huffyuvenc.c 37.9 KB
Newer Older
1
/*
2
 * Copyright (c) 2002-2014 Michael Niedermayer <michaelni@gmx.at>
3 4 5 6
 *
 * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
 * the algorithm used
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10 11 12 13
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15 16 17 18 19
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 23
 *
 * yuva, gray, 4:4:4, 4:1:1, 4:1:0 and >8 bit per sample support sponsored by NOA
24 25 26 27 28 29 30 31 32 33
 */

/**
 * @file
 * huffyuv encoder
 */

#include "avcodec.h"
#include "huffyuv.h"
#include "huffman.h"
34
#include "huffyuvencdsp.h"
35
#include "internal.h"
36
#include "lossless_videoencdsp.h"
37
#include "put_bits.h"
38
#include "libavutil/opt.h"
39
#include "libavutil/pixdesc.h"
40

41 42 43 44
static inline void diff_bytes(HYuvContext *s, uint8_t *dst,
                              const uint8_t *src0, const uint8_t *src1, int w)
{
    if (s->bps <= 8) {
45
        s->llvidencdsp.diff_bytes(dst, src0, src1, w);
46
    } else {
47
        s->hencdsp.diff_int16((uint16_t *)dst, (const uint16_t *)src0, (const uint16_t *)src1, s->n - 1, w);
48 49 50
    }
}

51
static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
52
                                      const uint8_t *src, int w, int left)
53 54
{
    int i;
55 56 57 58 59 60 61 62 63
    if (s->bps <= 8) {
        if (w < 32) {
            for (i = 0; i < w; i++) {
                const int temp = src[i];
                dst[i] = temp - left;
                left   = temp;
            }
            return left;
        } else {
64
            for (i = 0; i < 32; i++) {
65 66 67 68
                const int temp = src[i];
                dst[i] = temp - left;
                left   = temp;
            }
69
            s->llvidencdsp.diff_bytes(dst + 32, src + 32, src + 31, w - 32);
70
            return src[w-1];
71 72
        }
    } else {
73 74
        const uint16_t *src16 = (const uint16_t *)src;
        uint16_t       *dst16 = (      uint16_t *)dst;
75 76 77 78 79 80 81 82 83 84 85 86 87
        if (w < 32) {
            for (i = 0; i < w; i++) {
                const int temp = src16[i];
                dst16[i] = temp - left;
                left   = temp;
            }
            return left;
        } else {
            for (i = 0; i < 16; i++) {
                const int temp = src16[i];
                dst16[i] = temp - left;
                left   = temp;
            }
88
            s->hencdsp.diff_int16(dst16 + 16, src16 + 16, src16 + 15, s->n - 1, w - 16);
89
            return src16[w-1];
90 91 92 93 94
        }
    }
}

static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
95
                                             const uint8_t *src, int w,
96 97
                                             int *red, int *green, int *blue,
                                             int *alpha)
98 99
{
    int i;
100
    int r, g, b, a;
101 102 103
    r = *red;
    g = *green;
    b = *blue;
104
    a = *alpha;
105 106 107 108 109

    for (i = 0; i < FFMIN(w, 4); i++) {
        const int rt = src[i * 4 + R];
        const int gt = src[i * 4 + G];
        const int bt = src[i * 4 + B];
110
        const int at = src[i * 4 + A];
111 112 113
        dst[i * 4 + R] = rt - r;
        dst[i * 4 + G] = gt - g;
        dst[i * 4 + B] = bt - b;
114
        dst[i * 4 + A] = at - a;
115 116 117
        r = rt;
        g = gt;
        b = bt;
118
        a = at;
119 120
    }

121
    s->llvidencdsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
122 123 124 125

    *red   = src[(w - 1) * 4 + R];
    *green = src[(w - 1) * 4 + G];
    *blue  = src[(w - 1) * 4 + B];
126 127 128
    *alpha = src[(w - 1) * 4 + A];
}

129 130 131 132
static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst,
                                             uint8_t *src, int w,
                                             int *red, int *green, int *blue)
{
133
    int i;
134
    int r, g, b;
135 136 137
    r = *red;
    g = *green;
    b = *blue;
138 139 140 141 142 143 144
    for (i = 0; i < FFMIN(w, 16); i++) {
        const int rt = src[i * 3 + 0];
        const int gt = src[i * 3 + 1];
        const int bt = src[i * 3 + 2];
        dst[i * 3 + 0] = rt - r;
        dst[i * 3 + 1] = gt - g;
        dst[i * 3 + 2] = bt - b;
145 146 147 148 149
        r = rt;
        g = gt;
        b = bt;
    }

150
    s->llvidencdsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);
151

152 153 154
    *red   = src[(w - 1) * 3 + 0];
    *green = src[(w - 1) * 3 + 1];
    *blue  = src[(w - 1) * 3 + 2];
155 156
}

