hevc_mvs.c 28.2 KB
Newer Older
Guillaume Martres's avatar
Guillaume Martres committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
/*
 * HEVC video decoder
 *
 * Copyright (C) 2012 - 2013 Guillaume Martres
 * Copyright (C) 2013 Anand Meher Kotra
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "hevc.h"

static const uint8_t l0_l1_cand_idx[12][2] = {
    { 0, 1, },
    { 1, 0, },
    { 0, 2, },
    { 2, 0, },
    { 1, 2, },
    { 2, 1, },
    { 0, 3, },
    { 3, 0, },
    { 1, 3, },
    { 3, 1, },
    { 2, 3, },
    { 3, 2, },
};

void ff_hevc_set_neighbour_available(HEVCContext *s, int x0, int y0,
                                     int nPbW, int nPbH)
{
    HEVCLocalContext *lc = &s->HEVClc;
    int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
    int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);

    lc->na.cand_up       = (lc->ctb_up_flag   || y0b);
    lc->na.cand_left     = (lc->ctb_left_flag || x0b);
    lc->na.cand_up_left  = (!x0b && !y0b) ? lc->ctb_up_left_flag : lc->na.cand_left && lc->na.cand_up;
    lc->na.cand_up_right_sap =
            ((x0b + nPbW) == (1 << s->sps->log2_ctb_size)) ?
                    lc->ctb_up_right_flag && !y0b : lc->na.cand_up;
    lc->na.cand_up_right =
            ((x0b + nPbW) == (1 << s->sps->log2_ctb_size) ?
                    lc->ctb_up_right_flag && !y0b : lc->na.cand_up )
                     && (x0 + nPbW) < lc->end_of_tiles_x;
    lc->na.cand_bottom_left = ((y0 + nPbH) >= lc->end_of_tiles_y) ? 0 : lc->na.cand_left;
}

/*
 * 6.4.1 Derivation process for z-scan order block availability
 */
static int z_scan_block_avail(HEVCContext *s, int xCurr, int yCurr,
                              int xN, int yN)
{
#define MIN_TB_ADDR_ZS(x, y)                                            \
    s->pps->min_tb_addr_zs[(y) * s->sps->min_tb_width + (x)]
    int Curr = MIN_TB_ADDR_ZS(xCurr >> s->sps->log2_min_tb_size,
                              yCurr >> s->sps->log2_min_tb_size);
    int N;

    if (xN < 0 || yN < 0 ||
        xN >= s->sps->width ||
        yN >= s->sps->height)
        return 0;

    N = MIN_TB_ADDR_ZS(xN >> s->sps->log2_min_tb_size,
                       yN >> s->sps->log2_min_tb_size);

    return N <= Curr;
}

static int same_prediction_block(HEVCLocalContext *lc, int log2_cb_size,
                                 int x0, int y0, int nPbW, int nPbH,
                                 int xA1, int yA1, int partIdx)
{
    return !(nPbW << 1 == 1 << log2_cb_size &&
             nPbH << 1 == 1 << log2_cb_size && partIdx == 1 &&
             lc->cu.x + nPbW > xA1 &&
             lc->cu.y + nPbH <= yA1);
}

/*
 * 6.4.2 Derivation process for prediction block availability
 */
static int check_prediction_block_available(HEVCContext *s, int log2_cb_size,
                                            int x0, int y0, int nPbW, int nPbH,
                                            int xA1, int yA1, int partIdx)
{
    HEVCLocalContext *lc = &s->HEVClc;

    if (lc->cu.x < xA1 && lc->cu.y < yA1 &&
        (lc->cu.x + (1 << log2_cb_size)) > xA1 &&
        (lc->cu.y + (1 << log2_cb_size)) > yA1)
        return same_prediction_block(lc, log2_cb_size, x0, y0,
                                     nPbW, nPbH, xA1, yA1, partIdx);
    else
        return z_scan_block_avail(s, x0, y0, xA1, yA1);
}

//check if the two luma locations belong to the same mostion estimation region
static int isDiffMER(HEVCContext *s, int xN, int yN, int xP, int yP)
{
    uint8_t plevel = s->pps->log2_parallel_merge_level;

    return xN >> plevel == xP >> plevel &&
           yN >> plevel == yP >> plevel;
}

#define MATCH(x) (A.x == B.x)

