// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include <stdio.h> #include <stdlib.h> #include <algorithm> #include <google_breakpad/processor/minidump.h> #include <v8.h> namespace { using google_breakpad::Minidump; using google_breakpad::MinidumpContext; using google_breakpad::MinidumpThread; using google_breakpad::MinidumpThreadList; using google_breakpad::MinidumpException; using google_breakpad::MinidumpMemoryRegion; const char* InstanceTypeToString(int type) { static char const* names[v8::internal::LAST_TYPE] = {0}; if (names[v8::internal::STRING_TYPE] == NULL) { using namespace v8::internal; #define SET(type) names[type] = #type; INSTANCE_TYPE_LIST(SET) #undef SET } return names[type]; } u_int32_t ReadPointedValue(MinidumpMemoryRegion* region, u_int64_t base, int offset) { u_int32_t ptr = 0; CHECK(region->GetMemoryAtAddress(base + 4 * offset, &ptr)); u_int32_t value = 0; CHECK(region->GetMemoryAtAddress(ptr, &value)); return value; } void ReadArray(MinidumpMemoryRegion* region, u_int64_t array_ptr, int size, int* output) { for (int i = 0; i < size; i++) { u_int32_t value; CHECK(region->GetMemoryAtAddress(array_ptr + 4 * i, &value)); output[i] = value; } } u_int32_t ReadArrayFrom(MinidumpMemoryRegion* region, u_int64_t base, int offset, int size, int* output) { u_int32_t ptr = 0; CHECK(region->GetMemoryAtAddress(base + 4 * offset, &ptr)); ReadArray(region, ptr, size, output); } double toM(int size) { return size / (1024. * 1024.); } class IndirectSorter { public: explicit IndirectSorter(int* a) : a_(a) { } bool operator() (int i0, int i1) { return a_[i0] > a_[i1]; } private: int* a_; }; void DumpHeapStats(const char *minidump_file) { Minidump minidump(minidump_file); CHECK(minidump.Read()); MinidumpException *exception = minidump.GetException(); CHECK(exception); MinidumpContext* crash_context = exception->GetContext(); CHECK(crash_context); u_int32_t exception_thread_id = 0; CHECK(exception->GetThreadID(&exception_thread_id)); MinidumpThreadList* thread_list = minidump.GetThreadList(); CHECK(thread_list); MinidumpThread* exception_thread = thread_list->GetThreadByID(exception_thread_id); CHECK(exception_thread); // Currently only 32-bit Windows minidumps are supported. CHECK_EQ(MD_CONTEXT_X86, crash_context->GetContextCPU()); const MDRawContextX86* contextX86 = crash_context->GetContextX86(); CHECK(contextX86); const u_int32_t esp = contextX86->esp; MinidumpMemoryRegion* memory_region = exception_thread->GetMemory(); CHECK(memory_region); const u_int64_t last = memory_region->GetBase() + memory_region->GetSize(); u_int64_t heap_stats_addr = 0; for (u_int64_t addr = esp; addr < last; addr += 4) { u_int32_t value = 0; CHECK(memory_region->GetMemoryAtAddress(addr, &value)); if (value >= esp && value < last) { u_int32_t value2 = 0; CHECK(memory_region->GetMemoryAtAddress(value, &value2)); if (value2 == v8::internal::HeapStats::kStartMarker) { heap_stats_addr = addr; break; } } } CHECK(heap_stats_addr); // Read heap stats. #define READ_FIELD(offset) \ ReadPointedValue(memory_region, heap_stats_addr, offset) CHECK(READ_FIELD(0) == v8::internal::HeapStats::kStartMarker); CHECK(READ_FIELD(24) == v8::internal::HeapStats::kEndMarker); const int new_space_size = READ_FIELD(1); const int new_space_capacity = READ_FIELD(2); const int old_space_size = READ_FIELD(3); const int old_space_capacity = READ_FIELD(4); const int code_space_size = READ_FIELD(5); const int code_space_capacity = READ_FIELD(6); const int map_space_size = READ_FIELD(7); const