proresdec2.c 22.6 KB
Newer Older
1 2 3 4 5 6 7
/*
 * Copyright (c) 2010-2011 Maxim Poliakovski
 * Copyright (c) 2010-2011 Elvis Presley
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
8 9 10
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
11 12 13 14
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18 19 20 21 22
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
23
 * @file
Michael Niedermayer's avatar
Michael Niedermayer committed
24
 * Known FOURCCs: 'apch' (HQ), 'apcn' (SD), 'apcs' (LT), 'acpo' (Proxy), 'ap4h' (4444)
25 26 27 28
 */

//#define DEBUG

29
#define LONG_BITSTREAM_READER
30

31
#include "libavutil/internal.h"
32 33
#include "avcodec.h"
#include "get_bits.h"
34
#include "idctdsp.h"
35
#include "internal.h"
36
#include "simple_idct.h"
37
#include "proresdec.h"
38
#include "proresdata.h"
39 40 41 42 43 44 45 46 47 48 49

static void permute(uint8_t *dst, const uint8_t *src, const uint8_t permutation[64])
{
    int i;
    for (i = 0; i < 64; i++)
        dst[i] = permutation[src[i]];
}

static av_cold int decode_init(AVCodecContext *avctx)
{
    ProresContext *ctx = avctx->priv_data;
50
    uint8_t idct_permutation[64];
51 52 53

    avctx->bits_per_raw_sample = 10;

54
    ff_blockdsp_init(&ctx->bdsp, avctx);
55
    ff_proresdsp_init(&ctx->prodsp, avctx);
56

57 58 59
    ff_init_scantable_permutation(idct_permutation,
                                  ctx->prodsp.idct_permutation_type);

60 61
    permute(ctx->progressive_scan, ff_prores_progressive_scan, idct_permutation);
    permute(ctx->interlaced_scan, ff_prores_interlaced_scan, idct_permutation);
62 63 64 65 66 67 68 69 70 71 72 73

    return 0;
}

static int decode_frame_header(ProresContext *ctx, const uint8_t *buf,
                               const int data_size, AVCodecContext *avctx)
{
    int hdr_size, width, height, flags;
    int version;
    const uint8_t *ptr;

    hdr_size = AV_RB16(buf);
74
    ff_dlog(avctx, "header size %d\n", hdr_size);
75 76
    if (hdr_size > data_size) {
        av_log(avctx, AV_LOG_ERROR, "error, wrong header size\n");
77
        return AVERROR_INVALIDDATA;
78 79 80
    }

    version = AV_RB16(buf + 2);
81
    ff_dlog(avctx, "%.4s version %d\n", buf+4, version);
82 83
    if (version > 1) {
        av_log(avctx, AV_LOG_ERROR, "unsupported version: %d\n", version);
84
        return AVERROR_PATCHWELCOME;
85 86 87 88 89 90 91
    }

    width  = AV_RB16(buf + 8);
    height = AV_RB16(buf + 10);
    if (width != avctx->width || height != avctx->height) {
        av_log(avctx, AV_LOG_ERROR, "picture resolution change: %dx%d -> %dx%d\n",
               avctx->width, avctx->height, width, height);
92
        return AVERROR_PATCHWELCOME;
93 94 95
    }

    ctx->frame_type = (buf[12] >> 2) & 3;
96 97 98 99 100 101
    ctx->alpha_info = buf[17] & 0xf;

    if (ctx->alpha_info > 2) {
        av_log(avctx, AV_LOG_ERROR, "Invalid alpha mode %d\n", ctx->alpha_info);
        return AVERROR_INVALIDDATA;
    }
102
    if (avctx->skip_alpha) ctx->alpha_info = 0;
103

104
    ff_dlog(avctx, "frame type %d\n", ctx->frame_type);
105 106 107 108 109

    if (ctx->frame_type == 0) {
        ctx->scan = ctx->progressive_scan; // permuted
    } else {
        ctx->scan = ctx->interlaced_scan; // permuted
110 111
        ctx->frame->interlaced_frame = 1;
        ctx->frame->top_field_first = ctx->frame_type == 1;
112 113
    }

