lagarith.c 21.4 KB
Newer Older
1 2 3 4
/*
 * Lagarith lossless decoder
 * Copyright (c) 2009 Nathan Caldwell <saintdev (at) gmail.com>
 *
5
 * This file is part of Libav.
6
 *
7
 * Libav is free software; you can redistribute it and/or
8 9 10 11
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
12
 * Libav is distributed in the hope that it will be useful,
13 14 15 16 17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with Libav; if not, write to the Free Software
19 20 21 22
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
23
 * @file
24 25 26 27
 * Lagarith lossless decoder
 * @author Nathan Caldwell
 */

28 29
#include <inttypes.h>

30 31 32
#include "avcodec.h"
#include "get_bits.h"
#include "mathops.h"
33
#include "huffyuvdsp.h"
34
#include "lagarithrac.h"
35
#include "thread.h"
36 37

enum LagarithFrameType {
38 39 40 41 42 43 44 45 46 47 48
    FRAME_RAW           = 1,    /**< uncompressed */
    FRAME_U_RGB24       = 2,    /**< unaligned RGB24 */
    FRAME_ARITH_YUY2    = 3,    /**< arithmetic coded YUY2 */
    FRAME_ARITH_RGB24   = 4,    /**< arithmetic coded RGB24 */
    FRAME_SOLID_GRAY    = 5,    /**< solid grayscale color frame */
    FRAME_SOLID_COLOR   = 6,    /**< solid non-grayscale color frame */
    FRAME_OLD_ARITH_RGB = 7,    /**< obsolete arithmetic coded RGB (no longer encoded by upstream since version 1.1.0) */
    FRAME_ARITH_RGBA    = 8,    /**< arithmetic coded RGBA */
    FRAME_SOLID_RGBA    = 9,    /**< solid RGBA color frame */
    FRAME_ARITH_YV12    = 10,   /**< arithmetic coded YV12 */
    FRAME_REDUCED_RES   = 11,   /**< reduced resolution YV12 frame */
49 50 51 52
};

typedef struct LagarithContext {
    AVCodecContext *avctx;
53
    HuffYUVDSPContext hdsp;
54 55
    int zeros;                  /**< number of consecutive zero bytes encountered */
    int zeros_rem;              /**< number of zero bytes remaining to output */
56
    uint8_t *rgb_planes;
57
    int      rgb_planes_allocated;
58
    int rgb_stride;
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
} LagarithContext;

/**
 * Compute the 52bit mantissa of 1/(double)denom.
 * This crazy format uses floats in an entropy coder and we have to match x86
 * rounding exactly, thus ordinary floats aren't portable enough.
 * @param denom denominator
 * @return 52bit mantissa
 * @see softfloat_mul
 */
static uint64_t softfloat_reciprocal(uint32_t denom)
{
    int shift = av_log2(denom - 1) + 1;
    uint64_t ret = (1ULL << 52) / denom;
    uint64_t err = (1ULL << 52) - ret * denom;
    ret <<= shift;
    err <<= shift;
    err +=  denom / 2;
    return ret + err / denom;
}

/**
 * (uint32_t)(x*f), where f has the given mantissa, and exponent 0
 * Used in combination with softfloat_reciprocal computes x/(double)denom.
 * @param x 32bit integer factor
 * @param mantissa mantissa of f with exponent 0
 * @return 32bit integer value (x*f)
 * @see softfloat_reciprocal
 */
static uint32_t softfloat_mul(uint32_t x, uint64_t mantissa)
{
    uint64_t l = x * (mantissa & 0xffffffff);
    uint64_t h = x * (mantissa >> 32);
    h += l >> 32;
    l &= 0xffffffff;
    l += 1 << av_log2(h >> 21);
    h += l >> 32;
    return h >> 20;
}

static uint8_t lag_calc_zero_run(int8_t x)
{
    return (x << 1) ^ (x >> 7);
}

static int lag_decode_prob(GetBitContext *gb, uint32_t *value)
{
    static const uint8_t series[] = { 1, 2, 3, 5, 8, 13, 21 };
    int i;
    int bit     = 0;
    int bits    = 0;
    int prevbit = 0;
    unsigned val;