// check if the mv's and refidx are the same between A and B
static int compareMVrefidx(struct MvField A, struct MvField B)
{
    if (A.pred_flag[0] && A.pred_flag[1] && B.pred_flag[0] && B.pred_flag[1])
        return MATCH(ref_idx[0]) && MATCH(mv[0].x) && MATCH(mv[0].y) &&
               MATCH(ref_idx[1]) && MATCH(mv[1].x) && MATCH(mv[1].y);

    if (A.pred_flag[0] && !A.pred_flag[1] && B.pred_flag[0] && !B.pred_flag[1])
        return MATCH(ref_idx[0]) && MATCH(mv[0].x) && MATCH(mv[0].y);

    if (!A.pred_flag[0] && A.pred_flag[1] && !B.pred_flag[0] && B.pred_flag[1])
        return MATCH(ref_idx[1]) && MATCH(mv[1].x) && MATCH(mv[1].y);

    return 0;
}

static av_always_inline void mv_scale(Mv *dst, Mv *src, int td, int tb)
{
    int tx, scale_factor;

    td = av_clip_int8_c(td);
    tb = av_clip_int8_c(tb);
    tx = (0x4000 + abs(td / 2)) / td;
    scale_factor = av_clip_c((tb * tx + 32) >> 6, -4096, 4095);
    dst->x = av_clip_int16_c((scale_factor * src->x + 127 +
                             (scale_factor * src->x < 0)) >> 8);
    dst->y = av_clip_int16_c((scale_factor * src->y + 127 +
                             (scale_factor * src->y < 0)) >> 8);
}

static int check_mvset(Mv *mvLXCol, Mv *mvCol,
                       int colPic, int poc,
                       RefPicList *refPicList, int X, int refIdxLx,
                       RefPicList *refPicList_col, int listCol, int refidxCol)
{
    int cur_lt = refPicList[X].isLongTerm[refIdxLx];
    int col_lt = refPicList_col[listCol].isLongTerm[refidxCol];
    int col_poc_diff, cur_poc_diff;

    if (cur_lt != col_lt) {
        mvLXCol->x = 0;
        mvLXCol->y = 0;
        return 0;
    }

    col_poc_diff = colPic - refPicList_col[listCol].list[refidxCol];
    cur_poc_diff = poc    - refPicList[X].list[refIdxLx];

    if (!col_poc_diff)
        col_poc_diff = 1;  // error resilience

    if (cur_lt || col_poc_diff == cur_poc_diff) {
        mvLXCol->x = mvCol->x;
        mvLXCol->y = mvCol->y;
    } else {
        mv_scale(mvLXCol, mvCol, col_poc_diff, cur_poc_diff);
    }
    return 1;
}

#define CHECK_MVSET(l)                                          \
    check_mvset(mvLXCol, temp_col.mv + l,                       \
                colPic, s->poc,                                 \
                refPicList, X, refIdxLx,                        \
                refPicList_col, L ## l, temp_col.ref_idx[l])

// derive the motion vectors section 8.5.3.1.8
static int derive_temporal_colocated_mvs(HEVCContext *s, MvField temp_col,
                                         int refIdxLx, Mv *mvLXCol, int X,
                                         int colPic, RefPicList *refPicList_col)
{
    RefPicList *refPicList = s->ref->refPicList;

    if (temp_col.is_intra) {
        mvLXCol->x = 0;
        mvLXCol->y = 0;
        return 0;
    }

    if (temp_col.pred_flag[0] == 0)
        return CHECK_MVSET(1);
    else if (temp_col.pred_flag[0] == 1 && temp_col.pred_flag[1] == 0)
        return CHECK_MVSET(0);
    else if (temp_col.pred_flag[0] == 1 && temp_col.pred_flag[1] == 1) {
        int check_diffpicount = 0;
        int i = 0;
        for (i = 0; i < refPicList[0].nb_refs; i++) {
            if (refPicList[0].list[i] > s->poc)
                check_diffpicount++;
        }
        for (i = 0; i < refPicList[1].nb_refs; i++) {
            if (refPicList[1].list[i] > s->poc)
                check_diffpicount++;
        }
        if (check_diffpicount == 0 && X == 0)
            return CHECK_MVSET(0);
        else if (check_diffpicount == 0 && X == 1)
            return CHECK_MVSET(1);
        else {
            if (s->sh.collocated_list == L1)
                return CHECK_MVSET(0);
            else
                return CHECK_MVSET(1);
        }
    }

    return 0;
}

#define TAB_MVF(x, y)                                                   \
    tab_mvf[(y) * min_pu_width + x]

