alsdec.c 62.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * MPEG-4 ALS decoder
 * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
23
 * @file
24 25 26 27 28 29 30 31 32
 * MPEG-4 ALS decoder
 * @author Thilo Borgmann <thilo.borgmann _at_ googlemail.com>
 */

#include "avcodec.h"
#include "get_bits.h"
#include "unary.h"
#include "mpeg4audio.h"
#include "bytestream.h"
33
#include "bgmc.h"
34
#include "dsputil.h"
35
#include "internal.h"
36
#include "libavutil/samplefmt.h"
37
#include "libavutil/crc.h"
38

39 40 41
#include <stdint.h>

/** Rice parameters and corresponding index offsets for decoding the
42
 *  indices of scaled PARCOR values. The table chosen is set globally
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
 *  by the encoder and stored in ALSSpecificConfig.
 */
static const int8_t parcor_rice_table[3][20][2] = {
    { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
      { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
      { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
      {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
    { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
      { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
      {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
      {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
    { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
      { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
      {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
      {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
};


/** Scaled PARCOR values used for the first two PARCOR coefficients.
 *  To be indexed by the Rice coded indices.
 *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
 *  Actual values are divided by 32 in order to be stored in 16 bits.
 */
static const int16_t parcor_scaled_values[] = {
    -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
    -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
    -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
    -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
    -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
     -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
     -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
     -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
     -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
     -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
     -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
     -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
     -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
     -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
     -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
     -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
     -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
     -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
     -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
     -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
     -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
     -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
      -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
       46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
      143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
      244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
      349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
      458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
      571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
      688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
      810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
      935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
};


/** Gain values of p(0) for long-term prediction.
 *  To be indexed by the Rice coded indices.
 */
static const uint8_t ltp_gain_values [4][4] = {
    { 0,  8, 16,  24},
    {32, 40, 48,  56},
    {64, 70, 76,  82},
    {88, 92, 96, 100}
};

112

113 114 115 116 117 118 119 120 121 122 123
/** Inter-channel weighting factors for multi-channel correlation.
 *  To be indexed by the Rice coded indices.
 */
static const int16_t mcc_weightings[] = {
    204,  192,  179,  166,  153,  140,  128,  115,
    102,   89,   76,   64,   51,   38,   25,   12,
      0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
   -102, -115, -128, -140, -153, -166, -179, -192
};


124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
/** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
 */
static const uint8_t tail_code[16][6] = {
    { 74, 44, 25, 13,  7, 3},
    { 68, 42, 24, 13,  7, 3},
    { 58, 39, 23, 13,  7, 3},
    {126, 70, 37, 19, 10, 5},
    {132, 70, 37, 20, 10, 5},
    {124, 70, 38, 20, 10, 5},
    {120, 69, 37, 20, 11, 5},
    {116, 67, 37, 20, 11, 5},
    {108, 66, 36, 20, 10, 5},
    {102, 62, 36, 20, 10, 5},
    { 88, 58, 34, 19, 10, 5},
    {162, 89, 49, 25, 13, 7},
    {156, 87, 49, 26, 14, 7},
    {150, 86, 47, 26, 14, 7},
    {142, 84, 47, 26, 14, 7},
    {131, 79, 46, 26, 14, 7}
};


146 147 148 149 150 151 152 153 154 155 156
enum RA_Flag {
    RA_FLAG_NONE,
    RA_FLAG_FRAMES,
    RA_FLAG_HEADER
};


typedef struct {
    uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
    int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
    int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
157
    int msb_first;            ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    int frame_length;         ///< frame length for each frame (last frame may differ)
    int ra_distance;          ///< distance between RA frames (in frames, 0...255)
    enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
    int adapt_order;          ///< adaptive order: 1 = on, 0 = off
    int coef_table;           ///< table index of Rice code parameters
    int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
    int max_order;            ///< maximum prediction order (0..1023)
    int block_switching;      ///< number of block switching levels
    int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
    int sb_part;              ///< sub-block partition
    int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
    int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
    int chan_config;          ///< indicates that a chan_config_info field is present
    int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
    int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
    int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
    int *chan_pos;            ///< original channel positions
175
    int crc_enabled;          ///< enable Cyclic Redundancy Checksum
176 177 178
} ALSSpecificConfig;


179 180 181 182 183 184 185 186 187 188
typedef struct {
    int stop_flag;
    int master_channel;
    int time_diff_flag;
    int time_diff_sign;
    int time_diff_index;
    int weighting[6];
} ALSChannelData;


189 190 191 192
typedef struct {
    AVCodecContext *avctx;
    ALSSpecificConfig sconf;
    GetBitContext gb;
193 194 195 196
    DSPContext dsp;
    const AVCRC *crc_table;
    uint32_t crc_org;               ///< CRC value of the original input data
    uint32_t crc;                   ///< CRC value calculated from decoded data
197 198 199
    unsigned int cur_frame_length;  ///< length of the current frame to decode
    unsigned int frame_id;          ///< the frame ID / number of the current frame
    unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
200
    unsigned int cs_switch;         ///< if true, channel rearrangement is done
201
    unsigned int num_blocks;        ///< number of blocks used in the current frame
202
    unsigned int s_max;             ///< maximum Rice parameter allowed in entropy coding
203
    uint8_t *bgmc_lut;              ///< pointer at lookup tables used for BGMC
204
    int *bgmc_lut_status;           ///< pointer at lookup table status flags used for BGMC
205
    int ltp_lag_length;             ///< number of bits used for ltp lag value
206 207 208 209
    int *const_block;               ///< contains const_block flags for all channels
    unsigned int *shift_lsbs;       ///< contains shift_lsbs flags for all channels
    unsigned int *opt_order;        ///< contains opt_order flags for all channels
    int *store_prev_samples;        ///< contains store_prev_samples flags for all channels
210 211 212 213
    int *use_ltp;                   ///< contains use_ltp flags for all channels
    int *ltp_lag;                   ///< contains ltp lag values for all channels
    int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
    int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
214 215 216 217
    int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
    int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
    int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
    int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
218
    int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
219 220 221
    ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
    ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
    int *reverted_channels;         ///< stores a flag for each reverted channel
222 223 224
    int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
    int32_t **raw_samples;          ///< decoded raw samples for each channel
    int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
225
    uint8_t *crc_buffer;            ///< buffer of byte order corrected samples used for CRC check
226 227 228
} ALSDecContext;


229 230 231
typedef struct {
    unsigned int block_length;      ///< number of samples within the block
    unsigned int ra_block;          ///< if true, this is a random access block
232
    int          *const_block;      ///< if true, this is a constant value block
233
    int          js_blocks;         ///< true if this block contains a difference signal
234 235 236
    unsigned int *shift_lsbs;       ///< shift of values for this block
    unsigned int *opt_order;        ///< prediction order of this block
    int          *store_prev_samples;///< if true, carryover samples have to be stored
237 238 239 240 241 242 243 244 245 246 247
    int          *use_ltp;          ///< if true, long-term prediction is used
    int          *ltp_lag;          ///< lag value for long-term prediction
    int          *ltp_gain;         ///< gain values for ltp 5-tap filter
    int32_t      *quant_cof;        ///< quantized parcor coefficients
    int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
    int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
    int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
    int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
} ALSBlockData;


248 249 250 251 252 253
static av_cold void dprint_specific_config(ALSDecContext *ctx)
{
#ifdef DEBUG
    AVCodecContext *avctx    = ctx->avctx;
    ALSSpecificConfig *sconf = &ctx->sconf;

