tta.c 13.9 KB
Newer Older
1 2 3 4
/*
 * TTA (The Lossless True Audio) decoder
 * Copyright (c) 2006 Alex Beregszaszi
 *
5 6 7
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
8 9
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13 14 15 16 17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 21 22
 */

/**
23
 * @file
24 25 26 27 28 29 30 31 32 33
 * TTA (The Lossless True Audio) decoder
 * (www.true-audio.com or tta.corecodec.org)
 * @author Alex Beregszaszi
 *
 */

#define ALT_BITSTREAM_READER_LE
//#define DEBUG
#include <limits.h>
#include "avcodec.h"
34
#include "get_bits.h"
35 36 37 38

#define FORMAT_INT 1
#define FORMAT_FLOAT 3

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
#define MAX_ORDER 16
typedef struct TTAFilter {
    int32_t shift, round, error, mode;
    int32_t qm[MAX_ORDER];
    int32_t dx[MAX_ORDER];
    int32_t dl[MAX_ORDER];
} TTAFilter;

typedef struct TTARice {
    uint32_t k0, k1, sum0, sum1;
} TTARice;

typedef struct TTAChannel {
    int32_t predictor;
    TTAFilter filter;
    TTARice rice;
} TTAChannel;

57 58 59 60 61 62 63
typedef struct TTAContext {
    AVCodecContext *avctx;
    GetBitContext gb;

    int flags, channels, bps, is_float, data_length;
    int frame_length, last_frame_length, total_frames;

64
    int32_t *decode_buffer;
65

66
    TTAChannel *ch_ctx;
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
} TTAContext;

#if 0
static inline int shift_1(int i)
{
    if (i < 32)
        return 1 << i;
    else
        return 0x80000000; // 16 << 31
}

static inline int shift_16(int i)
{
    if (i < 28)
        return 16 << i;
    else
        return 0x80000000; // 16 << 27
}
#else
86
static const uint32_t shift_1[] = {
87 88 89 90 91 92 93 94 95 96 97 98
    0x00000001, 0x00000002, 0x00000004, 0x00000008,
    0x00000010, 0x00000020, 0x00000040, 0x00000080,
    0x00000100, 0x00000200, 0x00000400, 0x00000800,
    0x00001000, 0x00002000, 0x00004000, 0x00008000,
    0x00010000, 0x00020000, 0x00040000, 0x00080000,
    0x00100000, 0x00200000, 0x00400000, 0x00800000,
    0x01000000, 0x02000000, 0x04000000, 0x08000000,
    0x10000000, 0x20000000, 0x40000000, 0x80000000,
    0x80000000, 0x80000000, 0x80000000, 0x80000000,
    0x80000000, 0x80000000, 0x80000000, 0x80000000
};

99
static const uint32_t * const shift_16 = shift_1 + 4;
100 101
#endif

102
static const int32_t ttafilter_configs[4][2] = {
103 104 105 106 107 108
    {10, 1},
    {9, 1},
    {10, 1},
    {12, 0}
};

109
static void ttafilter_init(TTAFilter *c, int32_t shift, int32_t mode) {
110 111 112 113 114 115 116 117
    memset(c, 0, sizeof(TTAFilter));
    c->shift = shift;
   c->round = shift_1[shift-1];
//    c->round = 1 << (shift - 1);
    c->mode = mode;
}

// FIXME: copy paste from original
118
static inline void memshl(register int32_t *a, register int32_t *b) {
119 120 121 122 123 124 125 126 127 128 129 130
    *a++ = *b++;
    *a++ = *b++;
    *a++ = *b++;
    *a++ = *b++;
    *a++ = *b++;
    *a++ = *b++;
    *a++ = *b++;
    *a = *b;
}