#define TAB_MVF_PU(v)                                                   \
    TAB_MVF(x ## v ## _pu, y ## v ## _pu)

#define DERIVE_TEMPORAL_COLOCATED_MVS                                   \
    derive_temporal_colocated_mvs(s, temp_col,                          \
                                  refIdxLx, mvLXCol, X, colPic,         \
                                  ff_hevc_get_ref_list(s, ref, x, y))

/*
 * 8.5.3.1.7  temporal luma motion vector prediction
 */
static int temporal_luma_motion_vector(HEVCContext *s, int x0, int y0,
                                       int nPbW, int nPbH, int refIdxLx,
                                       Mv *mvLXCol, int X)
{
    MvField *tab_mvf;
    MvField temp_col;
    int x, y, x_pu, y_pu;
    int min_pu_width = s->sps->min_pu_width;
    int availableFlagLXCol = 0;
    int colPic;

    HEVCFrame *ref = s->ref->collocated_ref;

    if (!ref)
        return 0;

    tab_mvf = ref->tab_mvf;
    colPic  = ref->poc;

    //bottom right collocated motion vector
    x = x0 + nPbW;
    y = y0 + nPbH;

    ff_thread_await_progress(&ref->tf, y, 0);
    if (tab_mvf &&
        (y0 >> s->sps->log2_ctb_size) == (y >> s->sps->log2_ctb_size) &&
        y < s->sps->height &&
        x < s->sps->width) {
        x                  = ((x >> 4) << 4);
        y                  = ((y >> 4) << 4);
        x_pu               = x >> s->sps->log2_min_pu_size;
        y_pu               = y >> s->sps->log2_min_pu_size;
        temp_col           = TAB_MVF(x_pu, y_pu);
        availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS;
    }

    // derive center collocated motion vector
    if (tab_mvf && !availableFlagLXCol) {
        x                  = x0 + (nPbW >> 1);
        y                  = y0 + (nPbH >> 1);
        x                  = ((x >> 4) << 4);
        y                  = ((y >> 4) << 4);
        x_pu               = x >> s->sps->log2_min_pu_size;
        y_pu               = y >> s->sps->log2_min_pu_size;
        temp_col           = TAB_MVF(x_pu, y_pu);
        availableFlagLXCol = DERIVE_TEMPORAL_COLOCATED_MVS;
    }
    return availableFlagLXCol;
}

#define AVAILABLE(cand, v)                                      \
    (cand && !TAB_MVF_PU(v).is_intra)

#define PRED_BLOCK_AVAILABLE(v)                                 \
    check_prediction_block_available(s, log2_cb_size,           \
                                     x0, y0, nPbW, nPbH,        \
                                     x ## v, y ## v, part_idx)

#define COMPARE_MV_REFIDX(a, b)                                 \
    compareMVrefidx(TAB_MVF_PU(a), TAB_MVF_PU(b))

/*
 * 8.5.3.1.2  Derivation process for spatial merging candidates
 */
static void derive_spatial_merge_candidates(HEVCContext *s, int x0, int y0,
                                            int nPbW, int nPbH,
                                            int log2_cb_size,
                                            int singleMCLFlag, int part_idx,
                                            struct MvField mergecandlist[])
{
    HEVCLocalContext *lc   = &s->HEVClc;
    RefPicList *refPicList = s->ref->refPicList;
    MvField *tab_mvf       = s->ref->tab_mvf;

    const int min_pu_width = s->sps->min_pu_width;

    const int cand_bottom_left = lc->na.cand_bottom_left;
    const int cand_left        = lc->na.cand_left;
    const int cand_up_left     = lc->na.cand_up_left;
    const int cand_up          = lc->na.cand_up;
    const int cand_up_right    = lc->na.cand_up_right_sap;

    const int xA1    = x0 - 1;
    const int yA1    = y0 + nPbH - 1;
    const int xA1_pu = xA1 >> s->sps->log2_min_pu_size;
    const int yA1_pu = yA1 >> s->sps->log2_min_pu_size;