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    av_dlog(avctx, "resolution = %i\n",           sconf->resolution);
    av_dlog(avctx, "floating = %i\n",             sconf->floating);
    av_dlog(avctx, "frame_length = %i\n",         sconf->frame_length);
    av_dlog(avctx, "ra_distance = %i\n",          sconf->ra_distance);
    av_dlog(avctx, "ra_flag = %i\n",              sconf->ra_flag);
    av_dlog(avctx, "adapt_order = %i\n",          sconf->adapt_order);
    av_dlog(avctx, "coef_table = %i\n",           sconf->coef_table);
    av_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
    av_dlog(avctx, "max_order = %i\n",            sconf->max_order);
    av_dlog(avctx, "block_switching = %i\n",      sconf->block_switching);
    av_dlog(avctx, "bgmc = %i\n",                 sconf->bgmc);
    av_dlog(avctx, "sb_part = %i\n",              sconf->sb_part);
    av_dlog(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
    av_dlog(avctx, "mc_coding = %i\n",            sconf->mc_coding);
    av_dlog(avctx, "chan_config = %i\n",          sconf->chan_config);
    av_dlog(avctx, "chan_sort = %i\n",            sconf->chan_sort);
    av_dlog(avctx, "RLSLMS = %i\n",               sconf->rlslms);
    av_dlog(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
272 273 274 275
#endif
}


276
/** Read an ALSSpecificConfig from a buffer into the output struct.
277 278 279 280 281
 */
static av_cold int read_specific_config(ALSDecContext *ctx)
{
    GetBitContext gb;
    uint64_t ht_size;
282
    int i, config_offset;
283 284 285
    MPEG4AudioConfig m4ac;
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
286
    uint32_t als_id, header_size, trailer_size;
287
    int ret;
288

289 290
    if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
        return ret;
291

292
    config_offset = avpriv_mpeg4audio_get_config(&m4ac, avctx->extradata,
293
                                                 avctx->extradata_size * 8, 1);
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

    if (config_offset < 0)
        return -1;

    skip_bits_long(&gb, config_offset);

    if (get_bits_left(&gb) < (30 << 3))
        return -1;

    // read the fixed items
    als_id                      = get_bits_long(&gb, 32);
    avctx->sample_rate          = m4ac.sample_rate;
    skip_bits_long(&gb, 32); // sample rate already known
    sconf->samples              = get_bits_long(&gb, 32);
    avctx->channels             = m4ac.channels;
309
    skip_bits(&gb, 16);      // number of channels already known
310 311 312
    skip_bits(&gb, 3);       // skip file_type
    sconf->resolution           = get_bits(&gb, 3);
    sconf->floating             = get_bits1(&gb);
313
    sconf->msb_first            = get_bits1(&gb);
314 315 316 317 318 319 320 321 322 323 324 325 326 327
    sconf->frame_length         = get_bits(&gb, 16) + 1;
    sconf->ra_distance          = get_bits(&gb, 8);
    sconf->ra_flag              = get_bits(&gb, 2);
    sconf->adapt_order          = get_bits1(&gb);
    sconf->coef_table           = get_bits(&gb, 2);
    sconf->long_term_prediction = get_bits1(&gb);
    sconf->max_order            = get_bits(&gb, 10);
    sconf->block_switching      = get_bits(&gb, 2);
    sconf->bgmc                 = get_bits1(&gb);
    sconf->sb_part              = get_bits1(&gb);
    sconf->joint_stereo         = get_bits1(&gb);
    sconf->mc_coding            = get_bits1(&gb);
    sconf->chan_config          = get_bits1(&gb);
    sconf->chan_sort            = get_bits1(&gb);
328
    sconf->crc_enabled          = get_bits1(&gb);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    sconf->rlslms               = get_bits1(&gb);
    skip_bits(&gb, 5);       // skip 5 reserved bits
    skip_bits1(&gb);         // skip aux_data_enabled


    // check for ALSSpecificConfig struct
    if (als_id != MKBETAG('A','L','S','\0'))
        return -1;

    ctx->cur_frame_length = sconf->frame_length;

    // read channel config
    if (sconf->chan_config)
        sconf->chan_config_info = get_bits(&gb, 16);
    // TODO: use this to set avctx->channel_layout


    // read channel sorting
    if (sconf->chan_sort && avctx->channels > 1) {
        int chan_pos_bits = av_ceil_log2(avctx->channels);
        int bits_needed  = avctx->channels * chan_pos_bits + 7;
        if (get_bits_left(&gb) < bits_needed)
            return -1;

        if (!(sconf->chan_pos = av_malloc(avctx->channels * sizeof(*sconf->chan_pos))))
            return AVERROR(ENOMEM);

356 357
        ctx->cs_switch = 1;

Paul B Mahol's avatar
Paul B Mahol committed
358
        for (i = 0; i < avctx->channels; i++) {
359 360 361 362
            int idx;

            idx = get_bits(&gb, chan_pos_bits);
            if (idx >= avctx->channels) {
363
                av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
364
                ctx->cs_switch = 0;
Paul B Mahol's avatar
Paul B Mahol committed
365 366
                break;
            }
367
            sconf->chan_pos[idx] = i;
Paul B Mahol's avatar
Paul B Mahol committed
368
        }
369 370 371 372 373 374 375 376 377 378

        align_get_bits(&gb);
    }


    // read fixed header and trailer sizes,
    // if size = 0xFFFFFFFF then there is no data field!
    if (get_bits_left(&gb) < 64)
        return -1;

379 380 381 382 383 384
    header_size  = get_bits_long(&gb, 32);
    trailer_size = get_bits_long(&gb, 32);
    if (header_size  == 0xFFFFFFFF)
        header_size  = 0;
    if (trailer_size == 0xFFFFFFFF)
        trailer_size = 0;
385

386
    ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
387 388 389 390 391 392 393 394 395 396 397 398


    // skip the header and trailer data
    if (get_bits_left(&gb) < ht_size)
        return -1;

    if (ht_size > INT32_MAX)
        return -1;

    skip_bits_long(&gb, ht_size);


399 400
    // initialize CRC calculation
    if (sconf->crc_enabled) {
401 402 403
        if (get_bits_left(&gb) < 32)
            return -1;

404
        if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
405 406 407 408 409
            ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
            ctx->crc       = 0xFFFFFFFF;
            ctx->crc_org   = ~get_bits_long(&gb, 32);
        } else
            skip_bits_long(&gb, 32);
410 411 412 413 414 415 416 417 418 419 420
    }


    // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)

    dprint_specific_config(ctx);

    return 0;
}


421
/** Check the ALSSpecificConfig for unsupported features.
422 423 424 425 426 427 428 429 430 431
 */
static int check_specific_config(ALSDecContext *ctx)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    int error = 0;

    // report unsupported feature and set error value
    #define MISSING_ERR(cond, str, errval)              \
    {                                                   \
        if (cond) {                                     \
432 433
            avpriv_report_missing_feature(ctx->avctx,   \
                                          str);         \
434 435 436 437
            error = errval;                             \
        }                                               \
    }

438 439
    MISSING_ERR(sconf->floating,  "Floating point decoding",     AVERROR_PATCHWELCOME);
    MISSING_ERR(sconf->rlslms,    "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
440 441 442 443 444

    return error;
}


445
/** Parse the bs_info field to extract the block partitioning used in
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
 *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
 */
static void parse_bs_info(const uint32_t bs_info, unsigned int n,
                          unsigned int div, unsigned int **div_blocks,
                          unsigned int *num_blocks)
{
    if (n < 31 && ((bs_info << n) & 0x40000000)) {
        // if the level is valid and the investigated bit n is set
        // then recursively check both children at bits (2n+1) and (2n+2)
        n   *= 2;
        div += 1;
        parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
        parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
    } else {
        // else the bit is not set or the last level has been reached
        // (bit implicitly not set)
        **div_blocks = div;
        (*div_blocks)++;
        (*num_blocks)++;
    }
}