157 158 159
static void sub_median_prediction(HYuvContext *s, uint8_t *dst, const uint8_t *src1, const uint8_t *src2, int w, int *left, int *left_top)
{
    if (s->bps <= 8) {
160
        s->llvidencdsp.sub_median_pred(dst, src1, src2, w , left, left_top);
161
    } else {
162
        s->hencdsp.sub_hfyu_median_pred_int16((uint16_t *)dst, (const uint16_t *)src1, (const uint16_t *)src2, s->n - 1, w , left, left_top);
163 164 165
    }
}

166 167 168 169
static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
{
    int i;
    int index = 0;
170
    int n = s->vlc_n;
171

172
    for (i = 0; i < n;) {
173 174 175
        int val = len[i];
        int repeat = 0;

176
        for (; i < n && len[i] == val && repeat < 255; i++)
177 178
            repeat++;

179
        av_assert0(val < 32 && val >0 && repeat < 256 && repeat>0);
180
        if (repeat > 7) {
181 182 183 184 185 186 187 188 189 190
            buf[index++] = val;
            buf[index++] = repeat;
        } else {
            buf[index++] = val | (repeat << 5);
        }
    }

    return index;
}

191 192
static int store_huffman_tables(HYuvContext *s, uint8_t *buf)
{
193
    int i, ret;
194 195 196 197 198 199 200
    int size = 0;
    int count = 3;

    if (s->version > 2)
        count = 1 + s->alpha + 2*s->chroma;

    for (i = 0; i < count; i++) {
201
        if ((ret = ff_huff_gen_len_table(s->len[i], s->stats[i], s->vlc_n, 0)) < 0)
202
            return ret;
203

204
        if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i], s->vlc_n) < 0) {
205 206 207 208 209 210 211 212
            return -1;
        }

        size += store_table(s, s->len[i], buf + size);
    }
    return size;
}

213 214 215 216
static av_cold int encode_init(AVCodecContext *avctx)
{
    HYuvContext *s = avctx->priv_data;
    int i, j;
217
    int ret;
218
    const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(avctx->pix_fmt);
219 220

    ff_huffyuv_common_init(avctx);
221
    ff_huffyuvencdsp_init(&s->hencdsp, avctx);
222
    ff_llvidencdsp_init(&s->llvidencdsp);
223

224
    avctx->extradata = av_mallocz(3*MAX_N + 4);
225
    if (s->flags&AV_CODEC_FLAG_PASS1) {
226 227 228 229
#define STATS_OUT_SIZE 21*MAX_N*3 + 4
        avctx->stats_out = av_mallocz(STATS_OUT_SIZE); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
        if (!avctx->stats_out)
            return AVERROR(ENOMEM);
230
    }
231 232
    s->version = 2;

233
    if (!avctx->extradata)
234 235
        return AVERROR(ENOMEM);

236 237
#if FF_API_CODED_FRAME
FF_DISABLE_DEPRECATION_WARNINGS
238 239
    avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
    avctx->coded_frame->key_frame = 1;
240
FF_ENABLE_DEPRECATION_WARNINGS
241 242 243 244 245 246
#endif
#if FF_API_PRIVATE_OPT
FF_DISABLE_DEPRECATION_WARNINGS
    if (avctx->context_model == 1)
        s->context = avctx->context_model;
FF_ENABLE_DEPRECATION_WARNINGS
247
#endif
248

249
    s->bps = desc->comp[0].depth;
250 251 252 253 254 255 256
    s->yuv = !(desc->flags & AV_PIX_FMT_FLAG_RGB) && desc->nb_components >= 2;
    s->chroma = desc->nb_components > 2;
    s->alpha = !!(desc->flags & AV_PIX_FMT_FLAG_ALPHA);
    av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt,
                                     &s->chroma_h_shift,
                                     &s->chroma_v_shift);

