dcaenc.c 18.5 KB
Newer Older
Alexander E. Patrakov's avatar
Alexander E. Patrakov committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
/*
 * DCA encoder
 * Copyright (C) 2008 Alexander E. Patrakov
 *               2010 Benjamin Larsson
 *               2011 Xiang Wang
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/common.h"
#include "libavutil/avassert.h"
#include "libavutil/audioconvert.h"
#include "avcodec.h"
#include "get_bits.h"
#include "put_bits.h"
#include "dcaenc.h"
#include "dcadata.h"

#undef NDEBUG

#define MAX_CHANNELS 6
#define DCA_SUBBANDS_32 32
#define DCA_MAX_FRAME_SIZE 16383
#define DCA_HEADER_SIZE 13

#define DCA_SUBBANDS 32 ///< Subband activity count
#define QUANTIZER_BITS 16
#define SUBFRAMES 1
#define SUBSUBFRAMES 4
#define PCM_SAMPLES (SUBFRAMES*SUBSUBFRAMES*8)
#define LFE_BITS 8
#define LFE_INTERPOLATION 64
#define LFE_PRESENT 2
#define LFE_MISSING 0

static const int8_t dca_lfe_index[] = {
    1,2,2,2,2,3,2,3,2,3,2,3,1,3,2,3
};

static const int8_t dca_channel_reorder_lfe[][9] = {
    { 0, -1, -1, -1, -1, -1, -1, -1, -1 },
    { 0,  1, -1, -1, -1, -1, -1, -1, -1 },
    { 0,  1, -1, -1, -1, -1, -1, -1, -1 },
    { 0,  1, -1, -1, -1, -1, -1, -1, -1 },
    { 0,  1, -1, -1, -1, -1, -1, -1, -1 },
    { 1,  2,  0, -1, -1, -1, -1, -1, -1 },
    { 0,  1, -1,  2, -1, -1, -1, -1, -1 },
    { 1,  2,  0, -1,  3, -1, -1, -1, -1 },
    { 0,  1, -1,  2,  3, -1, -1, -1, -1 },
    { 1,  2,  0, -1,  3,  4, -1, -1, -1 },
    { 2,  3, -1,  0,  1,  4,  5, -1, -1 },
    { 1,  2,  0, -1,  3,  4,  5, -1, -1 },
    { 0, -1,  4,  5,  2,  3,  1, -1, -1 },
    { 3,  4,  1, -1,  0,  2,  5,  6, -1 },
    { 2,  3, -1,  5,  7,  0,  1,  4,  6 },
    { 3,  4,  1, -1,  0,  2,  5,  7,  6 },
};

static const int8_t dca_channel_reorder_nolfe[][9] = {
    { 0, -1, -1, -1, -1, -1, -1, -1, -1 },
    { 0,  1, -1, -1, -1, -1, -1, -1, -1 },
    { 0,  1, -1, -1, -1, -1, -1, -1, -1 },
    { 0,  1, -1, -1, -1, -1, -1, -1, -1 },
    { 0,  1, -1, -1, -1, -1, -1, -1, -1 },
    { 1,  2,  0, -1, -1, -1, -1, -1, -1 },
    { 0,  1,  2, -1, -1, -1, -1, -1, -1 },
    { 1,  2,  0,  3, -1, -1, -1, -1, -1 },
    { 0,  1,  2,  3, -1, -1, -1, -1, -1 },
    { 1,  2,  0,  3,  4, -1, -1, -1, -1 },
    { 2,  3,  0,  1,  4,  5, -1, -1, -1 },
    { 1,  2,  0,  3,  4,  5, -1, -1, -1 },
    { 0,  4,  5,  2,  3,  1, -1, -1, -1 },
    { 3,  4,  1,  0,  2,  5,  6, -1, -1 },
    { 2,  3,  5,  7,  0,  1,  4,  6, -1 },
    { 3,  4,  1,  0,  2,  5,  7,  6, -1 },
};