114 115 116 117 118
    if (ctx->alpha_info) {
        avctx->pix_fmt = (buf[12] & 0xC0) == 0xC0 ? AV_PIX_FMT_YUVA444P10 : AV_PIX_FMT_YUVA422P10;
    } else {
        avctx->pix_fmt = (buf[12] & 0xC0) == 0xC0 ? AV_PIX_FMT_YUV444P10 : AV_PIX_FMT_YUV422P10;
    }
119 120 121

    ptr   = buf + 20;
    flags = buf[19];
122
    ff_dlog(avctx, "flags %x\n", flags);
123 124

    if (flags & 2) {
125 126
        if(buf + data_size - ptr < 64) {
            av_log(avctx, AV_LOG_ERROR, "Header truncated\n");
127
            return AVERROR_INVALIDDATA;
128
        }
129
        permute(ctx->qmat_luma, ctx->prodsp.idct_permutation, ptr);
130 131 132 133 134 135
        ptr += 64;
    } else {
        memset(ctx->qmat_luma, 4, 64);
    }

    if (flags & 1) {
136 137
        if(buf + data_size - ptr < 64) {
            av_log(avctx, AV_LOG_ERROR, "Header truncated\n");
138
            return AVERROR_INVALIDDATA;
139
        }
140
        permute(ctx->qmat_chroma, ctx->prodsp.idct_permutation, ptr);
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
    } else {
        memset(ctx->qmat_chroma, 4, 64);
    }

    return hdr_size;
}

static int decode_picture_header(AVCodecContext *avctx, const uint8_t *buf, const int buf_size)
{
    ProresContext *ctx = avctx->priv_data;
    int i, hdr_size, slice_count;
    unsigned pic_data_size;
    int log2_slice_mb_width, log2_slice_mb_height;
    int slice_mb_count, mb_x, mb_y;
    const uint8_t *data_ptr, *index_ptr;

    hdr_size = buf[0] >> 3;
    if (hdr_size < 8 || hdr_size > buf_size) {
        av_log(avctx, AV_LOG_ERROR, "error, wrong picture header size\n");
160
        return AVERROR_INVALIDDATA;
161 162 163 164 165
    }

    pic_data_size = AV_RB32(buf + 1);
    if (pic_data_size > buf_size) {
        av_log(avctx, AV_LOG_ERROR, "error, wrong picture data size\n");
166
        return AVERROR_INVALIDDATA;
167 168 169 170 171 172 173
    }

    log2_slice_mb_width  = buf[7] >> 4;
    log2_slice_mb_height = buf[7] & 0xF;
    if (log2_slice_mb_width > 3 || log2_slice_mb_height) {
        av_log(avctx, AV_LOG_ERROR, "unsupported slice resolution: %dx%d\n",
               1 << log2_slice_mb_width, 1 << log2_slice_mb_height);
174
        return AVERROR_INVALIDDATA;
175 176 177
    }

    ctx->mb_width  = (avctx->width  + 15) >> 4;
178 179 180 181
    if (ctx->frame_type)
        ctx->mb_height = (avctx->height + 31) >> 5;
    else
        ctx->mb_height = (avctx->height + 15) >> 4;
182

183 184 185 186
    // QT ignores the written value
    // slice_count = AV_RB16(buf + 5);
    slice_count = ctx->mb_height * ((ctx->mb_width >> log2_slice_mb_width) +
                                    av_popcount(ctx->mb_width & (1 << log2_slice_mb_width) - 1));
187 188 189

    if (ctx->slice_count != slice_count || !ctx->slices) {
        av_freep(&ctx->slices);
190
        ctx->slice_count = 0;
191
        ctx->slices = av_mallocz_array(slice_count, sizeof(*ctx->slices));
192 193 194 195 196 197 198 199 200 201
        if (!ctx->slices)
            return AVERROR(ENOMEM);
        ctx->slice_count = slice_count;
    }

    if (!slice_count)
        return AVERROR(EINVAL);

    if (hdr_size + slice_count*2 > buf_size) {
        av_log(avctx, AV_LOG_ERROR, "error, wrong slice count\n");
202
        return AVERROR_INVALIDDATA;
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    }

