pca.c 4.74 KB
Newer Older
1
/*
2
 * principal component analysis (PCA)
3 4
 * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
 *
5 6 7
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
8 9
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13 14 15 16 17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
18 19
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 21 22
 */

/**
23
 * @file
24
 * principal component analysis (PCA)
25 26
 */

Michael Niedermayer's avatar
Michael Niedermayer committed
27
#include "common.h"
28 29
#include "pca.h"

30 31 32 33 34
typedef struct PCA{
    int count;
    int n;
    double *covariance;
    double *mean;
35
    double *z;
36 37
}PCA;

38 39
PCA *ff_pca_init(int n){
    PCA *pca;
40
    if(n<=0)
41
        return NULL;
42

43
    pca= av_mallocz(sizeof(*pca));
44 45 46
    if (!pca)
        return NULL;

47
    pca->n= n;
48
    pca->z = av_malloc_array(n, sizeof(*pca->z));
49
    pca->count=0;
50 51
    pca->covariance= av_calloc(n*n, sizeof(double));
    pca->mean= av_calloc(n, sizeof(double));
52

53 54 55 56 57
    if (!pca->z || !pca->covariance || !pca->mean) {
        ff_pca_free(pca);
        return NULL;
    }

58
    return pca;
59 60 61 62 63
}

void ff_pca_free(PCA *pca){
    av_freep(&pca->covariance);
    av_freep(&pca->mean);
64
    av_freep(&pca->z);
65
    av_free(pca);
66 67
}

68
void ff_pca_add(PCA *pca, const double *v){
69 70 71 72 73 74 75 76 77 78 79 80
    int i, j;
    const int n= pca->n;

    for(i=0; i<n; i++){
        pca->mean[i] += v[i];
        for(j=i; j<n; j++)
            pca->covariance[j + i*n] += v[i]*v[j];
    }
    pca->count++;
}

int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){
81 82
    int i, j, pass;
    int k=0;
83
    const int n= pca->n;
84
    double *z = pca->z;
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

    memset(eigenvector, 0, sizeof(double)*n*n);

    for(j=0; j<n; j++){
        pca->mean[j] /= pca->count;
        eigenvector[j + j*n] = 1.0;
        for(i=0; i<=j; i++){
            pca->covariance[j + i*n] /= pca->count;
            pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j];
            pca->covariance[i + j*n] = pca->covariance[j + i*n];
        }
        eigenvalue[j]= pca->covariance[j + j*n];
        z[j]= 0;
    }

    for(pass=0; pass < 50; pass++){
        double sum=0;

        for(i=0; i<n; i++)
            for(j=i+1; j<n; j++)
                sum += fabs(pca->covariance[j + i*n]);

        if(sum == 0){
            for(i=0; i<n; i++){
                double maxvalue= -1;
                for(j=i; j<n; j++){
                    if(eigenvalue[j] > maxvalue){
                        maxvalue= eigenvalue[j];
                        k= j;
                    }
                }
                eigenvalue[k]= eigenvalue[i];
                eigenvalue[i]= maxvalue;
                for(j=0; j<n; j++){
                    double tmp= eigenvector[k + j*n];
                    eigenvector[k + j*n]= eigenvector[i + j*n];
                    eigenvector[i + j*n]= tmp;
                }
            }
            return pass;
        }

        for(i=0; i<n; i++){
            for(j=i+1; j<n; j++){
                double covar= pca->covariance[j + i*n];
                double t,c,s,tau,theta, h;

                if(pass < 3 && fabs(covar) < sum / (5*n*n)) //FIXME why pass < 3
                    continue;
134
                if(fabs(covar) == 0.0) //FIXME should not be needed
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
                    continue;
                if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){
                    pca->covariance[j + i*n]=0.0;
                    continue;
                }

                h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]);
                theta=0.5*h/covar;
                t=1.0/(fabs(theta)+sqrt(1.0+theta*theta));
                if(theta < 0.0) t = -t;

                c=1.0/sqrt(1+t*t);
                s=t*c;
                tau=s/(1.0+c);
                z[i] -= t*covar;
                z[j] += t*covar;

152
#define ROTATE(a,i,j,k,l) {\
153 154 155
    double g=a[j + i*n];\
    double h=a[l + k*n];\
    a[j + i*n]=g-s*(h+g*tau);\
156
    a[l + k*n]=h+s*(g-h*tau); }
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
                for(k=0; k<n; k++) {
                    if(k!=i && k!=j){
                        ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j))
                    }
                    ROTATE(eigenvector,k,i,k,j)
                }
                pca->covariance[j + i*n]=0.0;
            }
        }
        for (i=0; i<n; i++) {
            eigenvalue[i] += z[i];
            z[i]=0.0;
        }
    }

    return -1;
}