typedef struct {
    PutBitContext pb;
    int32_t history[MAX_CHANNELS][512]; /* This is a circular buffer */
    int start[MAX_CHANNELS];
    int frame_size;
    int prim_channels;
    int lfe_channel;
    int sample_rate_code;
    int scale_factor[MAX_CHANNELS][DCA_SUBBANDS_32];
    int lfe_scale_factor;
    int lfe_data[SUBFRAMES*SUBSUBFRAMES*4];

    int a_mode;                         ///< audio channels arrangement
    int num_channel;
    int lfe_state;
    int lfe_offset;
    const int8_t *channel_order_tab;    ///< channel reordering table, lfe and non lfe

    int32_t pcm[FFMAX(LFE_INTERPOLATION, DCA_SUBBANDS_32)];
    int32_t subband[PCM_SAMPLES][MAX_CHANNELS][DCA_SUBBANDS_32]; /* [sample][channel][subband] */
} DCAContext;

static int32_t cos_table[128];

static inline int32_t mul32(int32_t a, int32_t b)
{
    int64_t r = (int64_t) a * b;
    /* round the result before truncating - improves accuracy */
    return (r + 0x80000000) >> 32;
}

/* Integer version of the cosine modulated Pseudo QMF */

static void qmf_init(void)
{
    int i;
    int32_t c[17], s[17];
    s[0] = 0;           /* sin(index * PI / 64) * 0x7fffffff */
    c[0] = 0x7fffffff;  /* cos(index * PI / 64) * 0x7fffffff */

    for (i = 1; i <= 16; i++) {
        s[i] = 2 * (mul32(c[i - 1], 105372028)  + mul32(s[i - 1], 2144896908));
        c[i] = 2 * (mul32(c[i - 1], 2144896908) - mul32(s[i - 1], 105372028));
    }

    for (i = 0; i < 16; i++) {
        cos_table[i      ]  =  c[i]      >> 3; /* avoid output overflow */
        cos_table[i +  16]  =  s[16 - i] >> 3;
        cos_table[i +  32]  = -s[i]      >> 3;
        cos_table[i +  48]  = -c[16 - i] >> 3;
        cos_table[i +  64]  = -c[i]      >> 3;
        cos_table[i +  80]  = -s[16 - i] >> 3;
        cos_table[i +  96]  =  s[i]      >> 3;
        cos_table[i + 112]  =  c[16 - i] >> 3;
    }
}

static int32_t band_delta_factor(int band, int sample_num)
{
    int index = band * (2 * sample_num + 1);
    if (band == 0)
        return 0x07ffffff;
    else
        return cos_table[index & 127];
}

static void add_new_samples(DCAContext *c, const int32_t *in,
                            int count, int channel)
{
    int i;

    /* Place new samples into the history buffer */
    for (i = 0; i < count; i++) {
        c->history[channel][c->start[channel] + i] = in[i];
        av_assert0(c->start[channel] + i < 512);
    }
    c->start[channel] += count;
    if (c->start[channel] == 512)
        c->start[channel] = 0;
    av_assert0(c->start[channel] < 512);
}

static void qmf_decompose(DCAContext *c, int32_t in[32], int32_t out[32],
                          int channel)
{
    int band, i, j, k;
    int32_t resp;
    int32_t accum[DCA_SUBBANDS_32] = {0};

    add_new_samples(c, in, DCA_SUBBANDS_32, channel);