    // parse slice information
    index_ptr = buf + hdr_size;
    data_ptr  = index_ptr + slice_count*2;

    slice_mb_count = 1 << log2_slice_mb_width;
    mb_x = 0;
    mb_y = 0;

    for (i = 0; i < slice_count; i++) {
        SliceContext *slice = &ctx->slices[i];

        slice->data = data_ptr;
        data_ptr += AV_RB16(index_ptr + i*2);

        while (ctx->mb_width - mb_x < slice_mb_count)
            slice_mb_count >>= 1;

        slice->mb_x = mb_x;
        slice->mb_y = mb_y;
        slice->mb_count = slice_mb_count;
        slice->data_size = data_ptr - slice->data;

        if (slice->data_size < 6) {
            av_log(avctx, AV_LOG_ERROR, "error, wrong slice data size\n");
229
            return AVERROR_INVALIDDATA;
230 231 232 233 234 235 236 237 238 239
        }

        mb_x += slice_mb_count;
        if (mb_x == ctx->mb_width) {
            slice_mb_count = 1 << log2_slice_mb_width;
            mb_x = 0;
            mb_y++;
        }
        if (data_ptr > buf + buf_size) {
            av_log(avctx, AV_LOG_ERROR, "error, slice out of bounds\n");
240
            return AVERROR_INVALIDDATA;
241 242 243
        }
    }

244 245 246
    if (mb_x || mb_y != ctx->mb_height) {
        av_log(avctx, AV_LOG_ERROR, "error wrong mb count y %d h %d\n",
               mb_y, ctx->mb_height);
247
        return AVERROR_INVALIDDATA;
248 249
    }

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
    return pic_data_size;
}

#define DECODE_CODEWORD(val, codebook)                                  \
    do {                                                                \
        unsigned int rice_order, exp_order, switch_bits;                \
        unsigned int q, buf, bits;                                      \
                                                                        \
        UPDATE_CACHE(re, gb);                                           \
        buf = GET_CACHE(re, gb);                                        \
                                                                        \
        /* number of bits to switch between rice and exp golomb */      \
        switch_bits =  codebook & 3;                                    \
        rice_order  =  codebook >> 5;                                   \
        exp_order   = (codebook >> 2) & 7;                              \
                                                                        \
Michael Niedermayer's avatar
Michael Niedermayer committed
266
        q = 31 - av_log2(buf);                                          \
267 268 269 270 271 272 273 274 275 276 277 278 279 280
                                                                        \
        if (q > switch_bits) { /* exp golomb */                         \
            bits = exp_order - switch_bits + (q<<1);                    \
            val = SHOW_UBITS(re, gb, bits) - (1 << exp_order) +         \
                ((switch_bits + 1) << rice_order);                      \
            SKIP_BITS(re, gb, bits);                                    \
        } else if (rice_order) {                                        \
            SKIP_BITS(re, gb, q+1);                                     \
            val = (q << rice_order) + SHOW_UBITS(re, gb, rice_order);   \
            SKIP_BITS(re, gb, rice_order);                              \
        } else {                                                        \
            val = q;                                                    \
            SKIP_BITS(re, gb, q+1);                                     \
        }                                                               \
281
    } while (0)
282 283 284 285 286 287 288

#define TOSIGNED(x) (((x) >> 1) ^ (-((x) & 1)))

#define FIRST_DC_CB 0xB8

static const uint8_t dc_codebook[7] = { 0x04, 0x28, 0x28, 0x4D, 0x4D, 0x70, 0x70};

289
static av_always_inline void decode_dc_coeffs(GetBitContext *gb, int16_t *out,
290
                                              int blocks_per_slice)
291
{
292
    int16_t prev_dc;
293 294 295 296 297 298
    int code, i, sign;

    OPEN_READER(re, gb);