    const int xB1    = x0 + nPbW - 1;
    const int yB1    = y0 - 1;
    const int xB1_pu = xB1 >> s->sps->log2_min_pu_size;
    const int yB1_pu = yB1 >> s->sps->log2_min_pu_size;

    const int xB0    = x0 + nPbW;
    const int yB0    = y0 - 1;
    const int xB0_pu = xB0 >> s->sps->log2_min_pu_size;
    const int yB0_pu = yB0 >> s->sps->log2_min_pu_size;

    const int xA0    = x0 - 1;
    const int yA0    = y0 + nPbH;
    const int xA0_pu = xA0 >> s->sps->log2_min_pu_size;
    const int yA0_pu = yA0 >> s->sps->log2_min_pu_size;

    const int xB2    = x0 - 1;
    const int yB2    = y0 - 1;
    const int xB2_pu = xB2 >> s->sps->log2_min_pu_size;
    const int yB2_pu = yB2 >> s->sps->log2_min_pu_size;

    const int nb_refs = (s->sh.slice_type == P_SLICE) ?
                        s->sh.nb_refs[0] : FFMIN(s->sh.nb_refs[0], s->sh.nb_refs[1]);
    int check_MER   = 1;
    int check_MER_1 = 1;

    int zero_idx = 0;

    int nb_merge_cand = 0;
    int nb_orig_merge_cand = 0;

    int is_available_a0;
    int is_available_a1;
    int is_available_b0;
    int is_available_b1;
    int is_available_b2;
    int check_B0;
    int check_A0;

    //first left spatial merge candidate
    is_available_a1 = AVAILABLE(cand_left, A1);

    if (!singleMCLFlag && part_idx == 1 &&
        (lc->cu.part_mode == PART_Nx2N ||
         lc->cu.part_mode == PART_nLx2N ||
         lc->cu.part_mode == PART_nRx2N) ||
        isDiffMER(s, xA1, yA1, x0, y0)) {
        is_available_a1 = 0;
    }

    if (is_available_a1)
        mergecandlist[nb_merge_cand++] = TAB_MVF_PU(A1);

    // above spatial merge candidate
    is_available_b1 = AVAILABLE(cand_up, B1);

    if (!singleMCLFlag && part_idx == 1 &&
        (lc->cu.part_mode == PART_2NxN ||
         lc->cu.part_mode == PART_2NxnU ||
         lc->cu.part_mode == PART_2NxnD) ||
        isDiffMER(s, xB1, yB1, x0, y0)) {
        is_available_b1 = 0;
    }

    if (is_available_a1 && is_available_b1)
        check_MER = !COMPARE_MV_REFIDX(B1, A1);

    if (is_available_b1 && check_MER)
        mergecandlist[nb_merge_cand++] = TAB_MVF_PU(B1);

    // above right spatial merge candidate
    check_MER = 1;
    check_B0  = PRED_BLOCK_AVAILABLE(B0);

    is_available_b0 = check_B0 && AVAILABLE(cand_up_right, B0);

    if (isDiffMER(s, xB0, yB0, x0, y0))
        is_available_b0 = 0;

    if (is_available_b1 && is_available_b0)
        check_MER = !COMPARE_MV_REFIDX(B0, B1);

    if (is_available_b0 && check_MER)
        mergecandlist[nb_merge_cand++] = TAB_MVF_PU(B0);

    // left bottom spatial merge candidate
    check_MER = 1;
    check_A0  = PRED_BLOCK_AVAILABLE(A0);

    is_available_a0 = check_A0 && AVAILABLE(cand_bottom_left, A0);

    if (isDiffMER(s, xA0, yA0, x0, y0))
        is_available_a0 = 0;

    if (is_available_a1 && is_available_a0)
        check_MER = !COMPARE_MV_REFIDX(A0, A1);

    if (is_available_a0 && check_MER)
        mergecandlist[nb_merge_cand++] = TAB_MVF_PU(A0);

