// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #include "src/liveedit.h" #include "src/code-stubs.h" #include "src/compilation-cache.h" #include "src/compiler.h" #include "src/debug.h" #include "src/deoptimizer.h" #include "src/global-handles.h" #include "src/messages.h" #include "src/parser.h" #include "src/scopeinfo.h" #include "src/scopes.h" #include "src/v8memory.h" namespace v8 { namespace internal { void SetElementSloppy(Handle<JSObject> object, uint32_t index, Handle<Object> value) { // Ignore return value from SetElement. It can only be a failure if there // are element setters causing exceptions and the debugger context has none // of these. JSObject::SetElement(object, index, value, SLOPPY).Assert(); } // A simple implementation of dynamic programming algorithm. It solves // the problem of finding the difference of 2 arrays. It uses a table of results // of subproblems. Each cell contains a number together with 2-bit flag // that helps building the chunk list. class Differencer { public: explicit Differencer(Comparator::Input* input) : input_(input), len1_(input->GetLength1()), len2_(input->GetLength2()) { buffer_ = NewArray<int>(len1_ * len2_); } ~Differencer() { DeleteArray(buffer_); } void Initialize() { int array_size = len1_ * len2_; for (int i = 0; i < array_size; i++) { buffer_[i] = kEmptyCellValue; } } // Makes sure that result for the full problem is calculated and stored // in the table together with flags showing a path through subproblems. void FillTable() { CompareUpToTail(0, 0); } void SaveResult(Comparator::Output* chunk_writer) { ResultWriter writer(chunk_writer); int pos1 = 0; int pos2 = 0; while (true) { if (pos1 < len1_) { if (pos2 < len2_) { Direction dir = get_direction(pos1, pos2); switch (dir) { case EQ: writer.eq(); pos1++; pos2++; break; case SKIP1: writer.skip1(1); pos1++; break; case SKIP2: case SKIP_ANY: writer.skip2(1); pos2++; break; default: UNREACHABLE(); } } else { writer.skip1(len1_ - pos1); break; } } else { if (len2_ != pos2) { writer.skip2(len2_ - pos2); } break; } } writer.close(); } private: Comparator::Input* input_; int* buffer_; int len1_; int len2_; enum Direction { EQ = 0, SKIP1, SKIP2, SKIP_ANY, MAX_DIRECTION_FLAG_VALUE = SKIP_ANY }; // Computes result for a subtask and optionally caches it in the buffer table. // All results values are shifted to make space for flags in the lower bits. int CompareUpToTail(int pos1, int pos2) { if (pos1 < len1_) { if (pos2 < len2_) { int cached_res = get_value4(pos1, pos2); if (cached_res == kEmptyCellValue) { Direction dir; int res; if (input_->Equals(pos1, pos2)) { res = CompareUpToTail(pos1 + 1, pos2 + 1); dir = EQ; } else { int res1 = CompareUpToTail(pos1 + 1, pos2) + (1 << kDirectionSizeBits); int res2 = CompareUpToTail(pos1, pos2 + 1) + (1 << kDirectionSizeBits); if (res1 == res2) { res = res1; dir = SKIP_ANY; } else if (res1 < res2) { res = res1; dir = SKIP1; } else { res = res2; dir = SKIP2; } } set_value4_and_dir(pos1, pos2, res, dir); cached_res = res; } return cached_res; } else { return (len1_ - pos1) << kDirectionSizeBits; } } else { return (len2_ - pos2) << kDirectionSizeBits; } } inline int& get_cell(int i1, int i2) { return buffer_[i1 + i2 * len1_]; } // Each cell keeps a value plus direction. Value is multiplied by 4. void set_value4_and_dir(int i1, int i2, int value4, Direction dir) { DCHECK((value4 & kDirectionMask) == 0); get_cell(i1, i2) = value4 | dir; } int get_value4(int i1, int i2) { return get_cell(i1, i2) & (kMaxUInt32 ^ kDirectionMask); } Direction get_direction(int i1, int i2) { return static_cast<Direction>(get_cell(i1, i2) & kDirectionMask); } static const int kDirectionSizeBits = 2; static const int kDirectionMask = (1 << kDirectionSizeBits) - 1; static const int kEmptyCellValue = ~0u << kDirectionSizeBits; // This method only holds static assert statement (unfortunately you cannot // place one in class scope). void StaticAssertHolder() { STATIC_ASSERT(MAX_DIRECTION_FLAG_VALUE < (1 << kDirectionSizeBits)); } class ResultWriter { public: explicit ResultWriter(Comparator::Output* chunk_writer) : chunk_writer_(chunk_writer), pos1_(0), pos2_(0), pos1_begin_(-1), pos2_begin_(-1), has_open_chunk_(false) { } void eq() { FlushChunk(); pos1_++; pos2_++; } void skip1(int len1) { StartChunk(); pos1_ += len1; } void skip2(int len2) { StartChunk(); pos2_ += len2; } void close() { FlushChunk(); } private: Comparator::Output* chunk_writer_; int pos1_; int pos2_; int pos1_begin_; int pos2_begin_; bool has_open_chunk_; void StartChunk() { if (!has_open_chunk_) { pos1_begin_ = pos1_; pos2_begin_ = pos2_; has_open_chunk_ = true; } } void FlushChunk() { if (has_open_chunk_) { chunk_writer_->AddChunk(pos1_begin_, pos2_begin_, pos1_ - pos1_begin_, pos2_ - pos2_begin_); has_open_chunk_ = false; } } }; }; void Comparator::CalculateDifference(Comparator::Input* input, Comparator::Output* result_writer) { Differencer differencer(input); differencer.Initialize(); differencer.FillTable(); differencer.SaveResult(result_writer); } static bool CompareSubstrings(Handle<String> s1, int pos1, Handle<String> s2, int pos2, int len) { for (int i = 0; i < len; i++) { if (s1->Get(i + pos1) != s2->Get(i + pos2)) { return false; } } return true; } // Additional to Input interface. Lets switch Input range to subrange. // More elegant way would be to wrap one Input as another Input object // and translate positions there, but that would cost us additional virtual // call per comparison. class SubrangableInput : public Comparator::Input { public: virtual void SetSubrange1(int offset, int len) = 0; virtual void SetSubrange2(int offset, int len) = 0; }; class SubrangableOutput : public Comparator::Output { public: virtual void SetSubrange1(int offset, int len) = 0; virtual void SetSubrange2(int offset, int len) = 0; }; static int min(int a, int b) { return a < b ? a : b; } // Finds common prefix and suffix in input. This parts shouldn't take space in // linear programming table. Enable subranging in input and output. static void NarrowDownInput(SubrangableInput* input, SubrangableOutput* output) { const int len1 = input->GetLength1(); const int len2 = input->GetLength2(); int common_prefix_len; int common_suffix_len; { common_prefix_len = 0; int prefix_limit = min(len1, len2); while (common_prefix_len < prefix_limit && input->Equals(common_prefix_len, common_prefix_len)) { common_prefix_len++; } common_suffix_len = 0; int suffix_limit = min(len1 - common_prefix_len, len2 - common_prefix_len); while (common_suffix_len < suffix_limit && input->Equals(len1 - common_suffix_len - 1, len2 - common_suffix_len - 1)) { common_suffix_len++; } } if (common_prefix_len > 0 || common_suffix_len > 0) { int new_len1 = len1 - common_suffix_len - common_prefix_len; int new_len2 = len2 - common_suffix_len - common_prefix_len; input->SetSubrange1(common_prefix_len, new_len1); input->SetSubrange2(common_prefix_len, new_len2); output->SetSubrange1(common_prefix_len, new_len1); output->SetSubrange2(common_prefix_len, new_len2); } } // A helper class that writes chunk numbers into JSArray. // Each chunk is stored as 3 array elements: (pos1_begin, pos1_end, pos2_end). class CompareOutputArrayWriter { public: explicit CompareOutputArrayWriter(Isolate* isolate) : array_(isolate->factory()->NewJSArray(10)), current_size_(0) {} Handle<JSArray> GetResult() { return array_; } void WriteChunk(int char_pos1, int char_pos2, int char_len1, int char_len2) { Isolate* isolate = array_->GetIsolate(); SetElementSloppy(array_, current_size_, Handle<Object>(Smi::FromInt(char_pos1), isolate)); SetElementSloppy(array_, current_size_ + 1, Handle<Object>(Smi::FromInt(char_pos1 + char_len1), isolate)); SetElementSloppy(array_, current_size_ + 2, Handle<Object>(Smi::FromInt(char_pos2 + char_len2), isolate)); current_size_ += 3; } private: Handle<JSArray> array_; int current_size_; }; // Represents 2 strings as 2 arrays of tokens. // TODO(LiveEdit): Currently it's actually an array of charactres. // Make array of tokens instead. class TokensCompareInput : public Comparator::Input { public: TokensCompareInput(Handle<String> s1, int offset1, int len1, Handle<String> s2, int offset2, int len2) : s1_(s1), offset1_(offset1), len1_(len1), s2_(s2), offset2_(offset2), len2_(len2) { } virtual int GetLength1() { return len1_; } virtual int GetLength2() { return len2_; } bool Equals(int index1, int index2) { return s1_->Get(offset1_ + index1) == s2_->Get(offset2_ + index2); } private: Handle<String> s1_; int offset1_; int len1_; Handle<String> s2_; int offset2_; int len2_; }; // Stores compare result in JSArray. Converts substring positions // to absolute positions. class TokensCompareOutput : public Comparator::Output { public: TokensCompareOutput(CompareOutputArrayWriter* array_writer, int offset1, int offset2) : array_writer_(array_writer), offset1_(offset1), offset2_(offset2) { } void AddChunk(int pos1, int pos2, int len1, int len2) { array_writer_->WriteChunk(pos1 + offset1_, pos2 + offset2_, len1, len2); } private: CompareOutputArrayWriter* array_writer_; int offset1_; int offset2_; }; // Wraps raw n-elements line_ends array as a list of n+1 lines. The last line // never has terminating new line character. class LineEndsWrapper { public: explicit LineEndsWrapper(Handle<String> string) : ends_array_(String::CalculateLineEnds(string, false)), string_len_(string->length()) { } int length() { return ends_array_->length() + 1; } // Returns start for any line including start of the imaginary line after // the last line. int GetLineStart(int index) { if (index == 0) { return 0; } else { return GetLineEnd(index - 1); } } int GetLineEnd(int index) { if (index == ends_array_->length()) { // End of the last line is always an end of the whole string. // If the string ends with a new line character, the last line is an // empty string after this character. return string_len_; } else { return GetPosAfterNewLine(index); } } private: Handle<FixedArray> ends_array_; int string_len_; int GetPosAfterNewLine(int index) { return Smi::cast(ends_array_->get(index))->value() + 1; } }; // Represents 2 strings as 2 arrays of lines. class LineArrayCompareInput : public SubrangableInput { public: LineArrayCompareInput(Handle<String> s1, Handle<String> s2, LineEndsWrapper line_ends1, LineEndsWrapper line_ends2) : s1_(s1), s2_(s2), line_ends1_(line_ends1), line_ends2_(line_ends2), subrange_offset1_(0), subrange_offset2_(0), subrange_len1_(line_ends1_.length()), subrange_len2_(line_ends2_.length()) { } int GetLength1() { return subrange_len1_; } int GetLength2() { return subrange_len2_; } bool Equals(int index1, int index2) { index1 += subrange_offset1_; index2 += subrange_offset2_; int line_start1 = line_ends1_.GetLineStart(index1); int line_start2 = line_ends2_.GetLineStart(index2); int line_end1 = line_ends1_.GetLineEnd(index1); int line_end2 = line_ends2_.GetLineEnd(index2); int len1 = line_end1 - line_start1; int len2 = line_end2 - line_start2; if (len1 != len2) { return false; } return CompareSubstrings(s1_, line_start1, s2_, line_start2, len1); } void SetSubrange1(int offset, int len) { subrange_offset1_ = offset; subrange_len1_ = len; } void SetSubrange2(int offset, int len) { subrange_offset2_ = offset; subrange_len2_ = len; } private: Handle<String> s1_; Handle<String> s2_; LineEndsWrapper line_ends1_; LineEndsWrapper line_ends2_; int subrange_offset1_; int subrange_offset2_; int subrange_len1_; int subrange_len2_; }; // Stores compare result in JSArray. For each chunk tries to conduct // a fine-grained nested diff token-wise. class TokenizingLineArrayCompareOutput : public SubrangableOutput { public: TokenizingLineArrayCompareOutput(LineEndsWrapper line_ends1, LineEndsWrapper line_ends2, Handle<String> s1, Handle<String> s2) : array_writer_(s1->GetIsolate()), line_ends1_(line_ends1), line_ends2_(line_ends2), s1_(s1), s2_(s2), subrange_offset1_(0), subrange_offset2_(0) { } void AddChunk(int line_pos1, int line_pos2, int line_len1, int line_len2) { line_pos1 += subrange_offset1_; line_pos2 += subrange_offset2_; int char_pos1 = line_ends1_.GetLineStart(line_pos1); int char_pos2 = line_ends2_.GetLineStart(line_pos2); int char_len1 = line_ends1_.GetLineStart(line_pos1 + line_len1) - char_pos1; int char_len2 = line_ends2_.GetLineStart(line_pos2 + line_len2) - char_pos2; if (char_len1 < CHUNK_LEN_LIMIT && char_len2 < CHUNK_LEN_LIMIT) { // Chunk is small enough to conduct a nested token-level diff. HandleScope subTaskScope(s1_->GetIsolate()); TokensCompareInput tokens_input(s1_, char_pos1, char_len1, s2_, char_pos2, char_len2); TokensCompareOutput tokens_output(&array_writer_, char_pos1, char_pos2); Comparator::CalculateDifference(&tokens_input, &tokens_output); } else { array_writer_.WriteChunk(char_pos1, char_pos2, char_len1, char_len2); } } void SetSubrange1(int offset, int len) { subrange_offset1_ = offset; } void SetSubrange2(int offset, int len) { subrange_offset2_ = offset; } Handle<JSArray> GetResult() { return array_writer_.GetResult(); } private: static const int CHUNK_LEN_LIMIT = 800; CompareOutputArrayWriter array_writer_; LineEndsWrapper line_ends1_; LineEndsWrapper line_ends2_; Handle<String> s1_; Handle<String> s2_; int subrange_offset1_; int subrange_offset2_; }; Handle<JSArray> LiveEdit::CompareStrings(Handle<String> s1, Handle<String> s2) { s1 = String::Flatten(s1); s2 = String::Flatten(s2); LineEndsWrapper line_ends1(s1); LineEndsWrapper line_ends2(s2); LineArrayCompareInput input(s1, s2, line_ends1, line_ends2); TokenizingLineArrayCompareOutput output(line_ends1, line_ends2, s1, s2); NarrowDownInput(&input, &output); Comparator::CalculateDifference(&input, &output); return output.GetResult(); } // Unwraps JSValue object, returning its field "value" static Handle<Object> UnwrapJSValue(Handle<JSValue> jsValue) { return Handle<Object>(jsValue->value(), jsValue->GetIsolate()); } // Wraps any object into a OpaqueReference, that will hide the object // from JavaScript. static Handle<JSValue> WrapInJSValue(Handle<HeapObject> object) { Isolate* isolate = object->GetIsolate(); Handle<JSFunction> constructor = isolate->opaque_reference_function(); Handle<JSValue> result = Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor)); result->set_value(*object); return result; } static Handle<SharedFunctionInfo> UnwrapSharedFunctionInfoFromJSValue( Handle<JSValue> jsValue) { Object* shared = jsValue->value(); CHECK(shared->IsSharedFunctionInfo()); return Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(shared)); } static int GetArrayLength(Handle<JSArray> array) { Object* length = array->length(); CHECK(length->IsSmi()); return Smi::cast(length)->value(); } void FunctionInfoWrapper::SetInitialProperties(Handle<String> name, int start_position, int end_position, int param_num, int literal_count, int parent_index) { HandleScope scope(isolate()); this->SetField(kFunctionNameOffset_, name); this->SetSmiValueField(kStartPositionOffset_, start_position); this->SetSmiValueField(kEndPositionOffset_, end_position); this->SetSmiValueField(kParamNumOffset_, param_num); this->SetSmiValueField(kLiteralNumOffset_, literal_count); this->SetSmiValueField(kParentIndexOffset_, parent_index); } void