    DECODE_CODEWORD(code, FIRST_DC_CB);
    prev_dc = TOSIGNED(code);
299
    out[0] = prev_dc;
300 301 302 303 304 305

    out += 64; // dc coeff for the next block

    code = 5;
    sign = 0;
    for (i = 1; i < blocks_per_slice; i++, out += 64) {
306
        DECODE_CODEWORD(code, dc_codebook[FFMIN(code, 6U)]);
307 308 309
        if(code) sign ^= -(code & 1);
        else     sign  = 0;
        prev_dc += (((code + 1) >> 1) ^ sign) - sign;
310
        out[0] = prev_dc;
311 312 313 314 315 316 317 318
    }
    CLOSE_READER(re, gb);
}

// adaptive codebook switching lut according to previous run/level values
static const uint8_t run_to_cb[16] = { 0x06, 0x06, 0x05, 0x05, 0x04, 0x29, 0x29, 0x29, 0x29, 0x28, 0x28, 0x28, 0x28, 0x28, 0x28, 0x4C };
static const uint8_t lev_to_cb[10] = { 0x04, 0x0A, 0x05, 0x06, 0x04, 0x28, 0x28, 0x28, 0x28, 0x4C };

319 320
static av_always_inline int decode_ac_coeffs(AVCodecContext *avctx, GetBitContext *gb,
                                             int16_t *out, int blocks_per_slice)
321 322 323 324 325 326 327 328
{
    ProresContext *ctx = avctx->priv_data;
    int block_mask, sign;
    unsigned pos, run, level;
    int max_coeffs, i, bits_left;
    int log2_block_count = av_log2(blocks_per_slice);

    OPEN_READER(re, gb);
329
    UPDATE_CACHE(re, gb);                                           \
330 331 332 333 334 335 336
    run   = 4;
    level = 2;

    max_coeffs = 64 << log2_block_count;
    block_mask = blocks_per_slice - 1;

    for (pos = block_mask;;) {
337
        bits_left = gb->size_in_bits - re_index;
338 339 340 341 342 343 344
        if (!bits_left || (bits_left < 32 && !SHOW_UBITS(re, gb, bits_left)))
            break;

        DECODE_CODEWORD(run, run_to_cb[FFMIN(run,  15)]);
        pos += run + 1;
        if (pos >= max_coeffs) {
            av_log(avctx, AV_LOG_ERROR, "ac tex damaged %d, %d\n", pos, max_coeffs);
345
            return AVERROR_INVALIDDATA;
346 347 348 349 350 351 352 353 354
        }

        DECODE_CODEWORD(level, lev_to_cb[FFMIN(level, 9)]);
        level += 1;

        i = pos >> log2_block_count;

        sign = SHOW_SBITS(re, gb, 1);
        SKIP_BITS(re, gb, 1);
355
        out[((pos & block_mask) << 6) + ctx->scan[i]] = ((level ^ sign) - sign);
356 357 358
    }

    CLOSE_READER(re, gb);
359
    return 0;
360 361
}

362 363 364 365
static int decode_slice_luma(AVCodecContext *avctx, SliceContext *slice,
                             uint16_t *dst, int dst_stride,
                             const uint8_t *buf, unsigned buf_size,
                             const int16_t *qmat)
366 367
{
    ProresContext *ctx = avctx->priv_data;
368 369
    LOCAL_ALIGNED_16(int16_t, blocks, [8*4*64]);
    int16_t *block;
370 371
    GetBitContext gb;
    int i, blocks_per_slice = slice->mb_count<<2;
372
    int ret;
373 374

    for (i = 0; i < blocks_per_slice; i++)
375
        ctx->bdsp.clear_block(blocks+(i<<6));
376 377 378

    init_get_bits(&gb, buf, buf_size << 3);

379
    decode_dc_coeffs(&gb, blocks, blocks_per_slice);
380 381
    if ((ret = decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice)) < 0)
        return ret;
382 383 384

    block = blocks;
    for (i = 0; i < slice->mb_count; i++) {
385
        ctx->prodsp.idct_put(dst, dst_stride, block+(0<<6), qmat);
386 387 388
        ctx->prodsp.idct_put(dst             +8, dst_stride, block+(1<<6), qmat);
        ctx->prodsp.idct_put(dst+4*dst_stride  , dst_stride, block+(2<<6), qmat);
        ctx->prodsp.idct_put(dst+4*dst_stride+8, dst_stride, block+(3<<6), qmat);
389
        block += 4*64;
390
        dst += 16;
391
    }
392
    return 0;
393 394
}