    for (i = 0; i < 7; i++) {
        if (prevbit && bit)
            break;
        prevbit = bit;
        bit = get_bits1(gb);
        if (bit && !prevbit)
            bits += series[i];
    }
    bits--;
    if (bits < 0 || bits > 31) {
        *value = 0;
        return -1;
    } else if (bits == 0) {
        *value = 0;
        return 0;
    }

    val  = get_bits_long(gb, bits);
    val |= 1 << bits;

    *value = val - 1;

    return 0;
}

static int lag_read_prob_header(lag_rac *rac, GetBitContext *gb)
{
    int i, j, scale_factor;
    unsigned prob, cumulative_target;
    unsigned cumul_prob = 0;
    unsigned scaled_cumul_prob = 0;

    rac->prob[0] = 0;
    rac->prob[257] = UINT_MAX;
    /* Read probabilities from bitstream */
    for (i = 1; i < 257; i++) {
        if (lag_decode_prob(gb, &rac->prob[i]) < 0) {
            av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability encountered.\n");
            return -1;
        }
        if ((uint64_t)cumul_prob + rac->prob[i] > UINT_MAX) {
            av_log(rac->avctx, AV_LOG_ERROR, "Integer overflow encountered in cumulative probability calculation.\n");
            return -1;
        }
        cumul_prob += rac->prob[i];
        if (!rac->prob[i]) {
            if (lag_decode_prob(gb, &prob)) {
                av_log(rac->avctx, AV_LOG_ERROR, "Invalid probability run encountered.\n");
                return -1;
            }
            if (prob > 257 - i)
                prob = 257 - i;
            for (j = 0; j < prob; j++)
                rac->prob[++i] = 0;
        }
    }

    if (!cumul_prob) {
        av_log(rac->avctx, AV_LOG_ERROR, "All probabilities are 0!\n");
        return -1;
    }

    /* Scale probabilities so cumulative probability is an even power of 2. */
    scale_factor = av_log2(cumul_prob);

    if (cumul_prob & (cumul_prob - 1)) {
        uint64_t mul = softfloat_reciprocal(cumul_prob);
        for (i = 1; i < 257; i++) {
            rac->prob[i] = softfloat_mul(rac->prob[i], mul);
            scaled_cumul_prob += rac->prob[i];
        }

        scale_factor++;
        cumulative_target = 1 << scale_factor;

        if (scaled_cumul_prob > cumulative_target) {
            av_log(rac->avctx, AV_LOG_ERROR,
                   "Scaled probabilities are larger than target!\n");
            return -1;
        }

        scaled_cumul_prob = cumulative_target - scaled_cumul_prob;

        for (i = 1; scaled_cumul_prob; i = (i & 0x7f) + 1) {
            if (rac->prob[i]) {
                rac->prob[i]++;
                scaled_cumul_prob--;
            }
            /* Comment from reference source:
             * if (b & 0x80 == 0) {     // order of operations is 'wrong'; it has been left this way
Diego Biurrun's avatar
Diego Biurrun committed
203 204
             *                          // since the compression change is negligible and fixing it
             *                          // breaks backwards compatibility
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
             *      b =- (signed int)b;
             *      b &= 0xFF;
             * } else {
             *      b++;
             *      b &= 0x7f;
             * }
             */
        }
    }

    rac->scale = scale_factor;

    /* Fill probability array with cumulative probability for each symbol. */
    for (i = 1; i < 257; i++)
        rac->prob[i] += rac->prob[i - 1];

    return 0;
}

static void add_lag_median_prediction(uint8_t *dst, uint8_t *src1,
                                      uint8_t *diff, int w, int *left,
                                      int *left_top)
{
228
    /* This is almost identical to add_hfyu_median_pred in huffyuvdsp.h.
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
     * However the &0xFF on the gradient predictor yealds incorrect output
     * for lagarith.
     */
    int i;
    uint8_t l, lt;

    l  = *left;
    lt = *left_top;

    for (i = 0; i < w; i++) {
        l = mid_pred(l, src1[i], l + src1[i] - lt) + diff[i];
        lt = src1[i];
        dst[i] = l;
    }

