecodeContext {
73
    uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE];	/* input buffer */
Fabrice Bellard's avatar
Fabrice Bellard committed
74
    int inbuf_index;
75
    uint8_t *inbuf_ptr, *inbuf;
Fabrice Bellard's avatar
Fabrice Bellard committed
76
    int frame_size;
77 78 79
    int free_format_frame_size; /* frame size in case of free format
                                   (zero if currently unknown) */
    /* next header (used in free format parsing) */
80
    uint32_t free_format_next_header; 
Fabrice Bellard's avatar
Fabrice Bellard committed
81 82 83
    int error_protection;
    int layer;
    int sample_rate;
84
    int sample_rate_index; /* between 0 and 8 */
Fabrice Bellard's avatar
Fabrice Bellard committed
85 86 87
    int bit_rate;
    int old_frame_size;
    GetBitContext gb;
88 89 90 91
    int nb_channels;
    int mode;
    int mode_ext;
    int lsf;
92
    MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
93
    int synth_buf_offset[MPA_MAX_CHANNELS];
94
    int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
95
    int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
96 97 98
#ifdef DEBUG
    int frame_count;
#endif
99
    void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
Fabrice Bellard's avatar
Fabrice Bellard committed
100 101
} MPADecodeContext;

102 103
/* layer 3 "granule" */
typedef struct GranuleDef {
104
    uint8_t scfsi;
105 106 107 108
    int part2_3_length;
    int big_values;
    int global_gain;
    int scalefac_compress;
109 110
    uint8_t block_type;
    uint8_t switch_point;
111 112
    int table_select[3];
    int subblock_gain[3];
113 114
    uint8_t scalefac_scale;
    uint8_t count1table_select;
115 116 117
    int region_size[3]; /* number of huffman codes in each region */
    int preflag;
    int short_start, long_end; /* long/short band indexes */
118 119
    uint8_t scale_factors[40];
    int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
120
} GranuleDef;
Fabrice Bellard's avatar
Fabrice Bellard committed
121

122 123 124 125 126 127
#define MODE_EXT_MS_STEREO 2
#define MODE_EXT_I_STEREO  1

/* layer 3 huffman tables */
typedef struct HuffTable {
    int xsize;
128 129
    const uint8_t *bits;
    const uint16_t *codes;
130 131 132 133
} HuffTable;

#include "mpegaudiodectab.h"

134 135 136
static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);

137 138
/* vlc structure for decoding layer 3 huffman tables */
static VLC huff_vlc[16]; 
139
static uint8_t *huff_code_table[16];
140 141
static VLC huff_quad_vlc[2];
/* computed from band_size_long */
142
static uint16_t band_index_long[9][23];
143 144
/* XXX: free when all decoders are closed */
#define TABLE_4_3_SIZE (8191 + 16)
145
static int8_t  *table_4_3_exp;
146
#if FRAC_BITS <= 15
147
static uint16_t *table_4_3_value;
148
#else
149
static uint32_t *table_4_3_value;
150 151
#endif
/* intensity stereo coef table */
152 153
static int32_t is_table[2][16];
static int32_t is_table_lsf[2][2][16];
154 155
static int32_t csa_table[8][4];
static float csa_table_float[8][4];
156
static int32_t mdct_win[8][36];
157 158

/* lower 2 bits: modulo 3, higher bits: shift */
159
static uint16_t scale_factor_modshift[64];
160
/* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
161
static int32_t scale_factor_mult[15][3];
162 163 164 165 166
/* mult table for layer 2 group quantization */

#define SCALE_GEN(v) \
{ FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }

167
static int32_t scale_factor_mult2[3][3] = {
168 169 170
    SCALE_GEN(4.0 / 3.0), /* 3 steps */
    SCALE_GEN(4.0 / 5.0), /* 5 steps */
    SCALE_GEN(4.0 / 9.0), /* 9 steps */
171 172 173
};

/* 2^(n/4) */
174
static uint32_t scale_factor_mult3[4] = {
175 176 177 178
    FIXR(1.0),
    FIXR(1.18920711500272106671),
    FIXR(1.41421356237309504880),
    FIXR(1.68179283050742908605),
Fabrice Bellard's avatar
Fabrice Bellard committed
179 180
};

181
static MPA_INT window[512] __attribute__((aligned(16)));
182 183 184 185 186 187
    
/* layer 1 unscaling */
/* n = number of bits of the mantissa minus 1 */
static inline int l1_unscale(int n, int mant, int scale_factor)
{
    int shift, mod;
188
    int64_t val;
189 190 191 192 193 194

    shift = scale_factor_modshift[scale_factor];
    mod = shift & 3;
    shift >>= 2;
    val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
    shift += n;
195 196
    /* NOTE: at this point, 1 <= shift >= 21 + 15 */
    return (int)((val + (1LL << (shift - 1))) >> shift);
197 198 199 200 201 202 203 204 205
}

static inline int l2_unscale_group(int steps, int mant, int scale_factor)
{
    int shift, mod, val;

    shift = scale_factor_modshift[scale_factor];
    mod = shift & 3;
    shift >>= 2;
206 207 208 209 210 211

    val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
    /* NOTE: at this point, 0 <= shift <= 21 */
    if (shift > 0)
        val = (val + (1 << (shift - 1))) >> shift;
    return val;
212 213 214 215 216 217 218 219
}

/* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
static inline int l3_unscale(int value, int exponent)
{
#if FRAC_BITS <= 15    
    unsigned int m;
#else
220
    uint64_t m;
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
#endif
    int e;

    e = table_4_3_exp[value];
    e += (exponent >> 2);
    e = FRAC_BITS - e;
#if FRAC_BITS <= 15    
    if (e > 31)
        e = 31;
#endif
    m = table_4_3_value[value];
#if FRAC_BITS <= 15    
    m = (m * scale_factor_mult3[exponent & 3]);
    m = (m + (1 << (e-1))) >> e;
    return m;
#else
    m = MUL64(m, scale_factor_mult3[exponent & 3]);
238
    m = (m + (uint64_t_C(1) << (e-1))) >> e;
239 240 241 242
    return m;
#endif
}

243 244 245 246 247 248
/* all integer n^(4/3) computation code */
#define DEV_ORDER 13

#define POW_FRAC_BITS 24
#define POW_FRAC_ONE    (1 << POW_FRAC_BITS)
#define POW_FIX(a)   ((int)((a) * POW_FRAC_ONE))
249
#define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

static int dev_4_3_coefs[DEV_ORDER];

static int pow_mult3[3] = {
    POW_FIX(1.0),
    POW_FIX(1.25992104989487316476),
    POW_FIX(1.58740105196819947474),
};

static void int_pow_init(void)
{
    int i, a;

    a = POW_FIX(1.0);
    for(i=0;i<DEV_ORDER;i++) {
        a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
        dev_4_3_coefs[i] = a;
    }
}

/* return the mantissa and the binary exponent */
static int int_pow(int i, int *exp_ptr)
{
    int e, er, eq, j;
    int a, a1;
    
    /* renormalize */
    a = i;
    e = POW_FRAC_BITS;
    while (a < (1 << (POW_FRAC_BITS - 1))) {
        a = a << 1;
        e--;
    }
    a -= (1 << POW_FRAC_BITS);
    a1 = 0;
    for(j = DEV_ORDER - 1; j >= 0; j--)
        a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
    a = (1 << POW_FRAC_BITS) + a1;
    /* exponent compute (exact) */
    e = e * 4;
    er = e % 3;
    eq = e / 3;
    a = POW_MULL(a, pow_mult3[er]);
    while (a >= 2 * POW_FRAC_ONE) {
        a = a >> 1;
        eq++;
    }
    /* convert to float */
    while (a < POW_FRAC_ONE) {
        a = a << 1;
        eq--;
    }
302
    /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
303
#if POW_FRAC_BITS > FRAC_BITS
304 305 306 307 308 309 310
    a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
    /* correct overflow */
    if (a >= 2 * (1 << FRAC_BITS)) {
        a = a >> 1;
        eq++;
    }
#endif
311 312 313
    *exp_ptr = eq;
    return a;
}
Fabrice Bellard's avatar
Fabrice Bellard committed
314 315 316 317

static int decode_init(AVCodecContext * avctx)
{
    MPADecodeContext *s = avctx->priv_data;
318
    static int init=0;
319
    int i, j, k;
Fabrice Bellard's avatar
Fabrice Bellard committed
320

Michael Niedermayer's avatar
Michael Niedermayer committed
321 322 323 324 325
    if(avctx->antialias_algo == FF_AA_INT)
        s->compute_antialias= compute_antialias_integer;
    else
        s->compute_antialias= compute_antialias_float;

326
    if (!init && !avctx->parse_only) {
327 328 329 330
        /* scale factors table for layer 1/2 */
        for(i=0;i<64;i++) {
            int shift, mod;
            /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
331
            shift = (i / 3);
332 333 334 335 336 337 338 339
            mod = i % 3;
            scale_factor_modshift[i] = mod | (shift << 2);
        }

        /* scale factor multiply for layer 1 */
        for(i=0;i<15;i++) {
            int n, norm;
            n = i + 2;
340
            norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
341 342 343
            scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
            scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
            scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
            dprintf("%d: norm=%x s=%x %x %x\n",
                    i, norm, 
                    scale_factor_mult[i][0],
                    scale_factor_mult[i][1],
                    scale_factor_mult[i][2]);
        }
        
        /* window */
        /* max = 18760, max sum over all 16 coefs : 44736 */
        for(i=0;i<257;i++) {
            int v;
            v = mpa_enwindow[i];
#if WFRAC_BITS < 16
            v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
#endif
            window[i] = v;
            if ((i & 63) != 0)
                v = -v;
            if (i != 0)
                window[512 - i] = v;
        }
        
        /* huffman decode tables */
        huff_code_table[0] = NULL;
        for(i=1;i<16;i++) {
            const HuffTable *h = &mpa_huff_tables[i];
370 371
	    int xsize, x, y;
            unsigned int n;
372
            uint8_t *code_table;
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401

            xsize = h->xsize;
            n = xsize * xsize;
            /* XXX: fail test */
            init_vlc(&huff_vlc[i], 8, n, 
                     h->bits, 1, 1, h->codes, 2, 2);
            
            code_table = av_mallocz(n);
            j = 0;
            for(x=0;x<xsize;x++) {
                for(y=0;y<xsize;y++)
                    code_table[j++] = (x << 4) | y;
            }
            huff_code_table[i] = code_table;
        }
        for(i=0;i<2;i++) {
            init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16, 
                     mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1);
        }

        for(i=0;i<9;i++) {
            k = 0;
            for(j=0;j<22;j++) {
                band_index_long[i][j] = k;
                k += band_size_long[i][j];
            }
            band_index_long[i][22] = k;
        }

402
	/* compute n ^ (4/3) and store it in mantissa/exp format */
403 404
	table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
        if(!table_4_3_exp)
405
	    return -1;
406 407
	table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
        if(!table_4_3_value)
408 409
            return -1;
        
