// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_ARM #include "src/arm/assembler-arm.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/disasm.h" #include "src/ic-inl.h" #include "src/runtime.h" #include "src/stub-cache.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Static IC stub generators. // #define __ ACCESS_MASM(masm) static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type, Label* global_object) { // Register usage: // type: holds the receiver instance type on entry. __ cmp(type, Operand(JS_GLOBAL_OBJECT_TYPE)); __ b(eq, global_object); __ cmp(type, Operand(JS_BUILTINS_OBJECT_TYPE)); __ b(eq, global_object); __ cmp(type, Operand(JS_GLOBAL_PROXY_TYPE)); __ b(eq, global_object); } // Helper function used from LoadIC GenerateNormal. // // elements: Property dictionary. It is not clobbered if a jump to the miss // label is done. // name: Property name. It is not clobbered if a jump to the miss label is // done // result: Register for the result. It is only updated if a jump to the miss // label is not done. Can be the same as elements or name clobbering // one of these in the case of not jumping to the miss label. // The two scratch registers need to be different from elements, name and // result. // The generated code assumes that the receiver has slow properties, // is not a global object and does not have interceptors. static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss, Register elements, Register name, Register result, Register scratch1, Register scratch2) { // Main use of the scratch registers. // scratch1: Used as temporary and to hold the capacity of the property // dictionary. // scratch2: Used as temporary. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements, name, scratch1, scratch2); // If probing finds an entry check that the value is a normal // property. __ bind(&done); // scratch2 == elements + 4 * index const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; __ ldr(scratch1, FieldMemOperand(scratch2, kDetailsOffset)); __ tst(scratch1, Operand(PropertyDetails::TypeField::kMask << kSmiTagSize)); __ b(ne, miss); // Get the value at the masked, scaled index and return. __ ldr(result, FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize)); } // Helper function used from StoreIC::GenerateNormal. // // elements: Property dictionary. It is not clobbered if a jump to the miss // label is done. // name: Property name. It is not clobbered if a jump to the miss label is // done // value: The value to store. // The two scratch registers need to be different from elements, name and // result. // The generated code assumes that the receiver has slow properties, // is not a global object and does not have interceptors. static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss, Register elements, Register name, Register value, Register scratch1, Register scratch2) { // Main use of the scratch registers. // scratch1: Used as temporary and to hold the capacity of the property // dictionary. // scratch2: Used as temporary. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements, name, scratch1, scratch2); // If probing finds an entry in the dictionary check that the value // is a normal property that is not read only. __ bind(&done); // scratch2 == elements + 4 * index const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; const int kTypeAndReadOnlyMask = (PropertyDetails::TypeField::kMask | PropertyDetails::AttributesField::encode(READ_ONLY)) << kSmiTagSize; __ ldr(scratch1, FieldMemOperand(scratch2, kDetailsOffset)); __ tst(scratch1, Operand(kTypeAndReadOnlyMask)); __ b(ne, miss); // Store the value at the masked, scaled index and return. const int kValueOffset = kElementsStartOffset + kPointerSize; __ add(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag)); __ str(value, MemOperand(scratch2)); // Update the write barrier. Make sure not to clobber the value. __ mov(scratch1, value); __ RecordWrite( elements, scratch2, scratch1, kLRHasNotBeenSaved, kDontSaveFPRegs); } // Checks the receiver for special cases (value type, slow case bits). // Falls through for regular JS object. static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm, Register receiver, Register map, Register scratch, int interceptor_bit, Label* slow) { // Check that the object isn't a smi. __ JumpIfSmi(receiver, slow); // Get the map of the receiver. __ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); // Check bit field. __ ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); __ tst(scratch, Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit))); __ b(ne, slow); // Check that the object is some kind of JS object EXCEPT JS Value type. // In the case that the object is a value-wrapper object, // we enter the runtime system to make sure that indexing into string // objects work as intended. ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE); __ ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ cmp(scratch, Operand(JS_OBJECT_TYPE)); __ b(lt, slow); } // Loads an indexed element from a fast case array. // If not_fast_array is NULL, doesn't perform the elements map check. static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver, Register key, Register elements, Register scratch1, Register scratch2, Register result, Label* not_fast_array, Label* out_of_range) { // Register use: // // receiver - holds the receiver on entry. // Unchanged unless 'result' is the same register. // // key - holds the smi key on entry. // Unchanged unless 'result' is the same register. // // elements - holds the elements of the receiver on exit. // // result - holds the result on exit if the load succeeded. // Allowed to be the the same as 'receiver' or 'key'. // Unchanged on bailout so 'receiver' and 'key' can be safely // used by further computation. // // Scratch registers: // // scratch1 - used to hold elements map and elements length. // Holds the elements map if not_fast_array branch is taken. // // scratch2 - used to hold the loaded value. __ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); if (not_fast_array != NULL) { // Check that the object is in fast mode and writable. __ ldr(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); __ cmp(scratch1, ip); __ b(ne, not_fast_array); } else { __ AssertFastElements(elements); } // Check that the key (index) is within bounds. __ ldr(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ cmp(key, Operand(scratch1)); __ b(hs, out_of_range); // Fast case: Do the load. __ add(scratch1, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ ldr(scratch2, MemOperand::PointerAddressFromSmiKey(scratch1, key)); __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ cmp(scratch2, ip); // In case the loaded value is the_hole we have to consult GetProperty // to ensure the prototype chain is searched. __ b(eq, out_of_range); __ mov(result, scratch2); } // Checks whether a key is an array index string or a unique name. // Falls through if a key is a unique name. static void GenerateKeyNameCheck(MacroAssembler* masm, Register key, Register map, Register hash, Label* index_string, Label* not_unique) { // The key is not a smi. Label unique; // Is it a name? __ CompareObjectType(key, map, hash, LAST_UNIQUE_NAME_TYPE); __ b(hi, not_unique); STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE); __ b(eq, &unique); // Is the string an array index, with cached numeric value? __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset)); __ tst(hash, Operand(Name::kContainsCachedArrayIndexMask)); __ b(eq, index_string); // Is the string internalized? We know it's a string, so a single // bit test is enough. // map: key map __ ldrb(hash, FieldMemOperand(map, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0); __ tst(hash, Operand(kIsNotInternalizedMask)); __ b(ne, not_unique); __ bind(&unique); } void LoadIC::GenerateMegamorphic(MacroAssembler* masm) { // The return address is in lr. Register receiver = ReceiverRegister(); Register name = NameRegister(); ASSERT(receiver.is(r1)); ASSERT(name.is(r2)); // Probe the stub cache. Code::Flags flags = Code::ComputeHandlerFlags(Code::LOAD_IC); masm->isolate()->stub_cache()->GenerateProbe( masm, flags, receiver, name, r3, r4, r5, r6); // Cache miss: Jump to runtime. GenerateMiss(masm); } void LoadIC::GenerateNormal(MacroAssembler* masm) { Register dictionary = r0; ASSERT(!dictionary.is(ReceiverRegister())); ASSERT(!dictionary.is(NameRegister())); Label slow; __ ldr(dictionary, FieldMemOperand(ReceiverRegister(), JSObject::kPropertiesOffset)); GenerateDictionaryLoad(masm, &slow, dictionary, NameRegister(), r0, r3, r4); __ Ret(); // Dictionary load failed, go slow (but don't miss). __ bind(&slow); GenerateRuntimeGetProperty(masm); } // A register that isn't one of the parameters to the load ic. static const Register LoadIC_TempRegister() { return r3; } void LoadIC::GenerateMiss(MacroAssembler* masm) { // The return address is in lr. Isolate* isolate = masm->isolate(); __ IncrementCounter(isolate->counters()->load_miss(), 1, r3, r4); __ mov(LoadIC_TempRegister(), ReceiverRegister()); __ Push(LoadIC_TempRegister(), NameRegister()); // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss), isolate); __ TailCallExternalReference(ref, 2, 