    // above left spatial merge candidate
    check_MER = 1;

    is_available_b2 = AVAILABLE(cand_up_left, B2);

    if (isDiffMER(s, xB2, yB2, x0, y0))
        is_available_b2 = 0;

    if (is_available_a1 && is_available_b2)
        check_MER = !COMPARE_MV_REFIDX(B2, A1);

    if (is_available_b1 && is_available_b2)
        check_MER_1 = !COMPARE_MV_REFIDX(B2, B1);

    if (is_available_b2 && check_MER && check_MER_1 && nb_merge_cand != 4)
        mergecandlist[nb_merge_cand++] = TAB_MVF_PU(B2);

    // temporal motion vector candidate
    if (s->sh.slice_temporal_mvp_enabled_flag &&
        nb_merge_cand < s->sh.max_num_merge_cand) {
        Mv mv_l0_col, mv_l1_col;
        int available_l0 = temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH,
                                                       0, &mv_l0_col, 0);
        int available_l1 = (s->sh.slice_type == B_SLICE) ?
                           temporal_luma_motion_vector(s, x0, y0, nPbW, nPbH,
                                                       0, &mv_l1_col, 1) : 0;

        if (available_l0 || available_l1) {
            mergecandlist[nb_merge_cand].is_intra     = 0;
            mergecandlist[nb_merge_cand].pred_flag[0] = available_l0;
            mergecandlist[nb_merge_cand].pred_flag[1] = available_l1;
            if (available_l0) {
                mergecandlist[nb_merge_cand].mv[0]      = mv_l0_col;
                mergecandlist[nb_merge_cand].ref_idx[0] = 0;
            }
            if (available_l1) {
                mergecandlist[nb_merge_cand].mv[1]      = mv_l1_col;
                mergecandlist[nb_merge_cand].ref_idx[1] = 0;
            }
            nb_merge_cand++;
        }
    }

    nb_orig_merge_cand = nb_merge_cand;

    // combined bi-predictive merge candidates  (applies for B slices)
    if (s->sh.slice_type == B_SLICE && nb_orig_merge_cand > 1 &&
        nb_orig_merge_cand < s->sh.max_num_merge_cand) {
        int comb_idx;

        for (comb_idx = 0; nb_merge_cand < s->sh.max_num_merge_cand &&
                           comb_idx < nb_orig_merge_cand * (nb_orig_merge_cand - 1); comb_idx++) {
            int l0_cand_idx = l0_l1_cand_idx[comb_idx][0];
            int l1_cand_idx = l0_l1_cand_idx[comb_idx][1];
            MvField l0_cand = mergecandlist[l0_cand_idx];
            MvField l1_cand = mergecandlist[l1_cand_idx];

            if (l0_cand.pred_flag[0] && l1_cand.pred_flag[1] &&
                (refPicList[0].list[l0_cand.ref_idx[0]] !=
                 refPicList[1].list[l1_cand.ref_idx[1]] ||
                 l0_cand.mv[0].x != l1_cand.mv[1].x ||
                 l0_cand.mv[0].y != l1_cand.mv[1].y)) {
                mergecandlist[nb_merge_cand].ref_idx[0]   = l0_cand.ref_idx[0];
                mergecandlist[nb_merge_cand].ref_idx[1]   = l1_cand.ref_idx[1];
                mergecandlist[nb_merge_cand].pred_flag[0] = 1;
                mergecandlist[nb_merge_cand].pred_flag[1] = 1;
                mergecandlist[nb_merge_cand].mv[0].x      = l0_cand.mv[0].x;
                mergecandlist[nb_merge_cand].mv[0].y      = l0_cand.mv[0].y;
                mergecandlist[nb_merge_cand].mv[1].x      = l1_cand.mv[1].x;
                mergecandlist[nb_merge_cand].mv[1].y      = l1_cand.mv[1].y;
                mergecandlist[nb_merge_cand].is_intra     = 0;
                nb_merge_cand++;
            }
        }
    }

    // append Zero motion vector candidates
    while (nb_merge_cand < s->sh.max_num_merge_cand) {
        mergecandlist[nb_merge_cand].pred_flag[0] = 1;
        mergecandlist[nb_merge_cand].pred_flag[1] = s->sh.slice_type == B_SLICE;
        mergecandlist[nb_merge_cand].mv[0].x      = 0;
        mergecandlist[nb_merge_cand].mv[0].y      = 0;
        mergecandlist[nb_merge_cand].mv[1].x      = 0;
        mergecandlist[nb_merge_cand].mv[1].y      = 0;
        mergecandlist[nb_merge_cand].is_intra     = 0;
        mergecandlist[nb_merge_cand].ref_idx[0]   = zero_idx < nb_refs ? zero_idx : 0;
        mergecandlist[nb_merge_cand].ref_idx[1]   = zero_idx < nb_refs ? zero_idx : 0;