    /* Calculate the dot product of the signal with the (possibly inverted)
       reference decoder's response to this vector:
       (0.0, 0.0, ..., 0.0, -1.0, 1.0, 0.0, ..., 0.0)
       so that -1.0 cancels 1.0 from the previous step */

    for (k = 48, j = 0, i = c->start[channel]; i < 512; k++, j++, i++)
        accum[(k & 32) ? (31 - (k & 31)) : (k & 31)] += mul32(c->history[channel][i], UnQMF[j]);
    for (i = 0; i < c->start[channel]; k++, j++, i++)
        accum[(k & 32) ? (31 - (k & 31)) : (k & 31)] += mul32(c->history[channel][i], UnQMF[j]);

    resp = 0;
    /* TODO: implement FFT instead of this naive calculation */
    for (band = 0; band < DCA_SUBBANDS_32; band++) {
        for (j = 0; j < 32; j++)
            resp += mul32(accum[j], band_delta_factor(band, j));

        out[band] = (band & 2) ? (-resp) : resp;
    }
}

static int32_t lfe_fir_64i[512];
static int lfe_downsample(DCAContext *c, int32_t in[LFE_INTERPOLATION])
{
    int i, j;
    int channel = c->prim_channels;
    int32_t accum = 0;

    add_new_samples(c, in, LFE_INTERPOLATION, channel);
    for (i = c->start[channel], j = 0; i < 512; i++, j++)
        accum += mul32(c->history[channel][i], lfe_fir_64i[j]);
    for (i = 0; i < c->start[channel]; i++, j++)
        accum += mul32(c->history[channel][i], lfe_fir_64i[j]);
    return accum;
}

static void init_lfe_fir(void)
{
    static int initialized = 0;
    int i;
    if (initialized)
        return;

    for (i = 0; i < 512; i++)
        lfe_fir_64i[i] = lfe_fir_64[i] * (1 << 25); //float -> int32_t
    initialized = 1;
}

static void put_frame_header(DCAContext *c)
{
    /* SYNC */
    put_bits(&c->pb, 16, 0x7ffe);
    put_bits(&c->pb, 16, 0x8001);

    /* Frame type: normal */
    put_bits(&c->pb, 1, 1);

    /* Deficit sample count: none */
    put_bits(&c->pb, 5, 31);

    /* CRC is not present */
    put_bits(&c->pb, 1, 0);

    /* Number of PCM sample blocks */
    put_bits(&c->pb, 7, PCM_SAMPLES-1);

    /* Primary frame byte size */
    put_bits(&c->pb, 14, c->frame_size-1);

    /* Audio channel arrangement: L + R (stereo) */
    put_bits(&c->pb, 6, c->num_channel);

    /* Core audio sampling frequency */
    put_bits(&c->pb, 4, c->sample_rate_code);

    /* Transmission bit rate: 1411.2 kbps */
    put_bits(&c->pb, 5, 0x16); /* FIXME: magic number */

    /* Embedded down mix: disabled */
    put_bits(&c->pb, 1, 0);

    /* Embedded dynamic range flag: not present */
    put_bits(&c->pb, 1, 0);

    /* Embedded time stamp flag: not present */
    put_bits(&c->pb, 1, 0);

    /* Auxiliary data flag: not present */
    put_bits(&c->pb, 1, 0);

    /* HDCD source: no */
    put_bits(&c->pb, 1, 0);

    /* Extension audio ID: N/A */
    put_bits(&c->pb, 3, 0);

    /* Extended audio data: not present */
    put_bits(&c->pb, 1, 0);

    /* Audio sync word insertion flag: after each sub-frame */
    put_bits(&c->pb, 1, 0);

    /* Low frequency effects flag: not present or interpolation factor=64 */
    put_bits(&c->pb, 2, c->lfe_state);

    /* Predictor history switch flag: on */
    put_bits(&c->pb, 1, 1);

    /* No CRC */
    /* Multirate interpolator switch: non-perfect reconstruction */
    put_bits(&c->pb, 1, 0);

    /* Encoder software revision: 7 */
    put_bits(&c->pb, 4, 7);

    /* Copy history: 0 */
    put_bits(&c->pb, 2, 0);

    /* Source PCM resolution: 16 bits, not DTS ES */
    put_bits(&c->pb, 3, 0);

    /* Front sum/difference coding: no */
    put_bits(&c->pb, 1, 0);