257 258 259
    switch (avctx->pix_fmt) {
    case AV_PIX_FMT_YUV420P:
    case AV_PIX_FMT_YUV422P:
260
        if (s->width & 1) {
261
            av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
262 263 264
            return AVERROR(EINVAL);
        }
        s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
265
        break;
266 267 268 269
    case AV_PIX_FMT_YUV444P:
    case AV_PIX_FMT_YUV410P:
    case AV_PIX_FMT_YUV411P:
    case AV_PIX_FMT_YUV440P:
270
    case AV_PIX_FMT_GBRP:
271 272 273 274 275
    case AV_PIX_FMT_GBRP9:
    case AV_PIX_FMT_GBRP10:
    case AV_PIX_FMT_GBRP12:
    case AV_PIX_FMT_GBRP14:
    case AV_PIX_FMT_GBRP16:
276
    case AV_PIX_FMT_GRAY8:
277
    case AV_PIX_FMT_GRAY16:
278 279 280 281 282
    case AV_PIX_FMT_YUVA444P:
    case AV_PIX_FMT_YUVA420P:
    case AV_PIX_FMT_YUVA422P:
    case AV_PIX_FMT_GBRAP:
    case AV_PIX_FMT_GRAY8A:
283
    case AV_PIX_FMT_YUV420P9:
284
    case AV_PIX_FMT_YUV420P10:
285 286
    case AV_PIX_FMT_YUV420P12:
    case AV_PIX_FMT_YUV420P14:
287
    case AV_PIX_FMT_YUV420P16:
288 289 290 291
    case AV_PIX_FMT_YUV422P9:
    case AV_PIX_FMT_YUV422P10:
    case AV_PIX_FMT_YUV422P12:
    case AV_PIX_FMT_YUV422P14:
292
    case AV_PIX_FMT_YUV422P16:
293 294 295 296
    case AV_PIX_FMT_YUV444P9:
    case AV_PIX_FMT_YUV444P10:
    case AV_PIX_FMT_YUV444P12:
    case AV_PIX_FMT_YUV444P14:
297
    case AV_PIX_FMT_YUV444P16:
298 299
    case AV_PIX_FMT_YUVA420P9:
    case AV_PIX_FMT_YUVA420P10:
300
    case AV_PIX_FMT_YUVA420P16:
301 302
    case AV_PIX_FMT_YUVA422P9:
    case AV_PIX_FMT_YUVA422P10:
303
    case AV_PIX_FMT_YUVA422P16:
304 305
    case AV_PIX_FMT_YUVA444P9:
    case AV_PIX_FMT_YUVA444P10:
306
    case AV_PIX_FMT_YUVA444P16:
307 308
        s->version = 3;
        break;
309
    case AV_PIX_FMT_RGB32:
310 311 312
        s->bitstream_bpp = 32;
        break;
    case AV_PIX_FMT_RGB24:
313 314 315 316
        s->bitstream_bpp = 24;
        break;
    default:
        av_log(avctx, AV_LOG_ERROR, "format not supported\n");
317
        return AVERROR(EINVAL);
318
    }
319
    s->n = 1<<s->bps;
320
    s->vlc_n = FFMIN(s->n, MAX_VLC_N);
321

322
    avctx->bits_per_coded_sample = s->bitstream_bpp;
323
    s->decorrelate = s->bitstream_bpp >= 24 && !s->yuv && !(desc->flags & AV_PIX_FMT_FLAG_PLANAR);
324 325 326 327 328 329
#if FF_API_PRIVATE_OPT
FF_DISABLE_DEPRECATION_WARNINGS
    if (avctx->prediction_method)
        s->predictor = avctx->prediction_method;
FF_ENABLE_DEPRECATION_WARNINGS
#endif
330
    s->interlaced = avctx->flags & AV_CODEC_FLAG_INTERLACED_ME ? 1 : 0;
331
    if (s->context) {
332
        if (s->flags & (AV_CODEC_FLAG_PASS1 | AV_CODEC_FLAG_PASS2)) {
333 334 335
            av_log(avctx, AV_LOG_ERROR,
                   "context=1 is not compatible with "
                   "2 pass huffyuv encoding\n");
336
            return AVERROR(EINVAL);
337
        }
338
    }
339 340 341 342 343 344

    if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
        if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
            av_log(avctx, AV_LOG_ERROR,
                   "Error: YV12 is not supported by huffyuv; use "
                   "vcodec=ffvhuff or format=422p\n");
345
            return AVERROR(EINVAL);
346
        }
347 348
#if FF_API_PRIVATE_OPT
        if (s->context) {
349 350 351
            av_log(avctx, AV_LOG_ERROR,
                   "Error: per-frame huffman tables are not supported "
                   "by huffyuv; use vcodec=ffvhuff\n");
352
            return AVERROR(EINVAL);
353
        }
354 355 356 357 358 359
        if (s->version > 2) {
            av_log(avctx, AV_LOG_ERROR,
                   "Error: ver>2 is not supported "
                   "by huffyuv; use vcodec=ffvhuff\n");
            return AVERROR(EINVAL);
        }
360
#endif
361 362 363 364 365
        if (s->interlaced != ( s->height > 288 ))
            av_log(avctx, AV_LOG_INFO,
                   "using huffyuv 2.2.0 or newer interlacing flag\n");
    }

366 367
    if (s->version > 3 && avctx->strict_std_compliance > FF_COMPLIANCE_EXPERIMENTAL) {
        av_log(avctx, AV_LOG_ERROR, "Ver > 3 is under development, files encoded with it may not be decodable with future versions!!!\n"
368 369 370 371
               "Use vstrict=-2 / -strict -2 to use it anyway.\n");
        return AVERROR(EINVAL);
    }

372
    if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN && s->version <= 2) {
373 374
        av_log(avctx, AV_LOG_ERROR,
               "Error: RGB is incompatible with median predictor\n");
375
        return AVERROR(EINVAL);
376 377 378 379 380 381
    }

    ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
    ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
    if (s->context)
        ((uint8_t*)avctx->extradata)[2] |= 0x40;
382 383 384 385 386 387 388 389 390 391 392
    if (s->version < 3) {
        ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
        ((uint8_t*)avctx->extradata)[3] = 0;
    } else {
        ((uint8_t*)avctx->extradata)[1] = ((s->bps-1)<<4) | s->chroma_h_shift | (s->chroma_v_shift<<2);
        if (s->chroma)
            ((uint8_t*)avctx->extradata)[2] |= s->yuv ? 1 : 2;
        if (s->alpha)
            ((uint8_t*)avctx->extradata)[2] |= 4;
        ((uint8_t*)avctx->extradata)[3] = 1;
    }
393 394 395 396 397
    s->avctx->extradata_size = 4;

    if (avctx->stats_in) {
        char *p = avctx->stats_in;