410
        int_pow_init();
411 412
        for(i=1;i<TABLE_4_3_SIZE;i++) {
            int e, m;
413 414 415 416 417 418 419 420 421 422
            m = int_pow(i, &e);
#if 0
            /* test code */
            {
                double f, fm;
                int e1, m1;
                f = pow((double)i, 4.0 / 3.0);
                fm = frexp(f, &e1);
                m1 = FIXR(2 * fm);
#if FRAC_BITS <= 15
423 424 425 426
                if ((unsigned short)m1 != m1) {
                    m1 = m1 >> 1;
                    e1++;
                }
427 428 429 430 431 432 433
#endif
                e1--;
                if (m != m1 || e != e1) {
                    printf("%4d: m=%x m1=%x e=%d e1=%d\n",
                           i, m, m1, e, e1);
                }
            }
434 435 436
#endif
            /* normalized to FRAC_BITS */
            table_4_3_value[i] = m;
437
            table_4_3_exp[i] = e;
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
        }
        
        for(i=0;i<7;i++) {
            float f;
            int v;
            if (i != 6) {
                f = tan((double)i * M_PI / 12.0);
                v = FIXR(f / (1.0 + f));
            } else {
                v = FIXR(1.0);
            }
            is_table[0][i] = v;
            is_table[1][6 - i] = v;
        }
        /* invalid values */
        for(i=7;i<16;i++)
            is_table[0][i] = is_table[1][i] = 0.0;

        for(i=0;i<16;i++) {
            double f;
            int e, k;

            for(j=0;j<2;j++) {
                e = -(j + 1) * ((i + 1) >> 1);
                f = pow(2.0, e / 4.0);
                k = i & 1;
                is_table_lsf[j][k ^ 1][i] = FIXR(f);
                is_table_lsf[j][k][i] = FIXR(1.0);
                dprintf("is_table_lsf %d %d: %x %x\n", 
                        i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
            }
        }

        for(i=0;i<8;i++) {
            float ci, cs, ca;
            ci = ci_table[i];
            cs = 1.0 / sqrt(1.0 + ci * ci);
            ca = cs * ci;
            csa_table[i][0] = FIX(cs);
            csa_table[i][1] = FIX(ca);
478 479 480 481 482 483 484
            csa_table[i][2] = FIX(ca) + FIX(cs);
            csa_table[i][3] = FIX(ca) - FIX(cs); 
            csa_table_float[i][0] = cs;
            csa_table_float[i][1] = ca;
            csa_table_float[i][2] = ca + cs;
            csa_table_float[i][3] = ca - cs; 
//            printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
        }

        /* compute mdct windows */
        for(i=0;i<36;i++) {
            int v;
            v = FIXR(sin(M_PI * (i + 0.5) / 36.0));
            mdct_win[0][i] = v;
            mdct_win[1][i] = v;
            mdct_win[3][i] = v;
        }
        for(i=0;i<6;i++) {
            mdct_win[1][18 + i] = FIXR(1.0);
            mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0));
            mdct_win[1][30 + i] = FIXR(0.0);

            mdct_win[3][i] = FIXR(0.0);
            mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
            mdct_win[3][12 + i] = FIXR(1.0);
        }

        for(i=0;i<12;i++)
            mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
        
        /* NOTE: we do frequency inversion adter the MDCT by changing
           the sign of the right window coefs */
        for(j=0;j<4;j++) {
            for(i=0;i<36;i+=2) {
                mdct_win[j + 4][i] = mdct_win[j][i];
                mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
            }
        }

#if defined(DEBUG)
        for(j=0;j<8;j++) {
            printf("win%d=\n", j);
            for(i=0;i<36;i++)
                printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
            printf("\n");
        }
#endif
Fabrice Bellard's avatar
Fabrice Bellard committed
525 526 527 528 529 530
        init = 1;
    }

    s->inbuf_index = 0;
    s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
    s->inbuf_ptr = s->inbuf;
531 532 533
#ifdef DEBUG
    s->frame_count = 0;
#endif
Fabrice Bellard's avatar
Fabrice Bellard committed
534 535 536
    return 0;
}

537
/* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605

/* cos(i*pi/64) */

#define COS0_0  FIXR(0.50060299823519630134)
#define COS0_1  FIXR(0.50547095989754365998)
#define COS0_2  FIXR(0.51544730992262454697)
#define COS0_3  FIXR(0.53104259108978417447)
#define COS0_4  FIXR(0.55310389603444452782)
#define COS0_5  FIXR(0.58293496820613387367)
#define COS0_6  FIXR(0.62250412303566481615)
#define COS0_7  FIXR(0.67480834145500574602)
#define COS0_8  FIXR(0.74453627100229844977)
#define COS0_9  FIXR(0.83934964541552703873)
#define COS0_10 FIXR(0.97256823786196069369)
#define COS0_11 FIXR(1.16943993343288495515)
#define COS0_12 FIXR(1.48416461631416627724)
#define COS0_13 FIXR(2.05778100995341155085)
#define COS0_14 FIXR(3.40760841846871878570)
#define COS0_15 FIXR(10.19000812354805681150)

#define COS1_0 FIXR(0.50241928618815570551)
#define COS1_1 FIXR(0.52249861493968888062)
#define COS1_2 FIXR(0.56694403481635770368)
#define COS1_3 FIXR(0.64682178335999012954)
#define COS1_4 FIXR(0.78815462345125022473)
#define COS1_5 FIXR(1.06067768599034747134)
#define COS1_6 FIXR(1.72244709823833392782)
#define COS1_7 FIXR(5.10114861868916385802)

#define COS2_0 FIXR(0.50979557910415916894)
#define COS2_1 FIXR(0.60134488693504528054)
#define COS2_2 FIXR(0.89997622313641570463)
#define COS2_3 FIXR(2.56291544774150617881)

#define COS3_0 FIXR(0.54119610014619698439)
#define COS3_1 FIXR(1.30656296487637652785)

#define COS4_0 FIXR(0.70710678118654752439)

/* butterfly operator */
#define BF(a, b, c)\
{\
    tmp0 = tab[a] + tab[b];\
    tmp1 = tab[a] - tab[b];\
    tab[a] = tmp0;\
    tab[b] = MULL(tmp1, c);\
}

#define BF1(a, b, c, d)\
{\
    BF(a, b, COS4_0);\
    BF(c, d, -COS4_0);\
    tab[c] += tab[d];\
}

#define BF2(a, b, c, d)\
{\
    BF(a, b, COS4_0);\
    BF(c, d, -COS4_0);\
    tab[c] += tab[d];\
    tab[a] += tab[c];\
    tab[c] += tab[b];\
    tab[b] += tab[d];\
}

#define ADD(a, b) tab[a] += tab[b]

/* DCT32 without 1/sqrt(2) coef zero scaling. */
606
static void dct32(int32_t *out, int32_t *tab)
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
{
    int tmp0, tmp1;

    /* pass 1 */
    BF(0, 31, COS0_0);
    BF(1, 30, COS0_1);
    BF(2, 29, COS0_2);
    BF(3, 28, COS0_3);
    BF(4, 27, COS0_4);
    BF(5, 26, COS0_5);
    BF(6, 25, COS0_6);
    BF(7, 24, COS0_7);
    BF(8, 23, COS0_8);
    BF(9, 22, COS0_9);
    BF(10, 21, COS0_10);
    BF(11, 20, COS0_11);
    BF(12, 19, COS0_12);
    BF(13, 18, COS0_13);
    BF(14, 17, COS0_14);
    BF(15, 16, COS0_15);

    /* pass 2 */
    BF(0, 15, COS1_0);
    BF(1, 14, COS1_1);
    BF(2, 13, COS1_2);
    BF(3, 12, COS1_3);
    BF(4, 11, COS1_4);
    BF(5, 10, COS1_5);
    BF(6,  9, COS1_6);
    BF(7,  8, COS1_7);
    
    BF(16, 31, -COS1_0);
    BF(17, 30, -COS1_1);
    BF(18, 29, -COS1_2);
    BF(19, 28, -COS1_3);
    BF(20, 27, -COS1_4);
    BF(21, 26, -COS1_5);
    BF(22, 25, -COS1_6);
    BF(23, 24, -COS1_7);
    
    /* pass 3 */
    BF(0, 7, COS2_0);
    BF(1, 6, COS2_1);
    BF(2, 5, COS2_2);
    BF(3, 4, COS2_3);
    
    BF(8, 15, -COS2_0);
    BF(9, 14, -COS2_1);
    BF(10, 13, -COS2_2);
    BF(11, 12, -COS2_3);
    
    BF(16, 23, COS2_0);
    BF(17, 22, COS2_1);
    BF(18, 21, COS2_2);
    BF(19, 20, COS2_3);
    
    BF(24, 31, -COS2_0);
    BF(25, 30, -COS2_1);
    BF(26, 29, -COS2_2);
    BF(27, 28, -COS2_3);

    /* pass 4 */
    BF(0, 3, COS3_0);
    BF(1, 2, COS3_1);
    
    BF(4, 7, -COS3_0);
    BF(5, 6, -COS3_1);
    
    BF(8, 11, COS3_0);
    BF(9, 10, COS3_1);
    
    BF(12, 15, -COS3_0);
    BF(13, 14, -COS3_1);
    
    BF(16, 19, COS3_0);
    BF(17, 18, COS3_1);
    
    BF(20, 23, -COS3_0);
    BF(21, 22, -COS3_1);
    
    BF(24, 27, COS3_0);
    BF(25, 26, COS3_1);
    
    BF(28, 31, -COS3_0);
    BF(29, 30, -COS3_1);
    
    /* pass 5 */
    BF1(0, 1, 2, 3);
    BF2(4, 5, 6, 7);
    BF1(8, 9, 10, 11);
    BF2(12, 13, 14, 15);
    BF1(16, 17, 18, 19);
    BF2(20, 21, 22, 23);
    BF1(24, 25, 26, 27);
    BF2(28, 29, 30, 31);
    
    /* pass 6 */
    
    ADD( 8, 12);
    ADD(12, 10);
    ADD(10, 14);
    ADD(14,  9);
    ADD( 9, 13);
    ADD(13, 11);
    ADD(11, 15);

    out[ 0] = tab[0];
    out[16] = tab[1];
    out[ 8] = tab[2];
    out[24] = tab[3];
    out[ 4] = tab[4];
    out[20] = tab[5];
    out[12] = tab[6];
    out[28] = tab[7];
    out[ 2] = tab[8];
    out[18] = tab[9];
    out[10] = tab[10];
    out[26] = tab[11];
    out[ 6] = tab[12];
    out[22] = tab[13];
    out[14] = tab[14];
    out[30] = tab[15];
    
    ADD(24, 28);
    ADD(28, 26);
    ADD(26, 30);
    ADD(30, 25);
    ADD(25, 29);
    ADD(29, 27);
    ADD(27, 31);

    out[ 1] = tab[16] + tab[24];
    out[17] = tab[17] + tab[25];
    out[ 9] = tab[18] + tab[26];
    out[25] = tab[19] + tab[27];
    out[ 5] = tab[20] + tab[28];
    out[21] = tab[21] + tab[29];
    out[13] = tab[22] + tab[30];
    out[29] = tab[23] + tab[31];
    out[ 3] = tab[24] + tab[20];
    out[19] = tab[25] + tab[21];
    out[11] = tab[26] + tab[22];
    out[27] = tab[27] + tab[23];
    out[ 7] = tab[28] + tab[18];
    out[23] = tab[29] + tab[19];
    out[15] = tab[30] + tab[17];
    out[31] = tab[31];
}