FunctionInfoWrapper::SetFunctionCode(Handle<Code> function_code, Handle<HeapObject> code_scope_info) { Handle<JSValue> code_wrapper = WrapInJSValue(function_code); this->SetField(kCodeOffset_, code_wrapper); Handle<JSValue> scope_wrapper = WrapInJSValue(code_scope_info); this->SetField(kCodeScopeInfoOffset_, scope_wrapper); } void FunctionInfoWrapper::SetSharedFunctionInfo( Handle<SharedFunctionInfo> info) { Handle<JSValue> info_holder = WrapInJSValue(info); this->SetField(kSharedFunctionInfoOffset_, info_holder); } Handle<Code> FunctionInfoWrapper::GetFunctionCode() { Handle<Object> element = this->GetField(kCodeOffset_); Handle<JSValue> value_wrapper = Handle<JSValue>::cast(element); Handle<Object> raw_result = UnwrapJSValue(value_wrapper); CHECK(raw_result->IsCode()); return Handle<Code>::cast(raw_result); } MaybeHandle<TypeFeedbackVector> FunctionInfoWrapper::GetFeedbackVector() { Handle<Object> element = this->GetField(kSharedFunctionInfoOffset_); if (element->IsJSValue()) { Handle<JSValue> value_wrapper = Handle<JSValue>::cast(element); Handle<Object> raw_result = UnwrapJSValue(value_wrapper); Handle<SharedFunctionInfo> shared = Handle<SharedFunctionInfo>::cast(raw_result); return Handle<TypeFeedbackVector>(shared->feedback_vector(), isolate()); } else { // Scripts may never have a SharedFunctionInfo created. return MaybeHandle<TypeFeedbackVector>(); } } Handle<Object> FunctionInfoWrapper::GetCodeScopeInfo() { Handle<Object> element = this->GetField(kCodeScopeInfoOffset_); return UnwrapJSValue(Handle<JSValue>::cast(element)); } void SharedInfoWrapper::SetProperties(Handle<String> name, int start_position, int end_position, Handle<SharedFunctionInfo> info) { HandleScope scope(isolate()); this->SetField(kFunctionNameOffset_, name); Handle<JSValue> info_holder = WrapInJSValue(info); this->SetField(kSharedInfoOffset_, info_holder); this->SetSmiValueField(kStartPositionOffset_, start_position); this->SetSmiValueField(kEndPositionOffset_, end_position); } Handle<SharedFunctionInfo> SharedInfoWrapper::GetInfo() { Handle<Object> element = this->GetField(kSharedInfoOffset_); Handle<JSValue> value_wrapper = Handle<JSValue>::cast(element); return UnwrapSharedFunctionInfoFromJSValue(value_wrapper); } class FunctionInfoListener { public: explicit FunctionInfoListener(Isolate* isolate) { current_parent_index_ = -1; len_ = 0; result_ = isolate->factory()->NewJSArray(10); } void FunctionStarted(FunctionLiteral* fun) { HandleScope scope(isolate()); FunctionInfoWrapper info = FunctionInfoWrapper::Create(isolate()); info.SetInitialProperties(fun->name(), fun->start_position(), fun->end_position(), fun->parameter_count(), fun->materialized_literal_count(), current_parent_index_); current_parent_index_ = len_; SetElementSloppy(result_, len_, info.GetJSArray()); len_++; } void FunctionDone() { HandleScope scope(isolate()); FunctionInfoWrapper info = FunctionInfoWrapper::cast( *Object::GetElement( isolate(), result_, current_parent_index_).ToHandleChecked()); current_parent_index_ = info.GetParentIndex(); } // Saves only function code, because for a script function we // may never create a SharedFunctionInfo object. void FunctionCode(Handle<Code> function_code) { FunctionInfoWrapper info = FunctionInfoWrapper::cast( *Object::GetElement( isolate(), result_, current_parent_index_).ToHandleChecked()); info.SetFunctionCode(function_code, Handle<HeapObject>(isolate()->heap()->null_value())); } // Saves full information about a function: its code, its scope info // and a SharedFunctionInfo object. void FunctionInfo(Handle<SharedFunctionInfo> shared, Scope* scope, Zone* zone) { if (!shared->IsSharedFunctionInfo()) { return; } FunctionInfoWrapper info = FunctionInfoWrapper::cast( *Object::GetElement( isolate(), result_, current_parent_index_).ToHandleChecked()); info.SetFunctionCode(Handle<Code>(shared->code()), Handle<HeapObject>(shared->scope_info())); info.SetSharedFunctionInfo(shared); Handle<Object> scope_info_list = SerializeFunctionScope(scope, zone); info.SetFunctionScopeInfo(scope_info_list); } Handle<JSArray> GetResult() { return result_; } private: Isolate* isolate() const { return result_->GetIsolate(); } Handle<Object> SerializeFunctionScope(Scope* scope, Zone* zone) { Handle<JSArray> scope_info_list = isolate()->factory()->NewJSArray(10); int scope_info_length = 0; // Saves some description of scope. It stores name and indexes of // variables in the whole scope chain. Null-named slots delimit // scopes of this chain. Scope* current_scope = scope; while (current_scope != NULL) { HandleScope handle_scope(isolate()); ZoneList<Variable*> stack_list(current_scope->StackLocalCount(), zone); ZoneList<Variable*> context_list( current_scope->ContextLocalCount(), zone); current_scope->CollectStackAndContextLocals(&stack_list, &context_list); context_list.Sort(&Variable::CompareIndex); for (int i = 0; i < context_list.length(); i++) { SetElementSloppy(scope_info_list, scope_info_length, context_list[i]->name()); scope_info_length++; SetElementSloppy( scope_info_list, scope_info_length, Handle<Smi>(Smi::FromInt(context_list[i]->index()), isolate())); scope_info_length++; } SetElementSloppy(scope_info_list, scope_info_length, Handle<Object>(isolate()->heap()->null_value(), isolate())); scope_info_length++; current_scope = current_scope->outer_scope(); } return scope_info_list; } Handle<JSArray> result_; int len_; int current_parent_index_; }; void LiveEdit::InitializeThreadLocal(Debug* debug) { debug->thread_local_.frame_drop_mode_ = LiveEdit::FRAMES_UNTOUCHED; } bool LiveEdit::SetAfterBreakTarget(Debug* debug) { Code* code = NULL; Isolate* isolate = debug->isolate_; switch (debug->thread_local_.frame_drop_mode_) { case FRAMES_UNTOUCHED: return false; case FRAME_DROPPED_IN_IC_CALL: // We must have been calling IC stub. Do not go there anymore. code = isolate->builtins()->builtin(Builtins::kPlainReturn_LiveEdit); break; case FRAME_DROPPED_IN_DEBUG_SLOT_CALL: // Debug break slot stub does not return normally, instead it manually // cleans the stack and jumps. We should patch the jump address. code = isolate->builtins()->builtin(Builtins::kFrameDropper_LiveEdit); break; case FRAME_DROPPED_IN_DIRECT_CALL: // Nothing to do, after_break_target is not used here. return true; case FRAME_DROPPED_IN_RETURN_CALL: code = isolate->builtins()->builtin(Builtins::kFrameDropper_LiveEdit); break; case CURRENTLY_SET_MODE: UNREACHABLE(); break; } debug->after_break_target_ = code->entry(); return true; } MaybeHandle<JSArray> LiveEdit::GatherCompileInfo(Handle<Script> script, Handle<String> source) { Isolate* isolate = script->GetIsolate(); FunctionInfoListener listener(isolate); Handle<Object> original_source = Handle<Object>(script->source(), isolate); script->set_source(*source); isolate->set_active_function_info_listener(&listener); { // Creating verbose TryCatch from public API is currently the only way to // force code save location. We do not use this the object directly. v8::TryCatch try_catch(reinterpret_cast<v8::Isolate*>(isolate)); try_catch.SetVerbose(true); // A logical 'try' section. Compiler::CompileForLiveEdit(script); } // A logical 'catch' section. Handle<JSObject> rethrow_exception; if (isolate->has_pending_exception()) { Handle<Object> exception(isolate->pending_exception(), isolate); MessageLocation message_location = isolate->GetMessageLocation(); isolate->clear_pending_message(); isolate->clear_pending_exception(); // If possible, copy positions from message object to exception object. if (exception->IsJSObject() && !message_location.script().is_null()) { rethrow_exception = Handle<JSObject>::cast(exception); Factory* factory = isolate->factory(); Handle<String> start_pos_key = factory->InternalizeOneByteString( STATIC_CHAR_VECTOR("startPosition")); Handle<String> end_pos_key = factory->InternalizeOneByteString(STATIC_CHAR_VECTOR("endPosition")); Handle<String> script_obj_key = factory->InternalizeOneByteString(STATIC_CHAR_VECTOR("scriptObject")); Handle<Smi> start_pos( Smi::FromInt(message_location.start_pos()), isolate); Handle<Smi> end_pos(Smi::FromInt(message_location.end_pos()), isolate); Handle<JSObject> script_obj = Script::GetWrapper(message_location.script()); Object::SetProperty(rethrow_exception, start_pos_key, start_pos, SLOPPY) .Assert(); Object::SetProperty(rethrow_exception, end_pos_key, end_pos, SLOPPY) .Assert(); Object::SetProperty(rethrow_exception, script_obj_key, script_obj, SLOPPY) .Assert(); } } // A logical 'finally' section. isolate->set_active_function_info_listener(NULL); script->set_source(*original_source); if (rethrow_exception.is_null()) { return listener.GetResult(); } else { return isolate->Throw<JSArray>(rethrow_exception); } } void LiveEdit::WrapSharedFunctionInfos(Handle<JSArray> array) { Isolate* isolate = array->GetIsolate(); HandleScope scope(isolate); int len = GetArrayLength(array); for (int i = 0; i < len; i++) { Handle<SharedFunctionInfo> info( SharedFunctionInfo::cast( *Object::GetElement(isolate, array, i).ToHandleChecked())); SharedInfoWrapper info_wrapper = SharedInfoWrapper::Create(isolate); Handle<String> name_handle(String::cast(info->name())); info_wrapper.SetProperties(name_handle, info->start_position(), info->end_position(), info); SetElementSloppy(array, i, info_wrapper.GetJSArray()); } } // Visitor that finds all references to a particular code object, // including "CODE_TARGET" references in other code objects and replaces // them on the fly. class ReplacingVisitor : public ObjectVisitor { public: explicit ReplacingVisitor(Code* original, Code* substitution) : original_(original), substitution_(substitution) { } virtual void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { if (*p == original_) { *p = substitution_; } } } virtual void VisitCodeEntry(Address entry) { if (Code::GetObjectFromEntryAddress(entry) == original_) { Address substitution_entry = substitution_->instruction_start(); Memory::Address_at(entry) = substitution_entry; } } virtual void VisitCodeTarget(RelocInfo* rinfo) { if (RelocInfo::IsCodeTarget(rinfo->rmode()) && Code::GetCodeFromTargetAddress(rinfo->target_address()) == original_) { Address substitution_entry = substitution_->instruction_start(); rinfo->set_target_address(substitution_entry); } } virtual void VisitDebugTarget(RelocInfo* rinfo) { VisitCodeTarget(rinfo); } private: Code* original_; Code* substitution_; }; // Finds all references to original and replaces them with substitution. static void ReplaceCodeObject(Handle<Code> original, Handle<Code> substitution) { // Perform a full GC in order to ensure that we are not in the middle of an // incremental marking phase when we are replacing the code object. // Since we are not in an incremental marking phase we can write pointers // to code objects (that are never in new space) without worrying about // write barriers. Heap* heap = original->GetHeap(); HeapIterator iterator(heap); DCHECK(!heap->InNewSpace(*substitution)); ReplacingVisitor visitor(*original, *substitution); // Iterate over all roots. Stack frames may have pointer into original code, // so temporary replace the pointers with offset numbers // in prologue/epilogue. heap->IterateRoots(&visitor, VISIT_ALL); // Now iterate over all pointers of all objects, including code_target // implicit pointers. for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { obj->Iterate(&visitor); } } // Patch function literals. // Name 'literals' is a misnomer. Rather it's a cache for complex object // boilerplates and for a native context. We must clean cached values. // Additionally we may need to allocate a new array if number of literals // changed. class LiteralFixer { public: static void PatchLiterals(FunctionInfoWrapper* compile_info_wrapper, Handle<SharedFunctionInfo> shared_info, Isolate* isolate) { int new_literal_count = compile_info_wrapper->GetLiteralCount(); int old_literal_count = shared_info->num_literals(); if (old_literal_count == new_literal_count) { // If literal count didn't change, simply go over all functions // and clear literal arrays. ClearValuesVisitor visitor; IterateJSFunctions(shared_info, &visitor); } else { // When literal count changes, we have to create new array instances. // Since we cannot create instances when iterating heap, we should first // collect all functions and fix their literal arrays. Handle<FixedArray> function_instances = CollectJSFunctions(shared_info, isolate); for (int i = 0; i < function_instances->length(); i++) { Handle<JSFunction> fun(JSFunction::cast(function_instances->get(i))); Handle<FixedArray> new_literals = isolate->factory()->NewFixedArray(new_literal_count); fun->set_literals(*new_literals); } shared_info->set_num_literals(new_literal_count); } } private: // Iterates all function instances in the HEAP that refers to the // provided shared_info. template<typename Visitor> static void IterateJSFunctions(Handle<SharedFunctionInfo> shared_info, Visitor* visitor) { HeapIterator iterator(shared_info->GetHeap()); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { if (obj->IsJSFunction()) { JSFunction* function = JSFunction::cast(obj); if (function->shared() == *shared_info) { visitor->visit(function); } } } } // Finds all instances of JSFunction that refers to the provided shared_info // and returns array with them. static Handle<FixedArray> CollectJSFunctions( Handle<SharedFunctionInfo> shared_info, Isolate* isolate) { CountVisitor count_visitor; count_visitor.count = 0; IterateJSFunctions(shared_info, &count_visitor); int size = count_visitor.count; Handle<FixedArray> result = isolate->factory()->NewFixedArray(size); if (size > 0) { CollectVisitor collect_visitor(result); IterateJSFunctions(shared_info, &collect_visitor); } return result; } class ClearValuesVisitor { public: void visit(JSFunction* fun) { FixedArray* literals = fun->literals(); int len = literals->length(); for (int j = 0; j < len; j++) { literals->set_undefined(j); } } }; class CountVisitor { public: void visit(JSFunction* fun) { count++; } int count; }; class CollectVisitor { public: explicit CollectVisitor(Handle<FixedArray> output) : m_output(output), m_pos(0) {} void visit(JSFunction* fun) { m_output->set(m_pos, fun); m_pos++; } private: Handle<FixedArray> m_output; int m_pos; }; }; namespace { // Check whether the code is natural function code (not a lazy-compile stub // code). bool IsJSFunctionCode(Code* code) { return code->kind() == Code::FUNCTION; } // Returns true if an instance of candidate were inlined into function's code. bool IsInlined(JSFunction* function, SharedFunctionInfo* candidate) { DisallowHeapAllocation no_gc; if (function->code()->kind() != Code::OPTIMIZED_FUNCTION) return false; DeoptimizationInputData* const data = DeoptimizationInputData::cast(function->code()->deoptimization_data()); if (data != function->GetIsolate()->heap()->empty_fixed_array()) { FixedArray* const literals = data->LiteralArray(); int const inlined_count = data->InlinedFunctionCount()->value(); for (int i = 0; i < inlined_count; ++i) { if (SharedFunctionInfo::cast(literals->get(i)) == candidate) { return true; } } } return false; } } // namespace // Marks code that shares the same shared