398
        for (i = 0; i < 4; i++)
399
            for (j = 0; j < s->vlc_n; j++)
400 401 402
                s->stats[i][j] = 1;

        for (;;) {
403
            for (i = 0; i < 4; i++) {
404 405
                char *next;

406
                for (j = 0; j < s->vlc_n; j++) {
407 408 409 410 411 412 413 414
                    s->stats[i][j] += strtol(p, &next, 0);
                    if (next == p) return -1;
                    p = next;
                }
            }
            if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
        }
    } else {
415
        for (i = 0; i < 4; i++)
416 417
            for (j = 0; j < s->vlc_n; j++) {
                int d = FFMIN(j, s->vlc_n - j);
418

419
                s->stats[i][j] = 100000000 / (d*d + 1);
420 421 422
            }
    }

423 424 425 426
    ret = store_huffman_tables(s, s->avctx->extradata + s->avctx->extradata_size);
    if (ret < 0)
        return ret;
    s->avctx->extradata_size += ret;
427 428

    if (s->context) {
429
        for (i = 0; i < 4; i++) {
430
            int pels = s->width * s->height / (i ? 40 : 10);
431 432
            for (j = 0; j < s->vlc_n; j++) {
                int d = FFMIN(j, s->vlc_n - j);
433
                s->stats[i][j] = pels/(d*d + 1);
434 435 436
            }
        }
    } else {
437
        for (i = 0; i < 4; i++)
438
            for (j = 0; j < s->vlc_n; j++)
439 440 441
                s->stats[i][j]= 0;
    }

442 443 444 445
    if (ff_huffyuv_alloc_temp(s)) {
        ff_huffyuv_common_end(s);
        return AVERROR(ENOMEM);
    }
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470

    s->picture_number=0;

    return 0;
}
static int encode_422_bitstream(HYuvContext *s, int offset, int count)
{
    int i;
    const uint8_t *y = s->temp[0] + offset;
    const uint8_t *u = s->temp[1] + offset / 2;
    const uint8_t *v = s->temp[2] + offset / 2;

    if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
        av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
        return -1;
    }

#define LOAD4\
            int y0 = y[2 * i];\
            int y1 = y[2 * i + 1];\
            int u0 = u[i];\
            int v0 = v[i];

    count /= 2;

471
    if (s->flags & AV_CODEC_FLAG_PASS1) {
472 473 474 475 476 477 478 479
        for(i = 0; i < count; i++) {
            LOAD4;
            s->stats[0][y0]++;
            s->stats[1][u0]++;
            s->stats[0][y1]++;
            s->stats[2][v0]++;
        }
    }
480
    if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
        return 0;
    if (s->context) {
        for (i = 0; i < count; i++) {
            LOAD4;
            s->stats[0][y0]++;
            put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
            s->stats[1][u0]++;
            put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
            s->stats[0][y1]++;
            put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
            s->stats[2][v0]++;
            put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
        }
    } else {
        for(i = 0; i < count; i++) {
            LOAD4;
            put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
            put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
            put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
            put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
        }
    }
    return 0;
}

506
static int encode_plane_bitstream(HYuvContext *s, int width, int plane)
507
{
508
    int i, count = width/2;
509

510
    if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < count * s->bps / 2) {
511 512 513 514
        av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
        return -1;
    }

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
#define LOADEND\
            int y0 = s->temp[0][width-1];
#define LOADEND_14\
            int y0 = s->temp16[0][width-1] & mask;
#define LOADEND_16\
            int y0 = s->temp16[0][width-1];
#define STATEND\
            s->stats[plane][y0]++;
#define STATEND_16\
            s->stats[plane][y0>>2]++;
#define WRITEEND\
            put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);
#define WRITEEND_16\
            put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
            put_bits(&s->pb, 2, y0&3);

531 532 533
#define LOAD2\
            int y0 = s->temp[0][2 * i];\
            int y1 = s->temp[0][2 * i + 1];
534
#define LOAD2_14\
535 536
            int y0 = s->temp16[0][2 * i] & mask;\
            int y1 = s->temp16[0][2 * i + 1] & mask;
537 538 539
#define LOAD2_16\
            int y0 = s->temp16[0][2 * i];\
            int y1 = s->temp16[0][2 * i + 1];
540 541 542
#define STAT2\
            s->stats[plane][y0]++;\
            s->stats[plane][y1]++;
543 544 545
#define STAT2_16\
            s->stats[plane][y0>>2]++;\
            s->stats[plane][y1>>2]++;
546 547 548
#define WRITE2\
            put_bits(&s->pb, s->len[plane][y0], s->bits[plane][y0]);\
            put_bits(&s->pb, s->len[plane][y1], s->bits[plane][y1]);
549 550 551 552 553
#define WRITE2_16\
            put_bits(&s->pb, s->len[plane][y0>>2], s->bits[plane][y0>>2]);\
            put_bits(&s->pb, 2, y0&3);\
            put_bits(&s->pb, s->len[plane][y1>>2], s->bits[plane][y1>>2]);\
            put_bits(&s->pb, 2, y1&3);
554