        nb_merge_cand++;
        zero_idx++;
    }
}

/*
 * 8.5.3.1.1 Derivation process of luma Mvs for merge mode
 */
void ff_hevc_luma_mv_merge_mode(HEVCContext *s, int x0, int y0, int nPbW,
                                int nPbH, int log2_cb_size, int part_idx,
                                int merge_idx, MvField *mv)
{
    int singleMCLFlag = 0;
    int nCS = 1 << log2_cb_size;
    struct MvField mergecand_list[MRG_MAX_NUM_CANDS] = { { { { 0 } } } };
    int nPbW2 = nPbW;
    int nPbH2 = nPbH;
    HEVCLocalContext *lc = &s->HEVClc;

    if (s->pps->log2_parallel_merge_level > 2 && nCS == 8) {
        singleMCLFlag = 1;
        x0            = lc->cu.x;
        y0            = lc->cu.y;
        nPbW          = nCS;
        nPbH          = nCS;
        part_idx      = 0;
    }

    ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
    derive_spatial_merge_candidates(s, x0, y0, nPbW, nPbH, log2_cb_size,
                                    singleMCLFlag, part_idx, mergecand_list);

    if (mergecand_list[merge_idx].pred_flag[0] == 1 &&
        mergecand_list[merge_idx].pred_flag[1] == 1 &&
        (nPbW2 + nPbH2) == 12) {
        mergecand_list[merge_idx].ref_idx[1]   = -1;
        mergecand_list[merge_idx].pred_flag[1] = 0;
    }

    *mv = mergecand_list[merge_idx];
}

static av_always_inline void dist_scale(HEVCContext *s, Mv *mv,
                                        int min_pu_width, int x, int y,
                                        int elist, int ref_idx_curr, int ref_idx)
{
    RefPicList *refPicList = s->ref->refPicList;
    MvField *tab_mvf       = s->ref->tab_mvf;
    int ref_pic_elist      = refPicList[elist].list[TAB_MVF(x, y).ref_idx[elist]];
    int ref_pic_curr       = refPicList[ref_idx_curr].list[ref_idx];

    if (ref_pic_elist != ref_pic_curr)
        mv_scale(mv, mv, s->poc - ref_pic_elist, s->poc - ref_pic_curr);
}

static int mv_mp_mode_mx(HEVCContext *s, int x, int y, int pred_flag_index,
                         Mv *mv, int ref_idx_curr, int ref_idx)
{
    MvField *tab_mvf = s->ref->tab_mvf;
    int min_pu_width = s->sps->min_pu_width;

    RefPicList *refPicList = s->ref->refPicList;

    if (TAB_MVF(x, y).pred_flag[pred_flag_index] == 1 &&
        refPicList[pred_flag_index].list[TAB_MVF(x, y).ref_idx[pred_flag_index]] == refPicList[ref_idx_curr].list[ref_idx]) {
        *mv = TAB_MVF(x, y).mv[pred_flag_index];
        return 1;
    }
    return 0;
}

static int mv_mp_mode_mx_lt(HEVCContext *s, int x, int y, int pred_flag_index,
                            Mv *mv, int ref_idx_curr, int ref_idx)
{
    MvField *tab_mvf = s->ref->tab_mvf;
    int min_pu_width = s->sps->min_pu_width;

    RefPicList *refPicList = s->ref->refPicList;
    int currIsLongTerm     = refPicList[ref_idx_curr].isLongTerm[ref_idx];

    int colIsLongTerm =
        refPicList[pred_flag_index].isLongTerm[(TAB_MVF(x, y).ref_idx[pred_flag_index])];

    if (TAB_MVF(x, y).pred_flag[pred_flag_index] &&
        colIsLongTerm == currIsLongTerm) {
        *mv = TAB_MVF(x, y).mv[pred_flag_index];
        if (!currIsLongTerm)
            dist_scale(s, mv, min_pu_width, x, y,
                       pred_flag_index, ref_idx_curr, ref_idx);
        return 1;
    }
    return 0;
}