395 396 397 398
static int decode_slice_chroma(AVCodecContext *avctx, SliceContext *slice,
                               uint16_t *dst, int dst_stride,
                               const uint8_t *buf, unsigned buf_size,
                               const int16_t *qmat, int log2_blocks_per_mb)
399 400
{
    ProresContext *ctx = avctx->priv_data;
401 402
    LOCAL_ALIGNED_16(int16_t, blocks, [8*4*64]);
    int16_t *block;
403 404
    GetBitContext gb;
    int i, j, blocks_per_slice = slice->mb_count << log2_blocks_per_mb;
405
    int ret;
406 407

    for (i = 0; i < blocks_per_slice; i++)
408
        ctx->bdsp.clear_block(blocks+(i<<6));
409 410 411

    init_get_bits(&gb, buf, buf_size << 3);

412
    decode_dc_coeffs(&gb, blocks, blocks_per_slice);
413 414
    if ((ret = decode_ac_coeffs(avctx, &gb, blocks, blocks_per_slice)) < 0)
        return ret;
415 416 417 418

    block = blocks;
    for (i = 0; i < slice->mb_count; i++) {
        for (j = 0; j < log2_blocks_per_mb; j++) {
419
            ctx->prodsp.idct_put(dst,              dst_stride, block+(0<<6), qmat);
420
            ctx->prodsp.idct_put(dst+4*dst_stride, dst_stride, block+(1<<6), qmat);
421
            block += 2*64;
422
            dst += 8;
423 424
        }
    }
425
    return 0;
426 427
}

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs,
                         const int num_bits)
{
    const int mask = (1 << num_bits) - 1;
    int i, idx, val, alpha_val;

    idx       = 0;
    alpha_val = mask;
    do {
        do {
            if (get_bits1(gb)) {
                val = get_bits(gb, num_bits);
            } else {
                int sign;
                val  = get_bits(gb, num_bits == 16 ? 7 : 4);
                sign = val & 1;
                val  = (val + 2) >> 1;
                if (sign)
                    val = -val;
            }
            alpha_val = (alpha_val + val) & mask;
            if (num_bits == 16) {
                dst[idx++] = alpha_val >> 6;
            } else {
                dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);
            }
454
            if (idx >= num_coeffs)
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
                break;
        } while (get_bits_left(gb)>0 && get_bits1(gb));
        val = get_bits(gb, 4);
        if (!val)
            val = get_bits(gb, 11);
        if (idx + val > num_coeffs)
            val = num_coeffs - idx;
        if (num_bits == 16) {
            for (i = 0; i < val; i++)
                dst[idx++] = alpha_val >> 6;
        } else {
            for (i = 0; i < val; i++)
                dst[idx++] = (alpha_val << 2) | (alpha_val >> 6);

        }
    } while (idx < num_coeffs);
}

/**
 * Decode alpha slice plane.
 */
static void decode_slice_alpha(ProresContext *ctx,
                               uint16_t *dst, int dst_stride,
                               const uint8_t *buf, int buf_size,
                               int blocks_per_slice)
{
    GetBitContext gb;
    int i;
    LOCAL_ALIGNED_16(int16_t, blocks, [8*4*64]);
    int16_t *block;

    for (i = 0; i < blocks_per_slice<<2; i++)
487
        ctx->bdsp.clear_block(blocks+(i<<6));
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504

    init_get_bits(&gb, buf, buf_size << 3);

    if (ctx->alpha_info == 2) {
        unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 16);
    } else {
        unpack_alpha(&gb, blocks, blocks_per_slice * 4 * 64, 8);
    }

    block = blocks;
    for (i = 0; i < 16; i++) {
        memcpy(dst, block, 16 * blocks_per_slice * sizeof(*dst));
        dst   += dst_stride >> 1;
        block += 16 * blocks_per_slice;
    }
}