    /* Surrounds sum/difference coding: no */
    put_bits(&c->pb, 1, 0);

    /* Dialog normalization: 0 dB */
    put_bits(&c->pb, 4, 0);
}

static void put_primary_audio_header(DCAContext *c)
{
    static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
    static const int thr[11]    = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };

    int ch, i;
    /* Number of subframes */
    put_bits(&c->pb, 4, SUBFRAMES - 1);

    /* Number of primary audio channels */
    put_bits(&c->pb, 3, c->prim_channels - 1);

    /* Subband activity count */
    for (ch = 0; ch < c->prim_channels; ch++)
        put_bits(&c->pb, 5, DCA_SUBBANDS - 2);

    /* High frequency VQ start subband */
    for (ch = 0; ch < c->prim_channels; ch++)
        put_bits(&c->pb, 5, DCA_SUBBANDS - 1);

    /* Joint intensity coding index: 0, 0 */
    for (ch = 0; ch < c->prim_channels; ch++)
        put_bits(&c->pb, 3, 0);

    /* Transient mode codebook: A4, A4 (arbitrary) */
    for (ch = 0; ch < c->prim_channels; ch++)
        put_bits(&c->pb, 2, 0);

    /* Scale factor code book: 7 bit linear, 7-bit sqrt table (for each channel) */
    for (ch = 0; ch < c->prim_channels; ch++)
        put_bits(&c->pb, 3, 6);

    /* Bit allocation quantizer select: linear 5-bit */
    for (ch = 0; ch < c->prim_channels; ch++)
        put_bits(&c->pb, 3, 6);

    /* Quantization index codebook select: dummy data
       to avoid transmission of scale factor adjustment */

    for (i = 1; i < 11; i++)
        for (ch = 0; ch < c->prim_channels; ch++)
            put_bits(&c->pb, bitlen[i], thr[i]);

    /* Scale factor adjustment index: not transmitted */
}

/**
 * 8-23 bits quantization
 * @param sample
 * @param bits
 */
static inline uint32_t quantize(int32_t sample, int bits)
{
    av_assert0(sample <    1 << (bits - 1));
    av_assert0(sample >= -(1 << (bits - 1)));
368
    return sample & ((1 << bits) - 1);
Alexander E. Patrakov's avatar
Alexander E. Patrakov committed
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
}

static inline int find_scale_factor7(int64_t max_value, int bits)
{
    int i = 0, j = 128, q;
    max_value = ((max_value << 15) / lossy_quant[bits + 3]) >> (bits - 1);
    while (i < j) {
        q = (i + j) >> 1;
        if (max_value < scale_factor_quant7[q])
            j = q;
        else
            i = q + 1;
    }
    av_assert1(i < 128);
    return i;
}

static inline void put_sample7(DCAContext *c, int64_t sample, int bits,
                               int scale_factor)
{
    sample = (sample << 15) / ((int64_t) lossy_quant[bits + 3] * scale_factor_quant7[scale_factor]);
    put_bits(&c->pb, bits, quantize((int) sample, bits));
}

static void put_subframe(DCAContext *c,
                         int32_t subband_data[8 * SUBSUBFRAMES][MAX_CHANNELS][32],
                         int subframe)
{
    int i, sub, ss, ch, max_value;
    int32_t *lfe_data = c->lfe_data + 4 * SUBSUBFRAMES * subframe;

    /* Subsubframes count */
    put_bits(&c->pb, 2, SUBSUBFRAMES -1);

    /* Partial subsubframe sample count: dummy */
    put_bits(&c->pb, 3, 0);

    /* Prediction mode: no ADPCM, in each channel and subband */
    for (ch = 0; ch < c->prim_channels; ch++)
        for (sub = 0; sub < DCA_SUBBANDS; sub++)
            put_bits(&c->pb, 1, 0);