#define MP_MX(v, pred, mx)                                      \
    mv_mp_mode_mx(s, x ## v ## _pu, y ## v ## _pu, pred,        \
                  &mx, ref_idx_curr, ref_idx)

#define MP_MX_LT(v, pred, mx)                                   \
    mv_mp_mode_mx_lt(s, x ## v ## _pu, y ## v ## _pu, pred,     \
                     &mx, ref_idx_curr, ref_idx)

void ff_hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
                              int nPbH, int log2_cb_size, int part_idx,
                              int merge_idx, MvField *mv,
                              int mvp_lx_flag, int LX)
{
    HEVCLocalContext *lc = &s->HEVClc;
    MvField *tab_mvf = s->ref->tab_mvf;
    int isScaledFlag_L0 = 0;
    int availableFlagLXA0 = 0;
    int availableFlagLXB0 = 0;
    int numMVPCandLX = 0;
    int min_pu_width = s->sps->min_pu_width;

    int xA0, yA0;
    int xA0_pu, yA0_pu;
    int is_available_a0;

    int xA1, yA1;
    int xA1_pu, yA1_pu;
    int is_available_a1;

    int xB0, yB0;
    int xB0_pu, yB0_pu;
    int is_available_b0;

    int xB1, yB1;
    int xB1_pu = 0, yB1_pu = 0;
    int is_available_b1 = 0;

    int xB2, yB2;
    int xB2_pu = 0, yB2_pu = 0;
    int is_available_b2 = 0;
    Mv mvpcand_list[2] = { { 0 } };
    Mv mxA = { 0 };
    Mv mxB = { 0 };
    int ref_idx_curr = 0;
    int ref_idx = 0;
    int pred_flag_index_l0;
    int pred_flag_index_l1;
    int x0b = x0 & ((1 << s->sps->log2_ctb_size) - 1);
    int y0b = y0 & ((1 << s->sps->log2_ctb_size) - 1);

    int cand_up = (lc->ctb_up_flag || y0b);
    int cand_left = (lc->ctb_left_flag || x0b);
    int cand_up_left =
            (!x0b && !y0b) ? lc->ctb_up_left_flag : cand_left && cand_up;
    int cand_up_right =
            (x0b + nPbW == (1 << s->sps->log2_ctb_size) ||
             x0  + nPbW >= lc->end_of_tiles_x) ? lc->ctb_up_right_flag && !y0b
                                               : cand_up;
    int cand_bottom_left = (y0 + nPbH >= lc->end_of_tiles_y) ? 0 : cand_left;

    ref_idx_curr       = LX;
    ref_idx            = mv->ref_idx[LX];
    pred_flag_index_l0 = LX;
    pred_flag_index_l1 = !LX;

    // left bottom spatial candidate
    xA0 = x0 - 1;
    yA0 = y0 + nPbH;
    xA0_pu = xA0 >> s->sps->log2_min_pu_size;
    yA0_pu = yA0 >> s->sps->log2_min_pu_size;

    is_available_a0 = PRED_BLOCK_AVAILABLE(A0) && AVAILABLE(cand_bottom_left, A0);

    //left spatial merge candidate
    xA1    = x0 - 1;
    yA1    = y0 + nPbH - 1;
    xA1_pu = xA1 >> s->sps->log2_min_pu_size;
    yA1_pu = yA1 >> s->sps->log2_min_pu_size;

    is_available_a1 = AVAILABLE(cand_left, A1);
    if (is_available_a0 || is_available_a1)
        isScaledFlag_L0 = 1;

    if (is_available_a0) {
        availableFlagLXA0 = MP_MX(A0, pred_flag_index_l0, mxA);
        if (!availableFlagLXA0)
            availableFlagLXA0 = MP_MX(A0, pred_flag_index_l1, mxA);
    }

    if (is_available_a1 && !availableFlagLXA0) {
        availableFlagLXA0 = MP_MX(A1, pred_flag_index_l0, mxA);
        if (!availableFlagLXA0)
            availableFlagLXA0 = MP_MX(A1, pred_flag_index_l1, mxA);
    }

    if (is_available_a0 && !availableFlagLXA0) {
        availableFlagLXA0 = MP_MX_LT(A0, pred_flag_index_l0, mxA);
        if (!availableFlagLXA0)
            availableFlagLXA0 = MP_MX_LT(A0, pred_flag_index_l1, mxA);
    }

    if (is_available_a1 && !availableFlagLXA0) {
        availableFlagLXA0 = MP_MX_LT(A1, pred_flag_index_l0, mxA);
        if (!availableFlagLXA0)
            availableFlagLXA0 = MP_MX_LT(A1, pred_flag_index_l1, mxA);
    }