Måns Rullgård's avatar
Måns Rullgård committed
469
/** Read and decode a Rice codeword.
470 471 472
 */
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
{
473
    int max = get_bits_left(gb) - k;
474 475 476 477 478 479 480 481 482 483 484 485 486
    int q   = get_unary(gb, 0, max);
    int r   = k ? get_bits1(gb) : !(q & 1);

    if (k > 1) {
        q <<= (k - 1);
        q  += get_bits_long(gb, k - 1);
    } else if (!k) {
        q >>= 1;
    }
    return r ? q : ~q;
}


487
/** Convert PARCOR coefficient k to direct filter coefficient.
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
 */
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
{
    int i, j;

    for (i = 0, j = k - 1; i < j; i++, j--) {
        int tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
        cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
        cof[i]  += tmp1;
    }
    if (i == j)
        cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);

    cof[k] = par[k];
}


Måns Rullgård's avatar
Måns Rullgård committed
505 506
/** Read block switching field if necessary and set actual block sizes.
 *  Also assure that the block sizes of the last frame correspond to the
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547
 *  actual number of samples.
 */
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
                            uint32_t *bs_info)
{
    ALSSpecificConfig *sconf     = &ctx->sconf;
    GetBitContext *gb            = &ctx->gb;
    unsigned int *ptr_div_blocks = div_blocks;
    unsigned int b;

    if (sconf->block_switching) {
        unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
        *bs_info = get_bits_long(gb, bs_info_len);
        *bs_info <<= (32 - bs_info_len);
    }

    ctx->num_blocks = 0;
    parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);

    // The last frame may have an overdetermined block structure given in
    // the bitstream. In that case the defined block structure would need
    // more samples than available to be consistent.
    // The block structure is actually used but the block sizes are adapted
    // to fit the actual number of available samples.
    // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
    // This results in the actual block sizes:    2 2 1 0.
    // This is not specified in 14496-3 but actually done by the reference
    // codec RM22 revision 2.
    // This appears to happen in case of an odd number of samples in the last
    // frame which is actually not allowed by the block length switching part
    // of 14496-3.
    // The ALS conformance files feature an odd number of samples in the last
    // frame.

    for (b = 0; b < ctx->num_blocks; b++)
        div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];

    if (ctx->cur_frame_length != ctx->sconf.frame_length) {
        unsigned int remaining = ctx->cur_frame_length;

        for (b = 0; b < ctx->num_blocks; b++) {
548
            if (remaining <= div_blocks[b]) {
549 550 551 552 553 554 555 556 557 558 559
                div_blocks[b] = remaining;
                ctx->num_blocks = b + 1;
                break;
            }

            remaining -= div_blocks[b];
        }
    }
}


560
/** Read the block data for a constant block
561
 */
562
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
563 564 565 566 567
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
    GetBitContext *gb        = &ctx->gb;

568
    if (bd->block_length <= 0)
569
        return AVERROR_INVALIDDATA;
570

571 572
    *bd->raw_samples = 0;
    *bd->const_block = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
573
    bd->js_blocks    = get_bits1(gb);
574 575 576 577

    // skip 5 reserved bits
    skip_bits(gb, 5);

578
    if (*bd->const_block) {
579
        unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
580
        *bd->raw_samples = get_sbits_long(gb, const_val_bits);
581 582
    }

583
    // ensure constant block decoding by reusing this field
584
    *bd->const_block = 1;
585 586

    return 0;
587 588 589
}


590
/** Decode the block data for a constant block
591 592 593
 */
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
{
594 595 596
    int      smp = bd->block_length - 1;
    int32_t  val = *bd->raw_samples;
    int32_t *dst = bd->raw_samples + 1;
597

598
    // write raw samples into buffer
599 600
    for (; smp; smp--)
        *dst++ = val;
601 602 603
}


604
/** Read the block data for a non-constant block
605
 */
606
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
607 608 609 610 611 612
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
    GetBitContext *gb        = &ctx->gb;
    unsigned int k;
    unsigned int s[8];
613
    unsigned int sx[8];
614 615
    unsigned int sub_blocks, log2_sub_blocks, sb_length;
    unsigned int start      = 0;
616 617 618
    unsigned int opt_order;
    int          sb;
    int32_t      *quant_cof = bd->quant_cof;
619
    int32_t      *current_res;
620

621 622

    // ensure variable block decoding by reusing this field
623
    *bd->const_block = 0;
624

625
    *bd->opt_order  = 1;
626 627
    bd->js_blocks   = get_bits1(gb);

628
    opt_order       = *bd->opt_order;
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643

    // determine the number of subblocks for entropy decoding
    if (!sconf->bgmc && !sconf->sb_part) {
        log2_sub_blocks = 0;
    } else {
        if (sconf->bgmc && sconf->sb_part)
            log2_sub_blocks = get_bits(gb, 2);
        else
            log2_sub_blocks = 2 * get_bits1(gb);
    }

    sub_blocks = 1 << log2_sub_blocks;

    // do not continue in case of a damaged stream since
    // block_length must be evenly divisible by sub_blocks
644
    if (bd->block_length & (sub_blocks - 1)) {
645 646 647 648 649
        av_log(avctx, AV_LOG_WARNING,
               "Block length is not evenly divisible by the number of subblocks.\n");
        return -1;
    }

650
    sb_length = bd->block_length >> log2_sub_blocks;
651 652

    if (sconf->bgmc) {
653 654 655 656 657 658 659 660
        s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
        for (k = 1; k < sub_blocks; k++)
            s[k] = s[k - 1] + decode_rice(gb, 2);

        for (k = 0; k < sub_blocks; k++) {
            sx[k]   = s[k] & 0x0F;
            s [k] >>= 4;
        }
661 662 663 664 665
    } else {
        s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
        for (k = 1; k < sub_blocks; k++)
            s[k] = s[k - 1] + decode_rice(gb, 0);
    }
666
    for (k = 1; k < sub_blocks; k++)
667
        if (s[k] > 32) {
668
            av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
669
            return AVERROR_INVALIDDATA;
670
        }
671 672

    if (get_bits1(gb))
673
        *bd->shift_lsbs = get_bits(gb, 4) + 1;
674

675
    *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
676 677 678 679


    if (!sconf->rlslms) {
        if (sconf->adapt_order) {
680
            int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
681
                                                2, sconf->max_order + 1));
682
            *bd->opt_order       = get_bits(gb, opt_order_length);
683
            if (*bd->opt_order > sconf->max_order) {
684
                *bd->opt_order = sconf->max_order;
685
                av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
686
                return AVERROR_INVALIDDATA;
687
            }
688
        } else {
689
            *bd->opt_order = sconf->max_order;
690 691
        }

692
        opt_order = *bd->opt_order;
693

694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
        if (opt_order) {
            int add_base;

            if (sconf->coef_table == 3) {
                add_base = 0x7F;

                // read coefficient 0
                quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];

                // read coefficient 1
                if (opt_order > 1)
                    quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];

                // read coefficients 2 to opt_order
                for (k = 2; k < opt_order; k++)
                    quant_cof[k] = get_bits(gb, 7);
            } else {
                int k_max;
                add_base = 1;