    /* Prediction VQ addres: not transmitted */
    /* Bit allocation index */
    for (ch = 0; ch < c->prim_channels; ch++)
        for (sub = 0; sub < DCA_SUBBANDS; sub++)
            put_bits(&c->pb, 5, QUANTIZER_BITS+3);

    if (SUBSUBFRAMES > 1) {
        /* Transition mode: none for each channel and subband */
        for (ch = 0; ch < c->prim_channels; ch++)
            for (sub = 0; sub < DCA_SUBBANDS; sub++)
                put_bits(&c->pb, 1, 0); /* codebook A4 */
    }

    /* Determine scale_factor */
    for (ch = 0; ch < c->prim_channels; ch++)
        for (sub = 0; sub < DCA_SUBBANDS; sub++) {
            max_value = 0;
            for (i = 0; i < 8 * SUBSUBFRAMES; i++)
                max_value = FFMAX(max_value, FFABS(subband_data[i][ch][sub]));
            c->scale_factor[ch][sub] = find_scale_factor7(max_value, QUANTIZER_BITS);
        }

    if (c->lfe_channel) {
        max_value = 0;
        for (i = 0; i < 4 * SUBSUBFRAMES; i++)
            max_value = FFMAX(max_value, FFABS(lfe_data[i]));
        c->lfe_scale_factor = find_scale_factor7(max_value, LFE_BITS);
    }

    /* Scale factors: the same for each channel and subband,
       encoded according to Table D.1.2 */
    for (ch = 0; ch < c->prim_channels; ch++)
        for (sub = 0; sub < DCA_SUBBANDS; sub++)
            put_bits(&c->pb, 7, c->scale_factor[ch][sub]);

    /* Joint subband scale factor codebook select: not transmitted */
    /* Scale factors for joint subband coding: not transmitted */
    /* Stereo down-mix coefficients: not transmitted */
    /* Dynamic range coefficient: not transmitted */
    /* Stde information CRC check word: not transmitted */
    /* VQ encoded high frequency subbands: not transmitted */

    /* LFE data */
    if (c->lfe_channel) {
        for (i = 0; i < 4 * SUBSUBFRAMES; i++)
            put_sample7(c, lfe_data[i], LFE_BITS, c->lfe_scale_factor);
        put_bits(&c->pb, 8, c->lfe_scale_factor);
    }

    /* Audio data (subsubframes) */

    for (ss = 0; ss < SUBSUBFRAMES ; ss++)
        for (ch = 0; ch < c->prim_channels; ch++)
            for (sub = 0; sub < DCA_SUBBANDS; sub++)
                for (i = 0; i < 8; i++)
                    put_sample7(c, subband_data[ss * 8 + i][ch][sub], QUANTIZER_BITS, c->scale_factor[ch][sub]);

    /* DSYNC */
    put_bits(&c->pb, 16, 0xffff);
}

static void put_frame(DCAContext *c,
                      int32_t subband_data[PCM_SAMPLES][MAX_CHANNELS][32],
                      uint8_t *frame)
{
    int i;
    init_put_bits(&c->pb, frame + DCA_HEADER_SIZE, DCA_MAX_FRAME_SIZE-DCA_HEADER_SIZE);

    put_primary_audio_header(c);
    for (i = 0; i < SUBFRAMES; i++)
        put_subframe(c, &subband_data[SUBSUBFRAMES * 8 * i], i);

    flush_put_bits(&c->pb);
    c->frame_size = (put_bits_count(&c->pb) >> 3) + DCA_HEADER_SIZE;

    init_put_bits(&c->pb, frame, DCA_HEADER_SIZE);
    put_frame_header(c);
    flush_put_bits(&c->pb);
}

static int encode_frame(AVCodecContext *avctx, uint8_t *frame,
                        int buf_size, void *data)
{
    int i, k, channel;
    DCAContext *c = avctx->priv_data;
    int16_t *samples = data;
    int real_channel = 0;