555
    if (s->bps <= 8) {
556
    if (s->flags & AV_CODEC_FLAG_PASS1) {
557 558 559 560
        for (i = 0; i < count; i++) {
            LOAD2;
            STAT2;
        }
561 562 563 564
        if (width&1) {
            LOADEND;
            STATEND;
        }
565
    }
566
    if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
567 568 569 570 571 572 573 574
        return 0;

    if (s->context) {
        for (i = 0; i < count; i++) {
            LOAD2;
            STAT2;
            WRITE2;
        }
575 576 577 578 579
        if (width&1) {
            LOADEND;
            STATEND;
            WRITEEND;
        }
580 581 582 583 584
    } else {
        for (i = 0; i < count; i++) {
            LOAD2;
            WRITE2;
        }
585 586 587 588
        if (width&1) {
            LOADEND;
            WRITEEND;
        }
589
    }
590
    } else if (s->bps <= 14) {
591
        int mask = s->n - 1;
592
        if (s->flags & AV_CODEC_FLAG_PASS1) {
593
            for (i = 0; i < count; i++) {
594
                LOAD2_14;
595 596
                STAT2;
            }
597 598 599 600
            if (width&1) {
                LOADEND_14;
                STATEND;
            }
601
        }
602
        if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
603 604 605 606
            return 0;

        if (s->context) {
            for (i = 0; i < count; i++) {
607
                LOAD2_14;
608 609 610
                STAT2;
                WRITE2;
            }
611 612 613 614 615
            if (width&1) {
                LOADEND_14;
                STATEND;
                WRITEEND;
            }
616 617
        } else {
            for (i = 0; i < count; i++) {
618
                LOAD2_14;
619 620
                WRITE2;
            }
621 622 623 624
            if (width&1) {
                LOADEND_14;
                WRITEEND;
            }
625
        }
626
    } else {
627
        if (s->flags & AV_CODEC_FLAG_PASS1) {
628 629 630 631
            for (i = 0; i < count; i++) {
                LOAD2_16;
                STAT2_16;
            }
632 633 634 635
            if (width&1) {
                LOADEND_16;
                STATEND_16;
            }
636
        }
637
        if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
638 639 640 641 642 643 644 645
            return 0;

        if (s->context) {
            for (i = 0; i < count; i++) {
                LOAD2_16;
                STAT2_16;
                WRITE2_16;
            }
646 647 648 649 650
            if (width&1) {
                LOADEND_16;
                STATEND_16;
                WRITEEND_16;
            }
651 652 653 654 655
        } else {
            for (i = 0; i < count; i++) {
                LOAD2_16;
                WRITE2_16;
            }
656 657 658 659
            if (width&1) {
                LOADEND_16;
                WRITEEND_16;
            }
660
        }
661
    }
662 663 664 665 666 667
#undef LOAD2
#undef STAT2
#undef WRITE2
    return 0;
}

668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
static int encode_gray_bitstream(HYuvContext *s, int count)
{
    int i;

    if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
        av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
        return -1;
    }

#define LOAD2\
            int y0 = s->temp[0][2 * i];\
            int y1 = s->temp[0][2 * i + 1];
#define STAT2\
            s->stats[0][y0]++;\
            s->stats[0][y1]++;
#define WRITE2\
            put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
            put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);

    count /= 2;

689
    if (s->flags & AV_CODEC_FLAG_PASS1) {
690 691 692 693 694
        for (i = 0; i < count; i++) {
            LOAD2;
            STAT2;
        }
    }
695
    if (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
        return 0;

    if (s->context) {
        for (i = 0; i < count; i++) {
            LOAD2;
            STAT2;
            WRITE2;
        }
    } else {
        for (i = 0; i < count; i++) {
            LOAD2;
            WRITE2;
        }
    }
    return 0;
}

713
static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
714 715 716
{
    int i;

717 718
    if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) <
        4 * planes * count) {
719 720 721 722
        av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
        return -1;
    }

723 724
#define LOAD_GBRA                                                       \
    int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G];            \
725 726
    int b =(s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g) & 0xFF;\
    int r =(s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g) & 0xFF;\
727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
    int a = s->temp[0][planes * i + A];

#define STAT_BGRA                                                       \
    s->stats[0][b]++;                                                   \
    s->stats[1][g]++;                                                   \
    s->stats[2][r]++;                                                   \
    if (planes == 4)                                                    \
        s->stats[2][a]++;

#define WRITE_GBRA                                                      \
    put_bits(&s->pb, s->len[1][g], s->bits[1][g]);                      \
    put_bits(&s->pb, s->len[0][b], s->bits[0][b]);                      \
    put_bits(&s->pb, s->len[2][r], s->bits[2][r]);                      \
    if (planes == 4)                                                    \
        put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
742