// FIXME: copy paste from original
// mode=1 encoder, mode=0 decoder
131 132
static inline void ttafilter_process(TTAFilter *c, int32_t *in, int32_t mode) {
    register int32_t *dl = c->dl, *qm = c->qm, *dx = c->dx, sum = c->round;
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

    if (!c->error) {
        sum += *dl++ * *qm, qm++;
        sum += *dl++ * *qm, qm++;
        sum += *dl++ * *qm, qm++;
        sum += *dl++ * *qm, qm++;
        sum += *dl++ * *qm, qm++;
        sum += *dl++ * *qm, qm++;
        sum += *dl++ * *qm, qm++;
        sum += *dl++ * *qm, qm++;
        dx += 8;
    } else if(c->error < 0) {
        sum += *dl++ * (*qm -= *dx++), qm++;
        sum += *dl++ * (*qm -= *dx++), qm++;
        sum += *dl++ * (*qm -= *dx++), qm++;
        sum += *dl++ * (*qm -= *dx++), qm++;
        sum += *dl++ * (*qm -= *dx++), qm++;
        sum += *dl++ * (*qm -= *dx++), qm++;
        sum += *dl++ * (*qm -= *dx++), qm++;
        sum += *dl++ * (*qm -= *dx++), qm++;
    } else {
        sum += *dl++ * (*qm += *dx++), qm++;
        sum += *dl++ * (*qm += *dx++), qm++;
        sum += *dl++ * (*qm += *dx++), qm++;
        sum += *dl++ * (*qm += *dx++), qm++;
        sum += *dl++ * (*qm += *dx++), qm++;
        sum += *dl++ * (*qm += *dx++), qm++;
        sum += *dl++ * (*qm += *dx++), qm++;
        sum += *dl++ * (*qm += *dx++), qm++;
    }

    *(dx-0) = ((*(dl-1) >> 30) | 1) << 2;
    *(dx-1) = ((*(dl-2) >> 30) | 1) << 1;
    *(dx-2) = ((*(dl-3) >> 30) | 1) << 1;
    *(dx-3) = ((*(dl-4) >> 30) | 1);

    // compress
    if (mode) {
        *dl = *in;
        *in -= (sum >> c->shift);
        c->error = *in;
    } else {
        c->error = *in;
        *in += (sum >> c->shift);
        *dl = *in;
    }

    if (c->mode) {
        *(dl-1) = *dl - *(dl-1);
        *(dl-2) = *(dl-1) - *(dl-2);
        *(dl-3) = *(dl-2) - *(dl-3);
    }

    memshl(c->dl, c->dl + 1);
    memshl(c->dx, c->dx + 1);
}

190
static void rice_init(TTARice *c, uint32_t k0, uint32_t k1)
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
{
    c->k0 = k0;
    c->k1 = k1;
    c->sum0 = shift_16[k0];
    c->sum1 = shift_16[k1];
}

static int tta_get_unary(GetBitContext *gb)
{
    int ret = 0;

    // count ones
    while(get_bits1(gb))
        ret++;
    return ret;
}

208
static av_cold int tta_decode_init(AVCodecContext * avctx)
209 210 211 212 213 214 215 216 217 218 219
{
    TTAContext *s = avctx->priv_data;
    int i;

    s->avctx = avctx;

    // 30bytes includes a seektable with one frame
    if (avctx->extradata_size < 30)
        return -1;

    init_get_bits(&s->gb, avctx->extradata, avctx->extradata_size);
220
    if (show_bits_long(&s->gb, 32) == AV_RL32("TTA1"))
221 222 223
    {
        /* signature */
        skip_bits(&s->gb, 32);
224
//        if (get_bits_long(&s->gb, 32) != av_bswap32(AV_RL32("TTA1"))) {
225 226 227 228
//            av_log(s->avctx, AV_LOG_ERROR, "Missing magic\n");
//            return -1;
//        }

229
        s->flags = get_bits(&s->gb, 16);
230 231 232 233 234 235
        if (s->flags != 1 && s->flags != 3)
        {
            av_log(s->avctx, AV_LOG_ERROR, "Invalid flags\n");
            return -1;
        }
        s->is_float = (s->flags == FORMAT_FLOAT);
236
        avctx->channels = s->channels = get_bits(&s->gb, 16);
237 238
        avctx->bits_per_coded_sample = get_bits(&s->gb, 16);
        s->bps = (avctx->bits_per_coded_sample + 7) / 8;
239
        avctx->sample_rate = get_bits_long(&s->gb, 32);
240 241 242 243
        if(avctx->sample_rate > 1000000){ //prevent FRAME_TIME * avctx->sample_rate from overflowing and sanity check
            av_log(avctx, AV_LOG_ERROR, "sample_rate too large\n");
            return -1;
        }
244
        s->data_length = get_bits_long(&s->gb, 32);
245 246 247 248
        skip_bits(&s->gb, 32); // CRC32 of header

