aptx.c 46.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * Audio Processing Technology codec for Bluetooth (aptX)
 *
 * Copyright (C) 2017  Aurelien Jacobs <aurel@gnuage.org>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/intreadwrite.h"
#include "avcodec.h"
#include "internal.h"
#include "mathops.h"
#include "audio_frame_queue.h"


enum channels {
    LEFT,
    RIGHT,
    NB_CHANNELS
};

enum subbands {
    LF,  // Low Frequency (0-5.5 kHz)
    MLF, // Medium-Low Frequency (5.5-11kHz)
    MHF, // Medium-High Frequency (11-16.5kHz)
    HF,  // High Frequency (16.5-22kHz)
    NB_SUBBANDS
};

#define NB_FILTERS 2
#define FILTER_TAPS 16

typedef struct {
    int pos;
    int32_t buffer[2*FILTER_TAPS];
} FilterSignal;

typedef struct {
    FilterSignal outer_filter_signal[NB_FILTERS];
    FilterSignal inner_filter_signal[NB_FILTERS][NB_FILTERS];
} QMFAnalysis;

typedef struct {
    int32_t quantized_sample;
    int32_t quantized_sample_parity_change;
    int32_t error;
} Quantize;

typedef struct {
    int32_t quantization_factor;
    int32_t factor_select;
    int32_t reconstructed_difference;
} InvertQuantize;

typedef struct {
    int32_t prev_sign[2];
    int32_t s_weight[2];
    int32_t d_weight[24];
    int32_t pos;
    int32_t reconstructed_differences[48];
    int32_t previous_reconstructed_sample;
    int32_t predicted_difference;
    int32_t predicted_sample;
} Prediction;

typedef struct {
    int32_t codeword_history;
    int32_t dither_parity;
    int32_t dither[NB_SUBBANDS];

    QMFAnalysis qmf;
    Quantize quantize[NB_SUBBANDS];
    InvertQuantize invert_quantize[NB_SUBBANDS];
    Prediction prediction[NB_SUBBANDS];
} Channel;

typedef struct {
92 93
    int hd;
    int block_size;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    int32_t sync_idx;
    Channel channels[NB_CHANNELS];
    AudioFrameQueue afq;
} AptXContext;


static const int32_t quantize_intervals_LF[65] = {
      -9948,    9948,   29860,   49808,   69822,   89926,  110144,  130502,
     151026,  171738,  192666,  213832,  235264,  256982,  279014,  301384,
     324118,  347244,  370790,  394782,  419250,  444226,  469742,  495832,
     522536,  549890,  577936,  606720,  636290,  666700,  698006,  730270,
     763562,  797958,  833538,  870398,  908640,  948376,  989740, 1032874,
    1077948, 1125150, 1174700, 1226850, 1281900, 1340196, 1402156, 1468282,
    1539182, 1615610, 1698514, 1789098, 1888944, 2000168, 2125700, 2269750,
    2438670, 2642660, 2899462, 3243240, 3746078, 4535138, 5664098, 7102424,
    8897462,
};
static const int32_t invert_quantize_dither_factors_LF[65] = {
       9948,   9948,   9962,   9988,  10026,  10078,  10142,  10218,
      10306,  10408,  10520,  10646,  10784,  10934,  11098,  11274,
      11462,  11664,  11880,  12112,  12358,  12618,  12898,  13194,
      13510,  13844,  14202,  14582,  14988,  15422,  15884,  16380,
      16912,  17484,  18098,  18762,  19480,  20258,  21106,  22030,
      23044,  24158,  25390,  26760,  28290,  30008,  31954,  34172,
      36728,  39700,  43202,  47382,  52462,  58762,  66770,  77280,
      91642, 112348, 144452, 199326, 303512, 485546, 643414, 794914,
    1000124,
};
static const int32_t quantize_dither_factors_LF[65] = {
        0,     4,     7,    10,    13,    16,    19,    22,
       26,    28,    32,    35,    38,    41,    44,    47,
       51,    54,    58,    62,    65,    70,    74,    79,
       84,    90,    95,   102,   109,   116,   124,   133,
      143,   154,   166,   180,   195,   212,   231,   254,
      279,   308,   343,   383,   430,   487,   555,   639,
      743,   876,  1045,  1270,  1575,  2002,  2628,  3591,
     5177,  8026, 13719, 26047, 45509, 39467, 37875, 51303,
        0,
};
static const int16_t quantize_factor_select_offset_LF[65] = {
      0, -21, -19, -17, -15, -12, -10,  -8,
     -6,  -4,  -1,   1,   3,   6,   8,  10,
     13,  15,  18,  20,  23,  26,  29,  31,
     34,  37,  40,  43,  47,  50,  53,  57,
     60,  64,  68,  72,  76,  80,  85,  89,
     94,  99, 105, 110, 116, 123, 129, 136,
    144, 152, 161, 171, 182, 194, 207, 223,
    241, 263, 291, 328, 382, 467, 522, 522,
    522,
};


static const int32_t quantize_intervals_MLF[9] = {
    -89806, 89806, 278502, 494338, 759442, 1113112, 1652322, 2720256, 5190186,
};
static const int32_t invert_quantize_dither_factors_MLF[9] = {
    89806, 89806, 98890, 116946, 148158, 205512, 333698, 734236, 1735696,
};
static const int32_t quantize_dither_factors_MLF[9] = {
    0, 2271, 4514, 7803, 14339, 32047, 100135, 250365, 0,
};
static const int16_t quantize_factor_select_offset_MLF[9] = {
    0, -14, 6, 29, 58, 96, 154, 270, 521,
};


static const int32_t quantize_intervals_MHF[3] = {
    -194080, 194080, 890562,
};
static const int32_t invert_quantize_dither_factors_MHF[3] = {
    194080, 194080, 502402,
};
static const int32_t quantize_dither_factors_MHF[3] = {
    0, 77081, 0,
};
static const int16_t quantize_factor_select_offset_MHF[3] = {
    0, -33, 136,
};


static const int32_t quantize_intervals_HF[5] = {
    -163006, 163006, 542708, 1120554, 2669238,
};
static const int32_t invert_quantize_dither_factors_HF[5] = {
    163006, 163006, 216698, 361148, 1187538,
};
static const int32_t quantize_dither_factors_HF[5] = {
    0, 13423, 36113, 206598, 0,
};
static const int16_t quantize_factor_select_offset_HF[5] = {
    0, -8, 33, 95, 262,
};