1); } void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) { // The return address is in lr. __ mov(LoadIC_TempRegister(), ReceiverRegister()); __ Push(LoadIC_TempRegister(), NameRegister()); __ TailCallRuntime(Runtime::kGetProperty, 2, 1); } static MemOperand GenerateMappedArgumentsLookup(MacroAssembler* masm, Register object, Register key, Register scratch1, Register scratch2, Register scratch3, Label* unmapped_case, Label* slow_case) { Heap* heap = masm->isolate()->heap(); // Check that the receiver is a JSObject. Because of the map check // later, we do not need to check for interceptors or whether it // requires access checks. __ JumpIfSmi(object, slow_case); // Check that the object is some kind of JSObject. __ CompareObjectType(object, scratch1, scratch2, FIRST_JS_RECEIVER_TYPE); __ b(lt, slow_case); // Check that the key is a positive smi. __ tst(key, Operand(0x80000001)); __ b(ne, slow_case); // Load the elements into scratch1 and check its map. Handle<Map> arguments_map(heap->sloppy_arguments_elements_map()); __ ldr(scratch1, FieldMemOperand(object, JSObject::kElementsOffset)); __ CheckMap(scratch1, scratch2, arguments_map, slow_case, DONT_DO_SMI_CHECK); // Check if element is in the range of mapped arguments. If not, jump // to the unmapped lookup with the parameter map in scratch1. __ ldr(scratch2, FieldMemOperand(scratch1, FixedArray::kLengthOffset)); __ sub(scratch2, scratch2, Operand(Smi::FromInt(2))); __ cmp(key, Operand(scratch2)); __ b(cs, unmapped_case); // Load element index and check whether it is the hole. const int kOffset = FixedArray::kHeaderSize + 2 * kPointerSize - kHeapObjectTag; __ mov(scratch3, Operand(kPointerSize >> 1)); __ mul(scratch3, key, scratch3); __ add(scratch3, scratch3, Operand(kOffset)); __ ldr(scratch2, MemOperand(scratch1, scratch3)); __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex); __ cmp(scratch2, scratch3); __ b(eq, unmapped_case); // Load value from context and return it. We can reuse scratch1 because // we do not jump to the unmapped lookup (which requires the parameter // map in scratch1). __ ldr(scratch1, FieldMemOperand(scratch1, FixedArray::kHeaderSize)); __ mov(scratch3, Operand(kPointerSize >> 1)); __ mul(scratch3, scratch2, scratch3); __ add(scratch3, scratch3, Operand(Context::kHeaderSize - kHeapObjectTag)); return MemOperand(scratch1, scratch3); } static MemOperand GenerateUnmappedArgumentsLookup(MacroAssembler* masm, Register key, Register parameter_map, Register scratch, Label* slow_case) { // Element is in arguments backing store, which is referenced by the // second element of the parameter_map. The parameter_map register // must be loaded with the parameter map of the arguments object and is // overwritten. const int kBackingStoreOffset = FixedArray::kHeaderSize + kPointerSize; Register backing_store = parameter_map; __ ldr(backing_store, FieldMemOperand(parameter_map, kBackingStoreOffset)); Handle<Map> fixed_array_map(masm->isolate()->heap()->fixed_array_map()); __ CheckMap(backing_store, scratch, fixed_array_map, slow_case, DONT_DO_SMI_CHECK); __ ldr(scratch, FieldMemOperand(backing_store, FixedArray::kLengthOffset)); __ cmp(key, Operand(scratch)); __ b(cs, slow_case); __ mov(scratch, Operand(kPointerSize >> 1)); __ mul(scratch, key, scratch); __ add(scratch, scratch, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); return MemOperand(backing_store, scratch); } void KeyedLoadIC::GenerateSloppyArguments(MacroAssembler* masm) { // The return address is in lr. Register receiver = ReceiverRegister(); Register key = NameRegister(); ASSERT(receiver.is(r1)); ASSERT(key.is(r2)); Label slow, notin; MemOperand mapped_location = GenerateMappedArgumentsLookup( masm, receiver, key, r0, r3, r4, ¬in, &slow); __ ldr(r0, mapped_location); __ Ret(); __ bind(¬in); // The unmapped lookup expects that the parameter map is in r0. MemOperand unmapped_location = GenerateUnmappedArgumentsLookup(masm, key, r0, r3, &slow); __ ldr(r0, unmapped_location); __ LoadRoot(r3, Heap::kTheHoleValueRootIndex); __ cmp(r0, r3); __ b(eq, &slow); __ Ret(); __ bind(&slow); GenerateMiss(masm); } void KeyedStoreIC::GenerateSloppyArguments(MacroAssembler* masm) { Register receiver = ReceiverRegister(); Register key = NameRegister(); Register value = ValueRegister(); ASSERT(receiver.is(r1)); ASSERT(key.is(r2)); ASSERT(value.is(r0)); Label slow, notin; MemOperand mapped_location = GenerateMappedArgumentsLookup( masm, receiver, key, r3, r4, r5, ¬in, &slow); __ str(value, mapped_location); __ add(r6, r3, r5); __ mov(r9, value); __ RecordWrite(r3, r6, r9, kLRHasNotBeenSaved, kDontSaveFPRegs); __ Ret(); __ bind(¬in); // The