ac3enc_fixed.c 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * The simplest AC-3 encoder
 * Copyright (c) 2000 Fabrice Bellard
 * Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com>
 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * fixed-point AC-3 encoder.
 */

29
#undef CONFIG_AC3ENC_FLOAT
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
#include "ac3enc.c"


/** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */
#define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767)


/**
 * Finalize MDCT and free allocated memory.
 */
static av_cold void mdct_end(AC3MDCTContext *mdct)
{
    mdct->nbits = 0;
    av_freep(&mdct->costab);
    av_freep(&mdct->sintab);
    av_freep(&mdct->xcos1);
    av_freep(&mdct->xsin1);
    av_freep(&mdct->rot_tmp);
    av_freep(&mdct->cplx_tmp);
}


/**
 * Initialize FFT tables.
 * @param ln log2(FFT size)
 */
static av_cold int fft_init(AVCodecContext *avctx, AC3MDCTContext *mdct, int ln)
{
    int i, n, n2;
    float alpha;

    n  = 1 << ln;
    n2 = n >> 1;

    FF_ALLOC_OR_GOTO(avctx, mdct->costab, n2 * sizeof(*mdct->costab), fft_alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, mdct->sintab, n2 * sizeof(*mdct->sintab), fft_alloc_fail);

    for (i = 0; i < n2; i++) {
        alpha     = 2.0 * M_PI * i / n;
        mdct->costab[i] = FIX15(cos(alpha));
        mdct->sintab[i] = FIX15(sin(alpha));
    }

    return 0;
fft_alloc_fail:
    mdct_end(mdct);
    return AVERROR(ENOMEM);
}


/**
 * Initialize MDCT tables.
 * @param nbits log2(MDCT size)
 */
static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct,
                             int nbits)
{
    int i, n, n4, ret;

    n  = 1 << nbits;
    n4 = n >> 2;

    mdct->nbits = nbits;

    ret = fft_init(avctx, mdct, nbits - 2);
    if (ret)
        return ret;

    mdct->window = ff_ac3_window;

    FF_ALLOC_OR_GOTO(avctx, mdct->xcos1,    n4 * sizeof(*mdct->xcos1),    mdct_alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, mdct->xsin1,    n4 * sizeof(*mdct->xsin1),    mdct_alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, mdct->rot_tmp,  n  * sizeof(*mdct->rot_tmp),  mdct_alloc_fail);
    FF_ALLOC_OR_GOTO(avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp), mdct_alloc_fail);

    for (i = 0; i < n4; i++) {
        float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n;
        mdct->xcos1[i] = FIX15(-cos(alpha));
        mdct->xsin1[i] = FIX15(-sin(alpha));
    }

    return 0;
mdct_alloc_fail:
    mdct_end(mdct);
    return AVERROR(ENOMEM);
}


/** Butterfly op */
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1)  \
{                                                       \
  int ax, ay, bx, by;                                   \
  bx  = pre1;                                           \
  by  = pim1;                                           \
  ax  = qre1;                                           \
  ay  = qim1;                                           \
  pre = (bx + ax) >> 1;                                 \
  pim = (by + ay) >> 1;                                 \
  qre = (bx - ax) >> 1;                                 \
  qim = (by - ay) >> 1;                                 \
}


/** Complex multiply */
#define CMUL(pre, pim, are, aim, bre, bim)              \
{                                                       \
   pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;     \
   pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;     \
}


/**
 * Calculate a 2^n point complex FFT on 2^ln points.
 * @param z  complex input/output samples
 * @param ln log2(FFT size)
 */
static void fft(AC3MDCTContext *mdct, IComplex *z, int ln)
{
    int j, l, np, np2;
    int nblocks, nloops;
    register IComplex *p,*q;
    int tmp_re, tmp_im;

    np = 1 << ln;

    /* reverse */
    for (j = 0; j < np; j++) {
        int k = av_reverse[j] >> (8 - ln);
        if (k < j)
            FFSWAP(IComplex, z[k], z[j]);
    }

    /* pass 0 */

    p = &z[0];
    j = np >> 1;
    do {
        BF(p[0].re, p[0].im, p[1].re, p[1].im,
           p[0].re, p[0].im, p[1].re, p[1].im);
        p += 2;
    } while (--j);

    /* pass 1 */

    p = &z[0];
    j = np >> 2;
    do {
        BF(p[0].re, p[0].im, p[2].re,  p[2].im,
           p[0].re, p[0].im, p[2].re,  p[2].im);
        BF(p[1].re, p[1].im, p[3].re,  p[3].im,
           p[1].re, p[1].im, p[3].im, -p[3].re);
        p+=4;
    } while (--j);

    /* pass 2 .. ln-1 */

    nblocks = np >> 3;
    nloops  =  1 << 2;
    np2     = np >> 1;
    do {
        p = z;
        q = z + nloops;
        for (j = 0; j < nblocks; j++) {
            BF(p->re, p->im, q->re, q->im,
               p->re, p->im, q->re, q->im);
            p++;
            q++;
            for(l = nblocks; l < np2; l += nblocks) {
                CMUL(tmp_re, tmp_im, mdct->costab[l], -mdct->sintab[l], q->re, q->im);
                BF(p->re, p->im, q->re,  q->im,
                   p->re, p->im, tmp_re, tmp_im);
                p++;
                q++;
            }
            p += nloops;
            q += nloops;
        }
        nblocks = nblocks >> 1;
        nloops  = nloops  << 1;
    } while (nblocks);
}