#define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)

#if FRAC_BITS <= 15

760 761 762 763 764 765 766 767 768
static inline int round_sample(int sum)
{
    int sum1;
    sum1 = (sum + (1 << (OUT_SHIFT - 1))) >> OUT_SHIFT;
    if (sum1 < -32768)
        sum1 = -32768;
    else if (sum1 > 32767)
        sum1 = 32767;
    return sum1;
769 770
}

771 772 773 774 775 776 777 778 779
#if defined(ARCH_POWERPC_405)

/* signed 16x16 -> 32 multiply add accumulate */
#define MACS(rt, ra, rb) \
    asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));

/* signed 16x16 -> 32 multiply */
#define MULS(ra, rb) \
    ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
780 781 782

#else

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
/* signed 16x16 -> 32 multiply add accumulate */
#define MACS(rt, ra, rb) rt += (ra) * (rb)

/* signed 16x16 -> 32 multiply */
#define MULS(ra, rb) ((ra) * (rb))

#endif

#else

static inline int round_sample(int64_t sum) 
{
    int sum1;
    sum1 = (int)((sum + (int64_t_C(1) << (OUT_SHIFT - 1))) >> OUT_SHIFT);
    if (sum1 < -32768)
        sum1 = -32768;
    else if (sum1 > 32767)
        sum1 = 32767;
    return sum1;
802 803
}

804 805 806 807 808
#define MULS(ra, rb) MUL64(ra, rb)

#endif

#define SUM8(sum, op, w, p) \
809
{                                               \
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
    sum op MULS((w)[0 * 64], p[0 * 64]);\
    sum op MULS((w)[1 * 64], p[1 * 64]);\
    sum op MULS((w)[2 * 64], p[2 * 64]);\
    sum op MULS((w)[3 * 64], p[3 * 64]);\
    sum op MULS((w)[4 * 64], p[4 * 64]);\
    sum op MULS((w)[5 * 64], p[5 * 64]);\
    sum op MULS((w)[6 * 64], p[6 * 64]);\
    sum op MULS((w)[7 * 64], p[7 * 64]);\
}

#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
{                                               \
    int tmp;\
    tmp = p[0 * 64];\
    sum1 op1 MULS((w1)[0 * 64], tmp);\
    sum2 op2 MULS((w2)[0 * 64], tmp);\
    tmp = p[1 * 64];\
    sum1 op1 MULS((w1)[1 * 64], tmp);\
    sum2 op2 MULS((w2)[1 * 64], tmp);\
    tmp = p[2 * 64];\
    sum1 op1 MULS((w1)[2 * 64], tmp);\
    sum2 op2 MULS((w2)[2 * 64], tmp);\
    tmp = p[3 * 64];\
    sum1 op1 MULS((w1)[3 * 64], tmp);\
    sum2 op2 MULS((w2)[3 * 64], tmp);\
    tmp = p[4 * 64];\
    sum1 op1 MULS((w1)[4 * 64], tmp);\
    sum2 op2 MULS((w2)[4 * 64], tmp);\
    tmp = p[5 * 64];\
    sum1 op1 MULS((w1)[5 * 64], tmp);\
    sum2 op2 MULS((w2)[5 * 64], tmp);\
    tmp = p[6 * 64];\
    sum1 op1 MULS((w1)[6 * 64], tmp);\
    sum2 op2 MULS((w2)[6 * 64], tmp);\
    tmp = p[7 * 64];\
    sum1 op1 MULS((w1)[7 * 64], tmp);\
    sum2 op2 MULS((w2)[7 * 64], tmp);\
847 848 849 850 851 852 853
}


/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
   32 samples. */
/* XXX: optimize by avoiding ring buffer usage */
static void synth_filter(MPADecodeContext *s1,
854 855
                         int ch, int16_t *samples, int incr, 
                         int32_t sb_samples[SBLIMIT])
856
{
857
    int32_t tmp[32];
858 859
    register MPA_INT *synth_buf;
    const register MPA_INT *w, *w2, *p;
860
    int j, offset, v;
861
    int16_t *samples2;
862
#if FRAC_BITS <= 15
863
    int sum, sum2;
864
#else
865
    int64_t sum, sum2;
866
#endif
867
    
868 869 870 871 872 873 874 875
    dct32(tmp, sb_samples);
    
    offset = s1->synth_buf_offset[ch];
    synth_buf = s1->synth_buf[ch] + offset;

    for(j=0;j<32;j++) {
        v = tmp[j];
#if FRAC_BITS <= 15
876 877
        /* NOTE: can cause a loss in precision if very high amplitude
           sound */
878 879 880 881 882 883 884 885 886 887
        if (v > 32767)
            v = 32767;
        else if (v < -32768)
            v = -32768;
#endif
        synth_buf[j] = v;
    }
    /* copy to avoid wrap */
    memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));

888
    samples2 = samples + 31 * incr;
889
    w = window;
890 891
    w2 = window + 31;

892
    sum = 0;
893 894 895 896 897 898
    p = synth_buf + 16;
    SUM8(sum, +=, w, p);
    p = synth_buf + 48;
    SUM8(sum, -=, w + 32, p);
    *samples = round_sample(sum);
    samples += incr;
899 900
    w++;

901 902 903
    /* we calculate two samples at the same time to avoid one memory
       access per two sample */
    for(j=1;j<16;j++) {
904
        sum = 0;
905 906 907 908 909 910 911 912 913 914
        sum2 = 0;
        p = synth_buf + 16 + j;
        SUM8P2(sum, +=, sum2, -=, w, w2, p);
        p = synth_buf + 48 - j;
        SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);

        *samples = round_sample(sum);
        samples += incr;
        *samples2 = round_sample(sum2);
        samples2 -= incr;
915
        w++;
916
        w2--;
917
    }
918 919 920 921 922 923
    
    p = synth_buf + 32;
    sum = 0;
    SUM8(sum, -=, w + 32, p);
    *samples = round_sample(sum);

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
    offset = (offset - 32) & 511;
    s1->synth_buf_offset[ch] = offset;
}

/* cos(pi*i/24) */
#define C1  FIXR(0.99144486137381041114)
#define C3  FIXR(0.92387953251128675612)
#define C5  FIXR(0.79335334029123516458)
#define C7  FIXR(0.60876142900872063941)
#define C9  FIXR(0.38268343236508977173)
#define C11 FIXR(0.13052619222005159154)

/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
   cases. */
static void imdct12(int *out, int *in)
{
    int tmp;
941
    int64_t in1_3, in1_9, in4_3, in4_9;
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032

    in1_3 = MUL64(in[1], C3);
    in1_9 = MUL64(in[1], C9);
    in4_3 = MUL64(in[4], C3);
    in4_9 = MUL64(in[4], C9);
    
    tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) + 
                   MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5));
    out[0] = tmp;
    out[5] = -tmp;
    tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 + 
                   MUL64(in[2] + in[5], C3) - in4_9);
    out[1] = tmp;
    out[4] = -tmp;
    tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) -
                   MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1));
    out[2] = tmp;
    out[3] = -tmp;
    tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) + 
                   MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7));
    out[6] = tmp;
    out[11] = tmp;
    tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 + 
                   MUL64(in[2] + in[5], C9) + in4_3);
    out[7] = tmp;
    out[10] = tmp;
    tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) -
                   MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11));
    out[8] = tmp;
    out[9] = tmp;
}

#undef C1
#undef C3
#undef C5
#undef C7
#undef C9
#undef C11

/* cos(pi*i/18) */
#define C1 FIXR(0.98480775301220805936)
#define C2 FIXR(0.93969262078590838405)
#define C3 FIXR(0.86602540378443864676)
#define C4 FIXR(0.76604444311897803520)
#define C5 FIXR(0.64278760968653932632)
#define C6 FIXR(0.5)
#define C7 FIXR(0.34202014332566873304)
#define C8 FIXR(0.17364817766693034885)

/* 0.5 / cos(pi*(2*i+1)/36) */
static const int icos36[9] = {
    FIXR(0.50190991877167369479),
    FIXR(0.51763809020504152469),
    FIXR(0.55168895948124587824),
    FIXR(0.61038729438072803416),
    FIXR(0.70710678118654752439),
    FIXR(0.87172339781054900991),
    FIXR(1.18310079157624925896),
    FIXR(1.93185165257813657349),
    FIXR(5.73685662283492756461),
};

static const int icos72[18] = {
    /* 0.5 / cos(pi*(2*i+19)/72) */
    FIXR(0.74009361646113053152),
    FIXR(0.82133981585229078570),
    FIXR(0.93057949835178895673),
    FIXR(1.08284028510010010928),
    FIXR(1.30656296487637652785),
    FIXR(1.66275476171152078719),
    FIXR(2.31011315767264929558),
    FIXR(3.83064878777019433457),
    FIXR(11.46279281302667383546),

    /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */
    FIXR(-0.67817085245462840086),
    FIXR(-0.63023620700513223342),
    FIXR(-0.59284452371708034528),
    FIXR(-0.56369097343317117734),
    FIXR(-0.54119610014619698439),
    FIXR(-0.52426456257040533932),
    FIXR(-0.51213975715725461845),
    FIXR(-0.50431448029007636036),
    FIXR(-0.50047634258165998492),
};

/* using Lee like decomposition followed by hand coded 9 points DCT */
static void imdct36(int *out, int *in)
{
    int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
    int tmp[18], *tmp1, *in1;
1033
    int64_t in3_3, in6_6;
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106

    for(i=17;i>=1;i--)
        in[i] += in[i-1];
    for(i=17;i>=3;i-=2)
        in[i] += in[i-2];

    for(j=0;j<2;j++) {
        tmp1 = tmp + j;
        in1 = in + j;

        in3_3 = MUL64(in1[2*3], C3);
        in6_6 = MUL64(in1[2*6], C6);

        tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 + 
                           MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7));
        tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) + 
                                      MUL64(in1[2*4], C4) + in6_6 + 
                                      MUL64(in1[2*8], C8));
        tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3));
        tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) - 
            in1[2*6] + in1[2*0];
        tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 - 
                           MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1));
        tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) - 
                                       MUL64(in1[2*4], C2) + in6_6 + 
                                       MUL64(in1[2*8], C4));
        tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 + 
                            MUL64(in1[2*5], C1) - 
                            MUL64(in1[2*7], C5));
        tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) + 
                                       MUL64(in1[2*4], C8) + in6_6 - 
                                       MUL64(in1[2*8], C2));
        tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8];
    }

    i = 0;
    for(j=0;j<4;j++) {
        t0 = tmp[i];
        t1 = tmp[i + 2];
        s0 = t1 + t0;
        s2 = t1 - t0;

        t2 = tmp[i + 1];
        t3 = tmp[i + 3];
        s1 = MULL(t3 + t2, icos36[j]);
        s3 = MULL(t3 - t2, icos36[8 - j]);
        
        t0 = MULL(s0 + s1, icos72[9 + 8 - j]);
        t1 = MULL(s0 - s1, icos72[8 - j]);
        out[18 + 9 + j] = t0;
        out[18 + 8 - j] = t0;
        out[9 + j] = -t1;
        out[8 - j] = t1;
        
        t0 = MULL(s2 + s3, icos72[9+j]);
        t1 = MULL(s2 - s3, icos72[j]);
        out[18 + 9 + (8 - j)] = t0;
        out[18 + j] = t0;
        out[9 + (8 - j)] = -t1;
        out[j] = t1;
        i += 4;
    }

    s0 = tmp[16];
    s1 = MULL(tmp[17], icos36[4]);
    t0 = MULL(s0 + s1, icos72[9 + 4]);
    t1 = MULL(s0 - s1, icos72[4]);
    out[18 + 9 + 4] = t0;
    out[18 + 8 - 4] = t0;
    out[9 + 4] = -t1;
    out[8 - 4] = t1;
}