187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385

static const int32_t hd_quantize_intervals_LF[257] = {
      -2436,    2436,    7308,   12180,   17054,   21930,   26806,   31686,
      36566,   41450,   46338,   51230,   56124,   61024,   65928,   70836,
      75750,   80670,   85598,   90530,   95470,  100418,  105372,  110336,
     115308,  120288,  125278,  130276,  135286,  140304,  145334,  150374,
     155426,  160490,  165566,  170654,  175756,  180870,  185998,  191138,
     196294,  201466,  206650,  211850,  217068,  222300,  227548,  232814,
     238096,  243396,  248714,  254050,  259406,  264778,  270172,  275584,
     281018,  286470,  291944,  297440,  302956,  308496,  314056,  319640,
     325248,  330878,  336532,  342212,  347916,  353644,  359398,  365178,
     370986,  376820,  382680,  388568,  394486,  400430,  406404,  412408,
     418442,  424506,  430600,  436726,  442884,  449074,  455298,  461554,
     467844,  474168,  480528,  486922,  493354,  499820,  506324,  512866,
     519446,  526064,  532722,  539420,  546160,  552940,  559760,  566624,
     573532,  580482,  587478,  594520,  601606,  608740,  615920,  623148,
     630426,  637754,  645132,  652560,  660042,  667576,  675164,  682808,
     690506,  698262,  706074,  713946,  721876,  729868,  737920,  746036,
     754216,  762460,  770770,  779148,  787594,  796108,  804694,  813354,
     822086,  830892,  839774,  848736,  857776,  866896,  876100,  885386,
     894758,  904218,  913766,  923406,  933138,  942964,  952886,  962908,
     973030,  983254,  993582, 1004020, 1014566, 1025224, 1035996, 1046886,
    1057894, 1069026, 1080284, 1091670, 1103186, 1114838, 1126628, 1138558,
    1150634, 1162858, 1175236, 1187768, 1200462, 1213320, 1226346, 1239548,
    1252928, 1266490, 1280242, 1294188, 1308334, 1322688, 1337252, 1352034,
    1367044, 1382284, 1397766, 1413494, 1429478, 1445728, 1462252, 1479058,
    1496158, 1513562, 1531280, 1549326, 1567710, 1586446, 1605550, 1625034,
    1644914, 1665208, 1685932, 1707108, 1728754, 1750890, 1773542, 1796732,
    1820488, 1844840, 1869816, 1895452, 1921780, 1948842, 1976680, 2005338,
    2034868, 2065322, 2096766, 2129260, 2162880, 2197708, 2233832, 2271352,
    2310384, 2351050, 2393498, 2437886, 2484404, 2533262, 2584710, 2639036,
    2696578, 2757738, 2822998, 2892940, 2968278, 3049896, 3138912, 3236760,
    3345312, 3467068, 3605434, 3765154, 3952904, 4177962, 4452178, 4787134,
    5187290, 5647128, 6159120, 6720518, 7332904, 8000032, 8726664, 9518152,
    10380372,
};
static const int32_t hd_invert_quantize_dither_factors_LF[257] = {
      2436,   2436,   2436,   2436,   2438,   2438,   2438,   2440,
      2442,   2442,   2444,   2446,   2448,   2450,   2454,   2456,
      2458,   2462,   2464,   2468,   2472,   2476,   2480,   2484,
      2488,   2492,   2498,   2502,   2506,   2512,   2518,   2524,
      2528,   2534,   2540,   2548,   2554,   2560,   2568,   2574,
      2582,   2588,   2596,   2604,   2612,   2620,   2628,   2636,
      2646,   2654,   2664,   2672,   2682,   2692,   2702,   2712,
      2722,   2732,   2742,   2752,   2764,   2774,   2786,   2798,
      2810,   2822,   2834,   2846,   2858,   2870,   2884,   2896,
      2910,   2924,   2938,   2952,   2966,   2980,   2994,   3010,
      3024,   3040,   3056,   3070,   3086,   3104,   3120,   3136,
      3154,   3170,   3188,   3206,   3224,   3242,   3262,   3280,
      3300,   3320,   3338,   3360,   3380,   3400,   3422,   3442,
      3464,   3486,   3508,   3532,   3554,   3578,   3602,   3626,
      3652,   3676,   3702,   3728,   3754,   3780,   3808,   3836,
      3864,   3892,   3920,   3950,   3980,   4010,   4042,   4074,
      4106,   4138,   4172,   4206,   4240,   4276,   4312,   4348,
      4384,   4422,   4460,   4500,   4540,   4580,   4622,   4664,
      4708,   4752,   4796,   4842,   4890,   4938,   4986,   5036,
      5086,   5138,   5192,   5246,   5300,   5358,   5416,   5474,
      5534,   5596,   5660,   5726,   5792,   5860,   5930,   6002,
      6074,   6150,   6226,   6306,   6388,   6470,   6556,   6644,
      6736,   6828,   6924,   7022,   7124,   7228,   7336,   7448,
      7562,   7680,   7802,   7928,   8058,   8192,   8332,   8476,
      8624,   8780,   8940,   9106,   9278,   9458,   9644,   9840,
     10042,  10252,  10472,  10702,  10942,  11194,  11458,  11734,
     12024,  12328,  12648,  12986,  13342,  13720,  14118,  14540,
     14990,  15466,  15976,  16520,  17102,  17726,  18398,  19124,
     19908,  20760,  21688,  22702,  23816,  25044,  26404,  27922,
     29622,  31540,  33720,  36222,  39116,  42502,  46514,  51334,
     57218,  64536,  73830,  85890, 101860, 123198, 151020, 183936,
    216220, 243618, 268374, 293022, 319362, 347768, 378864, 412626, 449596,
};
static const int32_t hd_quantize_dither_factors_LF[256] = {
       0,    0,    0,    1,    0,    0,    1,    1,
       0,    1,    1,    1,    1,    1,    1,    1,
       1,    1,    1,    1,    1,    1,    1,    1,
       1,    2,    1,    1,    2,    2,    2,    1,
       2,    2,    2,    2,    2,    2,    2,    2,
       2,    2,    2,    2,    2,    2,    2,    3,
       2,    3,    2,    3,    3,    3,    3,    3,
       3,    3,    3,    3,    3,    3,    3,    3,
       3,    3,    3,    3,    3,    4,    3,    4,
       4,    4,    4,    4,    4,    4,    4,    4,
       4,    4,    4,    4,    5,    4,    4,    5,
       4,    5,    5,    5,    5,    5,    5,    5,
       5,    5,    6,    5,    5,    6,    5,    6,
       6,    6,    6,    6,    6,    6,    6,    7,
       6,    7,    7,    7,    7,    7,    7,    7,
       7,    7,    8,    8,    8,    8,    8,    8,
       8,    9,    9,    9,    9,    9,    9,    9,
      10,   10,   10,   10,   10,   11,   11,   11,
      11,   11,   12,   12,   12,   12,   13,   13,
      13,   14,   14,   14,   15,   15,   15,   15,
      16,   16,   17,   17,   17,   18,   18,   18,
      19,   19,   20,   21,   21,   22,   22,   23,
      23,   24,   25,   26,   26,   27,   28,   29,
      30,   31,   32,   33,   34,   35,   36,   37,
      39,   40,   42,   43,   45,   47,   49,   51,
      53,   55,   58,   60,   63,   66,   69,   73,
      76,   80,   85,   89,   95,  100,  106,  113,
     119,  128,  136,  146,  156,  168,  182,  196,
     213,  232,  254,  279,  307,  340,  380,  425,
     480,  545,  626,  724,  847, 1003, 1205, 1471,
    1830, 2324, 3015, 3993, 5335, 6956, 8229, 8071,
    6850, 6189, 6162, 6585, 7102, 7774, 8441, 9243,
};
static const int16_t hd_quantize_factor_select_offset_LF[257] = {
      0, -22, -21, -21, -20, -20, -19, -19,
    -18, -18, -17, -17, -16, -16, -15, -14,
    -14, -13, -13, -12, -12, -11, -11, -10,
    -10,  -9,  -9,  -8,  -7,  -7,  -6,  -6,
     -5,  -5,  -4,  -4,  -3,  -3,  -2,  -1,
     -1,   0,   0,   1,   1,   2,   2,   3,
      4,   4,   5,   5,   6,   6,   7,   8,
      8,   9,   9,  10,  11,  11,  12,  12,
     13,  14,  14,  15,  15,  16,  17,  17,
     18,  19,  19,  20,  20,  21,  22,  22,
     23,  24,  24,  25,  26,  26,  27,  28,
     28,  29,  30,  30,  31,  32,  33,  33,
     34,  35,  35,  36,  37,  38,  38,  39,
     40,  41,  41,  42,  43,  44,  44,  45,
     46,  47,  48,  48,  49,  50,  51,  52,
     52,  53,  54,  55,  56,  57,  58,  58,
     59,  60,  61,  62,  63,  64,  65,  66,
     67,  68,  69,  69,  70,  71,  72,  73,
     74,  75,  77,  78,  79,  80,  81,  82,
     83,  84,  85,  86,  87,  89,  90,  91,
     92,  93,  94,  96,  97,  98,  99, 101,
    102, 103, 105, 106, 107, 109, 110, 112,
    113, 115, 116, 118, 119, 121, 122, 124,
    125, 127, 129, 130, 132, 134, 136, 137,
    139, 141, 143, 145, 147, 149, 151, 153,
    155, 158, 160, 162, 164, 167, 169, 172,
    174, 177, 180, 182, 185, 188, 191, 194,
    197, 201, 204, 208, 211, 215, 219, 223,
    227, 232, 236, 241, 246, 251, 257, 263,
    269, 275, 283, 290, 298, 307, 317, 327,
    339, 352, 367, 384, 404, 429, 458, 494,
    522, 522, 522, 522, 522, 522, 522, 522, 522,
};