    *left     = l;
    *left_top = lt;
}

static void lag_pred_line(LagarithContext *l, uint8_t *buf,
                          int width, int stride, int line)
{
    int L, TL;

    if (!line) {
254
        int i, align_width = (width - 1) & ~31;
255
        /* Left prediction only for first line */
256
        L = l->hdsp.add_hfyu_left_pred(buf + 1, buf + 1, align_width, buf[0]);
257 258
        for (i = align_width + 1; i < width; i++)
            buf[i] += buf[i - 1];
259
    } else {
260 261 262 263 264 265
        /* Left pixel is actually prev_row[width] */
        L = buf[width - stride - 1];

        if (line == 1) {
            /* Second line, left predict first pixel, the rest of the line is median predicted
             * NOTE: In the case of RGB this pixel is top predicted */
266
            TL = l->avctx->pix_fmt == AV_PIX_FMT_YUV420P ? buf[-stride] : L;
267 268 269 270
        } else {
            /* Top left is 2 rows back, last pixel */
            TL = buf[width - (2 * stride) - 1];
        }
271

272 273 274
        add_lag_median_prediction(buf, buf - stride, buf,
                                  width, &L, &TL);
    }
275 276
}

277 278 279 280 281 282 283
static void lag_pred_line_yuy2(LagarithContext *l, uint8_t *buf,
                               int width, int stride, int line,
                               int is_luma)
{
    int L, TL;

    if (!line) {
284
        int i, align_width;
285 286 287 288
        if (is_luma) {
            buf++;
            width--;
        }
289 290

        align_width = (width - 1) & ~31;
291
        l->hdsp.add_hfyu_left_pred(buf + 1, buf + 1, align_width, buf[0]);
292 293 294 295

        for (i = align_width + 1; i < width; i++)
            buf[i] += buf[i - 1];

296 297 298 299 300 301 302 303 304 305 306 307
        return;
    }
    if (line == 1) {
        const int HEAD = is_luma ? 4 : 2;
        int i;

        L  = buf[width - stride - 1];
        TL = buf[HEAD  - stride - 1];
        for (i = 0; i < HEAD; i++) {
            L += buf[i];
            buf[i] = L;
        }
308 309 310 311 312
        for (; i < width; i++) {
            L      = mid_pred(L & 0xFF, buf[i - stride], (L + buf[i - stride] - TL) & 0xFF) + buf[i];
            TL     = buf[i - stride];
            buf[i] = L;
        }
313 314 315
    } else {
        TL = buf[width - (2 * stride) - 1];
        L  = buf[width - stride - 1];
316
        l->hdsp.add_hfyu_median_pred(buf, buf - stride, buf, width, &L, &TL);
317 318 319
    }
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
static int lag_decode_line(LagarithContext *l, lag_rac *rac,
                           uint8_t *dst, int width, int stride,
                           int esc_count)
{
    int i = 0;
    int ret = 0;

    if (!esc_count)
        esc_count = -1;

    /* Output any zeros remaining from the previous run */
handle_zeros:
    if (l->zeros_rem) {
        int count = FFMIN(l->zeros_rem, width - i);
        memset(dst + i, 0, count);
        i += count;
        l->zeros_rem -= count;
    }

    while (i < width) {
        dst[i] = lag_get_rac(rac);
        ret++;

        if (dst[i])
            l->zeros = 0;
        else
            l->zeros++;

        i++;
        if (l->zeros == esc_count) {
            int index = lag_get_rac(rac);
            ret++;

            l->zeros = 0;

            l->zeros_rem = lag_calc_zero_run(index);
            goto handle_zeros;
        }
    }
    return ret;
}