743 744
    if ((s->flags & AV_CODEC_FLAG_PASS1) &&
        (s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) {
745
        for (i = 0; i < count; i++) {
746 747
            LOAD_GBRA;
            STAT_BGRA;
748
        }
749
    } else if (s->context || (s->flags & AV_CODEC_FLAG_PASS1)) {
750
        for (i = 0; i < count; i++) {
751 752 753
            LOAD_GBRA;
            STAT_BGRA;
            WRITE_GBRA;
754 755 756
        }
    } else {
        for (i = 0; i < count; i++) {
757 758
            LOAD_GBRA;
            WRITE_GBRA;
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
        }
    }
    return 0;
}

static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
                        const AVFrame *pict, int *got_packet)
{
    HYuvContext *s = avctx->priv_data;
    const int width = s->width;
    const int width2 = s->width>>1;
    const int height = s->height;
    const int fake_ystride = s->interlaced ? pict->linesize[0]*2  : pict->linesize[0];
    const int fake_ustride = s->interlaced ? pict->linesize[1]*2  : pict->linesize[1];
    const int fake_vstride = s->interlaced ? pict->linesize[2]*2  : pict->linesize[2];
774
    const AVFrame * const p = pict;
775 776
    int i, j, size = 0, ret;

777
    if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + AV_INPUT_BUFFER_MIN_SIZE, 0)) < 0)
778 779 780
        return ret;

    if (s->context) {
781 782 783
        size = store_huffman_tables(s, pkt->data);
        if (size < 0)
            return size;
784

785
        for (i = 0; i < 4; i++)
786
            for (j = 0; j < s->vlc_n; j++)
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
                s->stats[i][j] >>= 1;
    }

    init_put_bits(&s->pb, pkt->data + size, pkt->size - size);

    if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
        avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
        int lefty, leftu, leftv, y, cy;

        put_bits(&s->pb, 8, leftv = p->data[2][0]);
        put_bits(&s->pb, 8, lefty = p->data[0][1]);
        put_bits(&s->pb, 8, leftu = p->data[1][0]);
        put_bits(&s->pb, 8,         p->data[0][0]);

        lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
        leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
        leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);

        encode_422_bitstream(s, 2, width-2);

        if (s->predictor==MEDIAN) {
            int lefttopy, lefttopu, lefttopv;
            cy = y = 1;
            if (s->interlaced) {
                lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
                leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
                leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);

                encode_422_bitstream(s, 0, width);
                y++; cy++;
            }

            lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
            leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
            leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);

            encode_422_bitstream(s, 0, 4);

            lefttopy = p->data[0][3];
            lefttopu = p->data[1][1];
            lefttopv = p->data[2][1];
828 829 830
            s->llvidencdsp.sub_median_pred(s->temp[0], p->data[0] + 4, p->data[0] + fake_ystride + 4, width  - 4, &lefty, &lefttopy);
            s->llvidencdsp.sub_median_pred(s->temp[1], p->data[1] + 2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
            s->llvidencdsp.sub_median_pred(s->temp[2], p->data[2] + 2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
831 832 833 834 835 836 837 838 839
            encode_422_bitstream(s, 0, width - 4);
            y++; cy++;

            for (; y < height; y++,cy++) {
                uint8_t *ydst, *udst, *vdst;

                if (s->bitstream_bpp == 12) {
                    while (2 * cy > y) {
                        ydst = p->data[0] + p->linesize[0] * y;
840
                        s->llvidencdsp.sub_median_pred(s->temp[0], ydst - fake_ystride, ydst, width, &lefty, &lefttopy);
841 842 843 844 845 846 847 848 849
                        encode_gray_bitstream(s, width);
                        y++;
                    }
                    if (y >= height) break;
                }
                ydst = p->data[0] + p->linesize[0] * y;
                udst = p->data[1] + p->linesize[1] * cy;
                vdst = p->data[2] + p->linesize[2] * cy;

850 851 852
                s->llvidencdsp.sub_median_pred(s->temp[0], ydst - fake_ystride, ydst, width,  &lefty, &lefttopy);
                s->llvidencdsp.sub_median_pred(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
                s->llvidencdsp.sub_median_pred(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
853 854 855 856 857 858 859 860 861 862 863 864

                encode_422_bitstream(s, 0, width);
            }
        } else {
            for (cy = y = 1; y < height; y++, cy++) {
                uint8_t *ydst, *udst, *vdst;

                /* encode a luma only line & y++ */
                if (s->bitstream_bpp == 12) {
                    ydst = p->data[0] + p->linesize[0] * y;

                    if (s->predictor == PLANE && s->interlaced < y) {
865
                        s->llvidencdsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880