static const int32_t hd_quantize_intervals_MLF[33] = {
      -21236,   21236,   63830,  106798,  150386,  194832,  240376,  287258,
      335726,  386034,  438460,  493308,  550924,  611696,  676082,  744626,
      817986,  896968,  982580, 1076118, 1179278, 1294344, 1424504, 1574386,
     1751090, 1966260, 2240868, 2617662, 3196432, 4176450, 5658260, 7671068,
    10380372,
};
static const int32_t hd_invert_quantize_dither_factors_MLF[33] = {
    21236,  21236,  21360,  21608,  21978,  22468,  23076,   23806,
    24660,  25648,  26778,  28070,  29544,  31228,  33158,   35386,
    37974,  41008,  44606,  48934,  54226,  60840,  69320,   80564,
    96140, 119032, 155576, 221218, 357552, 622468, 859344, 1153464, 1555840,
};
static const int32_t hd_quantize_dither_factors_MLF[32] = {
       0,   31,    62,    93,   123,   152,   183,    214,
     247,  283,   323,   369,   421,   483,   557,    647,
     759,  900,  1082,  1323,  1654,  2120,  2811,   3894,
    5723, 9136, 16411, 34084, 66229, 59219, 73530, 100594,
};
static const int16_t hd_quantize_factor_select_offset_MLF[33] = {
      0, -21, -16, -12,  -7,  -2,   3,   8,
     13,  19,  24,  30,  36,  43,  50,  57,
     65,  74,  83,  93, 104, 117, 131, 147,
    166, 189, 219, 259, 322, 427, 521, 521, 521,
};


static const int32_t hd_quantize_intervals_MHF[9] = {
    -95044, 95044, 295844, 528780, 821332, 1226438, 1890540, 3344850, 6450664,
};
static const int32_t hd_invert_quantize_dither_factors_MHF[9] = {
    95044, 95044, 105754, 127180, 165372, 39736, 424366, 1029946, 2075866,
};
static const int32_t hd_quantize_dither_factors_MHF[8] = {
    0, 2678, 5357, 9548, -31409, 96158, 151395, 261480,
};
static const int16_t hd_quantize_factor_select_offset_MHF[9] = {
    0, -17, 5, 30, 62, 105, 177, 334, 518,
};


static const int32_t hd_quantize_intervals_HF[17] = {
     -45754,   45754,  138496,  234896,  337336,  448310,  570738,  708380,
     866534, 1053262, 1281958, 1577438, 1993050, 2665984, 3900982, 5902844,
    8897462,
};
static const int32_t hd_invert_quantize_dither_factors_HF[17] = {
    45754,  45754,  46988,  49412,  53026,  57950,  64478,   73164,
    84988, 101740, 126958, 168522, 247092, 425842, 809154, 1192708, 1801910,
};
static const int32_t hd_quantize_dither_factors_HF[16] = {
       0,  309,   606,   904,  1231,  1632,  2172,   2956,
    4188, 6305, 10391, 19643, 44688, 95828, 95889, 152301,
};
static const int16_t hd_quantize_factor_select_offset_HF[17] = {
     0, -18,  -8,   2,  13,  25,  38,  53,
    70,  90, 115, 147, 192, 264, 398, 521, 521,
};

386 387 388 389 390 391
typedef const struct {
    const int32_t *quantize_intervals;
    const int32_t *invert_quantize_dither_factors;
    const int32_t *quantize_dither_factors;
    const int16_t *quantize_factor_select_offset;
    int tables_size;
392
    int32_t factor_max;
393 394 395
    int32_t prediction_order;
} ConstTables;

396
static ConstTables tables[2][NB_SUBBANDS] = {
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    {
        [LF]  = { quantize_intervals_LF,
                  invert_quantize_dither_factors_LF,
                  quantize_dither_factors_LF,
                  quantize_factor_select_offset_LF,
                  FF_ARRAY_ELEMS(quantize_intervals_LF),
                  0x11FF, 24 },
        [MLF] = { quantize_intervals_MLF,
                  invert_quantize_dither_factors_MLF,
                  quantize_dither_factors_MLF,
                  quantize_factor_select_offset_MLF,
                  FF_ARRAY_ELEMS(quantize_intervals_MLF),
                  0x14FF, 12 },
        [MHF] = { quantize_intervals_MHF,
                  invert_quantize_dither_factors_MHF,
                  quantize_dither_factors_MHF,
                  quantize_factor_select_offset_MHF,
                  FF_ARRAY_ELEMS(quantize_intervals_MHF),
                  0x16FF, 6 },
        [HF]  = { quantize_intervals_HF,
                  invert_quantize_dither_factors_HF,
                  quantize_dither_factors_HF,
                  quantize_factor_select_offset_HF,
                  FF_ARRAY_ELEMS(quantize_intervals_HF),
                  0x15FF, 12 },
    },
    {
        [LF]  = { hd_quantize_intervals_LF,
                  hd_invert_quantize_dither_factors_LF,
                  hd_quantize_dither_factors_LF,
                  hd_quantize_factor_select_offset_LF,
                  FF_ARRAY_ELEMS(hd_quantize_intervals_LF),
                  0x11FF, 24 },
        [MLF] = { hd_quantize_intervals_MLF,
                  hd_invert_quantize_dither_factors_MLF,
                  hd_quantize_dither_factors_MLF,
                  hd_quantize_factor_select_offset_MLF,
                  FF_ARRAY_ELEMS(hd_quantize_intervals_MLF),
                  0x14FF, 12 },
        [MHF] = { hd_quantize_intervals_MHF,
                  hd_invert_quantize_dither_factors_MHF,
                  hd_quantize_dither_factors_MHF,
                  hd_quantize_factor_select_offset_MHF,
                  FF_ARRAY_ELEMS(hd_quantize_intervals_MHF),
                  0x16FF, 6 },
        [HF]  = { hd_quantize_intervals_HF,
                  hd_invert_quantize_dither_factors_HF,
                  hd_quantize_dither_factors_HF,
                  hd_quantize_factor_select_offset_HF,
                  FF_ARRAY_ELEMS(hd_quantize_intervals_HF),
                  0x15FF, 12 },
    }
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
};

static const int16_t quantization_factors[32] = {
    2048, 2093, 2139, 2186, 2233, 2282, 2332, 2383,
    2435, 2489, 2543, 2599, 2656, 2714, 2774, 2834,
    2896, 2960, 3025, 3091, 3158, 3228, 3298, 3371,
    3444, 3520, 3597, 3676, 3756, 3838, 3922, 4008,
};


/* Rounded right shift with optionnal clipping */
#define RSHIFT_SIZE(size)                                                     \
av_always_inline                                                              \
static int##size##_t rshift##size(int##size##_t value, int shift)             \
{                                                                             \
    int##size##_t rounding = (int##size##_t)1 << (shift - 1);                 \
    int##size##_t mask = ((int##size##_t)1 << (shift + 1)) - 1;               \
    return ((value + rounding) >> shift) - ((value & mask) == rounding);      \
}                                                                             \
av_always_inline                                                              \
static int##size##_t rshift##size##_clip24(int##size##_t value, int shift)    \
{                                                                             \
    return av_clip_intp2(rshift##size(value, shift), 23);                     \
}
RSHIFT_SIZE(32)
RSHIFT_SIZE(64)


av_always_inline
static void aptx_update_codeword_history(Channel *channel)
{
    int32_t cw = ((channel->quantize[0].quantized_sample & 3) << 0) +
                 ((channel->quantize[1].quantized_sample & 2) << 1) +
                 ((channel->quantize[2].quantized_sample & 1) << 3);
483
    channel->codeword_history = (cw << 8) + ((unsigned)channel->codeword_history << 4);
484 485 486 487 488 489 490 491 492 493 494
}

static void aptx_generate_dither(Channel *channel)
{
    int subband;
    int64_t m;
    int32_t d;

    aptx_update_codeword_history(channel);

    m = (int64_t)5184443 * (channel->codeword_history >> 7);
495
    d = (m * 4) + (m >> 22);
496
    for (subband = 0; subband < NB_SUBBANDS; subband++)
497
        channel->dither[subband] = (unsigned)d << (23 - 5*subband);
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
    channel->dither_parity = (d >> 25) & 1;
}

/*
 * Convolution filter coefficients for the outer QMF of the QMF tree.
 * The 2 sets are a mirror of each other.
 */
static const int32_t aptx_qmf_outer_coeffs[NB_FILTERS][FILTER_TAPS] = {
    {
        730, -413, -9611, 43626, -121026, 269973, -585547, 2801966,
        697128, -160481, 27611, 8478, -10043, 3511, 688, -897,
    },
    {
        -897, 688, 3511, -10043, 8478, 27611, -160481, 697128,
        2801966, -585547, 269973, -121026, 43626, -9611, -413, 730,
    },
};

/*
 * Convolution filter coefficients for the inner QMF of the QMF tree.
 * The 2 sets are a mirror of each other.
 */
static const int32_t aptx_qmf_inner_coeffs[NB_FILTERS][FILTER_TAPS] = {
    {
       1033, -584, -13592, 61697, -171156, 381799, -828088, 3962579,
       985888, -226954, 39048, 11990, -14203, 4966, 973, -1268,
    },
    {
      -1268, 973, 4966, -14203, 11990, 39048, -226954, 985888,
      3962579, -828088, 381799, -171156, 61697, -13592, -584, 1033,
    },
};

/*
 * Push one sample into a circular signal buffer.
 */
av_always_inline
static void aptx_qmf_filter_signal_push(FilterSignal *signal, int32_t sample)
{
    signal->buffer[signal->pos            ] = sample;
    signal->buffer[signal->pos+FILTER_TAPS] = sample;
    signal->pos = (signal->pos + 1) & (FILTER_TAPS - 1);
}