    for (i = 0; i < PCM_SAMPLES; i ++) { /* i is the decimated sample number */
        for (channel = 0; channel < c->prim_channels + 1; channel++) {
            /* Get 32 PCM samples */
            for (k = 0; k < 32; k++) { /* k is the sample number in a 32-sample block */
                c->pcm[k] = samples[avctx->channels * (32 * i + k) + channel] << 16;
            }
            /* Put subband samples into the proper place */
            real_channel = c->channel_order_tab[channel];
            if (real_channel >= 0) {
                qmf_decompose(c, c->pcm, &c->subband[i][real_channel][0], real_channel);
            }
        }
    }

    if (c->lfe_channel) {
        for (i = 0; i < PCM_SAMPLES / 2; i++) {
            for (k = 0; k < LFE_INTERPOLATION; k++) /* k is the sample number in a 32-sample block */
                c->pcm[k] = samples[avctx->channels * (LFE_INTERPOLATION*i+k) + c->lfe_offset] << 16;
            c->lfe_data[i] = lfe_downsample(c, c->pcm);
        }
    }

    put_frame(c, c->subband, frame);

    return c->frame_size;
}

static int encode_init(AVCodecContext *avctx)
{
    DCAContext *c = avctx->priv_data;
    int i;

    c->prim_channels = avctx->channels;
    c->lfe_channel   = (avctx->channels == 3 || avctx->channels == 6);

    switch (avctx->channel_layout) {
    case AV_CH_LAYOUT_STEREO:       c->a_mode = 2; c->num_channel = 2; break;
    case AV_CH_LAYOUT_5POINT0:      c->a_mode = 9; c->num_channel = 9; break;
    case AV_CH_LAYOUT_5POINT1:      c->a_mode = 9; c->num_channel = 9; break;
    case AV_CH_LAYOUT_5POINT0_BACK: c->a_mode = 9; c->num_channel = 9; break;
    case AV_CH_LAYOUT_5POINT1_BACK: c->a_mode = 9; c->num_channel = 9; break;
    default:
    av_log(avctx, AV_LOG_ERROR,
           "Only stereo, 5.0, 5.1 channel layouts supported at the moment!\n");
    return AVERROR_PATCHWELCOME;
    }

    if (c->lfe_channel) {
        init_lfe_fir();
        c->prim_channels--;
        c->channel_order_tab = dca_channel_reorder_lfe[c->a_mode];
        c->lfe_state         = LFE_PRESENT;
        c->lfe_offset        = dca_lfe_index[c->a_mode];
    } else {
        c->channel_order_tab = dca_channel_reorder_nolfe[c->a_mode];
        c->lfe_state         = LFE_MISSING;
    }

    for (i = 0; i < 16; i++) {
        if (dca_sample_rates[i] && (dca_sample_rates[i] == avctx->sample_rate))
            break;
    }
    if (i == 16) {
        av_log(avctx, AV_LOG_ERROR, "Sample rate %iHz not supported, only ", avctx->sample_rate);
        for (i = 0; i < 16; i++)
            av_log(avctx, AV_LOG_ERROR, "%d, ", dca_sample_rates[i]);
        av_log(avctx, AV_LOG_ERROR, "supported.\n");
        return -1;
    }
    c->sample_rate_code = i;

    avctx->frame_size = 32 * PCM_SAMPLES;

    if (!cos_table[127])
        qmf_init();
    return 0;
}

AVCodec ff_dca_encoder = {
    .name           = "dca",
    .type           = AVMEDIA_TYPE_AUDIO,
    .id             = CODEC_ID_DTS,
    .priv_data_size = sizeof(DCAContext),
    .init           = encode_init,
    .encode         = encode_frame,
    .capabilities   = CODEC_CAP_EXPERIMENTAL,
    .sample_fmts    = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE},
586
    .long_name      = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
Alexander E. Patrakov's avatar
Alexander E. Patrakov committed
587
};