                // read coefficient 0 to 19
                k_max = FFMIN(opt_order, 20);
                for (k = 0; k < k_max; k++) {
                    int rice_param = parcor_rice_table[sconf->coef_table][k][1];
                    int offset     = parcor_rice_table[sconf->coef_table][k][0];
                    quant_cof[k] = decode_rice(gb, rice_param) + offset;
720
                    if (quant_cof[k] < -64 || quant_cof[k] > 63) {
721
                        av_log(avctx, AV_LOG_ERROR, "quant_cof %d is out of range.\n", quant_cof[k]);
722 723
                        return AVERROR_INVALIDDATA;
                    }
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
                }

                // read coefficients 20 to 126
                k_max = FFMIN(opt_order, 127);
                for (; k < k_max; k++)
                    quant_cof[k] = decode_rice(gb, 2) + (k & 1);

                // read coefficients 127 to opt_order
                for (; k < opt_order; k++)
                    quant_cof[k] = decode_rice(gb, 1);

                quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];

                if (opt_order > 1)
                    quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
            }

            for (k = 2; k < opt_order; k++)
                quant_cof[k] = (quant_cof[k] << 14) + (add_base << 13);
        }
    }

746 747
    // read LTP gain and lag values
    if (sconf->long_term_prediction) {
748
        *bd->use_ltp = get_bits1(gb);
749

750
        if (*bd->use_ltp) {
751 752
            int r, c;

753 754
            bd->ltp_gain[0]   = decode_rice(gb, 1) << 3;
            bd->ltp_gain[1]   = decode_rice(gb, 2) << 3;
755

756
            r                 = get_unary(gb, 0, 3);
757 758
            c                 = get_bits(gb, 2);
            bd->ltp_gain[2]   = ltp_gain_values[r][c];
759

760 761
            bd->ltp_gain[3]   = decode_rice(gb, 2) << 3;
            bd->ltp_gain[4]   = decode_rice(gb, 1) << 3;
762

763 764
            *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
            *bd->ltp_lag     += FFMAX(4, opt_order + 1);
765 766
        }
    }
767 768

    // read first value and residuals in case of a random access block
769
    if (bd->ra_block) {
770
        if (opt_order)
771
            bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
772
        if (opt_order > 1)
773
            bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
774
        if (opt_order > 2)
775
            bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
776 777 778 779 780 781

        start = FFMIN(opt_order, 3);
    }

    // read all residuals
    if (sconf->bgmc) {
782
        int          delta[8];
783
        unsigned int k    [8];
784 785 786 787 788 789 790 791 792 793 794
        unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);

        // read most significant bits
        unsigned int high;
        unsigned int low;
        unsigned int value;

        ff_bgmc_decode_init(gb, &high, &low, &value);

        current_res = bd->raw_samples + start;

795
        for (sb = 0; sb < sub_blocks; sb++) {
796 797
            unsigned int sb_len  = sb_length - (sb ? 0 : start);

798 799 800
            k    [sb] = s[sb] > b ? s[sb] - b : 0;
            delta[sb] = 5 - s[sb] + k[sb];

801
            ff_bgmc_decode(gb, sb_len, current_res,
802 803
                        delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);

804
            current_res += sb_len;
805 806 807 808 809 810 811 812
        }

        ff_bgmc_decode_end(gb);


        // read least significant bits and tails
        current_res = bd->raw_samples + start;

813
        for (sb = 0; sb < sub_blocks; sb++, start = 0) {
814 815 816 817
            unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
            unsigned int cur_k         = k[sb];
            unsigned int cur_s         = s[sb];

818
            for (; start < sb_length; start++) {
819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
                int32_t res = *current_res;

                if (res == cur_tail_code) {
                    unsigned int max_msb =   (2 + (sx[sb] > 2) + (sx[sb] > 10))
                                          << (5 - delta[sb]);

                    res = decode_rice(gb, cur_s);

                    if (res >= 0) {
                        res += (max_msb    ) << cur_k;
                    } else {
                        res -= (max_msb - 1) << cur_k;
                    }
                } else {
                    if (res > cur_tail_code)
                        res--;

                    if (res & 1)
                        res = -res;

                    res >>= 1;

                    if (cur_k) {
                        res <<= cur_k;
                        res  |= get_bits_long(gb, cur_k);
                    }
                }

Thilo Borgmann's avatar
Thilo Borgmann committed
847
                *current_res++ = res;
848 849
            }
        }
850
    } else {
851
        current_res = bd->raw_samples + start;
852 853 854 855 856 857

        for (sb = 0; sb < sub_blocks; sb++, start = 0)
            for (; start < sb_length; start++)
                *current_res++ = decode_rice(gb, s[sb]);
     }

858 859 860 861 862 863 864
    if (!sconf->mc_coding || ctx->js_switch)
        align_get_bits(gb);

    return 0;
}


865
/** Decode the block data for a non-constant block
866 867 868 869 870 871 872
 */
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    unsigned int block_length = bd->block_length;
    unsigned int smp = 0;
    unsigned int k;
873
    int opt_order             = *bd->opt_order;
874 875 876 877 878
    int sb;
    int64_t y;
    int32_t *quant_cof        = bd->quant_cof;
    int32_t *lpc_cof          = bd->lpc_cof;
    int32_t *raw_samples      = bd->raw_samples;
879
    int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
880
    int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
881

882
    // reverse long-term prediction
883
    if (*bd->use_ltp) {
884 885
        int ltp_smp;

886 887
        for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
            int center = ltp_smp - *bd->ltp_lag;
888 889 890 891 892 893 894 895
            int begin  = FFMAX(0, center - 2);
            int end    = center + 3;
            int tab    = 5 - (end - begin);
            int base;

            y = 1 << 6;

            for (base = begin; base < end; base++, tab++)
896
                y += MUL64(bd->ltp_gain[tab], raw_samples[base]);
897 898 899 900 901

            raw_samples[ltp_smp] += y >> 7;
        }
    }

902
    // reconstruct all samples from residuals
903
    if (bd->ra_block) {
904 905 906 907
        for (smp = 0; smp < opt_order; smp++) {
            y = 1 << 19;

            for (sb = 0; sb < smp; sb++)
908
                y += MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
909

910
            *raw_samples++ -= y >> 20;
911 912 913 914 915 916 917
            parcor_to_lpc(smp, quant_cof, lpc_cof);
        }
    } else {
        for (k = 0; k < opt_order; k++)
            parcor_to_lpc(k, quant_cof, lpc_cof);

        // store previous samples in case that they have to be altered
918
        if (*bd->store_prev_samples)
919 920
            memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
                   sizeof(*bd->prev_raw_samples) * sconf->max_order);
921 922

        // reconstruct difference signal for prediction (joint-stereo)
923
        if (bd->js_blocks && bd->raw_other) {
924 925
            int32_t *left, *right;

926
            if (bd->raw_other > raw_samples) {  // D = R - L
927
                left  = raw_samples;
928
                right = bd->raw_other;
929
            } else {                                // D = R - L
930
                left  = bd->raw_other;
931 932 933 934 935 936 937 938
                right = raw_samples;
            }

            for (sb = -1; sb >= -sconf->max_order; sb--)
                raw_samples[sb] = right[sb] - left[sb];
        }

        // reconstruct shifted signal
939
        if (*bd->shift_lsbs)
940
            for (sb = -1; sb >= -sconf->max_order; sb--)
941
                raw_samples[sb] >>= *bd->shift_lsbs;
942 943
    }

944 945 946 947 948 949
    // reverse linear prediction coefficients for efficiency
    lpc_cof = lpc_cof + opt_order;

    for (sb = 0; sb < opt_order; sb++)
        lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];