unmapped lookup expects that the parameter map is in r3. MemOperand unmapped_location = GenerateUnmappedArgumentsLookup(masm, key, r3, r4, &slow); __ str(value, unmapped_location); __ add(r6, r3, r4); __ mov(r9, value); __ RecordWrite(r3, r6, r9, kLRHasNotBeenSaved, kDontSaveFPRegs); __ Ret(); __ bind(&slow); GenerateMiss(masm); } void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) { // The return address is in lr. Isolate* isolate = masm->isolate(); __ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, r3, r4); __ Push(ReceiverRegister(), NameRegister()); // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kKeyedLoadIC_Miss), isolate); __ TailCallExternalReference(ref, 2, 1); } // IC register specifications const Register LoadIC::ReceiverRegister() { return r1; } const Register LoadIC::NameRegister() { return r2; } const Register StoreIC::ReceiverRegister() { return r1; } const Register StoreIC::NameRegister() { return r2; } const Register StoreIC::ValueRegister() { return r0; } const Register KeyedStoreIC::ReceiverRegister() { return StoreIC::ReceiverRegister(); } const Register KeyedStoreIC::NameRegister() { return StoreIC::NameRegister(); } const Register KeyedStoreIC::ValueRegister() { return StoreIC::ValueRegister(); } const Register KeyedStoreIC::MapRegister() { return r3; } void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) { // The return address is in lr. __ Push(ReceiverRegister(), NameRegister()); __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1); } void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) { // The return address is in lr. Label slow, check_name, index_smi, index_name, property_array_property; Label probe_dictionary, check_number_dictionary; Register key = NameRegister(); Register receiver = ReceiverRegister(); ASSERT(key.is(r2)); ASSERT(receiver.is(r1)); Isolate* isolate = masm->isolate(); // Check that the key is a smi. __ JumpIfNotSmi(key, &check_name); __ bind(&index_smi); // Now the key is known to be a smi. This place is also jumped to from below // where a numeric string is converted to a smi. GenerateKeyedLoadReceiverCheck( masm, receiver, r0, r3, Map::kHasIndexedInterceptor, &slow); // Check the receiver's map to see if it has fast elements. __ CheckFastElements(r0, r3, &check_number_dictionary); GenerateFastArrayLoad( masm, receiver, key, r0, r3, r4, r0, NULL, &slow); __ IncrementCounter(isolate->counters()->keyed_load_generic_smi(), 1, r4, r3); __ Ret(); __ bind(&check_number_dictionary); __ ldr(r4, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ ldr(r3, FieldMemOperand(r4, JSObject::kMapOffset)); // Check whether the elements is a number dictionary. // r3: elements map // r4: elements __ LoadRoot(ip, Heap::kHashTableMapRootIndex); __ cmp(r3, ip); __ b(ne, &slow); __ SmiUntag(r0, key); __ LoadFromNumberDictionary(&slow, r4, key, r0, r0, r3, r5); __ Ret(); // Slow case, key and receiver still in r2 and r1. __ bind(&slow); __ IncrementCounter(isolate->counters()->keyed_load_generic_slow(), 1, r4, r3); GenerateRuntimeGetProperty(masm); __ bind(&check_name); GenerateKeyNameCheck(masm, key, r0, r3, &index_name, &slow); GenerateKeyedLoadReceiverCheck( masm, receiver, r0, r3, Map::kHasNamedInterceptor, &slow); // If the receiver is a fast-case object, check the keyed lookup // cache. Otherwise probe the dictionary. __ ldr(r3, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kHashTableMapRootIndex); __ cmp(r4, ip); __ b(eq, &probe_dictionary); // Load the map of the receiver, compute the keyed lookup cache hash // based on 32 bits of the map pointer and the name hash. __ ldr(r0, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ mov(r3, Operand(r0, ASR, KeyedLookupCache::kMapHashShift)); __ ldr(r4, FieldMemOperand(key, Name::kHashFieldOffset)); __ eor(r3, r3, Operand(r4, ASR, Name::kHashShift)); int mask = KeyedLookupCache::kCapacityMask & KeyedLookupCache::kHashMask; __ And(r3, r3, Operand(mask)); // Load the key (consisting of map and unique name) from the cache and // check for match. Label load_in_object_property; static const int kEntriesPerBucket = KeyedLookupCache::kEntriesPerBucket; Label hit_on_nth_entry[kEntriesPerBucket]; ExternalReference cache_keys = ExternalReference::keyed_lookup_cache_keys(isolate); __ mov(r4, Operand(cache_keys)); __ add(r4, r4, Operand(r3, LSL, kPointerSizeLog2 + 1)); for (int i = 0; i < kEntriesPerBucket - 1; i++) { Label try_next_entry; // Load map and move r4 to next entry. __ ldr(r5, MemOperand(r4, kPointerSize * 2, PostIndex)); __ cmp(r0, r5); __ b(ne, &try_next_entry); __ ldr(r5, MemOperand(r4, -kPointerSize)); // Load