/**
 * Calculate a 512-point MDCT
 * @param out 256 output frequency coefficients
 * @param in  512 windowed input audio samples
 */
static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in)
{
    int i, re, im, n, n2, n4;
    int16_t *rot = mdct->rot_tmp;
    IComplex *x  = mdct->cplx_tmp;

    n  = 1 << mdct->nbits;
    n2 = n >> 1;
    n4 = n >> 2;

    /* shift to simplify computations */
    for (i = 0; i <n4; i++)
        rot[i] = -in[i + 3*n4];
    memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in));

    /* pre rotation */
    for (i = 0; i < n4; i++) {
        re =  ((int)rot[   2*i] - (int)rot[ n-1-2*i]) >> 1;
        im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1;
        CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i]);
    }

    fft(mdct, x, mdct->nbits - 2);

    /* post rotation */
    for (i = 0; i < n4; i++) {
        re = x[i].re;
        im = x[i].im;
        CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i]);
    }
}


/**
 * Apply KBD window to input samples prior to MDCT.
 */
static void apply_window(int16_t *output, const int16_t *input,
                         const int16_t *window, int n)
{
    int i;
    int n2 = n >> 1;

    for (i = 0; i < n2; i++) {
        output[i]     = MUL16(input[i],     window[i]) >> 15;
        output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15;
    }
}


/**
 * Calculate the log2() of the maximum absolute value in an array.
 * @param tab input array
 * @param n   number of values in the array
 * @return    log2(max(abs(tab[])))
 */
static int log2_tab(int16_t *tab, int n)
{
    int i, v;

    v = 0;
    for (i = 0; i < n; i++)
        v |= abs(tab[i]);

    return av_log2(v);
}


/**
 * Left-shift each value in an array by a specified amount.
 * @param tab    input array
 * @param n      number of values in the array
 * @param lshift left shift amount. a negative value means right shift.
 */
static void lshift_tab(int16_t *tab, int n, int lshift)
{
    int i;

    if (lshift > 0) {
        for (i = 0; i < n; i++)
            tab[i] <<= lshift;
    } else if (lshift < 0) {
        lshift = -lshift;
        for (i = 0; i < n; i++)
            tab[i] >>= lshift;
    }
}


/**
 * Normalize the input samples to use the maximum available precision.
 * This assumes signed 16-bit input samples. Exponents are reduced by 9 to
 * match the 24-bit internal precision for MDCT coefficients.
 *
 * @return exponent shift
 */
static int normalize_samples(AC3EncodeContext *s)
{
    int v = 14 - log2_tab(s->windowed_samples, AC3_WINDOW_SIZE);
    v = FFMAX(0, v);
    lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v);
    return v - 9;
}


322 323 324 325 326 327 328 329 330 331 332
/**
 * Scale MDCT coefficients from float to fixed-point.
 */
static void scale_coefficients(AC3EncodeContext *s)
{
    /* scaling/conversion is obviously not needed for the fixed-point encoder
       since the coefficients are already fixed-point. */
    return;
}


333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
#ifdef TEST
/*************************************************************************/
/* TEST */

#include "libavutil/lfg.h"

#define MDCT_NBITS 9
#define MDCT_SAMPLES (1 << MDCT_NBITS)
#define FN (MDCT_SAMPLES/4)


static void fft_test(AC3MDCTContext *mdct, AVLFG *lfg)
{
    IComplex in[FN], in1[FN];
    int k, n, i;
    float sum_re, sum_im, a;

    for (i = 0; i < FN; i++) {
        in[i].re = av_lfg_get(lfg) % 65535 - 32767;
        in[i].im = av_lfg_get(lfg) % 65535 - 32767;
        in1[i]   = in[i];
    }
    fft(mdct, in, 7);

    /* do it by hand */
    for (k = 0; k < FN; k++) {
        sum_re = 0;
        sum_im = 0;
        for (n = 0; n < FN; n++) {
            a = -2 * M_PI * (n * k) / FN;
            sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
            sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
        }
        av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n",
               k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
    }
}


static void mdct_test(AC3MDCTContext *mdct, AVLFG *lfg)
{
    int16_t input[MDCT_SAMPLES];
    int32_t output[AC3_MAX_COEFS];
    float input1[MDCT_SAMPLES];
    float output1[AC3_MAX_COEFS];
    float s, a, err, e, emax;
    int i, k, n;

    for (i = 0; i < MDCT_SAMPLES; i++) {
        input[i]  = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10;
        input1[i] = input[i];
    }

    mdct512(mdct, output, input);

    /* do it by hand */
    for (k = 0; k < AC3_MAX_COEFS; k++) {
        s = 0;
        for (n = 0; n < MDCT_SAMPLES; n++) {
            a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES));
            s += input1[n] * cos(a);
        }
        output1[k] = -2 * s / MDCT_SAMPLES;
    }

    err  = 0;
    emax = 0;
    for (i = 0; i < AC3_MAX_COEFS; i++) {
        av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]);
        e = output[i] - output1[i];
        if (e > emax)
            emax = e;
        err += e * e;
    }
    av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax);
}


int main(void)
{
    AVLFG lfg;
    AC3MDCTContext mdct;

    mdct.avctx = NULL;
    av_log_set_level(AV_LOG_DEBUG);
    mdct_init(&mdct, 9);

    fft_test(&mdct, &lfg);
    mdct_test(&mdct, &lfg);

    return 0;
}
#endif /* TEST */


428 429
AVCodec ac3_fixed_encoder = {
    "ac3_fixed",
430 431 432 433 434 435 436 437 438 439 440
    AVMEDIA_TYPE_AUDIO,
    CODEC_ID_AC3,
    sizeof(AC3EncodeContext),
    ac3_encode_init,
    ac3_encode_frame,
    ac3_encode_close,
    NULL,
    .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
    .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
    .channel_layouts = ac3_channel_layouts,
};