950
    // reconstruct raw samples
951 952 953 954
    raw_samples = bd->raw_samples + smp;
    lpc_cof     = lpc_cof_reversed + opt_order;

    for (; raw_samples < raw_samples_end; raw_samples++) {
955 956
        y = 1 << 19;

957 958
        for (sb = -opt_order; sb < 0; sb++)
            y += MUL64(lpc_cof[sb], raw_samples[sb]);
959

960
        *raw_samples -= y >> 20;
961 962
    }

963 964
    raw_samples = bd->raw_samples;

965
    // restore previous samples in case that they have been altered
966
    if (*bd->store_prev_samples)
967
        memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
968 969 970 971 972 973
               sizeof(*raw_samples) * sconf->max_order);

    return 0;
}


974
/** Read the block data.
975
 */
976
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
977 978
{
    GetBitContext *gb        = &ctx->gb;
979
    int ret;
980

981
    *bd->shift_lsbs = 0;
982 983
    // read block type flag and read the samples accordingly
    if (get_bits1(gb)) {
984 985
        if ((ret = read_var_block_data(ctx, bd)) < 0)
            return ret;
986
    } else {
987 988
        if ((ret = read_const_block_data(ctx, bd)) < 0)
            return ret;
989 990
    }

991 992
    return 0;
}
993 994


995
/** Decode the block data.
996 997 998 999 1000 1001
 */
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
{
    unsigned int smp;

    // read block type flag and read the samples accordingly
1002
    if (*bd->const_block)
1003 1004 1005 1006 1007 1008
        decode_const_block_data(ctx, bd);
    else if (decode_var_block_data(ctx, bd))
        return -1;

    // TODO: read RLSLMS extension data

1009
    if (*bd->shift_lsbs)
1010
        for (smp = 0; smp < bd->block_length; smp++)
1011
            bd->raw_samples[smp] <<= *bd->shift_lsbs;
1012 1013 1014 1015 1016

    return 0;
}


Måns Rullgård's avatar
Måns Rullgård committed
1017
/** Read and decode block data successively.
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
 */
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
{
    int ret;

    ret = read_block(ctx, bd);

    if (ret)
        return ret;

    ret = decode_block(ctx, bd);

    return ret;
}


1034
/** Compute the number of samples left to decode for the current frame and
1035 1036 1037 1038 1039 1040 1041 1042
 *  sets these samples to zero.
 */
static void zero_remaining(unsigned int b, unsigned int b_max,
                           const unsigned int *div_blocks, int32_t *buf)
{
    unsigned int count = 0;

    while (b < b_max)
1043
        count += div_blocks[b++];
1044

1045
    if (count)
Alex Converse's avatar
Alex Converse committed
1046
        memset(buf, 0, sizeof(*buf) * count);
1047 1048 1049
}


1050
/** Decode blocks independently.
1051 1052 1053 1054 1055 1056
 */
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
                             unsigned int c, const unsigned int *div_blocks,
                             unsigned int *js_blocks)
{
    unsigned int b;
1057
    ALSBlockData bd = { 0 };
1058 1059

    bd.ra_block         = ra_frame;
1060 1061 1062 1063
    bd.const_block      = ctx->const_block;
    bd.shift_lsbs       = ctx->shift_lsbs;
    bd.opt_order        = ctx->opt_order;
    bd.store_prev_samples = ctx->store_prev_samples;
1064 1065 1066
    bd.use_ltp          = ctx->use_ltp;
    bd.ltp_lag          = ctx->ltp_lag;
    bd.ltp_gain         = ctx->ltp_gain[0];
1067 1068
    bd.quant_cof        = ctx->quant_cof[0];
    bd.lpc_cof          = ctx->lpc_cof[0];
1069 1070 1071
    bd.prev_raw_samples = ctx->prev_raw_samples;
    bd.raw_samples      = ctx->raw_samples[c];

1072 1073

    for (b = 0; b < ctx->num_blocks; b++) {
1074 1075 1076
        bd.block_length     = div_blocks[b];

        if (read_decode_block(ctx, &bd)) {
1077
            // damaged block, write zero for the rest of the frame
1078
            zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1079 1080
            return -1;
        }
1081 1082
        bd.raw_samples += div_blocks[b];
        bd.ra_block     = 0;
1083 1084 1085 1086 1087 1088
    }

    return 0;
}


1089
/** Decode blocks dependently.
1090 1091 1092 1093 1094 1095 1096 1097
 */
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
                         unsigned int c, const unsigned int *div_blocks,
                         unsigned int *js_blocks)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    unsigned int offset = 0;
    unsigned int b;
1098
    ALSBlockData bd[2] = { { 0 } };
1099 1100

    bd[0].ra_block         = ra_frame;
1101 1102 1103 1104
    bd[0].const_block      = ctx->const_block;
    bd[0].shift_lsbs       = ctx->shift_lsbs;
    bd[0].opt_order        = ctx->opt_order;
    bd[0].store_prev_samples = ctx->store_prev_samples;
1105 1106 1107
    bd[0].use_ltp          = ctx->use_ltp;
    bd[0].ltp_lag          = ctx->ltp_lag;
    bd[0].ltp_gain         = ctx->ltp_gain[0];
1108 1109
    bd[0].quant_cof        = ctx->quant_cof[0];
    bd[0].lpc_cof          = ctx->lpc_cof[0];
1110 1111 1112 1113
    bd[0].prev_raw_samples = ctx->prev_raw_samples;
    bd[0].js_blocks        = *js_blocks;

    bd[1].ra_block         = ra_frame;
1114 1115 1116 1117
    bd[1].const_block      = ctx->const_block;
    bd[1].shift_lsbs       = ctx->shift_lsbs;
    bd[1].opt_order        = ctx->opt_order;
    bd[1].store_prev_samples = ctx->store_prev_samples;
1118 1119 1120
    bd[1].use_ltp          = ctx->use_ltp;
    bd[1].ltp_lag          = ctx->ltp_lag;
    bd[1].ltp_gain         = ctx->ltp_gain[0];
1121 1122
    bd[1].quant_cof        = ctx->quant_cof[0];
    bd[1].lpc_cof          = ctx->lpc_cof[0];
1123 1124
    bd[1].prev_raw_samples = ctx->prev_raw_samples;
    bd[1].js_blocks        = *(js_blocks + 1);
1125 1126 1127 1128

    // decode all blocks
    for (b = 0; b < ctx->num_blocks; b++) {
        unsigned int s;
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

        bd[0].block_length = div_blocks[b];
        bd[1].block_length = div_blocks[b];

        bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
        bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;

        bd[0].raw_other    = bd[1].raw_samples;
        bd[1].raw_other    = bd[0].raw_samples;

        if(read_decode_block(ctx, &bd[0]) || read_decode_block(ctx, &bd[1])) {
1140
            // damaged block, write zero for the rest of the frame
1141 1142
            zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
            zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1143 1144 1145 1146
            return -1;
        }

        // reconstruct joint-stereo blocks
1147 1148
        if (bd[0].js_blocks) {
            if (bd[1].js_blocks)
1149
                av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1150 1151

            for (s = 0; s < div_blocks[b]; s++)
1152 1153
                bd[0].raw_samples[s] = bd[1].raw_samples[s] - bd[0].raw_samples[s];
        } else if (bd[1].js_blocks) {
1154
            for (s = 0; s < div_blocks[b]; s++)
1155
                bd[1].raw_samples[s] = bd[1].raw_samples[s] + bd[0].raw_samples[s];
1156 1157 1158
        }

        offset  += div_blocks[b];
1159 1160
        bd[0].ra_block = 0;
        bd[1].ra_block = 0;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
    }