/*
 * Compute the convolution of the signal with the coefficients, and reduce
 * to 24 bits by applying the specified right shifting.
 */
av_always_inline
static int32_t aptx_qmf_convolution(FilterSignal *signal,
                                    const int32_t coeffs[FILTER_TAPS],
                                    int shift)
{
    int32_t *sig = &signal->buffer[signal->pos];
    int64_t e = 0;
    int i;

    for (i = 0; i < FILTER_TAPS; i++)
        e += MUL64(sig[i], coeffs[i]);

    return rshift64_clip24(e, shift);
}

/*
 * Half-band QMF analysis filter realized with a polyphase FIR filter.
 * Split into 2 subbands and downsample by 2.
 * So for each pair of samples that goes in, one sample goes out,
 * split into 2 separate subbands.
 */
av_always_inline
static void aptx_qmf_polyphase_analysis(FilterSignal signal[NB_FILTERS],
                                        const int32_t coeffs[NB_FILTERS][FILTER_TAPS],
                                        int shift,
                                        int32_t samples[NB_FILTERS],
                                        int32_t *low_subband_output,
                                        int32_t *high_subband_output)
{
    int32_t subbands[NB_FILTERS];
    int i;

    for (i = 0; i < NB_FILTERS; i++) {
        aptx_qmf_filter_signal_push(&signal[i], samples[NB_FILTERS-1-i]);
        subbands[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift);
    }

    *low_subband_output  = av_clip_intp2(subbands[0] + subbands[1], 23);
    *high_subband_output = av_clip_intp2(subbands[0] - subbands[1], 23);
}

/*
 * Two stage QMF analysis tree.
 * Split 4 input samples into 4 subbands and downsample by 4.
 * So for each group of 4 samples that goes in, one sample goes out,
 * split into 4 separate subbands.
 */
static void aptx_qmf_tree_analysis(QMFAnalysis *qmf,
                                   int32_t samples[4],
                                   int32_t subband_samples[4])
{
    int32_t intermediate_samples[4];
    int i;

    /* Split 4 input samples into 2 intermediate subbands downsampled to 2 samples */
    for (i = 0; i < 2; i++)
        aptx_qmf_polyphase_analysis(qmf->outer_filter_signal,
                                    aptx_qmf_outer_coeffs, 23,
                                    &samples[2*i],
                                    &intermediate_samples[0+i],
                                    &intermediate_samples[2+i]);

    /* Split 2 intermediate subband samples into 4 final subbands downsampled to 1 sample */
    for (i = 0; i < 2; i++)
        aptx_qmf_polyphase_analysis(qmf->inner_filter_signal[i],
                                    aptx_qmf_inner_coeffs, 23,
                                    &intermediate_samples[2*i],
                                    &subband_samples[2*i+0],
                                    &subband_samples[2*i+1]);
}

/*
 * Half-band QMF synthesis filter realized with a polyphase FIR filter.
 * Join 2 subbands and upsample by 2.
 * So for each 2 subbands sample that goes in, a pair of samples goes out.
 */
av_always_inline
static void aptx_qmf_polyphase_synthesis(FilterSignal signal[NB_FILTERS],
                                         const int32_t coeffs[NB_FILTERS][FILTER_TAPS],
                                         int shift,
                                         int32_t low_subband_input,
                                         int32_t high_subband_input,
                                         int32_t samples[NB_FILTERS])
{
    int32_t subbands[NB_FILTERS];
    int i;

    subbands[0] = low_subband_input + high_subband_input;
    subbands[1] = low_subband_input - high_subband_input;

    for (i = 0; i < NB_FILTERS; i++) {
        aptx_qmf_filter_signal_push(&signal[i], subbands[1-i]);
        samples[i] = aptx_qmf_convolution(&signal[i], coeffs[i], shift);
    }
}

/*
 * Two stage QMF synthesis tree.
 * Join 4 subbands and upsample by 4.
 * So for each 4 subbands sample that goes in, a group of 4 samples goes out.
 */
static void aptx_qmf_tree_synthesis(QMFAnalysis *qmf,
                                    int32_t subband_samples[4],
                                    int32_t samples[4])
{
    int32_t intermediate_samples[4];
    int i;

    /* Join 4 subbands into 2 intermediate subbands upsampled to 2 samples. */
    for (i = 0; i < 2; i++)
        aptx_qmf_polyphase_synthesis(qmf->inner_filter_signal[i],
                                     aptx_qmf_inner_coeffs, 22,
                                     subband_samples[2*i+0],
                                     subband_samples[2*i+1],
                                     &intermediate_samples[2*i]);

    /* Join 2 samples from intermediate subbands upsampled to 4 samples. */
    for (i = 0; i < 2; i++)
        aptx_qmf_polyphase_synthesis(qmf->outer_filter_signal,
                                     aptx_qmf_outer_coeffs, 21,
                                     intermediate_samples[0+i],
                                     intermediate_samples[2+i],
                                     &samples[2*i]);
}


av_always_inline
static int32_t aptx_bin_search(int32_t value, int32_t factor,
                               const int32_t *intervals, int32_t nb_intervals)
{
    int32_t idx = 0;
    int i;

    for (i = nb_intervals >> 1; i > 0; i >>= 1)
        if (MUL64(factor, intervals[idx + i]) <= ((int64_t)value << 24))
            idx += i;

    return idx;
}

static void aptx_quantize_difference(Quantize *quantize,
                                     int32_t sample_difference,
                                     int32_t dither,
                                     int32_t quantization_factor,
                                     ConstTables *tables)
{
    const int32_t *intervals = tables->quantize_intervals;
    int32_t quantized_sample, dithered_sample, parity_change;
694
    int32_t d, mean, interval, inv, sample_difference_abs;
695 696
    int64_t error;

697
    sample_difference_abs = FFABS(sample_difference);
698
    sample_difference_abs = FFMIN(sample_difference_abs, (1 << 23) - 1);
699 700

    quantized_sample = aptx_bin_search(sample_difference_abs >> 4,
701 702 703 704 705 706 707 708 709 710
                                       quantization_factor,
                                       intervals, tables->tables_size);

    d = rshift32_clip24(MULH(dither, dither), 7) - (1 << 23);
    d = rshift64(MUL64(d, tables->quantize_dither_factors[quantized_sample]), 23);

    intervals += quantized_sample;
    mean = (intervals[1] + intervals[0]) / 2;
    interval = (intervals[1] - intervals[0]) * (-(sample_difference < 0) | 1);