                        lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
                    } else {
                        lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
                    }
                    encode_gray_bitstream(s, width);
                    y++;
                    if (y >= height) break;
                }

                ydst = p->data[0] + p->linesize[0] * y;
                udst = p->data[1] + p->linesize[1] * cy;
                vdst = p->data[2] + p->linesize[2] * cy;

                if (s->predictor == PLANE && s->interlaced < cy) {
881 882 883
                    s->llvidencdsp.diff_bytes(s->temp[1],          ydst, ydst - fake_ystride, width);
                    s->llvidencdsp.diff_bytes(s->temp[2],          udst, udst - fake_ustride, width2);
                    s->llvidencdsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901

                    lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
                    leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
                    leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
                } else {
                    lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
                    leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
                    leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
                }

                encode_422_bitstream(s, 0, width);
            }
        }
    } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
        uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
        const int stride = -p->linesize[0];
        const int fake_stride = -fake_ystride;
        int y;
902
        int leftr, leftg, leftb, lefta;
903

904
        put_bits(&s->pb, 8, lefta = data[A]);
905 906 907 908
        put_bits(&s->pb, 8, leftr = data[R]);
        put_bits(&s->pb, 8, leftg = data[G]);
        put_bits(&s->pb, 8, leftb = data[B]);

909 910
        sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
                                  &leftr, &leftg, &leftb, &lefta);
911
        encode_bgra_bitstream(s, width - 1, 4);
912 913 914 915

        for (y = 1; y < s->height; y++) {
            uint8_t *dst = data + y*stride;
            if (s->predictor == PLANE && s->interlaced < y) {
916
                s->llvidencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
917 918
                sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
                                          &leftr, &leftg, &leftb, &lefta);
919
            } else {
920 921
                sub_left_prediction_bgr32(s, s->temp[0], dst, width,
                                          &leftr, &leftg, &leftb, &lefta);
922 923 924
            }
            encode_bgra_bitstream(s, width, 4);
        }
925 926
    } else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
        uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
927 928 929 930 931
        const int stride = -p->linesize[0];
        const int fake_stride = -fake_ystride;
        int y;
        int leftr, leftg, leftb;

932 933 934
        put_bits(&s->pb, 8, leftr = data[0]);
        put_bits(&s->pb, 8, leftg = data[1]);
        put_bits(&s->pb, 8, leftb = data[2]);
935 936
        put_bits(&s->pb, 8, 0);

937 938
        sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
                                  &leftr, &leftg, &leftb);
939 940
        encode_bgra_bitstream(s, width-1, 3);

941 942 943
        for (y = 1; y < s->height; y++) {
            uint8_t *dst = data + y * stride;
            if (s->predictor == PLANE && s->interlaced < y) {
944
                s->llvidencdsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
945
                                      width * 3);
946 947
                sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
                                          &leftr, &leftg, &leftb);
948
            } else {
949 950
                sub_left_prediction_rgb24(s, s->temp[0], dst, width,
                                          &leftr, &leftg, &leftb);
951
            }
952
            encode_bgra_bitstream(s, width, 3);
953
        }
954
    } else if (s->version > 2) {
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
        int plane;
        for (plane = 0; plane < 1 + 2*s->chroma + s->alpha; plane++) {
            int left, y;
            int w = width;
            int h = height;
            int fake_stride = fake_ystride;

            if (s->chroma && (plane == 1 || plane == 2)) {
                w >>= s->chroma_h_shift;
                h >>= s->chroma_v_shift;
                fake_stride = plane == 1 ? fake_ustride : fake_vstride;
            }

            left = sub_left_prediction(s, s->temp[0], p->data[plane], w , 0);

            encode_plane_bitstream(s, w, plane);

            if (s->predictor==MEDIAN) {
                int lefttop;
                y = 1;
                if (s->interlaced) {
                    left = sub_left_prediction(s, s->temp[0], p->data[plane] + p->linesize[plane], w , left);

                    encode_plane_bitstream(s, w, plane);
                    y++;
                }

                lefttop = p->data[plane][0];

                for (; y < h; y++) {
                    uint8_t *dst = p->data[plane] + p->linesize[plane] * y;

987
                    sub_median_prediction(s, s->temp[0], dst - fake_stride, dst, w , &left, &lefttop);
988 989 990 991 992 993 994 995

                    encode_plane_bitstream(s, w, plane);
                }
            } else {
                for (y = 1; y < h; y++) {
                    uint8_t *dst = p->data[plane] + p->linesize[plane] * y;

                    if (s->predictor == PLANE && s->interlaced < y) {
996
                        diff_bytes(s, s->temp[1], dst, dst - fake_stride, w);
997 998 999 1000 1001 1002 1003 1004 1005 1006

                        left = sub_left_prediction(s, s->temp[0], s->temp[1], w , left);
                    } else {
                        left = sub_left_prediction(s, s->temp[0], dst, w , left);
                    }

                    encode_plane_bitstream(s, w, plane);
                }
            }
        }
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    } else {
        av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
    }
    emms_c();

    size += (put_bits_count(&s->pb) + 31) / 8;
    put_bits(&s->pb, 16, 0);
    put_bits(&s->pb, 15, 0);
    size /= 4;