505 506 507 508 509
static int decode_slice_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
{
    ProresContext *ctx = avctx->priv_data;
    SliceContext *slice = &ctx->slices[jobnr];
    const uint8_t *buf = slice->data;
510
    AVFrame *pic = ctx->frame;
511 512
    int i, hdr_size, qscale, log2_chroma_blocks_per_mb;
    int luma_stride, chroma_stride;
513 514
    int y_data_size, u_data_size, v_data_size, a_data_size;
    uint8_t *dest_y, *dest_u, *dest_v, *dest_a;
515 516
    int16_t qmat_luma_scaled[64];
    int16_t qmat_chroma_scaled[64];
517
    int mb_x_shift;
518
    int ret;
519

520
    slice->ret = -1;
521 522 523 524 525 526 527 528 529 530 531
    //av_log(avctx, AV_LOG_INFO, "slice %d mb width %d mb x %d y %d\n",
    //       jobnr, slice->mb_count, slice->mb_x, slice->mb_y);

    // slice header
    hdr_size = buf[0] >> 3;
    qscale = av_clip(buf[1], 1, 224);
    qscale = qscale > 128 ? qscale - 96 << 2: qscale;
    y_data_size = AV_RB16(buf + 2);
    u_data_size = AV_RB16(buf + 4);
    v_data_size = slice->data_size - y_data_size - u_data_size - hdr_size;
    if (hdr_size > 7) v_data_size = AV_RB16(buf + 6);
532 533
    a_data_size = slice->data_size - y_data_size - u_data_size -
                  v_data_size - hdr_size;
534

535 536
    if (y_data_size < 0 || u_data_size < 0 || v_data_size < 0
        || hdr_size+y_data_size+u_data_size+v_data_size > slice->data_size){
537
        av_log(avctx, AV_LOG_ERROR, "invalid plane data size\n");
538
        return AVERROR_INVALIDDATA;
539 540 541 542 543
    }

    buf += hdr_size;

    for (i = 0; i < 64; i++) {
544
        qmat_luma_scaled  [i] = ctx->qmat_luma  [i] * qscale;
545 546 547 548 549 550 551 552 553 554 555
        qmat_chroma_scaled[i] = ctx->qmat_chroma[i] * qscale;
    }

    if (ctx->frame_type == 0) {
        luma_stride   = pic->linesize[0];
        chroma_stride = pic->linesize[1];
    } else {
        luma_stride   = pic->linesize[0] << 1;
        chroma_stride = pic->linesize[1] << 1;
    }

556
    if (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 || avctx->pix_fmt == AV_PIX_FMT_YUVA444P10) {
557 558 559 560 561 562 563 564 565 566
        mb_x_shift = 5;
        log2_chroma_blocks_per_mb = 2;
    } else {
        mb_x_shift = 4;
        log2_chroma_blocks_per_mb = 1;
    }

    dest_y = pic->data[0] + (slice->mb_y << 4) * luma_stride + (slice->mb_x << 5);
    dest_u = pic->data[1] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift);
    dest_v = pic->data[2] + (slice->mb_y << 4) * chroma_stride + (slice->mb_x << mb_x_shift);
567
    dest_a = pic->data[3] + (slice->mb_y << 4) * luma_stride + (slice->mb_x << 5);
568

569
    if (ctx->frame_type && ctx->first_field ^ ctx->frame->top_field_first) {
570 571 572
        dest_y += pic->linesize[0];
        dest_u += pic->linesize[1];
        dest_v += pic->linesize[2];
573
        dest_a += pic->linesize[3];
574 575
    }

576 577 578 579
    ret = decode_slice_luma(avctx, slice, (uint16_t*)dest_y, luma_stride,
                            buf, y_data_size, qmat_luma_scaled);
    if (ret < 0)
        return ret;
580