711
    dithered_sample = rshift64_clip24(MUL64(dither, interval) + ((int64_t)av_clip_intp2(mean + d, 23) << 32), 32);
712
    error = ((int64_t)sample_difference_abs << 20) - MUL64(dithered_sample, quantization_factor);
713 714 715 716 717 718 719 720 721 722 723 724 725
    quantize->error = FFABS(rshift64(error, 23));

    parity_change = quantized_sample;
    if (error < 0)
        quantized_sample--;
    else
        parity_change--;

    inv = -(sample_difference < 0);
    quantize->quantized_sample               = quantized_sample ^ inv;
    quantize->quantized_sample_parity_change = parity_change    ^ inv;
}

726
static void aptx_encode_channel(Channel *channel, int32_t samples[4], int hd)
727 728 729 730 731 732 733 734 735 736
{
    int32_t subband_samples[4];
    int subband;
    aptx_qmf_tree_analysis(&channel->qmf, samples, subband_samples);
    aptx_generate_dither(channel);
    for (subband = 0; subband < NB_SUBBANDS; subband++) {
        int32_t diff = av_clip_intp2(subband_samples[subband] - channel->prediction[subband].predicted_sample, 23);
        aptx_quantize_difference(&channel->quantize[subband], diff,
                                 channel->dither[subband],
                                 channel->invert_quantize[subband].quantization_factor,
737
                                 &tables[hd][subband]);
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
    }
}

static void aptx_decode_channel(Channel *channel, int32_t samples[4])
{
    int32_t subband_samples[4];
    int subband;
    for (subband = 0; subband < NB_SUBBANDS; subband++)
        subband_samples[subband] = channel->prediction[subband].previous_reconstructed_sample;
    aptx_qmf_tree_synthesis(&channel->qmf, subband_samples, samples);
}


static void aptx_invert_quantization(InvertQuantize *invert_quantize,
                                     int32_t quantized_sample, int32_t dither,
                                     ConstTables *tables)
{
    int32_t qr, idx, shift, factor_select;

    idx = (quantized_sample ^ -(quantized_sample < 0)) + 1;
    qr = tables->quantize_intervals[idx] / 2;
    if (quantized_sample < 0)
        qr = -qr;

762
    qr = rshift64_clip24((qr * (1LL<<32)) + MUL64(dither, tables->invert_quantize_dither_factors[idx]), 32);
763 764 765 766
    invert_quantize->reconstructed_difference = MUL64(invert_quantize->quantization_factor, qr) >> 19;

    /* update factor_select */
    factor_select = 32620 * invert_quantize->factor_select;
767
    factor_select = rshift32(factor_select + (tables->quantize_factor_select_offset[idx] * (1 << 15)), 15);
768
    invert_quantize->factor_select = av_clip(factor_select, 0, tables->factor_max);
769 770 771

    /* update quantization factor */
    idx = (invert_quantize->factor_select & 0xFF) >> 3;
772
    shift = (tables->factor_max - invert_quantize->factor_select) >> 8;
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
    invert_quantize->quantization_factor = (quantization_factors[idx] << 11) >> shift;
}

static int32_t *aptx_reconstructed_differences_update(Prediction *prediction,
                                                      int32_t reconstructed_difference,
                                                      int order)
{
    int32_t *rd1 = prediction->reconstructed_differences, *rd2 = rd1 + order;
    int p = prediction->pos;

    rd1[p] = rd2[p];
    prediction->pos = p = (p + 1) % order;
    rd2[p] = reconstructed_difference;
    return &rd2[p];
}

static void aptx_prediction_filtering(Prediction *prediction,
                                      int32_t reconstructed_difference,
                                      int order)
{
    int32_t reconstructed_sample, predictor, srd0;
    int32_t *reconstructed_differences;
    int64_t predicted_difference = 0;
    int i;

    reconstructed_sample = av_clip_intp2(reconstructed_difference + prediction->predicted_sample, 23);
    predictor = av_clip_intp2((MUL64(prediction->s_weight[0], prediction->previous_reconstructed_sample)
                             + MUL64(prediction->s_weight[1], reconstructed_sample)) >> 22, 23);
    prediction->previous_reconstructed_sample = reconstructed_sample;

    reconstructed_differences = aptx_reconstructed_differences_update(prediction, reconstructed_difference, order);
804
    srd0 = FFDIFFSIGN(reconstructed_difference, 0) * (1 << 23);
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
    for (i = 0; i < order; i++) {
        int32_t srd = FF_SIGNBIT(reconstructed_differences[-i-1]) | 1;
        prediction->d_weight[i] -= rshift32(prediction->d_weight[i] - srd*srd0, 8);
        predicted_difference += MUL64(reconstructed_differences[-i], prediction->d_weight[i]);
    }

    prediction->predicted_difference = av_clip_intp2(predicted_difference >> 22, 23);
    prediction->predicted_sample = av_clip_intp2(predictor + prediction->predicted_difference, 23);
}

static void aptx_process_subband(InvertQuantize *invert_quantize,
                                 Prediction *prediction,
                                 int32_t quantized_sample, int32_t dither,
                                 ConstTables *tables)
{
    int32_t sign, same_sign[2], weight[2], sw1, range;

    aptx_invert_quantization(invert_quantize, quantized_sample, dither, tables);

    sign = FFDIFFSIGN(invert_quantize->reconstructed_difference,
                      -prediction->predicted_difference);
    same_sign[0] = sign * prediction->prev_sign[0];
    same_sign[1] = sign * prediction->prev_sign[1];
    prediction->prev_sign[0] = prediction->prev_sign[1];
    prediction->prev_sign[1] = sign | 1;

    range = 0x100000;
    sw1 = rshift32(-same_sign[1] * prediction->s_weight[1], 1);
833
    sw1 = (av_clip(sw1, -range, range) & ~0xF) * 16;
834 835 836 837 838 839 840 841 842 843 844 845 846 847

    range = 0x300000;
    weight[0] = 254 * prediction->s_weight[0] + 0x800000*same_sign[0] + sw1;
    prediction->s_weight[0] = av_clip(rshift32(weight[0], 8), -range, range);

    range = 0x3C0000 - prediction->s_weight[0];
    weight[1] = 255 * prediction->s_weight[1] + 0xC00000*same_sign[1];
    prediction->s_weight[1] = av_clip(rshift32(weight[1], 8), -range, range);

    aptx_prediction_filtering(prediction,
                              invert_quantize->reconstructed_difference,
                              tables->prediction_order);
}