int map_space_capacity = READ_FIELD(8); const int cell_space_size = READ_FIELD(9); const int cell_space_capacity = READ_FIELD(10); const int lo_space_size = READ_FIELD(11); const int global_handle_count = READ_FIELD(12); const int weak_global_handle_count = READ_FIELD(13); const int pending_global_handle_count = READ_FIELD(14); const int near_death_global_handle_count = READ_FIELD(15); const int destroyed_global_handle_count = READ_FIELD(16); const int memory_allocator_size = READ_FIELD(17); const int memory_allocator_capacity = READ_FIELD(18); const int os_error = READ_FIELD(19); #undef READ_FIELD int objects_per_type[v8::internal::LAST_TYPE + 1] = {0}; ReadArrayFrom(memory_region, heap_stats_addr, 21, v8::internal::LAST_TYPE + 1, objects_per_type); int size_per_type[v8::internal::LAST_TYPE + 1] = {0}; ReadArrayFrom(memory_region, heap_stats_addr, 22, v8::internal::LAST_TYPE + 1, size_per_type); int js_global_objects = objects_per_type[v8::internal::JS_GLOBAL_OBJECT_TYPE]; int js_builtins_objects = objects_per_type[v8::internal::JS_BUILTINS_OBJECT_TYPE]; int js_global_proxies = objects_per_type[v8::internal::JS_GLOBAL_PROXY_TYPE]; int indices[v8::internal::LAST_TYPE + 1]; for (int i = 0; i <= v8::internal::LAST_TYPE; i++) { indices[i] = i; } std::stable_sort(indices, indices + sizeof(indices)/sizeof(indices[0]), IndirectSorter(size_per_type)); int total_size = 0; for (int i = 0; i <= v8::internal::LAST_TYPE; i++) { total_size += size_per_type[i]; } // Print heap stats. printf("exception thread ID: %" PRIu32 " (%#" PRIx32 ")\n", exception_thread_id, exception_thread_id); printf("heap stats address: %#" PRIx64 "\n", heap_stats_addr); #define PRINT_INT_STAT(stat) \ printf("\t%-25s\t% 10d\n", #stat ":", stat); #define PRINT_MB_STAT(stat) \ printf("\t%-25s\t% 10.3f MB\n", #stat ":", toM(stat)); PRINT_MB_STAT(new_space_size); PRINT_MB_STAT(new_space_capacity); PRINT_MB_STAT(old_space_size); PRINT_MB_STAT(old_space_capacity); PRINT_MB_STAT(code_space_size); PRINT_MB_STAT(code_space_capacity); PRINT_MB_STAT(map_space_size); PRINT_MB_STAT(map_space_capacity); PRINT_MB_STAT(cell_space_size); PRINT_MB_STAT(cell_space_capacity); PRINT_MB_STAT(lo_space_size); PRINT_INT_STAT(global_handle_count); PRINT_INT_STAT(weak_global_handle_count); PRINT_INT_STAT(pending_global_handle_count); PRINT_INT_STAT(near_death_global_handle_count); PRINT_INT_STAT(destroyed_global_handle_count); PRINT_MB_STAT(memory_allocator_size); PRINT_MB_STAT(memory_allocator_capacity); PRINT_INT_STAT(os_error); #undef PRINT_STAT printf("\n"); printf( "\tJS_GLOBAL_OBJECT_TYPE/JS_BUILTINS_OBJECT_TYPE/JS_GLOBAL_PROXY_TYPE: " "%d/%d/%d\n\n", js_global_objects, js_builtins_objects, js_global_proxies); int running_size = 0; for (int i = 0; i <= v8::internal::LAST_TYPE; i++) { int type = indices[i]; const char* name = InstanceTypeToString(type); if (name == NULL) { // Unknown instance type. Check that there is no objects of that type. CHECK_EQ(0, objects_per_type[type]); CHECK_EQ(0, size_per_type[type]); continue; } int size = size_per_type[type]; running_size += size; printf("\t%-37s% 9d% 11.3f MB% 10.3f%%% 10.3f%%\n", name, objects_per_type[type], toM(size), 100. * size / total_size, 100. * running_size / total_size); } printf("\t%-37s% 9d% 11.3f MB% 10.3f%%% 10.3f%%\n", "total", 0, toM(total_size), 100., 100.); } } // namespace int main(int argc, char **argv) { if (argc != 2) { fprintf(stderr, "usage: %s <minidump>\n", argv[0]); return 1; } DumpHeapStats(argv[1]); return 0; }