static int lag_decode_zero_run_line(LagarithContext *l, uint8_t *dst,
363 364
                                    const uint8_t *src, const uint8_t *src_end,
                                    int width, int esc_count)
365 366 367 368
{
    int i = 0;
    int count;
    uint8_t zero_run = 0;
369
    const uint8_t *src_start = src;
370 371 372 373 374 375 376
    uint8_t mask1 = -(esc_count < 2);
    uint8_t mask2 = -(esc_count < 3);
    uint8_t *end = dst + (width - 2);

output_zeros:
    if (l->zeros_rem) {
        count = FFMIN(l->zeros_rem, width - i);
377 378 379 380 381
        if (end - dst < count) {
            av_log(l->avctx, AV_LOG_ERROR, "Too many zeros remaining.\n");
            return AVERROR_INVALIDDATA;
        }

382 383 384 385 386 387 388 389 390
        memset(dst, 0, count);
        l->zeros_rem -= count;
        dst += count;
    }

    while (dst < end) {
        i = 0;
        while (!zero_run && dst + i < end) {
            i++;
391 392
            if (src + i >= src_end)
                return AVERROR_INVALIDDATA;
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
            zero_run =
                !(src[i] | (src[i + 1] & mask1) | (src[i + 2] & mask2));
        }
        if (zero_run) {
            zero_run = 0;
            i += esc_count;
            memcpy(dst, src, i);
            dst += i;
            l->zeros_rem = lag_calc_zero_run(src[i]);

            src += i + 1;
            goto output_zeros;
        } else {
            memcpy(dst, src, i);
            src += i;
408
            dst += i;
409 410
        }
    }
411
    return src_start - src;
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
}



static int lag_decode_arith_plane(LagarithContext *l, uint8_t *dst,
                                  int width, int height, int stride,
                                  const uint8_t *src, int src_size)
{
    int i = 0;
    int read = 0;
    uint32_t length;
    uint32_t offset = 1;
    int esc_count = src[0];
    GetBitContext gb;
    lag_rac rac;
427
    const uint8_t *src_end = src + src_size;
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443

    rac.avctx = l->avctx;
    l->zeros = 0;

    if (esc_count < 4) {
        length = width * height;
        if (esc_count && AV_RL32(src + 1) < length) {
            length = AV_RL32(src + 1);
            offset += 4;
        }

        init_get_bits(&gb, src + offset, src_size * 8);

        if (lag_read_prob_header(&rac, &gb) < 0)
            return -1;

444
        ff_lag_rac_init(&rac, &gb, length - stride);
445 446 447 448 449 450 451

        for (i = 0; i < height; i++)
            read += lag_decode_line(l, &rac, dst + (i * stride), width,
                                    stride, esc_count);

        if (read > length)
            av_log(l->avctx, AV_LOG_WARNING,
452
                   "Output more bytes than length (%d of %"PRIu32")\n", read,
453 454 455 456 457
                   length);
    } else if (esc_count < 8) {
        esc_count -= 4;
        if (esc_count > 0) {
            /* Zero run coding only, no range coding. */
458 459 460 461 462 463 464
            for (i = 0; i < height; i++) {
                int res = lag_decode_zero_run_line(l, dst + (i * stride), src,
                                                   src_end, width, esc_count);
                if (res < 0)
                    return res;
                src += res;
            }
465
        } else {
466 467
            if (src_size < width * height)
                return AVERROR_INVALIDDATA; // buffer not big enough
468 469 470 471 472 473 474
            /* Plane is stored uncompressed */
            for (i = 0; i < height; i++) {
                memcpy(dst + (i * stride), src, width);
                src += width;
            }
        }
    } else if (esc_count == 0xff) {
475
        /* Plane is a solid run of given value */
476
        for (i = 0; i < height; i++)
477 478 479 480 481
            memset(dst + i * stride, src[1], width);
        /* Do not apply prediction.
           Note: memset to 0 above, setting first value to src[1]
           and applying prediction gives the same result. */
        return 0;
482 483 484 485 486 487
    } else {
        av_log(l->avctx, AV_LOG_ERROR,
               "Invalid zero run escape code! (%#x)\n", esc_count);
        return -1;
    }

488
    if (l->avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
489 490 491 492 493 494 495 496 497 498
        for (i = 0; i < height; i++) {
            lag_pred_line(l, dst, width, stride, i);
            dst += stride;
        }
    } else {
        for (i = 0; i < height; i++) {
            lag_pred_line_yuy2(l, dst, width, stride, i,
                               width == l->avctx->width);
            dst += stride;
        }
499 500 501 502 503 504 505 506 507 508 509 510 511 512
    }

    return 0;
}

/**
 * Decode a frame.
 * @param avctx codec context
 * @param data output AVFrame
 * @param data_size size of output data or 0 if no picture is returned
 * @param avpkt input packet
 * @return number of consumed bytes on success or negative if decode fails
 */
static int lag_decode_frame(AVCodecContext *avctx,
513
                            void *data, int *got_frame, AVPacket *avpkt)
514 515 516 517
{
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
    LagarithContext *l = avctx->priv_data;
518 519
    ThreadFrame frame = { .f = data };
    AVFrame *const p  = data;
520 521
    uint8_t frametype = 0;
    uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9;
522
    uint32_t offs[4];
523
    uint8_t *srcs[4], *dst;
524
    int i, j, planes = 3;
525 526 527 528 529 530 531 532 533

    p->key_frame = 1;

    frametype = buf[0];

    offset_gu = AV_RL32(buf + 1);
    offset_bv = AV_RL32(buf + 5);

    switch (frametype) {
534
    case FRAME_SOLID_RGBA:
535
        avctx->pix_fmt = AV_PIX_FMT_RGB32;
536

537
        if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
538 539 540 541 542 543 544 545 546 547 548 549
            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
            return -1;
        }

        dst = p->data[0];
        for (j = 0; j < avctx->height; j++) {
            for (i = 0; i < avctx->width; i++)
                AV_WN32(dst + i * 4, offset_gu);
            dst += p->linesize[0];
        }
        break;
    case FRAME_ARITH_RGBA:
550
        avctx->pix_fmt = AV_PIX_FMT_RGB32;
551 552 553 554
        planes = 4;
        offset_ry += 4;
        offs[3] = AV_RL32(buf + 9);
    case FRAME_ARITH_RGB24:
555 556
    case FRAME_U_RGB24:
        if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24)
557
            avctx->pix_fmt = AV_PIX_FMT_RGB24;
558

559
        if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
560 561 562
            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
            return -1;
        }
563

564 565
        offs[0] = offset_bv;
        offs[1] = offset_gu;
566
        offs[2] = offset_ry;
567

568 569 570
        l->rgb_stride = FFALIGN(avctx->width, 16);
        av_fast_malloc(&l->rgb_planes, &l->rgb_planes_allocated,
                       l->rgb_stride * avctx->height * planes + 1);
571
        if (!l->rgb_planes) {
572 573
            av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n");
            return AVERROR(ENOMEM);
574
        }
575
        for (i = 0; i < planes; i++)
576
            srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride;
577 578 579 580 581 582 583 584
        if (offset_ry >= buf_size ||
            offset_gu >= buf_size ||
            offset_bv >= buf_size ||
            (planes == 4 && offs[3] >= buf_size)) {
            av_log(avctx, AV_LOG_ERROR,
                    "Invalid frame offsets\n");
            return AVERROR_INVALIDDATA;
        }
585
        for (i = 0; i < planes; i++)
586 587 588
            lag_decode_arith_plane(l, srcs[i],
                                   avctx->width, avctx->height,
                                   -l->rgb_stride, buf + offs[i],
589
                                   buf_size - offs[i]);
590
        dst = p->data[0];
591
        for (i = 0; i < planes; i++)
592 593 594 595 596 597 598 599 600
            srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height;
        for (j = 0; j < avctx->height; j++) {
            for (i = 0; i < avctx->width; i++) {
                uint8_t r, g, b, a;
                r = srcs[0][i];
                g = srcs[1][i];
                b = srcs[2][i];
                r += g;
                b += g;
601 602 603 604 605 606 607 608
                if (frametype == FRAME_ARITH_RGBA) {
                    a = srcs[3][i];
                    AV_WN32(dst + i * 4, MKBETAG(a, r, g, b));
                } else {
                    dst[i * 3 + 0] = r;
                    dst[i * 3 + 1] = g;
                    dst[i * 3 + 2] = b;
                }
609 610
            }
            dst += p->linesize[0];
611
            for (i = 0; i < planes; i++)
612 613 614
                srcs[i] += l->rgb_stride;
        }
        break;
615
    case FRAME_ARITH_YUY2:
616
        avctx->pix_fmt = AV_PIX_FMT_YUV422P;
617