        if (s->is_float)
        {
249
            avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
250 251 252 253
            av_log(s->avctx, AV_LOG_ERROR, "Unsupported sample format. Please contact the developers.\n");
            return -1;
        }
        else switch(s->bps) {
254 255 256 257
//            case 1: avctx->sample_fmt = AV_SAMPLE_FMT_U8; break;
            case 2: avctx->sample_fmt = AV_SAMPLE_FMT_S16; break;
//            case 3: avctx->sample_fmt = AV_SAMPLE_FMT_S24; break;
            case 4: avctx->sample_fmt = AV_SAMPLE_FMT_S32; break;
258 259 260 261 262 263 264 265 266 267 268 269 270 271
            default:
                av_log(s->avctx, AV_LOG_ERROR, "Invalid/unsupported sample format. Please contact the developers.\n");
                return -1;
        }

        // FIXME: horribly broken, but directly from reference source
#define FRAME_TIME 1.04489795918367346939
        s->frame_length = (int)(FRAME_TIME * avctx->sample_rate);

        s->last_frame_length = s->data_length % s->frame_length;
        s->total_frames = s->data_length / s->frame_length +
                        (s->last_frame_length ? 1 : 0);

        av_log(s->avctx, AV_LOG_DEBUG, "flags: %x chans: %d bps: %d rate: %d block: %d\n",
272
            s->flags, avctx->channels, avctx->bits_per_coded_sample, avctx->sample_rate,
273 274 275 276 277 278 279 280 281
            avctx->block_align);
        av_log(s->avctx, AV_LOG_DEBUG, "data_length: %d frame_length: %d last: %d total: %d\n",
            s->data_length, s->frame_length, s->last_frame_length, s->total_frames);

        // FIXME: seek table
        for (i = 0; i < s->total_frames; i++)
            skip_bits(&s->gb, 32);
        skip_bits(&s->gb, 32); // CRC32 of seektable

282 283 284 285 286
        if(s->frame_length >= UINT_MAX / (s->channels * sizeof(int32_t))){
            av_log(avctx, AV_LOG_ERROR, "frame_length too large\n");
            return -1;
        }

287
        s->decode_buffer = av_mallocz(sizeof(int32_t)*s->frame_length*s->channels);
288 289 290
        s->ch_ctx = av_malloc(avctx->channels * sizeof(*s->ch_ctx));
        if (!s->ch_ctx)
            return AVERROR(ENOMEM);
291 292 293 294 295 296 297 298 299 300
    } else {
        av_log(avctx, AV_LOG_ERROR, "Wrong extradata present\n");
        return -1;
    }

    return 0;
}

static int tta_decode_frame(AVCodecContext *avctx,
        void *data, int *data_size,
301
        AVPacket *avpkt)
302
{
303 304
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
305 306 307 308 309 310
    TTAContext *s = avctx->priv_data;
    int i;

    init_get_bits(&s->gb, buf, buf_size*8);
    {
        int cur_chan = 0, framelen = s->frame_length;
311
        int32_t *p;
312

313
        if (*data_size < (framelen * s->channels * 2)) {
314
            av_log(avctx, AV_LOG_ERROR, "Output buffer size is too small.\n");
315 316
            return -1;
        }
317 318 319 320 321 322 323
        // FIXME: seeking
        s->total_frames--;
        if (!s->total_frames && s->last_frame_length)
            framelen = s->last_frame_length;

        // init per channel states
        for (i = 0; i < s->channels; i++) {
324 325 326
            s->ch_ctx[i].predictor = 0;
            ttafilter_init(&s->ch_ctx[i].filter, ttafilter_configs[s->bps-1][0], ttafilter_configs[s->bps-1][1]);
            rice_init(&s->ch_ctx[i].rice, 10, 10);
327 328 329
        }

        for (p = s->decode_buffer; p < s->decode_buffer + (framelen * s->channels); p++) {
330 331 332
            int32_t *predictor = &s->ch_ctx[cur_chan].predictor;
            TTAFilter *filter = &s->ch_ctx[cur_chan].filter;
            TTARice *rice = &s->ch_ctx[cur_chan].rice;
333 334
            uint32_t unary, depth, k;
            int32_t value;
335 336 337 338 339 340 341 342 343 344 345 346

            unary = tta_get_unary(&s->gb);

            if (unary == 0) {
                depth = 0;
                k = rice->k0;
            } else {
                depth = 1;
                k = rice->k1;
                unary--;
            }