    // store carryover raw samples,
    // the others channel raw samples are stored by the calling function.
    memmove(ctx->raw_samples[c] - sconf->max_order,
            ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
            sizeof(*ctx->raw_samples[c]) * sconf->max_order);

    return 0;
}


1173
/** Read the channel data.
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
  */
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
{
    GetBitContext *gb       = &ctx->gb;
    ALSChannelData *current = cd;
    unsigned int channels   = ctx->avctx->channels;
    int entries             = 0;

    while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
        current->master_channel = get_bits_long(gb, av_ceil_log2(channels));

        if (current->master_channel >= channels) {
1186
            av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1187 1188 1189 1190 1191
            return -1;
        }

        if (current->master_channel != c) {
            current->time_diff_flag = get_bits1(gb);
1192 1193 1194
            current->weighting[0]   = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
            current->weighting[1]   = mcc_weightings[av_clip(decode_rice(gb, 2) + 14, 0, 31)];
            current->weighting[2]   = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
1195 1196

            if (current->time_diff_flag) {
1197 1198 1199
                current->weighting[3] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
                current->weighting[4] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
                current->weighting[5] = mcc_weightings[av_clip(decode_rice(gb, 1) + 16, 0, 31)];
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

                current->time_diff_sign  = get_bits1(gb);
                current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
            }
        }

        current++;
        entries++;
    }

    if (entries == channels) {
1211
        av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
        return -1;
    }

    align_get_bits(gb);
    return 0;
}


/** Recursively reverts the inter-channel correlation for a block.
 */
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
                                       ALSChannelData **cd, int *reverted,
                                       unsigned int offset, int c)
{
    ALSChannelData *ch = cd[c];
    unsigned int   dep = 0;
    unsigned int channels = ctx->avctx->channels;

    if (reverted[c])
        return 0;

    reverted[c] = 1;

    while (dep < channels && !ch[dep].stop_flag) {
        revert_channel_correlation(ctx, bd, cd, reverted, offset,
                                   ch[dep].master_channel);

        dep++;
    }

    if (dep == channels) {
1243
        av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1244 1245 1246
        return -1;
    }

1247 1248 1249 1250
    bd->const_block = ctx->const_block + c;
    bd->shift_lsbs  = ctx->shift_lsbs + c;
    bd->opt_order   = ctx->opt_order + c;
    bd->store_prev_samples = ctx->store_prev_samples + c;
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
    bd->use_ltp     = ctx->use_ltp + c;
    bd->ltp_lag     = ctx->ltp_lag + c;
    bd->ltp_gain    = ctx->ltp_gain[c];
    bd->lpc_cof     = ctx->lpc_cof[c];
    bd->quant_cof   = ctx->quant_cof[c];
    bd->raw_samples = ctx->raw_samples[c] + offset;

    dep = 0;
    while (!ch[dep].stop_flag) {
        unsigned int smp;
        unsigned int begin = 1;
        unsigned int end   = bd->block_length - 1;
        int64_t y;
        int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;

        if (ch[dep].time_diff_flag) {
            int t = ch[dep].time_diff_index;

            if (ch[dep].time_diff_sign) {
                t      = -t;
                begin -= t;
            } else {
                end   -= t;
            }

            for (smp = begin; smp < end; smp++) {
                y  = (1 << 6) +
                     MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
                     MUL64(ch[dep].weighting[1], master[smp        ]) +
                     MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
                     MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
                     MUL64(ch[dep].weighting[4], master[smp     + t]) +
                     MUL64(ch[dep].weighting[5], master[smp + 1 + t]);

                bd->raw_samples[smp] += y >> 7;
            }
        } else {
            for (smp = begin; smp < end; smp++) {
                y  = (1 << 6) +
                     MUL64(ch[dep].weighting[0], master[smp - 1]) +
                     MUL64(ch[dep].weighting[1], master[smp    ]) +
                     MUL64(ch[dep].weighting[2], master[smp + 1]);

                bd->raw_samples[smp] += y >> 7;
            }
        }

        dep++;
    }

    return 0;
}


1305
/** Read the frame data.
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
 */
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
{
    ALSSpecificConfig *sconf = &ctx->sconf;
    AVCodecContext *avctx    = ctx->avctx;
    GetBitContext *gb = &ctx->gb;
    unsigned int div_blocks[32];                ///< block sizes.
    unsigned int c;
    unsigned int js_blocks[2];

    uint32_t bs_info = 0;

    // skip the size of the ra unit if present in the frame
    if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
        skip_bits_long(gb, 32);

    if (sconf->mc_coding && sconf->joint_stereo) {
        ctx->js_switch = get_bits1(gb);
        align_get_bits(gb);
    }

    if (!sconf->mc_coding || ctx->js_switch) {
        int independent_bs = !sconf->joint_stereo;

        for (c = 0; c < avctx->channels; c++) {
            js_blocks[0] = 0;
            js_blocks[1] = 0;

            get_block_sizes(ctx, div_blocks, &bs_info);

            // if joint_stereo and block_switching is set, independent decoding
            // is signaled via the first bit of bs_info
            if (sconf->joint_stereo && sconf->block_switching)
                if (bs_info >> 31)
                    independent_bs = 2;

            // if this is the last channel, it has to be decoded independently
            if (c == avctx->channels - 1)
                independent_bs = 1;

            if (independent_bs) {
                if (decode_blocks_ind(ctx, ra_frame, c, div_blocks, js_blocks))
                    return -1;

                independent_bs--;
            } else {
                if (decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks))
                    return -1;

                c++;
            }

            // store carryover raw samples
            memmove(ctx->raw_samples[c] - sconf->max_order,
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
        }
    } else { // multi-channel coding
1364
        ALSBlockData   bd = { 0 };
1365
        int            b, ret;
1366 1367 1368 1369 1370
        int            *reverted_channels = ctx->reverted_channels;
        unsigned int   offset             = 0;

        for (c = 0; c < avctx->channels; c++)
            if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1371
                av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1372 1373 1374 1375 1376 1377 1378 1379
                return -1;
            }

        memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);

        bd.ra_block         = ra_frame;
        bd.prev_raw_samples = ctx->prev_raw_samples;

1380 1381
        get_block_sizes(ctx, div_blocks, &bs_info);

1382 1383 1384 1385
        for (b = 0; b < ctx->num_blocks; b++) {
            bd.block_length = div_blocks[b];

            for (c = 0; c < avctx->channels; c++) {
1386 1387 1388 1389
                bd.const_block = ctx->const_block + c;
                bd.shift_lsbs  = ctx->shift_lsbs + c;
                bd.opt_order   = ctx->opt_order + c;
                bd.store_prev_samples = ctx->store_prev_samples + c;
1390 1391 1392 1393 1394 1395 1396 1397
                bd.use_ltp     = ctx->use_ltp + c;
                bd.ltp_lag     = ctx->ltp_lag + c;
                bd.ltp_gain    = ctx->ltp_gain[c];
                bd.lpc_cof     = ctx->lpc_cof[c];
                bd.quant_cof   = ctx->quant_cof[c];
                bd.raw_samples = ctx->raw_samples[c] + offset;
                bd.raw_other   = NULL;