618
        if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
            return -1;
        }

        if (offset_ry >= buf_size ||
            offset_gu >= buf_size ||
            offset_bv >= buf_size) {
            av_log(avctx, AV_LOG_ERROR,
                   "Invalid frame offsets\n");
            return AVERROR_INVALIDDATA;
        }

        lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
                               p->linesize[0], buf + offset_ry,
                               buf_size - offset_ry);
        lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
                               avctx->height, p->linesize[1],
636 637 638
                               buf + offset_gu, buf_size - offset_gu);
        lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
                               avctx->height, p->linesize[2],
639 640
                               buf + offset_bv, buf_size - offset_bv);
        break;
641
    case FRAME_ARITH_YV12:
642
        avctx->pix_fmt = AV_PIX_FMT_YUV420P;
643

644
        if (ff_thread_get_buffer(avctx, &frame, 0) < 0) {
645 646 647 648
            av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
            return -1;
        }

649 650 651 652 653 654 655 656
        if (offset_ry >= buf_size ||
            offset_gu >= buf_size ||
            offset_bv >= buf_size) {
            av_log(avctx, AV_LOG_ERROR,
                   "Invalid frame offsets\n");
            return AVERROR_INVALIDDATA;
        }

657 658
        lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height,
                               p->linesize[0], buf + offset_ry,
659
                               buf_size - offset_ry);
660 661
        lag_decode_arith_plane(l, p->data[2], avctx->width / 2,
                               avctx->height / 2, p->linesize[2],
662
                               buf + offset_gu, buf_size - offset_gu);
663 664
        lag_decode_arith_plane(l, p->data[1], avctx->width / 2,
                               avctx->height / 2, p->linesize[1],
665
                               buf + offset_bv, buf_size - offset_bv);
666 667 668
        break;
    default:
        av_log(avctx, AV_LOG_ERROR,
669
               "Unsupported Lagarith frame type: %#"PRIx8"\n", frametype);
670 671 672
        return -1;
    }

673
    *got_frame = 1;
674 675 676 677 678 679 680 681 682

    return buf_size;
}

static av_cold int lag_decode_init(AVCodecContext *avctx)
{
    LagarithContext *l = avctx->priv_data;
    l->avctx = avctx;

683
    ff_huffyuvdsp_init(&l->hdsp);
684 685 686 687 688 689 690 691

    return 0;
}

static av_cold int lag_decode_end(AVCodecContext *avctx)
{
    LagarithContext *l = avctx->priv_data;

692
    av_freep(&l->rgb_planes);
693 694 695 696

    return 0;
}

697
AVCodec ff_lagarith_decoder = {
698
    .name           = "lagarith",
699
    .long_name      = NULL_IF_CONFIG_SMALL("Lagarith lossless"),
700
    .type           = AVMEDIA_TYPE_VIDEO,
701
    .id             = AV_CODEC_ID_LAGARITH,
702 703 704 705
    .priv_data_size = sizeof(LagarithContext),
    .init           = lag_decode_init,
    .close          = lag_decode_end,
    .decode         = lag_decode_frame,
706
    .capabilities   = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
707
};