function info or has inlined // code that shares the same function info. class DependentFunctionMarker: public OptimizedFunctionVisitor { public: SharedFunctionInfo* shared_info_; bool found_; explicit DependentFunctionMarker(SharedFunctionInfo* shared_info) : shared_info_(shared_info), found_(false) { } virtual void EnterContext(Context* context) { } // Don't care. virtual void LeaveContext(Context* context) { } // Don't care. virtual void VisitFunction(JSFunction* function) { // It should be guaranteed by the iterator that everything is optimized. DCHECK(function->code()->kind() == Code::OPTIMIZED_FUNCTION); if (shared_info_ == function->shared() || IsInlined(function, shared_info_)) { // Mark the code for deoptimization. function->code()->set_marked_for_deoptimization(true); found_ = true; } } }; static void DeoptimizeDependentFunctions(SharedFunctionInfo* function_info) { DisallowHeapAllocation no_allocation; DependentFunctionMarker marker(function_info); // TODO(titzer): need to traverse all optimized code to find OSR code here. Deoptimizer::VisitAllOptimizedFunctions(function_info->GetIsolate(), &marker); if (marker.found_) { // Only go through with the deoptimization if something was found. Deoptimizer::DeoptimizeMarkedCode(function_info->GetIsolate()); } } void LiveEdit::ReplaceFunctionCode( Handle<JSArray> new_compile_info_array, Handle<JSArray> shared_info_array) { Isolate* isolate = new_compile_info_array->GetIsolate(); FunctionInfoWrapper compile_info_wrapper(new_compile_info_array); SharedInfoWrapper shared_info_wrapper(shared_info_array); Handle<SharedFunctionInfo> shared_info = shared_info_wrapper.GetInfo(); if (IsJSFunctionCode(shared_info->code())) { Handle<Code> code = compile_info_wrapper.GetFunctionCode(); ReplaceCodeObject(Handle<Code>(shared_info->code()), code); Handle<Object> code_scope_info = compile_info_wrapper.GetCodeScopeInfo(); if (code_scope_info->IsFixedArray()) { shared_info->set_scope_info(ScopeInfo::cast(*code_scope_info)); } shared_info->DisableOptimization(kLiveEdit); // Update the type feedback vector, if needed. MaybeHandle<TypeFeedbackVector> feedback_vector = compile_info_wrapper.GetFeedbackVector(); if (!feedback_vector.is_null()) { shared_info->set_feedback_vector(*feedback_vector.ToHandleChecked()); } } if (shared_info->debug_info()->IsDebugInfo()) { Handle<DebugInfo> debug_info(DebugInfo::cast(shared_info->debug_info())); Handle<Code> new_original_code = isolate->factory()->CopyCode(compile_info_wrapper.GetFunctionCode()); debug_info->set_original_code(*new_original_code); } int start_position = compile_info_wrapper.GetStartPosition(); int end_position = compile_info_wrapper.GetEndPosition(); shared_info->set_start_position(start_position); shared_info->set_end_position(end_position); LiteralFixer::PatchLiterals(&compile_info_wrapper, shared_info, isolate); shared_info->set_construct_stub( isolate->builtins()->builtin(Builtins::kJSConstructStubGeneric)); DeoptimizeDependentFunctions(*shared_info); isolate->compilation_cache()->Remove(shared_info); } void LiveEdit::FunctionSourceUpdated(Handle<JSArray> shared_info_array) { SharedInfoWrapper shared_info_wrapper(shared_info_array); Handle<SharedFunctionInfo> shared_info = shared_info_wrapper.GetInfo(); DeoptimizeDependentFunctions(*shared_info); shared_info_array->GetIsolate()->compilation_cache()->Remove(shared_info); } void LiveEdit::SetFunctionScript(Handle<JSValue> function_wrapper, Handle<Object> script_handle) { Handle<SharedFunctionInfo> shared_info = UnwrapSharedFunctionInfoFromJSValue(function_wrapper); CHECK(script_handle->IsScript() || script_handle->IsUndefined()); shared_info->set_script(*script_handle); shared_info->DisableOptimization(kLiveEdit); function_wrapper->GetIsolate()->compilation_cache()->Remove(shared_info); } // For a script text change (defined as position_change_array), translates // position in unchanged text to position in changed text. // Text change is a set of non-overlapping regions in text, that have changed // their contents and length. It is specified as array of groups of 3 numbers: // (change_begin, change_end, change_end_new_position). // Each group describes a change in text; groups are sorted by change_begin. // Only position in text beyond any changes may be successfully translated. // If a positions is inside some region that changed, result is currently // undefined. static int TranslatePosition(int original_position, Handle<JSArray> position_change_array) { int position_diff = 0; int array_len = GetArrayLength(position_change_array); Isolate* isolate = position_change_array->GetIsolate(); // TODO(635): binary search may be used here for (int i = 0; i < array_len; i += 3) { HandleScope scope(isolate); Handle<Object> element = Object::GetElement( isolate, position_change_array, i).ToHandleChecked(); CHECK(element->IsSmi()); int chunk_start = Handle<Smi>::cast(element)->value(); if (original_position < chunk_start) { break; } element = Object::GetElement( isolate, position_change_array, i + 1).ToHandleChecked(); CHECK(element->IsSmi()); int chunk_end = Handle<Smi>::cast(element)->value(); // Position mustn't be inside a chunk. DCHECK(original_position >= chunk_end); element = Object::GetElement( isolate, position_change_array, i + 2).ToHandleChecked(); CHECK(element->IsSmi()); int chunk_changed_end = Handle<Smi>::cast(element)->value(); position_diff = chunk_changed_end - chunk_end; } return original_position + position_diff; } // Auto-growing buffer for writing relocation info code section. This buffer // is a simplified version of buffer from Assembler. Unlike Assembler, this // class is platform-independent and it works without dealing with instructions. // As specified by RelocInfo format, the buffer is filled in reversed order: // from upper to lower addresses. // It uses NewArray/DeleteArray for memory management. class RelocInfoBuffer { public: RelocInfoBuffer(int buffer_initial_capicity, byte* pc) { buffer_size_ = buffer_initial_capicity + kBufferGap; buffer_ = NewArray<byte>(buffer_size_); reloc_info_writer_.Reposition(buffer_ + buffer_size_, pc); } ~RelocInfoBuffer() { DeleteArray(buffer_); } // As specified by RelocInfo format, the buffer is filled in reversed order: // from upper to lower addresses. void Write(const RelocInfo* rinfo) { if (buffer_ + kBufferGap >= reloc_info_writer_.pos()) { Grow(); } reloc_info_writer_.Write(rinfo); } Vector<byte> GetResult() { // Return the bytes from pos up to end of buffer. int result_size = static_cast<int>((buffer_ + buffer_size_) - reloc_info_writer_.pos()); return Vector<byte>(reloc_info_writer_.pos(), result_size); } private: void Grow() { // Compute new buffer size. int new_buffer_size; if (buffer_size_ < 2 * KB) { new_buffer_size = 4 * KB; } else { new_buffer_size = 2 * buffer_size_; } // Some internal data structures overflow for very large buffers, // they must ensure that kMaximalBufferSize is not too large. if (new_buffer_size > kMaximalBufferSize) { V8::FatalProcessOutOfMemory("RelocInfoBuffer::GrowBuffer"); } // Set up new buffer. byte* new_buffer = NewArray<byte>(new_buffer_size); // Copy the data. int curently_used_size = static_cast<int>(buffer_ + buffer_size_ - reloc_info_writer_.pos()); MemMove(new_buffer + new_buffer_size - curently_used_size, reloc_info_writer_.pos(), curently_used_size); reloc_info_writer_.Reposition( new_buffer + new_buffer_size - curently_used_size, reloc_info_writer_.last_pc()); DeleteArray(buffer_); buffer_ = new_buffer; buffer_size_ = new_buffer_size; } RelocInfoWriter reloc_info_writer_; byte* buffer_; int buffer_size_; static