581
    if (!(avctx->flags & AV_CODEC_FLAG_GRAY)) {
582 583 584 585 586 587 588 589 590 591 592
        ret = decode_slice_chroma(avctx, slice, (uint16_t*)dest_u, chroma_stride,
                                  buf + y_data_size, u_data_size,
                                  qmat_chroma_scaled, log2_chroma_blocks_per_mb);
        if (ret < 0)
            return ret;

        ret = decode_slice_chroma(avctx, slice, (uint16_t*)dest_v, chroma_stride,
                                  buf + y_data_size + u_data_size, v_data_size,
                                  qmat_chroma_scaled, log2_chroma_blocks_per_mb);
        if (ret < 0)
            return ret;
593
    }
594
    /* decode alpha plane if available */
595
    if (ctx->alpha_info && pic->data[3] && a_data_size)
596 597 598
        decode_slice_alpha(ctx, (uint16_t*)dest_a, luma_stride,
                           buf + y_data_size + u_data_size + v_data_size,
                           a_data_size, slice->mb_count);
599

600
    slice->ret = 0;
601 602 603 604 605 606
    return 0;
}

static int decode_picture(AVCodecContext *avctx)
{
    ProresContext *ctx = avctx->priv_data;
607
    int i;
608

609
    avctx->execute2(avctx, decode_slice_thread, NULL, NULL, ctx->slice_count);
610 611

    for (i = 0; i < ctx->slice_count; i++)
612 613
        if (ctx->slices[i].ret < 0)
            return ctx->slices[i].ret;
614 615 616 617

    return 0;
}

618
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
619 620 621
                        AVPacket *avpkt)
{
    ProresContext *ctx = avctx->priv_data;
622
    AVFrame *frame = data;
623 624
    const uint8_t *buf = avpkt->data;
    int buf_size = avpkt->size;
625
    int frame_hdr_size, pic_size, ret;
626

Michael Niedermayer's avatar
Michael Niedermayer committed
627
    if (buf_size < 28 || AV_RL32(buf + 4) != AV_RL32("icpf")) {
628
        av_log(avctx, AV_LOG_ERROR, "invalid frame header\n");
629
        return AVERROR_INVALIDDATA;
630 631
    }

632
    ctx->frame = frame;
633 634
    ctx->frame->pict_type = AV_PICTURE_TYPE_I;
    ctx->frame->key_frame = 1;
635 636 637 638 639 640 641
    ctx->first_field = 1;

    buf += 8;
    buf_size -= 8;

    frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx);
    if (frame_hdr_size < 0)
642
        return frame_hdr_size;
643 644 645 646

    buf += frame_hdr_size;
    buf_size -= frame_hdr_size;

647 648
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
        return ret;
649

650 651 652 653
 decode_picture:
    pic_size = decode_picture_header(avctx, buf, buf_size);
    if (pic_size < 0) {
        av_log(avctx, AV_LOG_ERROR, "error decoding picture header\n");
654
        return pic_size;
655 656
    }

657
    if ((ret = decode_picture(avctx)) < 0) {
658
        av_log(avctx, AV_LOG_ERROR, "error decoding picture\n");
659
        return ret;
660 661 662 663 664 665 666 667 668 669
    }

    buf += pic_size;
    buf_size -= pic_size;

    if (ctx->frame_type && buf_size > 0 && ctx->first_field) {
        ctx->first_field = 0;
        goto decode_picture;
    }

670
    *got_frame      = 1;
671 672 673 674 675 676 677 678 679 680 681 682 683

    return avpkt->size;
}

static av_cold int decode_close(AVCodecContext *avctx)
{
    ProresContext *ctx = avctx->priv_data;

    av_freep(&ctx->slices);

    return 0;
}

684 685
AVCodec ff_prores_decoder = {
    .name           = "prores",
686
    .long_name      = NULL_IF_CONFIG_SMALL("ProRes"),
687
    .type           = AVMEDIA_TYPE_VIDEO,
688
    .id             = AV_CODEC_ID_PRORES,
689 690 691 692
    .priv_data_size = sizeof(ProresContext),
    .init           = decode_init,
    .close          = decode_close,
    .decode         = decode_frame,
693
    .capabilities   = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SLICE_THREADS,
694
};