1398 1399 1400 1401
                if ((ret = read_block(ctx, &bd)) < 0)
                    return ret;
                if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
                    return ret;
1402 1403 1404 1405 1406 1407 1408 1409
            }

            for (c = 0; c < avctx->channels; c++)
                if (revert_channel_correlation(ctx, &bd, ctx->chan_data,
                                               reverted_channels, offset, c))
                    return -1;

            for (c = 0; c < avctx->channels; c++) {
1410 1411 1412 1413
                bd.const_block = ctx->const_block + c;
                bd.shift_lsbs  = ctx->shift_lsbs + c;
                bd.opt_order   = ctx->opt_order + c;
                bd.store_prev_samples = ctx->store_prev_samples + c;
1414 1415 1416 1417 1418 1419
                bd.use_ltp     = ctx->use_ltp + c;
                bd.ltp_lag     = ctx->ltp_lag + c;
                bd.ltp_gain    = ctx->ltp_gain[c];
                bd.lpc_cof     = ctx->lpc_cof[c];
                bd.quant_cof   = ctx->quant_cof[c];
                bd.raw_samples = ctx->raw_samples[c] + offset;
1420

1421 1422
                if ((ret = decode_block(ctx, &bd)) < 0)
                    return ret;
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
            }

            memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
            offset      += div_blocks[b];
            bd.ra_block  = 0;
        }

        // store carryover raw samples
        for (c = 0; c < avctx->channels; c++)
            memmove(ctx->raw_samples[c] - sconf->max_order,
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1435 1436 1437 1438 1439 1440 1441 1442
    }

    // TODO: read_diff_float_data

    return 0;
}


1443
/** Decode an ALS frame.
1444
 */
1445
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1446 1447 1448
                        AVPacket *avpkt)
{
    ALSDecContext *ctx       = avctx->priv_data;
1449
    AVFrame *frame           = data;
1450 1451 1452
    ALSSpecificConfig *sconf = &ctx->sconf;
    const uint8_t *buffer    = avpkt->data;
    int buffer_size          = avpkt->size;
1453
    int invalid_frame, ret;
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
    unsigned int c, sample, ra_frame, bytes_read, shift;

    init_get_bits(&ctx->gb, buffer, buffer_size * 8);

    // In the case that the distance between random access frames is set to zero
    // (sconf->ra_distance == 0) no frame is treated as a random access frame.
    // For the first frame, if prediction is used, all samples used from the
    // previous frame are assumed to be zero.
    ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);

    // the last frame to decode might have a different length
    if (sconf->samples != 0xFFFFFFFF)
        ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
                                      sconf->frame_length);
    else
        ctx->cur_frame_length = sconf->frame_length;

    // decode the frame data
1472
    if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1473 1474 1475 1476 1477
        av_log(ctx->avctx, AV_LOG_WARNING,
               "Reading frame data failed. Skipping RA unit.\n");

    ctx->frame_id++;

1478
    /* get output buffer */
1479
    frame->nb_samples = ctx->cur_frame_length;
1480
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1481
        return ret;
1482 1483

    // transform decoded frame into output format
1484 1485
    #define INTERLEAVE_OUTPUT(bps)                                                   \
    {                                                                                \
1486
        int##bps##_t *dest = (int##bps##_t*)frame->data[0];                          \
1487
        shift = bps - ctx->avctx->bits_per_raw_sample;                               \
1488
        if (!ctx->cs_switch) {                                                       \
1489 1490 1491
            for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
                for (c = 0; c < avctx->channels; c++)                                \
                    *dest++ = ctx->raw_samples[c][sample] << shift;                  \
Paul B Mahol's avatar
Paul B Mahol committed
1492 1493 1494 1495 1496
        } else {                                                                     \
            for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
                for (c = 0; c < avctx->channels; c++)                                \
                    *dest++ = ctx->raw_samples[sconf->chan_pos[c]][sample] << shift; \
        }                                                                            \
1497 1498 1499 1500 1501 1502 1503 1504
    }

    if (ctx->avctx->bits_per_raw_sample <= 16) {
        INTERLEAVE_OUTPUT(16)
    } else {
        INTERLEAVE_OUTPUT(32)
    }

1505
    // update CRC
1506
    if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1507 1508 1509
        int swap = HAVE_BIGENDIAN != sconf->msb_first;

        if (ctx->avctx->bits_per_raw_sample == 24) {
1510
            int32_t *src = (int32_t *)frame->data[0];
1511 1512 1513 1514 1515 1516 1517

            for (sample = 0;
                 sample < ctx->cur_frame_length * avctx->channels;
                 sample++) {
                int32_t v;

                if (swap)
1518
                    v = av_bswap32(src[sample]);
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
                else
                    v = src[sample];
                if (!HAVE_BIGENDIAN)
                    v >>= 8;

                ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
            }
        } else {
            uint8_t *crc_source;

            if (swap) {
                if (ctx->avctx->bits_per_raw_sample <= 16) {
1531
                    int16_t *src  = (int16_t*) frame->data[0];
1532 1533 1534 1535
                    int16_t *dest = (int16_t*) ctx->crc_buffer;
                    for (sample = 0;
                         sample < ctx->cur_frame_length * avctx->channels;
                         sample++)
1536
                        *dest++ = av_bswap16(src[sample]);
1537
                } else {
1538
                    ctx->dsp.bswap_buf((uint32_t*)ctx->crc_buffer,
1539
                                       (uint32_t *)frame->data[0],
1540 1541 1542 1543
                                       ctx->cur_frame_length * avctx->channels);
                }
                crc_source = ctx->crc_buffer;
            } else {
1544
                crc_source = frame->data[0];
1545 1546
            }

1547 1548 1549
            ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
                              ctx->cur_frame_length * avctx->channels *
                              av_get_bytes_per_sample(avctx->sample_fmt));
1550 1551 1552 1553 1554 1555
        }


        // check CRC sums if this is the last frame
        if (ctx->cur_frame_length != sconf->frame_length &&
            ctx->crc_org != ctx->crc) {
1556
            av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1557 1558 1559
        }
    }

1560
    *got_frame_ptr = 1;
1561

1562 1563 1564 1565 1566 1567 1568
    bytes_read = invalid_frame ? buffer_size :
                                 (get_bits_count(&ctx->gb) + 7) >> 3;

    return bytes_read;
}


1569
/** Uninitialize the ALS decoder.
1570 1571 1572 1573 1574 1575 1576
 */
static av_cold int decode_end(AVCodecContext *avctx)
{
    ALSDecContext *ctx = avctx->priv_data;

    av_freep(&ctx->sconf.chan_pos);

1577 1578
    ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);

1579 1580 1581 1582
    av_freep(&ctx->const_block);
    av_freep(&ctx->shift_lsbs);
    av_freep(&ctx->opt_order);
    av_freep(&ctx->store_prev_samples);
1583 1584 1585 1586
    av_freep(&ctx->use_ltp);
    av_freep(&ctx->ltp_lag);
    av_freep(&ctx->ltp_gain);
    av_freep(&ctx->ltp_gain_buffer);
1587 1588
    av_freep(&ctx->quant_cof);
    av_freep(&ctx->lpc_cof);
1589 1590
    av_freep(&ctx->quant_cof_buffer);
    av_freep(&ctx->lpc_cof_buffer);
1591
    av_freep(&ctx->lpc_cof_reversed_buffer);
1592 1593 1594
    av_freep(&ctx->prev_raw_samples);
    av_freep(&ctx->raw_samples);
    av_freep(&ctx->raw_buffer);
1595 1596 1597
    av_freep(&ctx->chan_data);
    av_freep(&ctx->chan_data_buffer);
    av_freep(&ctx->reverted_channels);
1598
    av_freep(&ctx->crc_buffer);
1599 1600 1601 1602 1603

    return 0;
}


1604
/** Initialize the ALS decoder.
1605 1606 1607 1608 1609
 */
static av_cold int decode_init(AVCodecContext *avctx)
{
    unsigned int c;
    unsigned int channel_size;
1610
    int num_buffers;
1611 1612 1613 1614 1615
    ALSDecContext *ctx = avctx->priv_data;
    ALSSpecificConfig *sconf = &ctx->sconf;
    ctx->avctx = avctx;

    if (!avctx->extradata) {
1616
        av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1617 1618 1619 1620
        return -1;
    }

    if (read_specific_config(ctx)) {
1621
        av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1622 1623 1624 1625 1626 1627 1628 1629 1630
        decode_end(avctx);
        return -1;
    }

    if (check_specific_config(ctx)) {
        decode_end(avctx);
        return -1;
    }