const int kBufferGap = RelocInfoWriter::kMaxSize; static const int kMaximalBufferSize = 512*MB; }; // Patch positions in code (changes relocation info section) and possibly // returns new instance of code. static Handle<Code> PatchPositionsInCode( Handle<Code> code, Handle<JSArray> position_change_array) { Isolate* isolate = code->GetIsolate(); RelocInfoBuffer buffer_writer(code->relocation_size(), code->instruction_start()); { for (RelocIterator it(*code); !it.done(); it.next()) { RelocInfo* rinfo = it.rinfo(); if (RelocInfo::IsPosition(rinfo->rmode())) { int position = static_cast<int>(rinfo->data()); int new_position = TranslatePosition(position, position_change_array); if (position != new_position) { RelocInfo info_copy(rinfo->pc(), rinfo->rmode(), new_position, NULL); buffer_writer.Write(&info_copy); continue; } } if (RelocInfo::IsRealRelocMode(rinfo->rmode())) { buffer_writer.Write(it.rinfo()); } } } Vector<byte> buffer = buffer_writer.GetResult(); if (buffer.length() == code->relocation_size()) { // Simply patch relocation area of code. MemCopy(code->relocation_start(), buffer.start(), buffer.length()); return code; } else { // Relocation info section now has different size. We cannot simply // rewrite it inside code object. Instead we have to create a new // code object. Handle<Code> result(isolate->factory()->CopyCode(code, buffer)); return result; } } void LiveEdit::PatchFunctionPositions(Handle<JSArray> shared_info_array, Handle<JSArray> position_change_array) { SharedInfoWrapper shared_info_wrapper(shared_info_array); Handle<SharedFunctionInfo> info = shared_info_wrapper.GetInfo(); int old_function_start = info->start_position(); int new_function_start = TranslatePosition(old_function_start, position_change_array); int new_function_end = TranslatePosition(info->end_position(), position_change_array); int new_function_token_pos = TranslatePosition(info->function_token_position(), position_change_array); info->set_start_position(new_function_start); info->set_end_position(new_function_end); info->set_function_token_position(new_function_token_pos); if (IsJSFunctionCode(info->code())) { // Patch relocation info section of the code. Handle<Code> patched_code = PatchPositionsInCode(Handle<Code>(info->code()), position_change_array); if (*patched_code != info->code()) { // Replace all references to the code across the heap. In particular, // some stubs may refer to this code and this code may be being executed // on stack (it is safe to substitute the code object on stack, because // we only change the structure of rinfo and leave instructions // untouched). ReplaceCodeObject(Handle<Code>(info->code()), patched_code); } } } static Handle<Script> CreateScriptCopy(Handle<Script> original) { Isolate* isolate = original->GetIsolate(); Handle<String> original_source(String::cast(original->source())); Handle<Script> copy = isolate->factory()->NewScript(original_source); copy->set_name(original->name()); copy->set_line_offset(original->line_offset()); copy->set_column_offset(original->column_offset()); copy->set_type(original->type()); copy->set_context_data(original->context_data()); copy->set_eval_from_shared(original->eval_from_shared()); copy->set_eval_from_instructions_offset( original->eval_from_instructions_offset()); // Copy all the flags, but clear compilation state. copy->set_flags(original->flags()); copy->set_compilation_state(Script::COMPILATION_STATE_INITIAL); return copy; } Handle<Object> LiveEdit::ChangeScriptSource(Handle<Script> original_script, Handle<String> new_source, Handle<Object> old_script_name) { Isolate* isolate = original_script->GetIsolate(); Handle<Object> old_script_object; if (old_script_name->IsString()) { Handle<Script> old_script = CreateScriptCopy(original_script); old_script->set_name(String::cast(*old_script_name)); old_script_object = old_script; isolate->debug()->OnAfterCompile(old_script); } else { old_script_object = isolate->factory()->null_value(); } original_script->set_source(*new_source); // Drop line ends so that they will be recalculated. original_script->set_line_ends(isolate->heap()->undefined_value()); return old_script_object; } void LiveEdit::ReplaceRefToNestedFunction( Handle<JSValue> parent_function_wrapper, Handle<JSValue> orig_function_wrapper, Handle<JSValue> subst_function_wrapper) { Handle<SharedFunctionInfo> parent_shared = UnwrapSharedFunctionInfoFromJSValue(parent_function_wrapper); Handle<SharedFunctionInfo> orig_shared = UnwrapSharedFunctionInfoFromJSValue(orig_function_wrapper); Handle<SharedFunctionInfo> subst_shared = UnwrapSharedFunctionInfoFromJSValue(subst_function_wrapper); for (RelocIterator it(parent_shared->code()); !it.done(); it.next()) { if (it.rinfo()->rmode() == RelocInfo::EMBEDDED_OBJECT) { if (it.rinfo()->target_object() == *orig_shared) { it.rinfo()->set_target_object(*subst_shared); } } } } // Check an activation against list of functions. If there is a function // that matches, its status in result array is changed to status argument value. static bool CheckActivation(Handle<JSArray> shared_info_array, Handle<JSArray> result, StackFrame* frame, LiveEdit::FunctionPatchabilityStatus status) { if (!frame->is_java_script()) return false; Handle<JSFunction> function(JavaScriptFrame::cast(frame)->function()); Isolate* isolate = shared_info_array->GetIsolate(); int len = GetArrayLength(shared_info_array); for (int i = 0; i < len; i++) { HandleScope scope(isolate); Handle<Object> element = Object::GetElement(isolate, shared_info_array, i).ToHandleChecked(); Handle<JSValue> jsvalue = Handle<JSValue>::cast(element); Handle<SharedFunctionInfo> shared = UnwrapSharedFunctionInfoFromJSValue(jsvalue); if (function->shared() == *shared || IsInlined(*function, *shared)) { SetElementSloppy(result, i, Handle<Smi>(Smi::FromInt(status), isolate)); return true; } } return false; } // Iterates over handler chain and removes all elements that are inside // frames being dropped. static bool FixTryCatchHandler(StackFrame* top_frame, StackFrame* bottom_frame) { Address* pointer_address = &Memory::Address_at(top_frame->isolate()->get_address_from_id( Isolate::kHandlerAddress)); while (*pointer_address < top_frame->sp()) { pointer_address = &Memory::Address_at(*pointer_address); } Address* above_frame_address = pointer_address; while (*pointer_address < bottom_frame->fp()) { pointer_address = &Memory::Address_at(*pointer_address); } bool change = *above_frame_address != *pointer_address; *above_frame_address = *pointer_address; return change; } // Initializes an artificial stack frame. The data it contains is used for: // a. successful work of frame dropper code which eventually gets control, // b. being compatible with regular stack structure for various stack // iterators. // Returns address of stack allocated pointer to restarted function, // the value that is called 'restarter_frame_function_pointer'. The value // at this address (possibly updated by GC) may be used later when preparing // 'step in' operation. // Frame structure (conforms InternalFrame structure): // -- code // -- SMI maker // -- function (slot is called "context") // -- frame base static Object** SetUpFrameDropperFrame(StackFrame* bottom_js_frame, Handle<Code> code) { DCHECK(bottom_js_frame->is_java_script()); Address fp = bottom_js_frame->fp(); // Move function pointer into "context" slot. Memory::Object_at(fp + StandardFrameConstants::kContextOffset) = Memory::Object_at(fp + JavaScriptFrameConstants::kFunctionOffset); Memory::Object_at(fp + InternalFrameConstants::kCodeOffset) = *code; Memory::Object_at(fp + StandardFrameConstants::kMarkerOffset) = Smi::FromInt(StackFrame::INTERNAL); return reinterpret_cast<Object**>(&Memory::Object_at( fp + StandardFrameConstants::kContextOffset)); } // Removes specified range of frames from stack. There may be 1 or more // frames in range. Anyway the bottom frame is restarted rather than dropped, // and therefore has to be a JavaScript frame. // Returns error message or NULL. static const char* DropFrames(Vector<StackFrame*> frames, int top_frame_index, int bottom_js_frame_index, LiveEdit::FrameDropMode* mode, Object*** restarter_frame_function_pointer) { if (!LiveEdit::kFrameDropperSupported) { return "Stack manipulations are not supported in this architecture."; } StackFrame* pre_top_frame = frames[top_frame_index - 1]; StackFrame* top_frame = frames[top_frame_index]; StackFrame* bottom_js_frame = frames[bottom_js_frame_index]; DCHECK(bottom_js_frame->is_java_script()); // Check the nature of the top frame. Isolate* isolate = bottom_js_frame->isolate(); Code* pre_top_frame_code = pre_top_frame->LookupCode(); bool frame_has_padding = true; if (pre_top_frame_code->is_inline_cache_stub() && pre_top_frame_code->is_debug_stub()) { // OK, we can drop inline cache calls. *mode = LiveEdit::FRAME_DROPPED_IN_IC_CALL; } else if (pre_top_frame_code == isolate->builtins()->builtin(Builtins::kSlot_DebugBreak)) { // OK, we can drop debug break slot. *mode = LiveEdit::FRAME_DROPPED_IN_DEBUG_SLOT_CALL; } else if (pre_top_frame_code == isolate->builtins()->builtin(Builtins::kFrameDropper_LiveEdit)) { // OK, we can drop our own code. pre_top_frame = frames[top_frame_index - 2]; top_frame = frames[top_frame_index - 1]; *mode = LiveEdit::CURRENTLY_SET_MODE; frame_has_padding = false; } else if (pre_top_frame_code == isolate->builtins()->builtin(Builtins::kReturn_DebugBreak)) { *mode = LiveEdit::FRAME_DROPPED_IN_RETURN_CALL; } else if (pre_top_frame_code->kind() == Code::STUB && CodeStub::GetMajorKey(pre_top_frame_code) == CodeStub::CEntry) { // Entry from our unit tests on 'debugger' statement. // It's fine, we support this case. *mode = LiveEdit::FRAME_DROPPED_IN_DIRECT_CALL; // We don't have a padding from 'debugger' statement call. // Here the stub is CEntry, it's not debug-only and can't be padded. // If anyone would complain, a proxy padded stub could be added. frame_has_padding = false; } else if (pre_top_frame->type() == StackFrame::ARGUMENTS_ADAPTOR) { // This must be adaptor that remain from the frame dropping that // is still on stack. A frame dropper frame must be above it. DCHECK(frames[top_frame_index - 2]->LookupCode() == isolate->builtins()->builtin(Builtins::kFrameDropper_LiveEdit)); pre_top_frame = frames[top_frame_index - 3]; top_frame = frames[top_frame_index - 2]; *mode = LiveEdit::CURRENTLY_SET_MODE; frame_has_padding = false; } else { return "Unknown structure of stack above changing function"; } Address unused_stack_top = top_frame->sp(); int new_frame_size = LiveEdit::kFrameDropperFrameSize * kPointerSize; Address unused_stack_bottom = bottom_js_frame->fp() - new_frame_size + kPointerSize; // Bigger address end is exclusive. Address* top_frame_pc_address = top_frame->pc_address(); // top_frame may be damaged below this point. Do not used it. DCHECK(!(top_frame = NULL)); if (unused_stack_top > unused_stack_bottom) { if (frame_has_padding) { int shortage_bytes = static_cast<int>(unused_stack_top - unused_stack_bottom); Address padding_start = pre_top_frame->fp() - LiveEdit::kFrameDropperFrameSize * kPointerSize; Address padding_pointer = padding_start; Smi* padding_object = Smi::FromInt(LiveEdit::kFramePaddingValue); while (Memory::Object_at(padding_pointer) == padding_object) { padding_pointer -= kPointerSize; } int padding_counter = Smi::cast(Memory::Object_at(padding_pointer))->value(); if (padding_counter * kPointerSize < shortage_bytes) { return "Not enough space for frame dropper frame " "(even with padding frame)"; } Memory::Object_at(padding_pointer) = Smi::FromInt(padding_counter - shortage_bytes / kPointerSize); StackFrame* pre_pre_frame = frames[top_frame_index - 2]; MemMove(padding_start + kPointerSize - shortage_bytes, padding_start + kPointerSize, LiveEdit::kFrameDropperFrameSize * kPointerSize); pre_top_frame->UpdateFp(pre_top_frame->fp() - shortage_bytes); pre_pre_frame->SetCallerFp(pre_top_frame->fp()); unused_stack_top -= shortage_bytes; STATIC_ASSERT(sizeof(Address) == kPointerSize); top_frame_pc_address -= shortage_bytes / kPointerSize; } else { return "Not enough space for frame dropper frame"; } } // Committing now. After this point we should return only NULL value. FixTryCatchHandler(pre_top_frame, bottom_js_frame); // Make sure FixTryCatchHandler is idempotent. DCHECK(!FixTryCatchHandler(pre_top_frame, bottom_js_frame)); Handle<Code> code = isolate->builtins()->FrameDropper_LiveEdit(); *top_frame_pc_address = code->entry(); pre_top_frame->SetCallerFp(bottom_js_frame->fp()); *restarter_frame_function_pointer = SetUpFrameDropperFrame(bottom_js_frame, code); DCHECK((**restarter_frame_function_pointer)->IsJSFunction()); for (Address a = unused_stack_top; a < unused_stack_bottom; a += kPointerSize) { Memory::Object_at(a) = Smi::FromInt(0); } return NULL; } // Describes a set of call frames that execute any of listed functions. // Finding no such frames does not mean error. class MultipleFunctionTarget { public: MultipleFunctionTarget(Handle<JSArray> shared_info_array, Handle<JSArray> result) : m_shared_info_array(shared_info_array), m_result(result) {} bool MatchActivation(StackFrame* frame, LiveEdit::FunctionPatchabilityStatus status) { return CheckActivation(m_shared_info_array, m_result, frame, status); } const char* GetNotFoundMessage() const { return NULL; } private: Handle<JSArray> m_shared_info_array; Handle<JSArray> m_result; }; // Drops all call frame matched by target and all frames above them. template <typename TARGET> static const char* DropActivationsInActiveThreadImpl(Isolate* isolate, TARGET& target, // NOLINT bool do_drop) { Debug* debug = isolate->debug(); Zone zone; Vector<StackFrame*> frames = CreateStackMap(isolate, &zone); int top_frame_index = -1; int frame_index = 0; for (; frame_index < frames.length(); frame_index++) { StackFrame* frame = frames[frame_index]; if (frame->id() == debug->break_frame_id()) { top_frame_index = frame_index; break; } if (target.MatchActivation( frame, LiveEdit::FUNCTION_BLOCKED_UNDER_NATIVE_CODE)) { // We are still above break_frame. It is not a target frame, // it is a problem. return "Debugger mark-up on stack is not found"; } } if (top_frame_index == -1) { // We haven't found break frame, but no function is blocking us anyway. return target.GetNotFoundMessage(); } bool target_frame_found = false; int bottom_js_frame_index = top_frame_index; bool non_droppable_frame_found = false; LiveEdit::FunctionPatchabilityStatus non_droppable_reason; for (; frame_index < frames.length(); frame_index++) { StackFrame* frame = frames[frame_index]; if (frame->is_exit()) { non_droppable_frame_found = true; non_droppable_reason = LiveEdit::FUNCTION_BLOCKED_UNDER_NATIVE_CODE; break; } if (frame->is_java_script() && JavaScriptFrame::cast(frame)->function()->shared()->is_generator()) { non_droppable_frame_found = true; non_droppable_reason = LiveEdit::FUNCTION_BLOCKED_UNDER_GENERATOR; break; } if (target.MatchActivation( frame, LiveEdit::FUNCTION_BLOCKED_ON_ACTIVE_STACK)) { target_frame_found = true; bottom_js_frame_index = frame_index; } } if (non_droppable_frame_found) { // There is a C or generator frame on stack. We can't drop C frames, and we // can't