Fabrice Bellard's avatar
Fabrice Bellard committed
1107
/* fast header check for resync */
1108
static int check_header(uint32_t header)
Fabrice Bellard's avatar
Fabrice Bellard committed
1109 1110 1111 1112 1113 1114 1115
{
    /* header */
    if ((header & 0xffe00000) != 0xffe00000)
	return -1;
    /* layer check */
    if (((header >> 17) & 3) == 0)
	return -1;
1116 1117
    /* bit rate */
    if (((header >> 12) & 0xf) == 0xf)
Fabrice Bellard's avatar
Fabrice Bellard committed
1118 1119 1120 1121 1122 1123 1124
	return -1;
    /* frequency */
    if (((header >> 10) & 3) == 3)
	return -1;
    return 0;
}

1125 1126 1127 1128
/* header + layer + bitrate + freq + lsf/mpeg25 */
#define SAME_HEADER_MASK \
   (0xffe00000 | (3 << 17) | (0xf << 12) | (3 << 10) | (3 << 19))

Fabrice Bellard's avatar
Fabrice Bellard committed
1129
/* header decoding. MUST check the header before because no
1130 1131
   consistency check is done there. Return 1 if free format found and
   that the frame size must be computed externally */
1132
static int decode_header(MPADecodeContext *s, uint32_t header)
Fabrice Bellard's avatar
Fabrice Bellard committed
1133
{
1134 1135
    int sample_rate, frame_size, mpeg25, padding;
    int sample_rate_index, bitrate_index;
Fabrice Bellard's avatar
Fabrice Bellard committed
1136
    if (header & (1<<20)) {
1137 1138
        s->lsf = (header & (1<<19)) ? 0 : 1;
        mpeg25 = 0;
Fabrice Bellard's avatar
Fabrice Bellard committed
1139
    } else {
1140 1141
        s->lsf = 1;
        mpeg25 = 1;
Fabrice Bellard's avatar
Fabrice Bellard committed
1142 1143 1144 1145
    }
    
    s->layer = 4 - ((header >> 17) & 3);
    /* extract frequency */
1146 1147 1148 1149 1150
    sample_rate_index = (header >> 10) & 3;
    sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
    sample_rate_index += 3 * (s->lsf + mpeg25);
    s->sample_rate_index = sample_rate_index;
    s->error_protection = ((header >> 16) & 1) ^ 1;
1151
    s->sample_rate = sample_rate;
Fabrice Bellard's avatar
Fabrice Bellard committed
1152

1153 1154 1155 1156 1157 1158 1159 1160
    bitrate_index = (header >> 12) & 0xf;
    padding = (header >> 9) & 1;
    //extension = (header >> 8) & 1;
    s->mode = (header >> 6) & 3;
    s->mode_ext = (header >> 4) & 3;
    //copyright = (header >> 3) & 1;
    //original = (header >> 2) & 1;
    //emphasis = header & 3;
Fabrice Bellard's avatar
Fabrice Bellard committed
1161

1162 1163 1164 1165
    if (s->mode == MPA_MONO)
        s->nb_channels = 1;
    else
        s->nb_channels = 2;
Fabrice Bellard's avatar
Fabrice Bellard committed
1166
    
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
    if (bitrate_index != 0) {
        frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
        s->bit_rate = frame_size * 1000;
        switch(s->layer) {
        case 1:
            frame_size = (frame_size * 12000) / sample_rate;
            frame_size = (frame_size + padding) * 4;
            break;
        case 2:
            frame_size = (frame_size * 144000) / sample_rate;
            frame_size += padding;
            break;
        default:
        case 3:
            frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
            frame_size += padding;
            break;
        }
        s->frame_size = frame_size;
    } else {
        /* if no frame size computed, signal it */
        if (!s->free_format_frame_size)
            return 1;
        /* free format: compute bitrate and real frame size from the
           frame size we extracted by reading the bitstream */
        s->frame_size = s->free_format_frame_size;
        switch(s->layer) {
        case 1:
            s->frame_size += padding  * 4;
            s->bit_rate = (s->frame_size * sample_rate) / 48000;
            break;
        case 2:
            s->frame_size += padding;
            s->bit_rate = (s->frame_size * sample_rate) / 144000;
            break;
        default:
        case 3:
            s->frame_size += padding;
            s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
            break;
        }
Fabrice Bellard's avatar
Fabrice Bellard committed
1208
    }
1209
    
1210
#if defined(DEBUG)
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
    printf("layer%d, %d Hz, %d kbits/s, ",
           s->layer, s->sample_rate, s->bit_rate);
    if (s->nb_channels == 2) {
        if (s->layer == 3) {
            if (s->mode_ext & MODE_EXT_MS_STEREO)
                printf("ms-");
            if (s->mode_ext & MODE_EXT_I_STEREO)
                printf("i-");
        }
        printf("stereo");
    } else {
        printf("mono");
    }
    printf("\n");
Fabrice Bellard's avatar
Fabrice Bellard committed
1225
#endif
1226
    return 0;
Fabrice Bellard's avatar
Fabrice Bellard committed
1227 1228
}

1229
/* useful helper to get mpeg audio stream infos. Return -1 if error in
1230 1231
   header, otherwise the coded frame size in bytes */
int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
1232 1233
{
    MPADecodeContext s1, *s = &s1;
1234
    memset( s, 0, sizeof(MPADecodeContext) );
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244

    if (check_header(head) != 0)
        return -1;

    if (decode_header(s, head) != 0) {
        return -1;
    }

    switch(s->layer) {
    case 1:
1245
        avctx->frame_size = 384;
1246 1247
        break;
    case 2:
1248
        avctx->frame_size = 1152;
1249 1250 1251 1252
        break;
    default:
    case 3:
        if (s->lsf)
1253
            avctx->frame_size = 576;
1254
        else
1255
            avctx->frame_size = 1152;
1256 1257 1258
        break;
    }

1259 1260 1261 1262 1263
    avctx->sample_rate = s->sample_rate;
    avctx->channels = s->nb_channels;
    avctx->bit_rate = s->bit_rate;
    avctx->sub_id = s->layer;
    return s->frame_size;
1264 1265
}

1266 1267
/* return the number of decoded frames */
static int mp_decode_layer1(MPADecodeContext *s)
Fabrice Bellard's avatar
Fabrice Bellard committed
1268
{
1269
    int bound, i, v, n, ch, j, mant;
1270 1271
    uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
    uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

    if (s->mode == MPA_JSTEREO) 
        bound = (s->mode_ext + 1) * 4;
    else
        bound = SBLIMIT;

    /* allocation bits */
    for(i=0;i<bound;i++) {
        for(ch=0;ch<s->nb_channels;ch++) {
            allocation[ch][i] = get_bits(&s->gb, 4);
        }
    }
    for(i=bound;i<SBLIMIT;i++) {
        allocation[0][i] = get_bits(&s->gb, 4);
    }

    /* scale factors */
    for(i=0;i<bound;i++) {
        for(ch=0;ch<s->nb_channels;ch++) {
            if (allocation[ch][i])
                scale_factors[ch][i] = get_bits(&s->gb, 6);
        }
    }
    for(i=bound;i<SBLIMIT;i++) {
        if (allocation[0][i]) {
            scale_factors[0][i] = get_bits(&s->gb, 6);
            scale_factors[1][i] = get_bits(&s->gb, 6);
        }
    }
Fabrice Bellard's avatar
Fabrice Bellard committed
1301
    
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
    /* compute samples */
    for(j=0;j<12;j++) {
        for(i=0;i<bound;i++) {
            for(ch=0;ch<s->nb_channels;ch++) {
                n = allocation[ch][i];
                if (n) {
                    mant = get_bits(&s->gb, n + 1);
                    v = l1_unscale(n, mant, scale_factors[ch][i]);
                } else {
                    v = 0;
                }
                s->sb_samples[ch][j][i] = v;
            }
        }
        for(i=bound;i<SBLIMIT;i++) {
            n = allocation[0][i];
            if (n) {
                mant = get_bits(&s->gb, n + 1);
                v = l1_unscale(n, mant, scale_factors[0][i]);
                s->sb_samples[0][j][i] = v;
                v = l1_unscale(n, mant, scale_factors[1][i]);
                s->sb_samples[1][j][i] = v;
            } else {
                s->sb_samples[0][j][i] = 0;
                s->sb_samples[1][j][i] = 0;
            }
        }
    }
    return 12;
}

/* bitrate is in kb/s */
int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
{
    int ch_bitrate, table;
Fabrice Bellard's avatar
Fabrice Bellard committed
1337
    
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
    ch_bitrate = bitrate / nb_channels;
    if (!lsf) {
        if ((freq == 48000 && ch_bitrate >= 56) ||
            (ch_bitrate >= 56 && ch_bitrate <= 80)) 
            table = 0;
        else if (freq != 48000 && ch_bitrate >= 96) 
            table = 1;
        else if (freq != 32000 && ch_bitrate <= 48) 
            table = 2;
        else 
            table = 3;
    } else {
        table = 4;
    }
    return table;
}
Fabrice Bellard's avatar
Fabrice Bellard committed
1354

1355 1356 1357 1358 1359 1360 1361 1362 1363
static int mp_decode_layer2(MPADecodeContext *s)
{
    int sblimit; /* number of used subbands */
    const unsigned char *alloc_table;
    int table, bit_alloc_bits, i, j, ch, bound, v;
    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
    unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
    unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
    int scale, qindex, bits, steps, k, l, m, b;
Fabrice Bellard's avatar
Fabrice Bellard committed
1364

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
    /* select decoding table */
    table = l2_select_table(s->bit_rate / 1000, s->nb_channels, 
                            s->sample_rate, s->lsf);
    sblimit = sblimit_table[table];
    alloc_table = alloc_tables[table];

    if (s->mode == MPA_JSTEREO) 
        bound = (s->mode_ext + 1) * 4;
    else
        bound = sblimit;

    dprintf("bound=%d sblimit=%d\n", bound, sblimit);
1377 1378 1379 1380

    /* sanity check */
    if( bound > sblimit ) bound = sblimit;