1631 1632 1633
    if (sconf->bgmc)
        ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);

1634
    if (sconf->floating) {
1635
        avctx->sample_fmt          = AV_SAMPLE_FMT_FLT;
1636 1637 1638
        avctx->bits_per_raw_sample = 32;
    } else {
        avctx->sample_fmt          = sconf->resolution > 1
1639
                                     ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
1640 1641 1642
        avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
    }

1643 1644 1645 1646 1647
    // set maximum Rice parameter for progressive decoding based on resolution
    // This is not specified in 14496-3 but actually done by the reference
    // codec RM22 revision 2.
    ctx->s_max = sconf->resolution > 1 ? 31 : 15;

1648 1649 1650 1651
    // set lag value for long-term prediction
    ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
                              (avctx->sample_rate >= 192000);

1652 1653 1654
    // allocate quantized parcor coefficient buffer
    num_buffers = sconf->mc_coding ? avctx->channels : 1;

1655 1656 1657 1658 1659 1660
    ctx->quant_cof        = av_malloc(sizeof(*ctx->quant_cof) * num_buffers);
    ctx->lpc_cof          = av_malloc(sizeof(*ctx->lpc_cof)   * num_buffers);
    ctx->quant_cof_buffer = av_malloc(sizeof(*ctx->quant_cof_buffer) *
                                      num_buffers * sconf->max_order);
    ctx->lpc_cof_buffer   = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
                                      num_buffers * sconf->max_order);
1661 1662
    ctx->lpc_cof_reversed_buffer = av_malloc(sizeof(*ctx->lpc_cof_buffer) *
                                             sconf->max_order);
1663

1664 1665
    if (!ctx->quant_cof              || !ctx->lpc_cof        ||
        !ctx->quant_cof_buffer       || !ctx->lpc_cof_buffer ||
1666
        !ctx->lpc_cof_reversed_buffer) {
1667
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1668 1669 1670 1671 1672 1673 1674 1675 1676
        return AVERROR(ENOMEM);
    }

    // assign quantized parcor coefficient buffers
    for (c = 0; c < num_buffers; c++) {
        ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
        ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
    }

1677
    // allocate and assign lag and gain data buffer for ltp mode
1678 1679 1680 1681
    ctx->const_block     = av_malloc (sizeof(*ctx->const_block) * num_buffers);
    ctx->shift_lsbs      = av_malloc (sizeof(*ctx->shift_lsbs)  * num_buffers);
    ctx->opt_order       = av_malloc (sizeof(*ctx->opt_order)   * num_buffers);
    ctx->store_prev_samples = av_malloc(sizeof(*ctx->store_prev_samples) * num_buffers);
1682 1683 1684 1685 1686 1687
    ctx->use_ltp         = av_mallocz(sizeof(*ctx->use_ltp)  * num_buffers);
    ctx->ltp_lag         = av_malloc (sizeof(*ctx->ltp_lag)  * num_buffers);
    ctx->ltp_gain        = av_malloc (sizeof(*ctx->ltp_gain) * num_buffers);
    ctx->ltp_gain_buffer = av_malloc (sizeof(*ctx->ltp_gain_buffer) *
                                      num_buffers * 5);

1688 1689 1690
    if (!ctx->const_block || !ctx->shift_lsbs ||
        !ctx->opt_order || !ctx->store_prev_samples ||
        !ctx->use_ltp  || !ctx->ltp_lag ||
1691
        !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
1692
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1693 1694 1695 1696 1697 1698 1699
        decode_end(avctx);
        return AVERROR(ENOMEM);
    }

    for (c = 0; c < num_buffers; c++)
        ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;

1700 1701 1702
    // allocate and assign channel data buffer for mcc mode
    if (sconf->mc_coding) {
        ctx->chan_data_buffer  = av_malloc(sizeof(*ctx->chan_data_buffer) *
1703
                                           num_buffers * num_buffers);
1704
        ctx->chan_data         = av_malloc(sizeof(*ctx->chan_data) *
1705 1706 1707 1708 1709
                                           num_buffers);
        ctx->reverted_channels = av_malloc(sizeof(*ctx->reverted_channels) *
                                           num_buffers);

        if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
1710
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1711 1712 1713 1714 1715
            decode_end(avctx);
            return AVERROR(ENOMEM);
        }

        for (c = 0; c < num_buffers; c++)
1716
            ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
1717 1718 1719 1720 1721 1722
    } else {
        ctx->chan_data         = NULL;
        ctx->chan_data_buffer  = NULL;
        ctx->reverted_channels = NULL;
    }

1723 1724 1725 1726 1727 1728 1729 1730
    channel_size      = sconf->frame_length + sconf->max_order;

    ctx->prev_raw_samples = av_malloc (sizeof(*ctx->prev_raw_samples) * sconf->max_order);
    ctx->raw_buffer       = av_mallocz(sizeof(*ctx->     raw_buffer)  * avctx->channels * channel_size);
    ctx->raw_samples      = av_malloc (sizeof(*ctx->     raw_samples) * avctx->channels);

    // allocate previous raw sample buffer
    if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
1731
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1732 1733 1734 1735 1736 1737 1738 1739 1740
        decode_end(avctx);
        return AVERROR(ENOMEM);
    }

    // assign raw samples buffers
    ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
    for (c = 1; c < avctx->channels; c++)
        ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;

1741 1742
    // allocate crc buffer
    if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
1743
        (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1744 1745 1746
        ctx->crc_buffer = av_malloc(sizeof(*ctx->crc_buffer) *
                                    ctx->cur_frame_length *
                                    avctx->channels *
1747
                                    av_get_bytes_per_sample(avctx->sample_fmt));
1748
        if (!ctx->crc_buffer) {
1749
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
1750 1751 1752 1753 1754
            decode_end(avctx);
            return AVERROR(ENOMEM);
        }
    }

1755
    ff_dsputil_init(&ctx->dsp, avctx);
1756

1757 1758 1759 1760
    return 0;
}


1761
/** Flush (reset) the frame ID after seeking.
1762 1763 1764 1765 1766 1767 1768 1769 1770
 */
static av_cold void flush(AVCodecContext *avctx)
{
    ALSDecContext *ctx = avctx->priv_data;

    ctx->frame_id = 0;
}


1771
AVCodec ff_als_decoder = {
1772 1773
    .name           = "als",
    .type           = AVMEDIA_TYPE_AUDIO,
1774
    .id             = AV_CODEC_ID_MP4ALS,
1775 1776 1777 1778
    .priv_data_size = sizeof(ALSDecContext),
    .init           = decode_init,
    .close          = decode_end,
    .decode         = decode_frame,
1779 1780 1781
    .flush          = flush,
    .capabilities   = CODEC_CAP_SUBFRAMES | CODEC_CAP_DR1,
    .long_name      = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
1782
};