848
static void aptx_invert_quantize_and_prediction(Channel *channel, int hd)
849 850 851 852 853 854 855
{
    int subband;
    for (subband = 0; subband < NB_SUBBANDS; subband++)
        aptx_process_subband(&channel->invert_quantize[subband],
                             &channel->prediction[subband],
                             channel->quantize[subband].quantized_sample,
                             channel->dither[subband],
856
                             &tables[hd][subband]);
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
}

static int32_t aptx_quantized_parity(Channel *channel)
{
    int32_t parity = channel->dither_parity;
    int subband;

    for (subband = 0; subband < NB_SUBBANDS; subband++)
        parity ^= channel->quantize[subband].quantized_sample;

    return parity & 1;
}

/* For each sample, ensure that the parity of all subbands of all channels
 * is 0 except once every 8 samples where the parity is forced to 1. */
static int aptx_check_parity(Channel channels[NB_CHANNELS], int32_t *idx)
{
    int32_t parity = aptx_quantized_parity(&channels[LEFT])
                   ^ aptx_quantized_parity(&channels[RIGHT]);

    int eighth = *idx == 7;
    *idx = (*idx + 1) & 7;

    return parity ^ eighth;
}

static void aptx_insert_sync(Channel channels[NB_CHANNELS], int32_t *idx)
{
    if (aptx_check_parity(channels, idx)) {
        int i;
        Channel *c;
        static const int map[] = { 1, 2, 0, 3 };
        Quantize *min = &channels[NB_CHANNELS-1].quantize[map[0]];
        for (c = &channels[NB_CHANNELS-1]; c >= channels; c--)
            for (i = 0; i < NB_SUBBANDS; i++)
                if (c->quantize[map[i]].error < min->error)
                    min = &c->quantize[map[i]];

        /* Forcing the desired parity is done by offsetting by 1 the quantized
         * sample from the subband featuring the smallest quantization error. */
        min->quantized_sample = min->quantized_sample_parity_change;
    }
}

static uint16_t aptx_pack_codeword(Channel *channel)
{
    int32_t parity = aptx_quantized_parity(channel);
    return (((channel->quantize[3].quantized_sample & 0x06) | parity) << 13)
         | (((channel->quantize[2].quantized_sample & 0x03)         ) << 11)
         | (((channel->quantize[1].quantized_sample & 0x0F)         ) <<  7)
         | (((channel->quantize[0].quantized_sample & 0x7F)         ) <<  0);
}

910 911 912 913 914 915 916 917 918
static uint32_t aptxhd_pack_codeword(Channel *channel)
{
    int32_t parity = aptx_quantized_parity(channel);
    return (((channel->quantize[3].quantized_sample & 0x01E) | parity) << 19)
         | (((channel->quantize[2].quantized_sample & 0x00F)         ) << 15)
         | (((channel->quantize[1].quantized_sample & 0x03F)         ) <<  9)
         | (((channel->quantize[0].quantized_sample & 0x1FF)         ) <<  0);
}

919 920 921 922 923 924 925 926 927 928
static void aptx_unpack_codeword(Channel *channel, uint16_t codeword)
{
    channel->quantize[0].quantized_sample = sign_extend(codeword >>  0, 7);
    channel->quantize[1].quantized_sample = sign_extend(codeword >>  7, 4);
    channel->quantize[2].quantized_sample = sign_extend(codeword >> 11, 2);
    channel->quantize[3].quantized_sample = sign_extend(codeword >> 13, 3);
    channel->quantize[3].quantized_sample = (channel->quantize[3].quantized_sample & ~1)
                                          | aptx_quantized_parity(channel);
}

929 930 931 932 933 934 935 936 937 938
static void aptxhd_unpack_codeword(Channel *channel, uint32_t codeword)
{
    channel->quantize[0].quantized_sample = sign_extend(codeword >>  0, 9);
    channel->quantize[1].quantized_sample = sign_extend(codeword >>  9, 6);
    channel->quantize[2].quantized_sample = sign_extend(codeword >> 15, 4);
    channel->quantize[3].quantized_sample = sign_extend(codeword >> 19, 5);
    channel->quantize[3].quantized_sample = (channel->quantize[3].quantized_sample & ~1)
                                          | aptx_quantized_parity(channel);
}

939 940
static void aptx_encode_samples(AptXContext *ctx,
                                int32_t samples[NB_CHANNELS][4],
941
                                uint8_t *output)
942 943 944
{
    int channel;
    for (channel = 0; channel < NB_CHANNELS; channel++)
945
        aptx_encode_channel(&ctx->channels[channel], samples[channel], ctx->hd);
946 947 948 949

    aptx_insert_sync(ctx->channels, &ctx->sync_idx);

    for (channel = 0; channel < NB_CHANNELS; channel++) {
950 951 952 953 954 955 956
        aptx_invert_quantize_and_prediction(&ctx->channels[channel], ctx->hd);
        if (ctx->hd)
            AV_WB24(output + 3*channel,
                    aptxhd_pack_codeword(&ctx->channels[channel]));
        else
            AV_WB16(output + 2*channel,
                    aptx_pack_codeword(&ctx->channels[channel]));
957 958 959 960
    }
}

static int aptx_decode_samples(AptXContext *ctx,
961
                                const uint8_t *input,
962 963 964 965 966 967 968
                                int32_t samples[NB_CHANNELS][4])
{
    int channel, ret;

    for (channel = 0; channel < NB_CHANNELS; channel++) {
        aptx_generate_dither(&ctx->channels[channel]);

969 970 971 972 973 974 975
        if (ctx->hd)
            aptxhd_unpack_codeword(&ctx->channels[channel],
                                   AV_RB24(input + 3*channel));
        else
            aptx_unpack_codeword(&ctx->channels[channel],
                                 AV_RB16(input + 2*channel));
        aptx_invert_quantize_and_prediction(&ctx->channels[channel], ctx->hd);
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
    }

    ret = aptx_check_parity(ctx->channels, &ctx->sync_idx);

    for (channel = 0; channel < NB_CHANNELS; channel++)
        aptx_decode_channel(&ctx->channels[channel], samples[channel]);

    return ret;
}


static av_cold int aptx_init(AVCodecContext *avctx)
{
    AptXContext *s = avctx->priv_data;
    int chan, subband;

992 993 994
    if (avctx->channels != 2)
        return AVERROR_INVALIDDATA;

995 996 997
    s->hd = avctx->codec->id == AV_CODEC_ID_APTX_HD;
    s->block_size = s->hd ? 6 : 4;

998
    if (avctx->frame_size == 0)
999
        avctx->frame_size = 256 * s->block_size;
1000