1017
    if ((s->flags & AV_CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
1018 1019
        int j;
        char *p = avctx->stats_out;
1020
        char *end = p + STATS_OUT_SIZE;
1021
        for (i = 0; i < 4; i++) {
1022
            for (j = 0; j < s->vlc_n; j++) {
1023 1024 1025 1026 1027 1028
                snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
                p += strlen(p);
                s->stats[i][j]= 0;
            }
            snprintf(p, end-p, "\n");
            p++;
1029 1030
            if (end <= p)
                return AVERROR(ENOMEM);
1031
        }
1032
    } else if (avctx->stats_out)
1033
        avctx->stats_out[0] = '\0';
1034
    if (!(s->avctx->flags2 & AV_CODEC_FLAG2_NO_OUTPUT)) {
1035
        flush_put_bits(&s->pb);
1036
        s->bdsp.bswap_buf((uint32_t *) pkt->data, (uint32_t *) pkt->data, size);
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
    }

    s->picture_number++;

    pkt->size   = size * 4;
    pkt->flags |= AV_PKT_FLAG_KEY;
    *got_packet = 1;

    return 0;
}

static av_cold int encode_end(AVCodecContext *avctx)
{
    HYuvContext *s = avctx->priv_data;

    ff_huffyuv_common_end(s);

    av_freep(&avctx->extradata);
    av_freep(&avctx->stats_out);

    return 0;
}

1060 1061 1062
#define OFFSET(x) offsetof(HYuvContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM

1063 1064 1065 1066
#define COMMON_OPTIONS \
    { "non_deterministic", "Allow multithreading for e.g. context=1 at the expense of determinism", \
      OFFSET(non_determ), AV_OPT_TYPE_BOOL, { .i64 = 1 }, \
      0, 1, VE }, \
1067 1068 1069 1070
    { "pred", "Prediction method", OFFSET(predictor), AV_OPT_TYPE_INT, { .i64 = LEFT }, LEFT, MEDIAN, VE, "pred" }, \
        { "left",   NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT },   INT_MIN, INT_MAX, VE, "pred" }, \
        { "plane",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = PLANE },  INT_MIN, INT_MAX, VE, "pred" }, \
        { "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, INT_MIN, INT_MAX, VE, "pred" }, \
1071 1072 1073 1074 1075 1076 1077 1078 1079

static const AVOption normal_options[] = {
    COMMON_OPTIONS
    { NULL },
};

static const AVOption ff_options[] = {
    COMMON_OPTIONS
    { "context", "Set per-frame huffman tables", OFFSET(context), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
1080 1081 1082 1083 1084 1085
    { NULL },
};

static const AVClass normal_class = {
    .class_name = "huffyuv",
    .item_name  = av_default_item_name,
1086
    .option     = normal_options,
1087 1088 1089 1090 1091 1092
    .version    = LIBAVUTIL_VERSION_INT,
};

static const AVClass ff_class = {
    .class_name = "ffvhuff",
    .item_name  = av_default_item_name,
1093
    .option     = ff_options,
1094 1095 1096
    .version    = LIBAVUTIL_VERSION_INT,
};

1097 1098
AVCodec ff_huffyuv_encoder = {
    .name           = "huffyuv",
1099
    .long_name      = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
1100 1101 1102 1103 1104 1105
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = AV_CODEC_ID_HUFFYUV,
    .priv_data_size = sizeof(HYuvContext),
    .init           = encode_init,
    .encode2        = encode_frame,
    .close          = encode_end,
1106
    .capabilities   = AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_INTRA_ONLY,
1107
    .priv_class     = &normal_class,
1108
    .pix_fmts       = (const enum AVPixelFormat[]){
1109 1110
        AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
        AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
1111
    },
1112 1113
    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE |
                      FF_CODEC_CAP_INIT_CLEANUP,
1114 1115 1116 1117 1118
};

#if CONFIG_FFVHUFF_ENCODER
AVCodec ff_ffvhuff_encoder = {
    .name           = "ffvhuff",
1119
    .long_name      = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
1120 1121 1122 1123 1124 1125
    .type           = AVMEDIA_TYPE_VIDEO,
    .id             = AV_CODEC_ID_FFVHUFF,
    .priv_data_size = sizeof(HYuvContext),
    .init           = encode_init,
    .encode2        = encode_frame,
    .close          = encode_end,
1126
    .capabilities   = AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_INTRA_ONLY,
1127
    .priv_class     = &ff_class,
1128
    .pix_fmts       = (const enum AVPixelFormat[]){
1129 1130
        AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV411P,
        AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P,
1131
        AV_PIX_FMT_GBRP,
1132
        AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14,
1133
        AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY16,
1134 1135 1136
        AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
        AV_PIX_FMT_GBRAP,
        AV_PIX_FMT_GRAY8A,
1137 1138 1139 1140 1141 1142
        AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16,
        AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV422P16,
        AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16,
        AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA420P16,
        AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA422P16,
        AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P16,
1143
        AV_PIX_FMT_RGB24,
1144
        AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
1145
    },
1146 1147
    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE |
                      FF_CODEC_CAP_INIT_CLEANUP,
1148 1149
};
#endif