    // B candidates
    // above right spatial merge candidate
    xB0    = x0 + nPbW;
    yB0    = y0 - 1;
    xB0_pu = xB0 >> s->sps->log2_min_pu_size;
    yB0_pu = yB0 >> s->sps->log2_min_pu_size;

    is_available_b0 = PRED_BLOCK_AVAILABLE(B0) && AVAILABLE(cand_up_right, B0);

    if (is_available_b0) {
        availableFlagLXB0 = MP_MX(B0, pred_flag_index_l0, mxB);
        if (!availableFlagLXB0)
            availableFlagLXB0 = MP_MX(B0, pred_flag_index_l1, mxB);
    }

    if (!availableFlagLXB0) {
        // above spatial merge candidate
        xB1    = x0 + nPbW - 1;
        yB1    = y0 - 1;
        xB1_pu = xB1 >> s->sps->log2_min_pu_size;
        yB1_pu = yB1 >> s->sps->log2_min_pu_size;

        is_available_b1 = AVAILABLE(cand_up, B1);

        if (is_available_b1) {
            availableFlagLXB0 = MP_MX(B1, pred_flag_index_l0, mxB);
            if (!availableFlagLXB0)
                availableFlagLXB0 = MP_MX(B1, pred_flag_index_l1, mxB);
        }
    }

    if (!availableFlagLXB0) {
        // above left spatial merge candidate
        xB2 = x0 - 1;
        yB2 = y0 - 1;
        xB2_pu = xB2 >> s->sps->log2_min_pu_size;
        yB2_pu = yB2 >> s->sps->log2_min_pu_size;
        is_available_b2 = AVAILABLE(cand_up_left, B2);

        if (is_available_b2) {
            availableFlagLXB0 = MP_MX(B2, pred_flag_index_l0, mxB);
            if (!availableFlagLXB0)
                availableFlagLXB0 = MP_MX(B2, pred_flag_index_l1, mxB);
        }
    }

    if (isScaledFlag_L0 == 0) {
        if (availableFlagLXB0) {
            availableFlagLXA0 = 1;
            mxA = mxB;
        }
        availableFlagLXB0 = 0;

        // XB0 and L1
        if (is_available_b0) {
            availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l0, mxB);
            if (!availableFlagLXB0)
                availableFlagLXB0 = MP_MX_LT(B0, pred_flag_index_l1, mxB);
        }

        if (is_available_b1 && !availableFlagLXB0) {
            availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l0, mxB);
            if (!availableFlagLXB0)
                availableFlagLXB0 = MP_MX_LT(B1, pred_flag_index_l1, mxB);
        }

        if (is_available_b2 && !availableFlagLXB0) {
            availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l0, mxB);
            if (!availableFlagLXB0)
                availableFlagLXB0 = MP_MX_LT(B2, pred_flag_index_l1, mxB);
        }
    }

    if (availableFlagLXA0)
        mvpcand_list[numMVPCandLX++] = mxA;

    if (availableFlagLXB0 && (!availableFlagLXA0 || mxA.x != mxB.x || mxA.y != mxB.y))
        mvpcand_list[numMVPCandLX++] = mxB;

    //temporal motion vector prediction candidate
    if (numMVPCandLX < 2 && s->sh.slice_temporal_mvp_enabled_flag) {
        Mv mv_col;
        int available_col = temporal_luma_motion_vector(s, x0, y0, nPbW,
                                                        nPbH, ref_idx,
                                                        &mv_col, LX);
        if (available_col)
            mvpcand_list[numMVPCandLX++] = mv_col;
    }

    // insert zero motion vectors when the number of available candidates are less than 2
    while (numMVPCandLX < 2)
        mvpcand_list[numMVPCandLX++] = (Mv){ 0, 0 };

    mv->mv[LX].x = mvpcand_list[mvp_lx_flag].x;
    mv->mv[LX].y = mvpcand_list[mvp_lx_flag].y;
}