restart generators. Check that there are no target frames below // them. for (; frame_index < frames.length(); frame_index++) { StackFrame* frame = frames[frame_index]; if (frame->is_java_script()) { if (target.MatchActivation(frame, non_droppable_reason)) { // Fail. return NULL; } } } } if (!do_drop) { // We are in check-only mode. return NULL; } if (!target_frame_found) { // Nothing to drop. return target.GetNotFoundMessage(); } LiveEdit::FrameDropMode drop_mode = LiveEdit::FRAMES_UNTOUCHED; Object** restarter_frame_function_pointer = NULL; const char* error_message = DropFrames(frames, top_frame_index, bottom_js_frame_index, &drop_mode, &restarter_frame_function_pointer); if (error_message != NULL) { return error_message; } // Adjust break_frame after some frames has been dropped. StackFrame::Id new_id = StackFrame::NO_ID; for (int i = bottom_js_frame_index + 1; i < frames.length(); i++) { if (frames[i]->type() == StackFrame::JAVA_SCRIPT) { new_id = frames[i]->id(); break; } } debug->FramesHaveBeenDropped( new_id, drop_mode, restarter_frame_function_pointer); return NULL; } // Fills result array with statuses of functions. Modifies the stack // removing all listed function if possible and if do_drop is true. static const char* DropActivationsInActiveThread( Handle<JSArray> shared_info_array, Handle<JSArray> result, bool do_drop) { MultipleFunctionTarget target(shared_info_array, result); Isolate* isolate = shared_info_array->GetIsolate(); const char* message = DropActivationsInActiveThreadImpl(isolate, target, do_drop); if (message) { return message; } int array_len = GetArrayLength(shared_info_array); // Replace "blocked on active" with "replaced on active" status. for (int i = 0; i < array_len; i++) { Handle<Object> obj = Object::GetElement(isolate, result, i).ToHandleChecked(); if (*obj == Smi::FromInt(LiveEdit::FUNCTION_BLOCKED_ON_ACTIVE_STACK)) { Handle<Object> replaced( Smi::FromInt(LiveEdit::FUNCTION_REPLACED_ON_ACTIVE_STACK), isolate); SetElementSloppy(result, i, replaced); } } return NULL; } bool LiveEdit::FindActiveGenerators(Handle<FixedArray> shared_info_array, Handle<FixedArray> result, int len) { Isolate* isolate = shared_info_array->GetIsolate(); bool found_suspended_activations = false; DCHECK_LE(len, result->length()); FunctionPatchabilityStatus active = FUNCTION_BLOCKED_ACTIVE_GENERATOR; Heap* heap = isolate->heap(); HeapIterator iterator(heap); HeapObject* obj = NULL; while ((obj = iterator.next()) != NULL) { if (!obj->IsJSGeneratorObject()) continue; JSGeneratorObject* gen = JSGeneratorObject::cast(obj); if (gen->is_closed()) continue; HandleScope scope(isolate); for (int i = 0; i < len; i++) { Handle<JSValue> jsvalue = Handle<JSValue>::cast(FixedArray::get(shared_info_array, i)); Handle<SharedFunctionInfo> shared = UnwrapSharedFunctionInfoFromJSValue(jsvalue); if (gen->function()->shared() == *shared) { result->set(i, Smi::FromInt(active)); found_suspended_activations = true; } } } return found_suspended_activations; } class InactiveThreadActivationsChecker : public ThreadVisitor { public: InactiveThreadActivationsChecker(Handle<JSArray> shared_info_array, Handle<JSArray> result) : shared_info_array_(shared_info_array), result_(result), has_blocked_functions_(false) { } void VisitThread(Isolate* isolate, ThreadLocalTop* top) { for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) { has_blocked_functions_ |= CheckActivation( shared_info_array_, result_, it.frame(), LiveEdit::FUNCTION_BLOCKED_ON_OTHER_STACK); } } bool HasBlockedFunctions() { return has_blocked_functions_; } private: Handle<JSArray> shared_info_array_; Handle<JSArray> result_; bool has_blocked_functions_; }; Handle<JSArray> LiveEdit::CheckAndDropActivations( Handle<JSArray> shared_info_array, bool do_drop) { Isolate* isolate = shared_info_array->GetIsolate(); int len = GetArrayLength(shared_info_array); DCHECK(shared_info_array->HasFastElements()); Handle<FixedArray> shared_info_array_elements( FixedArray::cast(shared_info_array->elements())); Handle<JSArray> result = isolate->factory()->NewJSArray(len); Handle<FixedArray> result_elements = JSObject::EnsureWritableFastElements(result); // Fill the default values. for (int i = 0; i < len; i++) { FunctionPatchabilityStatus status = FUNCTION_AVAILABLE_FOR_PATCH; result_elements->set(i, Smi::FromInt(status)); } // Scan the heap for active generators -- those that are either currently // running (as we wouldn't want to restart them, because we don't know where // to restart them from) or suspended. Fail if any one corresponds to the set // of functions being edited. if (FindActiveGenerators(shared_info_array_elements, result_elements, len)) { return result; } // Check inactive threads. Fail if some functions are blocked there. InactiveThreadActivationsChecker inactive_threads_checker(shared_info_array, result); isolate->thread_manager()->IterateArchivedThreads( &inactive_threads_checker); if (inactive_threads_checker.HasBlockedFunctions()) { return result; } // Try to drop activations from the current stack. const char* error_message = DropActivationsInActiveThread(shared_info_array, result, do_drop); if (error_message != NULL) { // Add error message as an array extra element. Handle<String> str = isolate->factory()->NewStringFromAsciiChecked(error_message); SetElementSloppy(result, len, str); } return result; } // Describes a single callframe a target. Not finding this frame // means an error. class SingleFrameTarget { public: explicit SingleFrameTarget(JavaScriptFrame* frame) : m_frame(frame), m_saved_status(LiveEdit::FUNCTION_AVAILABLE_FOR_PATCH) {} bool MatchActivation(StackFrame* frame, LiveEdit::FunctionPatchabilityStatus status) { if (frame->fp() == m_frame->fp()) { m_saved_status = status; return true; } return false; } const char* GetNotFoundMessage() const { return "Failed to found requested frame"; } LiveEdit::FunctionPatchabilityStatus saved_status() { return m_saved_status; } private: JavaScriptFrame* m_frame; LiveEdit::FunctionPatchabilityStatus m_saved_status; }; // Finds a drops required frame and all frames above. // Returns error message or NULL. const char* LiveEdit::RestartFrame(JavaScriptFrame* frame) { SingleFrameTarget target(frame); const char* result = DropActivationsInActiveThreadImpl(frame->isolate(), target, true); if (result != NULL) { return result; } if (target.saved_status() == LiveEdit::FUNCTION_BLOCKED_UNDER_NATIVE_CODE) { return "Function is blocked under native code"; } if (target.saved_status() == LiveEdit::FUNCTION_BLOCKED_UNDER_GENERATOR) { return "Function is blocked under a generator activation"; } return NULL; } LiveEditFunctionTracker::LiveEditFunctionTracker(Isolate* isolate, FunctionLiteral* fun) : isolate_(isolate) { if (isolate_->active_function_info_listener() != NULL) { isolate_->active_function_info_listener()->FunctionStarted(fun); } } LiveEditFunctionTracker::~LiveEditFunctionTracker() { if (isolate_->active_function_info_listener() != NULL) { isolate_->active_function_info_listener()->FunctionDone(); } } void LiveEditFunctionTracker::RecordFunctionInfo( Handle<SharedFunctionInfo> info, FunctionLiteral* lit, Zone* zone) { if (isolate_->active_function_info_listener() != NULL) { isolate_->active_function_info_listener()->FunctionInfo(info, lit->scope(), zone); } } void LiveEditFunctionTracker::RecordRootFunctionInfo(Handle<Code> code) { isolate_->active_function_info_listener()->FunctionCode(code); } bool LiveEditFunctionTracker::IsActive(Isolate* isolate) { return isolate->active_function_info_listener() != NULL; } } // namespace internal } // namespace v8