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
    /* parse bit allocation */
    j = 0;
    for(i=0;i<bound;i++) {
        bit_alloc_bits = alloc_table[j];
        for(ch=0;ch<s->nb_channels;ch++) {
            bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
        }
        j += 1 << bit_alloc_bits;
    }
    for(i=bound;i<sblimit;i++) {
        bit_alloc_bits = alloc_table[j];
        v = get_bits(&s->gb, bit_alloc_bits);
        bit_alloc[0][i] = v;
        bit_alloc[1][i] = v;
        j += 1 << bit_alloc_bits;
Fabrice Bellard's avatar
Fabrice Bellard committed
1396
    }
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562

#ifdef DEBUG
    {
        for(ch=0;ch<s->nb_channels;ch++) {
            for(i=0;i<sblimit;i++)
                printf(" %d", bit_alloc[ch][i]);
            printf("\n");
        }
    }
#endif

    /* scale codes */
    for(i=0;i<sblimit;i++) {
        for(ch=0;ch<s->nb_channels;ch++) {
            if (bit_alloc[ch][i]) 
                scale_code[ch][i] = get_bits(&s->gb, 2);
        }
    }
    
    /* scale factors */
    for(i=0;i<sblimit;i++) {
        for(ch=0;ch<s->nb_channels;ch++) {
            if (bit_alloc[ch][i]) {
                sf = scale_factors[ch][i];
                switch(scale_code[ch][i]) {
                default:
                case 0:
                    sf[0] = get_bits(&s->gb, 6);
                    sf[1] = get_bits(&s->gb, 6);
                    sf[2] = get_bits(&s->gb, 6);
                    break;
                case 2:
                    sf[0] = get_bits(&s->gb, 6);
                    sf[1] = sf[0];
                    sf[2] = sf[0];
                    break;
                case 1:
                    sf[0] = get_bits(&s->gb, 6);
                    sf[2] = get_bits(&s->gb, 6);
                    sf[1] = sf[0];
                    break;
                case 3:
                    sf[0] = get_bits(&s->gb, 6);
                    sf[2] = get_bits(&s->gb, 6);
                    sf[1] = sf[2];
                    break;
                }
            }
        }
    }

#ifdef DEBUG
    for(ch=0;ch<s->nb_channels;ch++) {
        for(i=0;i<sblimit;i++) {
            if (bit_alloc[ch][i]) {
                sf = scale_factors[ch][i];
                printf(" %d %d %d", sf[0], sf[1], sf[2]);
            } else {
                printf(" -");
            }
        }
        printf("\n");
    }
#endif

    /* samples */
    for(k=0;k<3;k++) {
        for(l=0;l<12;l+=3) {
            j = 0;
            for(i=0;i<bound;i++) {
                bit_alloc_bits = alloc_table[j];
                for(ch=0;ch<s->nb_channels;ch++) {
                    b = bit_alloc[ch][i];
                    if (b) {
                        scale = scale_factors[ch][i][k];
                        qindex = alloc_table[j+b];
                        bits = quant_bits[qindex];
                        if (bits < 0) {
                            /* 3 values at the same time */
                            v = get_bits(&s->gb, -bits);
                            steps = quant_steps[qindex];
                            s->sb_samples[ch][k * 12 + l + 0][i] = 
                                l2_unscale_group(steps, v % steps, scale);
                            v = v / steps;
                            s->sb_samples[ch][k * 12 + l + 1][i] = 
                                l2_unscale_group(steps, v % steps, scale);
                            v = v / steps;
                            s->sb_samples[ch][k * 12 + l + 2][i] = 
                                l2_unscale_group(steps, v, scale);
                        } else {
                            for(m=0;m<3;m++) {
                                v = get_bits(&s->gb, bits);
                                v = l1_unscale(bits - 1, v, scale);
                                s->sb_samples[ch][k * 12 + l + m][i] = v;
                            }
                        }
                    } else {
                        s->sb_samples[ch][k * 12 + l + 0][i] = 0;
                        s->sb_samples[ch][k * 12 + l + 1][i] = 0;
                        s->sb_samples[ch][k * 12 + l + 2][i] = 0;
                    }
                }
                /* next subband in alloc table */
                j += 1 << bit_alloc_bits; 
            }
            /* XXX: find a way to avoid this duplication of code */
            for(i=bound;i<sblimit;i++) {
                bit_alloc_bits = alloc_table[j];
                b = bit_alloc[0][i];
                if (b) {
                    int mant, scale0, scale1;
                    scale0 = scale_factors[0][i][k];
                    scale1 = scale_factors[1][i][k];
                    qindex = alloc_table[j+b];
                    bits = quant_bits[qindex];
                    if (bits < 0) {
                        /* 3 values at the same time */
                        v = get_bits(&s->gb, -bits);
                        steps = quant_steps[qindex];
                        mant = v % steps;
                        v = v / steps;
                        s->sb_samples[0][k * 12 + l + 0][i] = 
                            l2_unscale_group(steps, mant, scale0);
                        s->sb_samples[1][k * 12 + l + 0][i] = 
                            l2_unscale_group(steps, mant, scale1);
                        mant = v % steps;
                        v = v / steps;
                        s->sb_samples[0][k * 12 + l + 1][i] = 
                            l2_unscale_group(steps, mant, scale0);
                        s->sb_samples[1][k * 12 + l + 1][i] = 
                            l2_unscale_group(steps, mant, scale1);
                        s->sb_samples[0][k * 12 + l + 2][i] = 
                            l2_unscale_group(steps, v, scale0);
                        s->sb_samples[1][k * 12 + l + 2][i] = 
                            l2_unscale_group(steps, v, scale1);
                    } else {
                        for(m=0;m<3;m++) {
                            mant = get_bits(&s->gb, bits);
                            s->sb_samples[0][k * 12 + l + m][i] = 
                                l1_unscale(bits - 1, mant, scale0);
                            s->sb_samples[1][k * 12 + l + m][i] = 
                                l1_unscale(bits - 1, mant, scale1);
                        }
                    }
                } else {
                    s->sb_samples[0][k * 12 + l + 0][i] = 0;
                    s->sb_samples[0][k * 12 + l + 1][i] = 0;
                    s->sb_samples[0][k * 12 + l + 2][i] = 0;
                    s->sb_samples[1][k * 12 + l + 0][i] = 0;
                    s->sb_samples[1][k * 12 + l + 1][i] = 0;
                    s->sb_samples[1][k * 12 + l + 2][i] = 0;
                }
                /* next subband in alloc table */
                j += 1 << bit_alloc_bits; 
            }
            /* fill remaining samples to zero */
            for(i=sblimit;i<SBLIMIT;i++) {
                for(ch=0;ch<s->nb_channels;ch++) {
                    s->sb_samples[ch][k * 12 + l + 0][i] = 0;
                    s->sb_samples[ch][k * 12 + l + 1][i] = 0;
                    s->sb_samples[ch][k * 12 + l + 2][i] = 0;
                }
            }
        }
    }
    return 3 * 12;
Fabrice Bellard's avatar
Fabrice Bellard committed
1563 1564 1565
}

/*
1566
 * Seek back in the stream for backstep bytes (at most 511 bytes)
Fabrice Bellard's avatar
Fabrice Bellard committed
1567
 */
1568
static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
Fabrice Bellard's avatar
Fabrice Bellard committed
1569
{
1570
    uint8_t *ptr;
Fabrice Bellard's avatar
Fabrice Bellard committed
1571 1572

    /* compute current position in stream */
1573
    ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
1574

Fabrice Bellard's avatar
Fabrice Bellard committed
1575 1576
    /* copy old data before current one */
    ptr -= backstep;
1577 1578
    memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] + 
           BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
Fabrice Bellard's avatar
Fabrice Bellard committed
1579
    /* init get bits again */
1580
    init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
Fabrice Bellard's avatar
Fabrice Bellard committed
1581

1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
    /* prepare next buffer */
    s->inbuf_index ^= 1;
    s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
    s->old_frame_size = s->frame_size;
}

static inline void lsf_sf_expand(int *slen,
                                 int sf, int n1, int n2, int n3)
{
    if (n3) {
        slen[3] = sf % n3;
        sf /= n3;
    } else {
        slen[3] = 0;
    }
    if (n2) {
        slen[2] = sf % n2;
        sf /= n2;
    } else {
        slen[2] = 0;
    }
    slen[1] = sf % n1;
    sf /= n1;
    slen[0] = sf;
}

static void exponents_from_scale_factors(MPADecodeContext *s, 
                                         GranuleDef *g,
1610
                                         int16_t *exponents)
1611
{
1612
    const uint8_t *bstab, *pretab;
1613
    int len, i, j, k, l, v0, shift, gain, gains[3];
1614
    int16_t *exp_ptr;
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655

    exp_ptr = exponents;
    gain = g->global_gain - 210;
    shift = g->scalefac_scale + 1;

    bstab = band_size_long[s->sample_rate_index];
    pretab = mpa_pretab[g->preflag];
    for(i=0;i<g->long_end;i++) {
        v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
        len = bstab[i];
        for(j=len;j>0;j--)
            *exp_ptr++ = v0;
    }

    if (g->short_start < 13) {
        bstab = band_size_short[s->sample_rate_index];
        gains[0] = gain - (g->subblock_gain[0] << 3);
        gains[1] = gain - (g->subblock_gain[1] << 3);
        gains[2] = gain - (g->subblock_gain[2] << 3);
        k = g->long_end;
        for(i=g->short_start;i<13;i++) {
            len = bstab[i];
            for(l=0;l<3;l++) {
                v0 = gains[l] - (g->scale_factors[k++] << shift);
                for(j=len;j>0;j--)
                *exp_ptr++ = v0;
            }
        }
    }
}

/* handle n = 0 too */
static inline int get_bitsz(GetBitContext *s, int n)
{
    if (n == 0)
        return 0;
    else
        return get_bits(s, n);
}

static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
1656
                          int16_t *exponents, int end_pos)
1657 1658 1659
{
    int s_index;
    int linbits, code, x, y, l, v, i, j, k, pos;
1660
    GetBitContext last_gb;
1661
    VLC *vlc;
1662
    uint8_t *code_table;
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718

    /* low frequencies (called big values) */
    s_index = 0;
    for(i=0;i<3;i++) {
        j = g->region_size[i];
        if (j == 0)
            continue;
        /* select vlc table */
        k = g->table_select[i];
        l = mpa_huff_data[k][0];
        linbits = mpa_huff_data[k][1];
        vlc = &huff_vlc[l];
        code_table = huff_code_table[l];

        /* read huffcode and compute each couple */
        for(;j>0;j--) {
            if (get_bits_count(&s->gb) >= end_pos)
                break;
            if (code_table) {
                code = get_vlc(&s->gb, vlc);
                if (code < 0)
                    return -1;
                y = code_table[code];
                x = y >> 4;
                y = y & 0x0f;
            } else {
                x = 0;
                y = 0;
            }
            dprintf("region=%d n=%d x=%d y=%d exp=%d\n", 
                    i, g->region_size[i] - j, x, y, exponents[s_index]);
            if (x) {
                if (x == 15)
                    x += get_bitsz(&s->gb, linbits);
                v = l3_unscale(x, exponents[s_index]);
                if (get_bits1(&s->gb))
                    v = -v;
            } else {
                v = 0;
            }
            g->sb_hybrid[s_index++] = v;
            if (y) {
                if (y == 15)
                    y += get_bitsz(&s->gb, linbits);
                v = l3_unscale(y, exponents[s_index]);
                if (get_bits1(&s->gb))
                    v = -v;
            } else {
                v = 0;
            }
            g->sb_hybrid[s_index++] = v;
        }
    }
            
    /* high frequencies */
    vlc = &huff_quad_vlc[g->count1table_select];
1719
    last_gb.buffer = NULL;
1720 1721 1722
    while (s_index <= 572) {
        pos = get_bits_count(&s->gb);
        if (pos >= end_pos) {
1723
            if (pos > end_pos && last_gb.buffer != NULL) {
1724 1725 1726
                /* some encoders generate an incorrect size for this
                   part. We must go back into the data */
                s_index -= 4;
1727
                s->gb = last_gb;
1728 1729 1730
            }
            break;
        }
1731 1732
        last_gb= s->gb;

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
        code = get_vlc(&s->gb, vlc);
        dprintf("t=%d code=%d\n", g->count1table_select, code);
        if (code < 0)
            return -1;
        for(i=0;i<4;i++) {
            if (code & (8 >> i)) {
                /* non zero value. Could use a hand coded function for
                   'one' value */
                v = l3_unscale(1, exponents[s_index]);
                if(get_bits1(&s->gb))
                    v = -v;
            } else {
                v = 0;
            }
            g->sb_hybrid[s_index++] = v;
        }
    }
    while (s_index < 576)
        g->sb_hybrid[s_index++] = 0;
Fabrice Bellard's avatar
Fabrice Bellard committed
1752 1753 1754
    return 0;
}

1755 1756 1757 1758 1759 1760
/* Reorder short blocks from bitstream order to interleaved order. It
   would be faster to do it in parsing, but the code would be far more
   complicated */
static void reorder_block(MPADecodeContext *s, GranuleDef *g)
{
    int i, j, k, len;
1761 1762
    int32_t *ptr, *dst, *ptr1;
    int32_t tmp[576];
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

    if (g->block_type != 2)
        return;

    if (g->switch_point) {
        if (s->sample_rate_index != 8) {
            ptr = g->sb_hybrid + 36;
        } else {
            ptr = g->sb_hybrid + 48;
        }
    } else {
        ptr = g->sb_hybrid;
    }
    
    for(i=g->short_start;i<13;i++) {
        len = band_size_short[s->sample_rate_index][i];
        ptr1 = ptr;
        for(k=0;k<3;k++) {
            dst = tmp + k;
            for(j=len;j>0;j--) {
                *dst = *ptr++;
                dst += 3;
            }
        }
1787
        memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
1788 1789 1790 1791 1792 1793 1794 1795 1796
    }
}

#define ISQRT2 FIXR(0.70710678118654752440)

static void compute_stereo(MPADecodeContext *s,
                           GranuleDef *g0, GranuleDef *g1)
{
    int i, j, k, l;
1797
    int32_t v1, v2;
1798
    int sf_max, tmp0, tmp1, sf, len, non_zero_found;
1799 1800
    int32_t (*is_tab)[16];
    int32_t *tab0, *tab1;
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
    int non_zero_found_short[3];

    /* intensity stereo */
    if (s->mode_ext & MODE_EXT_I_STEREO) {
        if (!s->lsf) {
            is_tab = is_table;
            sf_max = 7;
        } else {
            is_tab = is_table_lsf[g1->scalefac_compress & 1];
            sf_max = 16;
        }
            
        tab0 = g0->sb_hybrid + 576;
        tab1 = g1->sb_hybrid + 576;

        non_zero_found_short[0] = 0;
        non_zero_found_short[1] = 0;
        non_zero_found_short[2] = 0;
        k = (13 - g1->short_start) * 3 + g1->long_end - 3;
        for(i = 12;i >= g1->short_start;i--) {
            /* for last band, use previous scale factor */
            if (i != 11)
                k -= 3;
            len = band_size_short[s->sample_rate_index][i];
            for(l=2;l>=0;l--) {
                tab0 -= len;
                tab1 -= len;
                if (!non_zero_found_short[l]) {
                    /* test if non zero band. if so, stop doing i-stereo */
                    for(j=0;j<len;j++) {
                        if (tab1[j] != 0) {
                            non_zero_found_short[l] = 1;
                            goto found1;
                        }
                    }
                    sf = g1->scale_factors[k + l];
                    if (sf >= sf_max)
                        goto found1;

                    v1 = is_tab[0][sf];
                    v2 = is_tab[1][sf];
                    for(j=0;j<len;j++) {
                        tmp0 = tab0[j];
                        tab0[j] = MULL(tmp0, v1);
                        tab1[j] = MULL(tmp0, v2);
                    }
                } else {
                found1:
                    if (s->mode_ext & MODE_EXT_MS_STEREO) {
                        /* lower part of the spectrum : do ms stereo
                           if enabled */
                        for(j=0;j<len;j++) {
                            tmp0 = tab0[j];
                            tmp1 = tab1[j];
                            tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
                            tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
                        }
                    }
                }
            }
        }

        non_zero_found = non_zero_found_short[0] | 
            non_zero_found_short[1] | 
            non_zero_found_short[2];

        for(i = g1->long_end - 1;i >= 0;i--) {
            len = band_size_long[s->sample_rate_index][i];
            tab0 -= len;
            tab1 -= len;
            /* test if non zero band. if so, stop doing i-stereo */
            if (!non_zero_found) {
                for(j=0;j<len;j++) {
                    if (tab1[j] != 0) {
                        non_zero_found = 1;
                        goto found2;
                    }
                }
                /* for last band, use previous scale factor */
                k = (i == 21) ? 20 : i;
                sf = g1->scale_factors[k];
                if (sf >= sf_max)
                    goto found2;
                v1 = is_tab[0][sf];
                v2 = is_tab[1][sf];
                for(j=0;j<len;j++) {
                    tmp0 = tab0[j];
                    tab0[j] = MULL(tmp0, v1);
                    tab1[j] = MULL(tmp0, v2);
                }
            } else {
            found2:
                if (s->mode_ext & MODE_EXT_MS_STEREO) {
                    /* lower part of the spectrum : do ms stereo
                       if enabled */
                    for(j=0;j<len;j++) {
                        tmp0 = tab0[j];
                        tmp1 = tab1[j];
                        tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
                        tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
                    }
                }
            }
        }
    } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
        /* ms stereo ONLY */
        /* NOTE: the 1/sqrt(2) normalization factor is included in the
           global gain */
        tab0 = g0->sb_hybrid;
        tab1 = g1->sb_hybrid;
        for(i=0;i<576;i++) {
            tmp0 = tab0[i];
            tmp1 = tab1[i];
            tab0[i] = tmp0 + tmp1;
            tab1[i] = tmp0 - tmp1;
        }
    }
}

1920
static void compute_antialias_integer(MPADecodeContext *s,
1921 1922
                              GranuleDef *g)
{
1923
    int32_t *ptr, *p0, *p1, *csa;
1924
    int n, i, j;
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

    /* we antialias only "long" bands */
    if (g->block_type == 2) {
        if (!g->switch_point)
            return;
        /* XXX: check this for 8000Hz case */
        n = 1;
    } else {
        n = SBLIMIT - 1;
    }
    
    ptr = g->sb_hybrid + 18;
    for(i = n;i > 0;i--) {
        p0 = ptr - 1;
        p1 = ptr;
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
        csa = &csa_table[0][0];       
        for(j=0;j<4;j++) {
            int tmp0 = *p0;
            int tmp1 = *p1;
#if 0
            *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
            *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
#else
            int64_t tmp2= MUL64(tmp0 + tmp1, csa[0]);
            *p0 = FRAC_RND(tmp2 - MUL64(tmp1, csa[2]));
            *p1 = FRAC_RND(tmp2 + MUL64(tmp0, csa[3]));
#endif
            p0--; p1++;
            csa += 4;
1954 1955
            tmp0 = *p0;
            tmp1 = *p1;
1956
#if 0
1957 1958
            *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
            *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
1959 1960 1961 1962 1963 1964 1965
#else
            tmp2= MUL64(tmp0 + tmp1, csa[0]);
            *p0 = FRAC_RND(tmp2 - MUL64(tmp1, csa[2]));
            *p1 = FRAC_RND(tmp2 + MUL64(tmp0, csa[3]));
#endif
            p0--; p1++;
            csa += 4;
1966
        }
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
        ptr += 18;       
    }
}

static void compute_antialias_float(MPADecodeContext *s,
                              GranuleDef *g)
{
    int32_t *ptr, *p0, *p1;
    int n, i, j;

    /* we antialias only "long" bands */
    if (g->block_type == 2) {
        if (!g->switch_point)
            return;
        /* XXX: check this for 8000Hz case */
        n = 1;
    } else {
        n = SBLIMIT - 1;
    }
    
    ptr = g->sb_hybrid + 18;
    for(i = n;i > 0;i--) {
        float *csa = &csa_table_float[0][0];       
        p0 = ptr - 1;
        p1 = ptr;
        for(j=0;j<4;j++) {
            float tmp0 = *p0;
            float tmp1 = *p1;
#if 1
            *p0 = lrintf(tmp0 * csa[0] - tmp1 * csa[1]);
            *p1 = lrintf(tmp0 * csa[1] + tmp1 * csa[0]);
#else
            float tmp2= (tmp0 + tmp1) * csa[0];
            *p0 = lrintf(tmp2 - tmp1 * csa[2]);
            *p1 = lrintf(tmp2 + tmp0 * csa[3]);
#endif
            p0--; p1++;
            csa += 4;
            tmp0 = *p0;
            tmp1 = *p1;
#if 1
            *p0 = lrintf(tmp0 * csa[0] - tmp1 * csa[1]);
            *p1 = lrintf(tmp0 * csa[1] + tmp1 * csa[0]);
#else
            tmp2= (tmp0 + tmp1) * csa[0];
            *p0 = lrintf(tmp2 - tmp1 * csa[2]);
            *p1 = lrintf(tmp2 + tmp0 * csa[3]);
#endif
            p0--; p1++;
            csa += 4;
        }
        ptr += 18;       
2019 2020 2021 2022 2023
    }
}

static void compute_imdct(MPADecodeContext *s,
                          GranuleDef *g, 
2024 2025
                          int32_t *sb_samples,
                          int32_t *mdct_buf)
2026
{
2027 2028 2029 2030
    int32_t *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1;
    int32_t in[6];
    int32_t out[36];
    int32_t out2[12];
2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
    int i, j, k, mdct_long_end, v, sblimit;

    /* find last non zero block */
    ptr = g->sb_hybrid + 576;
    ptr1 = g->sb_hybrid + 2 * 18;
    while (ptr >= ptr1) {
        ptr -= 6;
        v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
        if (v != 0)
            break;
    }
    sblimit = ((ptr - g->sb_hybrid) / 18) + 1;

    if (g->block_type == 2) {
        /* XXX: check for 8000 Hz */
        if (g->switch_point)
            mdct_long_end = 2;
        else
            mdct_long_end = 0;
    } else {
        mdct_long_end = sblimit;
    }

    buf = mdct_buf;
    ptr = g->sb_hybrid;
    for(j=0;j<mdct_long_end;j++) {
        imdct36(out, ptr);
        /* apply window & overlap with previous buffer */
        out_ptr = sb_samples + j;
        /* select window */
        if (g->switch_point && j < 2)
            win1 = mdct_win[0];
        else
            win1 = mdct_win[g->block_type];
        /* select frequency inversion */
        win = win1 + ((4 * 36) & -(j & 1));
        for(i=0;i<18;i++) {
            *out_ptr = MULL(out[i], win[i]) + buf[i];
            buf[i] = MULL(out[i + 18], win[i + 18]);
            out_ptr += SBLIMIT;
        }
        ptr += 18;
        buf += 18;
    }
    for(j=mdct_long_end;j<sblimit;j++) {
        for(i=0;i<6;i++) {
            out[i] = 0;
            out[6 + i] = 0;
            out[30+i] = 0;
        }
        /* select frequency inversion */
        win = mdct_win[2] + ((4 * 36) & -(j & 1));
        buf2 = out + 6;
        for(k=0;k<3;k++) {
            /* reorder input for short mdct */
            ptr1 = ptr + k;
            for(i=0;i<6;i++) {
                in[i] = *ptr1;
                ptr1 += 3;
            }
            imdct12(out2, in);
            /* apply 12 point window and do small overlap */
            for(i=0;i<6;i++) {
                buf2[i] = MULL(out2[i], win[i]) + buf2[i];
                buf2[i + 6] = MULL(out2[i + 6], win[i + 6]);
            }
            buf2 += 6;
        }
        /* overlap */
        out_ptr = sb_samples + j;
        for(i=0;i<18;i++) {
            *out_ptr = out[i] + buf[i];
            buf[i] = out[i + 18];
            out_ptr += SBLIMIT;
        }
        ptr += 18;
        buf += 18;
    }
    /* zero bands */
    for(j=sblimit;j<SBLIMIT;j++) {
        /* overlap */
        out_ptr = sb_samples + j;
        for(i=0;i<18;i++) {
            *out_ptr = buf[i];
            buf[i] = 0;
            out_ptr += SBLIMIT;
        }
        buf += 18;
    }
}

2122
#if defined(DEBUG)
2123
void sample_dump(int fnum, int32_t *tab, int n)
2124 2125 2126
{
    static FILE *files[16], *f;
    char buf[512];
2127
    int i;
2128
    int32_t v;
2129
    
2130 2131
    f = files[fnum];
    if (!f) {
2132 2133 2134 2135 2136 2137 2138 2139
        sprintf(buf, "/tmp/out%d.%s.pcm", 
                fnum, 
#ifdef USE_HIGHPRECISION
                "hp"
#else
                "lp"
#endif
                );
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
        f = fopen(buf, "w");
        if (!f)
            return;
        files[fnum] = f;
    }
    
    if (fnum == 0) {
        static int pos = 0;
        printf("pos=%d\n", pos);
        for(i=0;i<n;i++) {
2150
            printf(" %0.4f", (double)tab[i] / FRAC_ONE);
2151 2152 2153 2154 2155
            if ((i % 18) == 17)
                printf("\n");
        }
        pos += n;
    }
2156 2157 2158
    for(i=0;i<n;i++) {
        /* normalize to 23 frac bits */
        v = tab[i] << (23 - FRAC_BITS);
2159
        fwrite(&v, 1, sizeof(int32_t), f);
2160
    }
2161 2162 2163 2164 2165 2166 2167 2168 2169 2170
}
#endif


/* main layer3 decoding function */
static int mp_decode_layer3(MPADecodeContext *s)
{
    int nb_granules, main_data_begin, private_bits;
    int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
    GranuleDef granules[2][2], *g;
2171
    int16_t exponents[576];
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310

    /* read side info */
    if (s->lsf) {
        main_data_begin = get_bits(&s->gb, 8);
        if (s->nb_channels == 2)
            private_bits = get_bits(&s->gb, 2);
        else
            private_bits = get_bits(&s->gb, 1);
        nb_granules = 1;
    } else {
        main_data_begin = get_bits(&s->gb, 9);
        if (s->nb_channels == 2)
            private_bits = get_bits(&s->gb, 3);
        else
            private_bits = get_bits(&s->gb, 5);
        nb_granules = 2;
        for(ch=0;ch<s->nb_channels;ch++) {
            granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
            granules[ch][1].scfsi = get_bits(&s->gb, 4);
        }
    }
    
    for(gr=0;gr<nb_granules;gr++) {
        for(ch=0;ch<s->nb_channels;ch++) {
            dprintf("gr=%d ch=%d: side_info\n", gr, ch);
            g = &granules[ch][gr];
            g->part2_3_length = get_bits(&s->gb, 12);
            g->big_values = get_bits(&s->gb, 9);
            g->global_gain = get_bits(&s->gb, 8);
            /* if MS stereo only is selected, we precompute the
               1/sqrt(2) renormalization factor */
            if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) == 
                MODE_EXT_MS_STEREO)
                g->global_gain -= 2;
            if (s->lsf)
                g->scalefac_compress = get_bits(&s->gb, 9);
            else
                g->scalefac_compress = get_bits(&s->gb, 4);
            blocksplit_flag = get_bits(&s->gb, 1);
            if (blocksplit_flag) {
                g->block_type = get_bits(&s->gb, 2);
                if (g->block_type == 0)
                    return -1;
                g->switch_point = get_bits(&s->gb, 1);
                for(i=0;i<2;i++)
                    g->table_select[i] = get_bits(&s->gb, 5);
                for(i=0;i<3;i++) 
                    g->subblock_gain[i] = get_bits(&s->gb, 3);
                /* compute huffman coded region sizes */
                if (g->block_type == 2)
                    g->region_size[0] = (36 / 2);
                else {
                    if (s->sample_rate_index <= 2) 
                        g->region_size[0] = (36 / 2);
                    else if (s->sample_rate_index != 8) 
                        g->region_size[0] = (54 / 2);
                    else
                        g->region_size[0] = (108 / 2);
                }
                g->region_size[1] = (576 / 2);
            } else {
                int region_address1, region_address2, l;
                g->block_type = 0;
                g->switch_point = 0;
                for(i=0;i<3;i++)
                    g->table_select[i] = get_bits(&s->gb, 5);
                /* compute huffman coded region sizes */
                region_address1 = get_bits(&s->gb, 4);
                region_address2 = get_bits(&s->gb, 3);
                dprintf("region1=%d region2=%d\n", 
                        region_address1, region_address2);
                g->region_size[0] = 
                    band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
                l = region_address1 + region_address2 + 2;
                /* should not overflow */
                if (l > 22)
                    l = 22;
                g->region_size[1] = 
                    band_index_long[s->sample_rate_index][l] >> 1;
            }
            /* convert region offsets to region sizes and truncate
               size to big_values */
            g->region_size[2] = (576 / 2);
            j = 0;
            for(i=0;i<3;i++) {
                k = g->region_size[i];
                if (k > g->big_values)
                    k = g->big_values;
                g->region_size[i] = k - j;
                j = k;
            }

            /* compute band indexes */
            if (g->block_type == 2) {
                if (g->switch_point) {
                    /* if switched mode, we handle the 36 first samples as
                       long blocks.  For 8000Hz, we handle the 48 first
                       exponents as long blocks (XXX: check this!) */
                    if (s->sample_rate_index <= 2)
                        g->long_end = 8;
                    else if (s->sample_rate_index != 8)
                        g->long_end = 6;
                    else
                        g->long_end = 4; /* 8000 Hz */
                    
                    if (s->sample_rate_index != 8)
                        g->short_start = 3;
                    else
                        g->short_start = 2; 
                } else {
                    g->long_end = 0;
                    g->short_start = 0;
                }
            } else {
                g->short_start = 13;
                g->long_end = 22;
            }
            
            g->preflag = 0;
            if (!s->lsf)
                g->preflag = get_bits(&s->gb, 1);
            g->scalefac_scale = get_bits(&s->gb, 1);
            g->count1table_select = get_bits(&s->gb, 1);
            dprintf("block_type=%d switch_point=%d\n",
                    g->block_type, g->switch_point);
        }
    }

    /* now we get bits from the main_data_begin offset */
    dprintf("seekback: %d\n", main_data_begin);
    seek_to_maindata(s, main_data_begin);

    for(gr=0;gr<nb_granules;gr++) {
        for(ch=0;ch<s->nb_channels;ch++) {
            g = &granules[ch][gr];
            
            bits_pos = get_bits_count(&s->gb);
            
            if (!s->lsf) {
2311
                uint8_t *sc;
2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
                int slen, slen1, slen2;

                /* MPEG1 scale factors */
                slen1 = slen_table[0][g->scalefac_compress];
                slen2 = slen_table[1][g->scalefac_compress];
                dprintf("slen1=%d slen2=%d\n", slen1, slen2);
                if (g->block_type == 2) {
                    n = g->switch_point ? 17 : 18;
                    j = 0;
                    for(i=0;i<n;i++)
                        g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
                    for(i=0;i<18;i++)
                        g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
                    for(i=0;i<3;i++)
                        g->scale_factors[j++] = 0;
                } else {
                    sc = granules[ch][0].scale_factors;
                    j = 0;
                    for(k=0;k<4;k++) {
                        n = (k == 0 ? 6 : 5);
                        if ((g->scfsi & (0x8 >> k)) == 0) {
                            slen = (k < 2) ? slen1 : slen2;
                            for(i=0;i<n;i++)
                                g->scale_factors[j++] = get_bitsz(&s->gb, slen);
                        } else {
                            /* simply copy from last granule */
                            for(i=0;i<n;i++) {
                                g->scale_factors[j] = sc[j];
                                j++;
                            }
                        }
                    }
                    g->scale_factors[j++] = 0;
                }
2346
#if defined(DEBUG)
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
                {
                    printf("scfsi=%x gr=%d ch=%d scale_factors:\n", 
                           g->scfsi, gr, ch);
                    for(i=0;i<j;i++)
                        printf(" %d", g->scale_factors[i]);
                    printf("\n");
                }
#endif
            } else {
                int tindex, tindex2, slen[4], sl, sf;

                /* LSF scale factors */
                if (g->block_type == 2) {
                    tindex = g->switch_point ? 2 : 1;
                } else {
                    tindex = 0;
                }
                sf = g->scalefac_compress;
                if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
                    /* intensity stereo case */
                    sf >>= 1;
                    if (sf < 180) {
                        lsf_sf_expand(slen, sf, 6, 6, 0);
                        tindex2 = 3;
                    } else if (sf < 244) {
                        lsf_sf_expand(slen, sf - 180, 4, 4, 0);
                        tindex2 = 4;
                    } else {
                        lsf_sf_expand(slen, sf - 244, 3, 0, 0);
                        tindex2 = 5;
                    }
                } else {
                    /* normal case */
                    if (sf < 400) {
                        lsf_sf_expand(slen, sf, 5, 4, 4);
                        tindex2 = 0;
                    } else if (sf < 500) {
                        lsf_sf_expand(slen, sf - 400, 5, 4, 0);
                        tindex2 = 1;
                    } else {
                        lsf_sf_expand(slen, sf - 500, 3, 0, 0);
                        tindex2 = 2;
                        g->preflag = 1;
                    }
                }

                j = 0;
                for(k=0;k<4;k++) {
                    n = lsf_nsf_table[tindex2][tindex][k];
                    sl = slen[k];
                    for(i=0;i<n;i++)
                        g->scale_factors[j++] = get_bitsz(&s->gb, sl);
                }
                /* XXX: should compute exact size */
                for(;j<40;j++)
                    g->scale_factors[j] = 0;
2403
#if defined(DEBUG)
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
                {
                    printf("gr=%d ch=%d scale_factors:\n", 
                           gr, ch);
                    for(i=0;i<40;i++)
                        printf(" %d", g->scale_factors[i]);
                    printf("\n");
                }
#endif
            }

            exponents_from_scale_factors(s, g, exponents);

            /* read Huffman coded residue */
            if (huffman_decode(s, g, exponents,
                               bits_pos + g->part2_3_length) < 0)
                return -1;
2420 2421
#if defined(DEBUG)
            sample_dump(0, g->sb_hybrid, 576);
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
#endif

            /* skip extension bits */
            bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
            if (bits_left < 0) {
                dprintf("bits_left=%d\n", bits_left);
                return -1;
            }
            while (bits_left >= 16) {
                skip_bits(&s->gb, 16);
                bits_left -= 16;
            }
            if (bits_left > 0)
                skip_bits(&s->gb, bits_left);
        } /* ch */

        if (s->nb_channels == 2)
            compute_stereo(s, &granules[0][gr], &granules[1][gr]);

        for(ch=0;ch<s->nb_channels;ch++) {
            g = &granules[ch][gr];

            reorder_block(s, g);
2445
#if defined(DEBUG)
2446 2447
            sample_dump(0, g->sb_hybrid, 576);
#endif
2448
            s->compute_antialias(s, g);
2449
#if defined(DEBUG)
2450 2451 2452
            sample_dump(1, g->sb_hybrid, 576);
#endif
            compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]); 
2453
#if defined(DEBUG)
2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
            sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
#endif
        }
    } /* gr */
    return nb_granules * 18;
}

static int mp_decode_frame(MPADecodeContext *s, 
                           short *samples)
{
    int i, nb_frames, ch;
    short *samples_ptr;

    init_get_bits(&s->gb, s->inbuf + HEADER_SIZE, 
2468
                  (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512
    
    /* skip error protection field */
    if (s->error_protection)
        get_bits(&s->gb, 16);

    dprintf("frame %d:\n", s->frame_count);
    switch(s->layer) {
    case 1:
        nb_frames = mp_decode_layer1(s);
        break;
    case 2:
        nb_frames = mp_decode_layer2(s);
        break;
    case 3:
    default:
        nb_frames = mp_decode_layer3(s);
        break;
    }
#if defined(DEBUG)
    for(i=0;i<nb_frames;i++) {
        for(ch=0;ch<s->nb_channels;ch++) {
            int j;
            printf("%d-%d:", i, ch);
            for(j=0;j<SBLIMIT;j++)
                printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
            printf("\n");
        }
    }
#endif
    /* apply the synthesis filter */
    for(ch=0;ch<s->nb_channels;ch++) {
        samples_ptr = samples + ch;
        for(i=0;i<nb_frames;i++) {
            synth_filter(s, ch, samples_ptr, s->nb_channels,
                         s->sb_samples[ch][i]);
            samples_ptr += 32 * s->nb_channels;
        }
    }
#ifdef DEBUG
    s->frame_count++;        
#endif
    return nb_frames * 32 * sizeof(short) * s->nb_channels;
}

Fabrice Bellard's avatar
Fabrice Bellard committed
2513 2514
static int decode_frame(AVCodecContext * avctx,
			void *data, int *data_size,
2515
			uint8_t * buf, int buf_size)
Fabrice Bellard's avatar
Fabrice Bellard committed
2516 2517
{
    MPADecodeContext *s = avctx->priv_data;
2518 2519
    uint32_t header;
    uint8_t *buf_ptr;
Fabrice Bellard's avatar
Fabrice Bellard committed
2520 2521 2522 2523 2524 2525 2526 2527
    int len, out_size;
    short *out_samples = data;

    *data_size = 0;
    buf_ptr = buf;
    while (buf_size > 0) {
	len = s->inbuf_ptr - s->inbuf;
	if (s->frame_size == 0) {
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
            /* special case for next header for first frame in free
               format case (XXX: find a simpler method) */
            if (s->free_format_next_header != 0) {
                s->inbuf[0] = s->free_format_next_header >> 24;
                s->inbuf[1] = s->free_format_next_header >> 16;
                s->inbuf[2] = s->free_format_next_header >> 8;
                s->inbuf[3] = s->free_format_next_header;
                s->inbuf_ptr = s->inbuf + 4;
                s->free_format_next_header = 0;
                goto got_header;
            }
	    /* no header seen : find one. We need at least HEADER_SIZE
               bytes to parse it */
Fabrice Bellard's avatar
Fabrice Bellard committed
2541 2542 2543
	    len = HEADER_SIZE - len;
	    if (len > buf_size)
		len = buf_size;
2544
	    if (len > 0) {
2545 2546 2547
		memcpy(s->inbuf_ptr, buf_ptr, len);
		buf_ptr += len;
		buf_size -= len;
2548 2549 2550
		s->inbuf_ptr += len;
	    }
	    if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
2551
            got_header:
Fabrice Bellard's avatar
Fabrice Bellard committed
2552 2553
		header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
		    (s->inbuf[2] << 8) | s->inbuf[3];
2554

Fabrice Bellard's avatar
Fabrice Bellard committed
2555 2556
		if (check_header(header) < 0) {
		    /* no sync found : move by one byte (inefficient, but simple!) */
2557
		    memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
Fabrice Bellard's avatar
Fabrice Bellard committed
2558
		    s->inbuf_ptr--;
2559 2560 2561 2562
                    dprintf("skip %x\n", header);
                    /* reset free format frame size to give a chance
                       to get a new bitrate */
                    s->free_format_frame_size = 0;
Fabrice Bellard's avatar
Fabrice Bellard committed
2563
		} else {
2564
		    if (decode_header(s, header) == 1) {
2565
                        /* free format: prepare to compute frame size */
2566
			s->frame_size = -1;
2567
                    }
2568 2569 2570 2571
                    /* update codec info */
                    avctx->sample_rate = s->sample_rate;
                    avctx->channels = s->nb_channels;
                    avctx->bit_rate = s->bit_rate;
2572
                    avctx->sub_id = s->layer;
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
                    switch(s->layer) {
                    case 1:
                        avctx->frame_size = 384;
                        break;
                    case 2:
                        avctx->frame_size = 1152;
                        break;
                    case 3:
                        if (s->lsf)
                            avctx->frame_size = 576;
                        else
                            avctx->frame_size = 1152;
                        break;
                    }
Fabrice Bellard's avatar
Fabrice Bellard committed
2587 2588
		}
	    }
2589 2590 2591 2592 2593 2594
        } else if (s->frame_size == -1) {
            /* free format : find next sync to compute frame size */
	    len = MPA_MAX_CODED_FRAME_SIZE - len;
	    if (len > buf_size)
		len = buf_size;
            if (len == 0) {
2595
		/* frame too long: resync */
2596
                s->frame_size = 0;
2597
		memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
2598
		s->inbuf_ptr--;
2599
            } else {
2600 2601
                uint8_t *p, *pend;
                uint32_t header1;
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
                int padding;

                memcpy(s->inbuf_ptr, buf_ptr, len);
                /* check for header */
                p = s->inbuf_ptr - 3;
                pend = s->inbuf_ptr + len - 4;
                while (p <= pend) {
                    header = (p[0] << 24) | (p[1] << 16) |
                        (p[2] << 8) | p[3];
                    header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
                        (s->inbuf[2] << 8) | s->inbuf[3];
                    /* check with high probability that we have a
                       valid header */
                    if ((header & SAME_HEADER_MASK) ==
                        (header1 & SAME_HEADER_MASK)) {
                        /* header found: update pointers */
                        len = (p + 4) - s->inbuf_ptr;
                        buf_ptr += len;
                        buf_size -= len;
                        s->inbuf_ptr = p;
                        /* compute frame size */
                        s->free_format_next_header = header;
                        s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
                        padding = (header1 >> 9) & 1;
                        if (s->layer == 1)
                            s->free_format_frame_size -= padding * 4;
                        else
                            s->free_format_frame_size -= padding;
                        dprintf("free frame size=%d padding=%d\n", 
                                s->free_format_frame_size, padding);
                        decode_header(s, header1);
                        goto next_data;
                    }
                    p++;
                }
                /* not found: simply increase pointers */
                buf_ptr += len;
                s->inbuf_ptr += len;
                buf_size -= len;
            }
Fabrice Bellard's avatar
Fabrice Bellard committed
2642
	} else if (len < s->frame_size) {
2643 2644
            if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
                s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
Fabrice Bellard's avatar
Fabrice Bellard committed
2645 2646 2647 2648 2649 2650 2651
	    len = s->frame_size - len;
	    if (len > buf_size)
		len = buf_size;
	    memcpy(s->inbuf_ptr, buf_ptr, len);
	    buf_ptr += len;
	    s->inbuf_ptr += len;
	    buf_size -= len;
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	}
    next_data:
        if (s->frame_size > 0 && 
            (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
            if (avctx->parse_only) {
                /* simply return the frame data */
                *(uint8_t **)data = s->inbuf;
                out_size = s->inbuf_ptr - s->inbuf;
            } else {
                out_size = mp_decode_frame(s, out_samples);
            }
Fabrice Bellard's avatar
Fabrice Bellard committed
2663 2664 2665 2666 2667 2668 2669 2670 2671
	    s->inbuf_ptr = s->inbuf;
	    s->frame_size = 0;
	    *data_size = out_size;
	    break;
	}
    }
    return buf_ptr - buf;
}

2672
AVCodec mp2_decoder =
Fabrice Bellard's avatar
Fabrice Bellard committed
2673
{
2674
    "mp2",
Fabrice Bellard's avatar
Fabrice Bellard committed
2675 2676 2677 2678 2679 2680 2681
    CODEC_TYPE_AUDIO,
    CODEC_ID_MP2,
    sizeof(MPADecodeContext),
    decode_init,
    NULL,
    NULL,
    decode_frame,
2682
    CODEC_CAP_PARSE_ONLY,
Fabrice Bellard's avatar
Fabrice Bellard committed
2683
};
2684 2685 2686 2687 2688

AVCodec mp3_decoder =
{
    "mp3",
    CODEC_TYPE_AUDIO,
2689
    CODEC_ID_MP3,
2690 2691 2692 2693 2694
    sizeof(MPADecodeContext),
    decode_init,
    NULL,
    NULL,
    decode_frame,
2695
    CODEC_CAP_PARSE_ONLY,
2696
};