347 348 349 350 351 352
            if (get_bits_left(&s->gb) < k)
                return -1;

            if (k) {
                if (k > MIN_CACHE_BITS)
                    return -1;
353
                value = (unary << k) + get_bits(&s->gb, k);
354
            } else
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
                value = unary;

            // FIXME: copy paste from original
            switch (depth) {
            case 1:
                rice->sum1 += value - (rice->sum1 >> 4);
                if (rice->k1 > 0 && rice->sum1 < shift_16[rice->k1])
                    rice->k1--;
                else if(rice->sum1 > shift_16[rice->k1 + 1])
                    rice->k1++;
                value += shift_1[rice->k0];
            default:
                rice->sum0 += value - (rice->sum0 >> 4);
                if (rice->k0 > 0 && rice->sum0 < shift_16[rice->k0])
                    rice->k0--;
                else if(rice->sum0 > shift_16[rice->k0 + 1])
                    rice->k0++;
            }

374 375 376
            // extract coded value
#define UNFOLD(x) (((x)&1) ? (++(x)>>1) : (-(x)>>1))
            *p = UNFOLD(value);
377 378 379 380 381

            // run hybrid filter
            ttafilter_process(filter, p, 0);

            // fixed order prediction
382
#define PRED(x, k) (int32_t)((((uint64_t)x << k) - x) >> k)
383 384 385 386 387 388 389 390 391 392 393
            switch (s->bps) {
                case 1: *p += PRED(*predictor, 4); break;
                case 2:
                case 3: *p += PRED(*predictor, 5); break;
                case 4: *p += *predictor; break;
            }
            *predictor = *p;

#if 0
            // extract 32bit float from last two int samples
            if (s->is_float && ((p - data) & 1)) {
394 395 396
                uint32_t neg = *p & 0x80000000;
                uint32_t hi = *(p - 1);
                uint32_t lo = abs(*p) - 1;
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415

                hi += (hi || lo) ? 0x3f80 : 0;
                // SWAP16: swap all the 16 bits
                *(p - 1) = (hi << 16) | SWAP16(lo) | neg;
            }
#endif

            /*if ((get_bits_count(&s->gb)+7)/8 > buf_size)
            {
                av_log(NULL, AV_LOG_INFO, "overread!!\n");
                break;
            }*/

            // flip channels
            if (cur_chan < (s->channels-1))
                cur_chan++;
            else {
                // decorrelate in case of stereo integer
                if (!s->is_float && (s->channels > 1)) {
416
                    int32_t *r = p - 1;
417 418 419 420 421 422 423
                    for (*p += *r / 2; r > p - s->channels; r--)
                        *r = *(r + 1) - *r;
                }
                cur_chan = 0;
            }
        }

424 425
        if (get_bits_left(&s->gb) < 32)
            return -1;
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
        skip_bits(&s->gb, 32); // frame crc

        // convert to output buffer
        switch(s->bps) {
            case 2: {
                uint16_t *samples = data;
                for (p = s->decode_buffer; p < s->decode_buffer + (framelen * s->channels); p++) {
//                    *samples++ = (unsigned char)*p;
//                    *samples++ = (unsigned char)(*p >> 8);
                    *samples++ = *p;
                }
                *data_size = (uint8_t *)samples - (uint8_t *)data;
                break;
            }
            default:
                av_log(s->avctx, AV_LOG_ERROR, "Error, only 16bit samples supported!\n");
        }
    }

//    return get_bits_count(&s->gb)+7)/8;
    return buf_size;
}

449
static av_cold int tta_decode_close(AVCodecContext *avctx) {
450 451
    TTAContext *s = avctx->priv_data;

452
    av_free(s->decode_buffer);
453
    av_freep(&s->ch_ctx);
454 455 456 457

    return 0;
}

458
AVCodec ff_tta_decoder = {
459
    "tta",
460
    AVMEDIA_TYPE_AUDIO,
461 462 463 464 465 466
    CODEC_ID_TTA,
    sizeof(TTAContext),
    tta_decode_init,
    NULL,
    tta_decode_close,
    tta_decode_frame,
467
    .long_name = NULL_IF_CONFIG_SMALL("True Audio (TTA)"),
468
};