1001 1002 1003
    if (avctx->frame_size % s->block_size) {
        av_log(avctx, AV_LOG_ERROR,
               "Frame size must be a multiple of %d samples\n", s->block_size);
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
        return AVERROR(EINVAL);
    }

    for (chan = 0; chan < NB_CHANNELS; chan++) {
        Channel *channel = &s->channels[chan];
        for (subband = 0; subband < NB_SUBBANDS; subband++) {
            Prediction *prediction = &channel->prediction[subband];
            prediction->prev_sign[0] = 1;
            prediction->prev_sign[1] = 1;
        }
    }

    ff_af_queue_init(avctx, &s->afq);
    return 0;
}

static int aptx_decode_frame(AVCodecContext *avctx, void *data,
                             int *got_frame_ptr, AVPacket *avpkt)
{
    AptXContext *s = avctx->priv_data;
    AVFrame *frame = data;
1025
    int pos, opos, channel, sample, ret;
1026

1027
    if (avpkt->size < s->block_size) {
1028 1029 1030 1031 1032 1033 1034
        av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
        return AVERROR_INVALIDDATA;
    }

    /* get output buffer */
    frame->channels = NB_CHANNELS;
    frame->format = AV_SAMPLE_FMT_S32P;
1035
    frame->nb_samples = 4 * avpkt->size / s->block_size;
1036 1037 1038
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
        return ret;

1039
    for (pos = 0, opos = 0; opos < frame->nb_samples; pos += s->block_size, opos += 4) {
1040 1041 1042 1043 1044 1045 1046 1047 1048
        int32_t samples[NB_CHANNELS][4];

        if (aptx_decode_samples(s, &avpkt->data[pos], samples)) {
            av_log(avctx, AV_LOG_ERROR, "Synchronization error\n");
            return AVERROR_INVALIDDATA;
        }

        for (channel = 0; channel < NB_CHANNELS; channel++)
            for (sample = 0; sample < 4; sample++)
1049
                AV_WN32A(&frame->data[channel][4*(opos+sample)],
1050
                         samples[channel][sample] * 256);
1051 1052 1053
    }

    *got_frame_ptr = 1;
1054
    return s->block_size * frame->nb_samples / 4;
1055 1056 1057 1058 1059 1060
}

static int aptx_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
                             const AVFrame *frame, int *got_packet_ptr)
{
    AptXContext *s = avctx->priv_data;
1061
    int pos, ipos, channel, sample, output_size, ret;
1062 1063 1064 1065

    if ((ret = ff_af_queue_add(&s->afq, frame)) < 0)
        return ret;

1066 1067
    output_size = s->block_size * frame->nb_samples/4;
    if ((ret = ff_alloc_packet2(avctx, avpkt, output_size, 0)) < 0)
1068 1069
        return ret;

1070
    for (pos = 0, ipos = 0; pos < output_size; pos += s->block_size, ipos += 4) {
1071 1072 1073 1074
        int32_t samples[NB_CHANNELS][4];

        for (channel = 0; channel < NB_CHANNELS; channel++)
            for (sample = 0; sample < 4; sample++)
1075
                samples[channel][sample] = (int32_t)AV_RN32A(&frame->data[channel][4*(ipos+sample)]) >> 8;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103

        aptx_encode_samples(s, samples, avpkt->data + pos);
    }

    ff_af_queue_remove(&s->afq, frame->nb_samples, &avpkt->pts, &avpkt->duration);
    *got_packet_ptr = 1;
    return 0;
}

static av_cold int aptx_close(AVCodecContext *avctx)
{
    AptXContext *s = avctx->priv_data;
    ff_af_queue_close(&s->afq);
    return 0;
}


#if CONFIG_APTX_DECODER
AVCodec ff_aptx_decoder = {
    .name                  = "aptx",
    .long_name             = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"),
    .type                  = AVMEDIA_TYPE_AUDIO,
    .id                    = AV_CODEC_ID_APTX,
    .priv_data_size        = sizeof(AptXContext),
    .init                  = aptx_init,
    .decode                = aptx_decode_frame,
    .close                 = aptx_close,
    .capabilities          = AV_CODEC_CAP_DR1,
1104
    .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
1105 1106 1107 1108 1109 1110
    .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
    .sample_fmts           = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
                                                             AV_SAMPLE_FMT_NONE },
};
#endif

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
#if CONFIG_APTX_HD_DECODER
AVCodec ff_aptx_hd_decoder = {
    .name                  = "aptx_hd",
    .long_name             = NULL_IF_CONFIG_SMALL("aptX HD (Audio Processing Technology for Bluetooth)"),
    .type                  = AVMEDIA_TYPE_AUDIO,
    .id                    = AV_CODEC_ID_APTX_HD,
    .priv_data_size        = sizeof(AptXContext),
    .init                  = aptx_init,
    .decode                = aptx_decode_frame,
    .close                 = aptx_close,
    .capabilities          = AV_CODEC_CAP_DR1,
    .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
    .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
    .sample_fmts           = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
                                                             AV_SAMPLE_FMT_NONE },
};
#endif

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
#if CONFIG_APTX_ENCODER
AVCodec ff_aptx_encoder = {
    .name                  = "aptx",
    .long_name             = NULL_IF_CONFIG_SMALL("aptX (Audio Processing Technology for Bluetooth)"),
    .type                  = AVMEDIA_TYPE_AUDIO,
    .id                    = AV_CODEC_ID_APTX,
    .priv_data_size        = sizeof(AptXContext),
    .init                  = aptx_init,
    .encode2               = aptx_encode_frame,
    .close                 = aptx_close,
1139 1140
    .capabilities          = AV_CODEC_CAP_SMALL_LAST_FRAME,
    .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
1141 1142 1143 1144 1145 1146
    .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
    .sample_fmts           = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
                                                             AV_SAMPLE_FMT_NONE },
    .supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0},
};
#endif
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165

#if CONFIG_APTX_HD_ENCODER
AVCodec ff_aptx_hd_encoder = {
    .name                  = "aptx_hd",
    .long_name             = NULL_IF_CONFIG_SMALL("aptX HD (Audio Processing Technology for Bluetooth)"),
    .type                  = AVMEDIA_TYPE_AUDIO,
    .id                    = AV_CODEC_ID_APTX_HD,
    .priv_data_size        = sizeof(AptXContext),
    .init                  = aptx_init,
    .encode2               = aptx_encode_frame,
    .close                 = aptx_close,
    .capabilities          = AV_CODEC_CAP_SMALL_LAST_FRAME,
    .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE,
    .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_STEREO, 0},
    .sample_fmts           = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_S32P,
                                                             AV_SAMPLE_FMT_NONE },
    .supported_samplerates = (const int[]) {8000, 16000, 24000, 32000, 44100, 48000, 0},
};
#endif