name __ cmp(key, r5); __ b(eq, &hit_on_nth_entry[i]); __ bind(&try_next_entry); } // Last entry: Load map and move r4 to name. __ ldr(r5, MemOperand(r4, kPointerSize, PostIndex)); __ cmp(r0, r5); __ b(ne, &slow); __ ldr(r5, MemOperand(r4)); __ cmp(key, r5); __ b(ne, &slow); // Get field offset. // r0 : receiver's map // r3 : lookup cache index ExternalReference cache_field_offsets = ExternalReference::keyed_lookup_cache_field_offsets(isolate); // Hit on nth entry. for (int i = kEntriesPerBucket - 1; i >= 0; i--) { __ bind(&hit_on_nth_entry[i]); __ mov(r4, Operand(cache_field_offsets)); if (i != 0) { __ add(r3, r3, Operand(i)); } __ ldr(r5, MemOperand(r4, r3, LSL, kPointerSizeLog2)); __ ldrb(r6, FieldMemOperand(r0, Map::kInObjectPropertiesOffset)); __ sub(r5, r5, r6, SetCC); __ b(ge, &property_array_property); if (i != 0) { __ jmp(&load_in_object_property); } } // Load in-object property. __ bind(&load_in_object_property); __ ldrb(r6, FieldMemOperand(r0, Map::kInstanceSizeOffset)); __ add(r6, r6, r5); // Index from start of object. __ sub(receiver, receiver, Operand(kHeapObjectTag)); // Remove the heap tag. __ ldr(r0, MemOperand(receiver, r6, LSL, kPointerSizeLog2)); __ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1, r4, r3); __ Ret(); // Load property array property. __ bind(&property_array_property); __ ldr(receiver, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ add(receiver, receiver, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ ldr(r0, MemOperand(receiver, r5, LSL, kPointerSizeLog2)); __ IncrementCounter(isolate->counters()->keyed_load_generic_lookup_cache(), 1, r4, r3); __ Ret(); // Do a quick inline probe of the receiver's dictionary, if it // exists. __ bind(&probe_dictionary); // r3: elements __ ldr(r0, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); GenerateGlobalInstanceTypeCheck(masm, r0, &slow); // Load the property to r0. GenerateDictionaryLoad(masm, &slow, r3, key, r0, r5, r4); __ IncrementCounter( isolate->counters()->keyed_load_generic_symbol(), 1, r4, r3); __ Ret(); __ bind(&index_name); __ IndexFromHash(r3, key); // Now jump to the place where smi keys are handled. __ jmp(&index_smi); } void KeyedLoadIC::GenerateString(MacroAssembler* masm) { // Return address is in lr. Label miss; Register receiver = ReceiverRegister(); Register index = NameRegister(); Register scratch = r3; Register result = r0; ASSERT(!scratch.is(receiver) && !scratch.is(index)); StringCharAtGenerator char_at_generator(receiver, index, scratch, result, &miss, // When not a string. &miss, // When not a number. &miss, // When index out of range. STRING_INDEX_IS_ARRAY_INDEX); char_at_generator.GenerateFast(masm); __ Ret(); StubRuntimeCallHelper call_helper; char_at_generator.GenerateSlow(masm, call_helper); __ bind(&miss); GenerateMiss(masm); } void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) { // Return address is in lr. Label slow; Register receiver = ReceiverRegister(); Register key = NameRegister(); Register scratch1 = r3; Register scratch2 = r4; ASSERT(!scratch1.is(receiver) && !scratch1.is(key)); ASSERT(!scratch2.is(receiver) && !scratch2.is(key)); // Check that the receiver isn't a smi. __ JumpIfSmi(receiver, &slow); // Check that the key is an array index, that is Uint32. __ NonNegativeSmiTst(key); __ b(ne, &slow); // Get the map of the receiver. __ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset)); // Check that it has indexed interceptor and access checks // are not enabled for this object. __ ldrb(scratch2, FieldMemOperand(scratch1, Map::kBitFieldOffset)); __ and_(scratch2, scratch2, Operand(kSlowCaseBitFieldMask)); __ cmp(scratch2, Operand(1 << Map::kHasIndexedInterceptor)); __ b(ne, &slow); // Everything is fine, call runtime. __ Push(receiver, key); // Receiver, key. // Perform tail call to the entry. __ TailCallExternalReference( ExternalReference(IC_Utility(kKeyedLoadPropertyWithInterceptor), masm->isolate()), 2, 1); __ bind(&slow); GenerateMiss(masm); } void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) { // Push receiver, key and value for runtime call. __ Push(ReceiverRegister(), NameRegister(), ValueRegister()); ExternalReference ref = ExternalReference(IC_Utility(kKeyedStoreIC_Miss), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void StoreIC::GenerateSlow(MacroAssembler* masm) { // Push receiver, key and value for runtime call. __ Push(ReceiverRegister(), NameRegister(), ValueRegister()); // The slow case calls into the runtime to complete the store without causing // an IC miss that would otherwise cause a transition to the generic stub. ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_Slow), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void KeyedStoreIC::GenerateSlow(MacroAssembler* masm) { // Push receiver, key and value for runtime call. __ Push(ReceiverRegister(), NameRegister(), ValueRegister()); // The slow case calls into the runtime to complete the store without causing // an IC miss that would otherwise cause a transition to the generic stub. ExternalReference ref = ExternalReference(IC_Utility(kKeyedStoreIC_Slow), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm, StrictMode strict_mode) { // Push receiver, key and value for runtime call. __ Push(ReceiverRegister(), NameRegister(), ValueRegister()); __ mov(r0, Operand(Smi::FromInt(strict_mode))); // Strict mode. __ Push(r0); __ TailCallRuntime(Runtime::kSetProperty, 4, 1); } static void KeyedStoreGenerateGenericHelper( MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow, KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length, Register value, Register key, Register receiver, Register receiver_map, Register elements_map, Register elements) { Label transition_smi_elements; Label finish_object_store, non_double_value, transition_double_elements; Label fast_double_without_map_check; // Fast case: Do the store, could be either Object or double. __ bind(fast_object); Register scratch_value = r4; Register address = r5; if (check_map == kCheckMap) { __ ldr(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset)); __ cmp(elements_map, Operand(masm->isolate()->factory()->fixed_array_map())); __ b(ne, fast_double); } // HOLECHECK: guards "A[i] = V" // We have to go to the runtime if the current value is the hole because // there may be a callback on the element Label holecheck_passed1; __ add(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ ldr(scratch_value, MemOperand::PointerAddressFromSmiKey(address, key, PreIndex)); __ cmp(scratch_value, Operand(masm->isolate()->factory()->the_hole_value())); __ b(ne, &holecheck_passed1); __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value, slow); __ bind(&holecheck_passed1); // Smi stores don't require further checks. Label non_smi_value; __ JumpIfNotSmi(value, &non_smi_value); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ add(scratch_value, key, Operand(Smi::FromInt(1))); __ str(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset)); } // It's irrelevant whether array is smi-only or not when writing a smi. __ add(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ str(value, MemOperand::PointerAddressFromSmiKey(address, key)); __ Ret(); __ bind(&non_smi_value); // Escape to elements kind transition case. __ CheckFastObjectElements(receiver_map, scratch_value, &transition_smi_elements); // Fast elements array, store the value to the elements backing store. __ bind(&finish_object_store); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ add(scratch_value, key, Operand(Smi::FromInt(1))); __ str(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset)); } __ add(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ add(address, address, Operand::PointerOffsetFromSmiKey(key)); __ str(value, MemOperand(address)); // Update write barrier for the elements array address. __ mov(scratch_value, value); // Preserve the value which is returned. __ RecordWrite(elements, address, scratch_value, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Ret(); __ bind(fast_double); if (check_map == kCheckMap) { // Check for fast double array case. If this fails, call through to the // runtime. __ CompareRoot(elements_map, Heap::kFixedDoubleArrayMapRootIndex); __ b(ne, slow); } // HOLECHECK: guards "A[i] double hole?" // We have to see if the double version of the hole is present. If so // go to the runtime. __ add(address, elements, Operand((FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32)) - kHeapObjectTag)); __ ldr(scratch_value, MemOperand(address, key, LSL, kPointerSizeLog2, PreIndex)); __ cmp(scratch_value, Operand(kHoleNanUpper32)); __ b(ne, &fast_double_without_map_check); __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch_value, slow); __ bind(&fast_double_without_map_check); __ StoreNumberToDoubleElements(value, key, elements, r3, d0, &transition_double_elements); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ add(scratch_value, key, Operand(Smi::FromInt(1))); __ str(scratch_value, FieldMemOperand(receiver, JSArray::kLengthOffset)); } __ Ret(); __ bind(&transition_smi_elements); // Transition the array appropriately depending on the value type. __ ldr(r4, FieldMemOperand(value, HeapObject::kMapOffset)); __ CompareRoot(r4, Heap::kHeapNumberMapRootIndex); __ b(ne, &non_double_value); // Value is a double. Transition FAST_SMI_ELEMENTS -> // FAST_DOUBLE_ELEMENTS and complete the store. __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, receiver_map, r4, slow); AllocationSiteMode mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS); ElementsTransitionGenerator::GenerateSmiToDouble( masm, receiver, key, value, receiver_map, mode, slow); __ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ jmp(&fast_double_without_map_check); __ bind(&non_double_value); // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, receiver_map, r4, slow); mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS); ElementsTransitionGenerator::GenerateMapChangeElementsTransition( masm, receiver, key, value, receiver_map, mode, slow); __ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ jmp(&finish_object_store); __ bind(&transition_double_elements); // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS, receiver_map, r4, slow); mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS); ElementsTransitionGenerator::GenerateDoubleToObject( masm, receiver, key, value, receiver_map, mode, slow); __ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ jmp(&finish_object_store); } void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm, StrictMode strict_mode) { // ---------- S t a t e -------------- // -- r0 : value // -- r1 : key // -- r2 : receiver // -- lr : return address // ----------------------------------- Label slow, fast_object, fast_object_grow; Label fast_double, fast_double_grow; Label array, extra, check_if_double_array; // Register usage. Register value = ValueRegister(); Register key = NameRegister(); Register receiver = ReceiverRegister(); ASSERT(receiver.is(r1)); ASSERT(key.is(r2)); ASSERT(value.is(r0)); Register receiver_map = r3; Register elements_map = r6; Register elements = r9; // Elements array of the receiver. // r4 and r5 are used as general scratch registers. // Check that the key is a smi. __ JumpIfNotSmi(key, &slow); // Check that the object isn't a smi. __ JumpIfSmi(receiver, &slow); // Get the map of the object. __ ldr(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); // Check that the receiver does not require access checks and is not observed. // The generic stub does not perform map checks or handle observed objects. __ ldrb(ip, FieldMemOperand(receiver_map, Map::kBitFieldOffset)); __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded | 1 << Map::kIsObserved)); __ b(ne, &slow); // Check if the object is a JS array or not. __ ldrb(r4, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset)); __ cmp(r4, Operand(JS_ARRAY_TYPE)); __ b(eq, &array); // Check that the object is some kind of JSObject. __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE)); __ b(lt, &slow); // Object case: Check key against length in the elements array. __ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); // Check array bounds. Both the key and the length of FixedArray are smis. __ ldr(ip, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ cmp(key, Operand(ip)); __ b(lo, &fast_object); // Slow case, handle jump to runtime. __ bind(&slow); // Entry registers are intact. // r0: value. // r1: key. // r2: receiver. GenerateRuntimeSetProperty(masm, strict_mode); // Extra capacity case: Check if there is extra capacity to // perform the store and update the length. Used for adding one // element to the array by writing to array[array.length]. __ bind(&extra); // Condition code from comparing key and array length is still available. __ b(ne, &slow); // Only support writing to writing to array[array.length]. // Check for room in the elements backing store. // Both the key and the length of FixedArray are smis. __ ldr(ip, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ cmp(key, Operand(ip)); __ b(hs, &slow); __ ldr(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset)); __ cmp(elements_map, Operand(masm->isolate()->factory()->fixed_array_map())); __ b(ne, &check_if_double_array); __ jmp(&fast_object_grow); __ bind(&check_if_double_array); __ cmp(elements_map, Operand(masm->isolate()->factory()->fixed_double_array_map())); __ b(ne, &slow); __ jmp(&fast_double_grow); // Array case: Get the length and the elements array from the JS // array. Check that the array is in fast mode (and writable); if it // is the length is always a smi. __ bind(&array); __ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); // Check the key against the length in the array. __ ldr(ip, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ cmp(key, Operand(ip)); __ b(hs, &extra); KeyedStoreGenerateGenericHelper(masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength, value, key, receiver, receiver_map, elements_map, elements); KeyedStoreGenerateGenericHelper(masm, &fast_object_grow, &fast_double_grow, &slow, kDontCheckMap, kIncrementLength, value, key, receiver, receiver_map, elements_map, elements); } void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { Register receiver = ReceiverRegister(); Register name = NameRegister(); ASSERT(receiver.is(r1)); ASSERT(name.is(r2)); ASSERT(ValueRegister().is(r0)); // Get the receiver from the stack and probe the stub cache. Code::Flags flags = Code::ComputeHandlerFlags(Code::STORE_IC); masm->isolate()->stub_cache()->GenerateProbe( masm, flags, receiver, name, r3, r4, r5, r6); // Cache miss: Jump to runtime. GenerateMiss(masm); } void StoreIC::GenerateMiss(MacroAssembler* masm) { __ Push(ReceiverRegister(), NameRegister(), ValueRegister()); // Perform tail call to the entry. ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_Miss), masm->isolate()); __ TailCallExternalReference(ref, 3, 1); } void StoreIC::GenerateNormal(MacroAssembler* masm) { Label miss; Register receiver = ReceiverRegister(); Register name = NameRegister(); Register value = ValueRegister(); Register dictionary = r3; ASSERT(receiver.is(r1)); ASSERT(name.is(r2)); ASSERT(value.is(r0)); __ ldr(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); GenerateDictionaryStore(masm, &miss, dictionary, name, value, r4, r5); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->store_normal_hit(), 1, r4, r5); __ Ret(); __ bind(&miss); __ IncrementCounter(counters->store_normal_miss(), 1, r4, r5); GenerateMiss(masm); } void StoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm, StrictMode strict_mode) { __ Push(ReceiverRegister(), NameRegister(), ValueRegister()); __ mov(r0, Operand(Smi::FromInt(strict_mode))); __ Push(r0); // Do tail-call to runtime routine. __ TailCallRuntime(Runtime::kSetProperty, 4, 1); } #undef __ Condition CompareIC::ComputeCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return eq; case Token::LT: return lt; case Token::GT: return gt; case Token::LTE: return le; case Token::GTE: return ge; default: UNREACHABLE(); return kNoCondition; } } bool CompareIC::HasInlinedSmiCode(Address address) { // The address of the instruction following the call. Address cmp_instruction_address = Assembler::return_address_from_call_start(address); // If the instruction following the call is not a cmp rx, #yyy, nothing // was inlined. Instr instr = Assembler::instr_at(cmp_instruction_address); return Assembler::IsCmpImmediate(instr); } void PatchInlinedSmiCode(Address address, InlinedSmiCheck check) { Address cmp_instruction_address = Assembler::return_address_from_call_start(address); // If the instruction following the call is not a cmp rx, #yyy, nothing // was inlined. Instr instr = Assembler::instr_at(cmp_instruction_address); if (!Assembler::IsCmpImmediate(instr)) { return; } // The delta to the start of the map check instruction and the // condition code uses at the patched jump. int delta = Assembler::GetCmpImmediateRawImmediate(instr); delta += Assembler::GetCmpImmediateRegister(instr).code() * kOff12Mask; // If the delta is 0 the instruction is cmp r0, #0 which also signals that // nothing was inlined. if (delta == 0) { return; } if (FLAG_trace_ic) { PrintF("[ patching ic at %p, cmp=%p, delta=%d\n", address, cmp_instruction_address, delta); } Address patch_address = cmp_instruction_address - delta * Instruction::kInstrSize; Instr instr_at_patch = Assembler::instr_at(patch_address); Instr branch_instr = Assembler::instr_at(patch_address + Instruction::kInstrSize); // This is patching a conditional "jump if not smi/jump if smi" site. // Enabling by changing from // cmp rx, rx // b eq/ne, <target> // to // tst rx, #kSmiTagMask // b ne/eq, <target> // and vice-versa to be disabled again. CodePatcher patcher(patch_address, 2); Register reg = Assembler::GetRn(instr_at_patch); if (check == ENABLE_INLINED_SMI_CHECK) { ASSERT(Assembler::IsCmpRegister(instr_at_patch)); ASSERT_EQ(Assembler::GetRn(instr_at_patch).code(), Assembler::GetRm(instr_at_patch).code()); patcher.masm()->tst(reg, Operand(kSmiTagMask)); } else { ASSERT(check == DISABLE_INLINED_SMI_CHECK); ASSERT(Assembler::IsTstImmediate(instr_at_patch)); patcher.masm()->cmp(reg, reg); } ASSERT(Assembler::IsBranch(branch_instr)); if (Assembler::GetCondition(branch_instr) == eq) { patcher.EmitCondition(ne); } else { ASSERT(Assembler::GetCondition(branch_instr) == ne); patcher.EmitCondition(eq); } } } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM