// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_ARM #include "src/bootstrapper.h" #include "src/code-stubs.h" #include "src/regexp-macro-assembler.h" #include "src/stub-cache.h" namespace v8 { namespace internal { void FastNewClosureStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { Register registers[] = { cp, r2 }; descriptor->Initialize( ARRAY_SIZE(registers), registers, Runtime::FunctionForId(Runtime::kNewClosureFromStubFailure)->entry); } void FastNewContextStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { Register registers[] = { cp, r1 }; descriptor->Initialize(ARRAY_SIZE(registers), registers); } void ToNumberStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { Register registers[] = { cp, r0 }; descriptor->Initialize(ARRAY_SIZE(registers), registers); } void NumberToStringStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { Register registers[] = { cp, r0 }; descriptor->Initialize( ARRAY_SIZE(registers), registers, Runtime::FunctionForId(Runtime::kNumberToStringRT)->entry); } void FastCloneShallowArrayStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { Register registers[] = { cp, r3, r2, r1 }; Representation representations[] = { Representation::Tagged(), Representation::Tagged(), Representation::Smi(), Representation::Tagged() }; descriptor->Initialize( ARRAY_SIZE(registers), registers, Runtime::FunctionForId( Runtime::kCreateArrayLiteralStubBailout)->entry, representations); } void FastCloneShallowObjectStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { Register registers[] = { cp, r3, r2, r1, r0 }; descriptor->Initialize( ARRAY_SIZE(registers), registers, Runtime::FunctionForId(Runtime::kCreateObjectLiteral)->entry); } void CreateAllocationSiteStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { Register registers[] = { cp, r2, r3 }; descriptor->Initialize(ARRAY_SIZE(registers), registers); } void RegExpConstructResultStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { Register registers[] = { cp, r2, r1, r0 }; descriptor->Initialize( ARRAY_SIZE(registers), registers, Runtime::FunctionForId(Runtime::kRegExpConstructResult)->entry); } void TransitionElementsKindStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { Register registers[] = { cp, r0, r1 }; Address entry = Runtime::FunctionForId(Runtime::kTransitionElementsKind)->entry; descriptor->Initialize(ARRAY_SIZE(registers), registers, FUNCTION_ADDR(entry)); } void CompareNilICStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { Register registers[] = { cp, r0 }; descriptor->Initialize(ARRAY_SIZE(registers), registers, FUNCTION_ADDR(CompareNilIC_Miss)); descriptor->SetMissHandler( ExternalReference(IC_Utility(IC::kCompareNilIC_Miss), isolate())); } const Register InterfaceDescriptor::ContextRegister() { return cp; } static void InitializeArrayConstructorDescriptor( CodeStubInterfaceDescriptor* descriptor, int constant_stack_parameter_count) { // register state // cp -- context // r0 -- number of arguments // r1 -- function // r2 -- allocation site with elements kind Address deopt_handler = Runtime::FunctionForId( Runtime::kArrayConstructor)->entry; if (constant_stack_parameter_count == 0) { Register registers[] = { cp, r1, r2 }; descriptor->Initialize(ARRAY_SIZE(registers), registers, deopt_handler, NULL, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE); } else { // stack param count needs (constructor pointer, and single argument) Register registers[] = { cp, r1, r2, r0 }; Representation representations[] = { Representation::Tagged(), Representation::Tagged(), Representation::Tagged(), Representation::Integer32() }; descriptor->Initialize(ARRAY_SIZE(registers), registers, r0, deopt_handler, representations, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS); } } static void InitializeInternalArrayConstructorDescriptor( CodeStubInterfaceDescriptor* descriptor, int constant_stack_parameter_count) { // register state // cp -- context // r0 -- number of arguments // r1 -- constructor function Address deopt_handler = Runtime::FunctionForId( Runtime::kInternalArrayConstructor)->entry; if (constant_stack_parameter_count == 0) { Register registers[] = { cp, r1 }; descriptor->Initialize(ARRAY_SIZE(registers), registers, deopt_handler, NULL, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE); } else { // stack param count needs (constructor pointer, and single argument) Register registers[] = { cp, r1, r0 }; Representation representations[] = { Representation::Tagged(), Representation::Tagged(), Representation::Integer32() }; descriptor->Initialize(ARRAY_SIZE(registers), registers, r0, deopt_handler, representations, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS); } } void ArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { InitializeArrayConstructorDescriptor(descriptor, 0); } void ArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { InitializeArrayConstructorDescriptor(descriptor, 1); } void ArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { InitializeArrayConstructorDescriptor(descriptor, -1); } void ToBooleanStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { Register registers[] = { cp, r0 }; descriptor->Initialize(ARRAY_SIZE(registers), registers, FUNCTION_ADDR(ToBooleanIC_Miss)); descriptor->SetMissHandler( ExternalReference(IC_Utility(IC::kToBooleanIC_Miss), isolate())); } void InternalArrayNoArgumentConstructorStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(descriptor, 0); } void InternalArraySingleArgumentConstructorStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(descriptor, 1); } void InternalArrayNArgumentsConstructorStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(descriptor, -1); } void BinaryOpICStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { Register registers[] = { cp, r1, r0 }; descriptor->Initialize(ARRAY_SIZE(registers), registers, FUNCTION_ADDR(BinaryOpIC_Miss)); descriptor->SetMissHandler( ExternalReference(IC_Utility(IC::kBinaryOpIC_Miss), isolate())); } void BinaryOpWithAllocationSiteStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { Register registers[] = { cp, r2, r1, r0 }; descriptor->Initialize(ARRAY_SIZE(registers), registers, FUNCTION_ADDR(BinaryOpIC_MissWithAllocationSite)); } void StringAddStub::InitializeInterfaceDescriptor( CodeStubInterfaceDescriptor* descriptor) { Register registers[] = { cp, r1, r0 }; descriptor->Initialize( ARRAY_SIZE(registers), registers, Runtime::FunctionForId(Runtime::kStringAdd)->entry); } void CallDescriptors::InitializeForIsolate(Isolate* isolate) { static PlatformInterfaceDescriptor default_descriptor = PlatformInterfaceDescriptor(CAN_INLINE_TARGET_ADDRESS); static PlatformInterfaceDescriptor noInlineDescriptor = PlatformInterfaceDescriptor(NEVER_INLINE_TARGET_ADDRESS); { CallInterfaceDescriptor* descriptor = isolate->call_descriptor(Isolate::ArgumentAdaptorCall); Register registers[] = { cp, // context r1, // JSFunction r0, // actual number of arguments r2, // expected number of arguments }; Representation representations[] = { Representation::Tagged(), // context Representation::Tagged(), // JSFunction Representation::Integer32(), // actual number of arguments Representation::Integer32(), // expected number of arguments }; descriptor->Initialize(ARRAY_SIZE(registers), registers, representations, &default_descriptor); } { CallInterfaceDescriptor* descriptor = isolate->call_descriptor(Isolate::KeyedCall); Register registers[] = { cp, // context r2, // key }; Representation representations[] = { Representation::Tagged(), // context Representation::Tagged(), // key }; descriptor->Initialize(ARRAY_SIZE(registers), registers, representations, &noInlineDescriptor); } { CallInterfaceDescriptor* descriptor = isolate->call_descriptor(Isolate::NamedCall); Register registers[] = { cp, // context r2, // name }; Representation representations[] = { Representation::Tagged(), // context Representation::Tagged(), // name }; descriptor->Initialize(ARRAY_SIZE(registers), registers, representations, &noInlineDescriptor); } { CallInterfaceDescriptor* descriptor = isolate->call_descriptor(Isolate::CallHandler); Register registers[] = { cp, // context r0, // receiver }; Representation representations[] = { Representation::Tagged(), // context Representation::Tagged(), // receiver }; descriptor->Initialize(ARRAY_SIZE(registers), registers, representations, &default_descriptor); } { CallInterfaceDescriptor* descriptor = isolate->call_descriptor(Isolate::ApiFunctionCall); Register registers[] = { cp, // context r0, // callee r4, // call_data r2, // holder r1, // api_function_address }; Representation representations[] = { Representation::Tagged(), // context Representation::Tagged(), // callee Representation::Tagged(), // call_data Representation::Tagged(), // holder Representation::External(), // api_function_address }; descriptor->Initialize(ARRAY_SIZE(registers), registers, representations, &default_descriptor); } } #define __ ACCESS_MASM(masm) static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cond); static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* lhs_not_nan, Label* slow, bool strict); static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs); void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) { // Update the static counter each time a new code stub is generated. isolate()->counters()->code_stubs()->Increment(); CodeStubInterfaceDescriptor* descriptor = GetInterfaceDescriptor(); int param_count = descriptor->GetEnvironmentParameterCount(); { // Call the runtime system in a fresh internal frame. FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); ASSERT(param_count == 0 || r0.is(descriptor->GetEnvironmentParameterRegister( param_count - 1))); // Push arguments for (int i = 0; i < param_count; ++i) { __ push(descriptor->GetEnvironmentParameterRegister(i)); } ExternalReference miss = descriptor->miss_handler(); __ CallExternalReference(miss, param_count); } __ Ret(); } // Takes a Smi and converts to an IEEE 64 bit floating point value in two // registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and // 52 fraction bits (20 in the first word, 32 in the second). Zeros is a // scratch register. Destroys the source register. No GC occurs during this // stub so you don't have to set up the frame. class ConvertToDoubleStub : public PlatformCodeStub { public: ConvertToDoubleStub(Isolate* isolate, Register result_reg_1, Register result_reg_2, Register source_reg, Register scratch_reg) : PlatformCodeStub(isolate), result1_(result_reg_1), result2_(result_reg_2), source_(source_reg), zeros_(scratch_reg) { } private: Register result1_; Register result2_; Register source_; Register zeros_; // Minor key encoding in 16 bits. class ModeBits: public BitField<OverwriteMode, 0, 2> {}; class OpBits: public BitField<Token::Value, 2, 14> {}; Major MajorKey() const { return ConvertToDouble; } int MinorKey() const { // Encode the parameters in a unique 16 bit value. return result1_.code() + (result2_.code() << 4) + (source_.code() << 8) + (zeros_.code() << 12); } void Generate(MacroAssembler* masm); }; void ConvertToDoubleStub::Generate(MacroAssembler* masm) { Register exponent = result1_; Register mantissa = result2_; Label not_special; __ SmiUntag(source_); // Move sign bit from source to destination. This works because the sign bit // in the exponent word of the double has the same position and polarity as // the 2's complement sign bit in a Smi. STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); __ and_(exponent, source_, Operand(HeapNumber::kSignMask), SetCC); // Subtract from 0 if source was negative. __ rsb(source_, source_, Operand::Zero(), LeaveCC, ne); // We have -1, 0 or 1, which we treat specially. Register source_ contains // absolute value: it is either equal to 1 (special case of -1 and 1), // greater than 1 (not a special case) or less than 1 (special case of 0). __ cmp(source_, Operand(1)); __ b(gt, ¬_special); // For 1 or -1 we need to or in the 0 exponent (biased to 1023). const uint32_t exponent_word_for_1 = HeapNumber::kExponentBias << HeapNumber::kExponentShift; __ orr(exponent, exponent, Operand(exponent_word_for_1), LeaveCC, eq); // 1, 0 and -1 all have 0 for the second word. __ mov(mantissa, Operand::Zero()); __ Ret(); __ bind(¬_special); __ clz(zeros_, source_); // Compute exponent and or it into the exponent register. // We use mantissa as a scratch register here. Use a fudge factor to // divide the constant 31 + HeapNumber::kExponentBias, 0x41d, into two parts // that fit in the ARM's constant field. int fudge = 0x400; __ rsb(mantissa, zeros_, Operand(31 + HeapNumber::kExponentBias - fudge)); __ add(mantissa, mantissa, Operand(fudge)); __ orr(exponent, exponent, Operand(mantissa, LSL, HeapNumber::kExponentShift)); // Shift up the source chopping the top bit off. __ add(zeros_, zeros_, Operand(1)); // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0. __ mov(source_, Operand(source_, LSL, zeros_)); // Compute lower part of fraction (last 12 bits). __ mov(mantissa, Operand(source_, LSL, HeapNumber::kMantissaBitsInTopWord)); // And the top (top 20 bits). __ orr(exponent, exponent, Operand(source_, LSR, 32 - HeapNumber::kMantissaBitsInTopWord)); __ Ret(); } void DoubleToIStub::Generate(MacroAssembler* masm) { Label out_of_range, only_low, negate, done; Register input_reg = source(); Register result_reg = destination(); ASSERT(is_truncating()); int double_offset = offset(); // Account for saved regs if input is sp. if (input_reg.is(sp)) double_offset += 3 * kPointerSize; Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg); Register scratch_low = GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch); Register scratch_high = GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low); LowDwVfpRegister double_scratch = kScratchDoubleReg; __ Push(scratch_high, scratch_low, scratch); if (!skip_fastpath()) { // Load double input. __ vldr(double_scratch, MemOperand(input_reg, double_offset)); __ vmov(scratch_low, scratch_high, double_scratch); // Do fast-path convert from double to int. __ vcvt_s32_f64(double_scratch.low(), double_scratch); __ vmov(result_reg, double_scratch.low()); // If result is not saturated (0x7fffffff or 0x80000000), we are done. __ sub(scratch, result_reg, Operand(1)); __ cmp(scratch, Operand(0x7ffffffe)); __ b(lt, &done); } else { // We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we // know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate. if (double_offset == 0) { __ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit()); } else { __ ldr(scratch_low, MemOperand(input_reg, double_offset)); __ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize)); } } __ Ubfx(scratch, scratch_high, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // Load scratch with exponent - 1. This is faster than loading // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value. STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); // If exponent is greater than or equal to 84, the 32 less significant // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), // the result is 0. // Compare exponent with 84 (compare exponent - 1 with 83). __ cmp(scratch, Operand(83)); __ b(ge, &out_of_range); // If we reach this code, 31 <= exponent <= 83. // So, we don't have to handle cases where 0 <= exponent <= 20 for // which we would need to shift right the high part of the mantissa. // Scratch contains exponent - 1. // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). __ rsb(scratch, scratch, Operand(51), SetCC); __ b(ls, &only_low); // 21 <= exponent <= 51, shift scratch_low and scratch_high // to generate the result. __ mov(scratch_low, Operand(scratch_low, LSR, scratch)); // Scratch contains: 52 - exponent. // We needs: exponent - 20. // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. __ rsb(scratch, scratch, Operand(32)); __ Ubfx(result_reg, scratch_high, 0, HeapNumber::kMantissaBitsInTopWord); // Set the implicit 1 before the mantissa part in scratch_high. __ orr(result_reg, result_reg, Operand(1 << HeapNumber::kMantissaBitsInTopWord)); __ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch)); __ b(&negate); __ bind(&out_of_range); __ mov(result_reg, Operand::Zero()); __ b(&done); __ bind(&only_low); // 52 <= exponent <= 83, shift only scratch_low. // On entry, scratch contains: 52 - exponent. __ rsb(scratch, scratch, Operand::Zero()); __ mov(result_reg, Operand(scratch_low, LSL, scratch)); __ bind(&negate); // If input was positive, scratch_high ASR 31 equals 0 and // scratch_high LSR 31 equals zero. // New result = (result eor 0) + 0 = result. // If the input was negative, we have to negate the result. // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1. // New result = (result eor 0xffffffff) + 1 = 0 - result. __ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31)); __ add(result_reg, result_reg, Operand(scratch_high, LSR, 31)); __ bind(&done); __ Pop(scratch_high, scratch_low, scratch); __ Ret(); } void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime( Isolate* isolate) { WriteInt32ToHeapNumberStub stub1(isolate, r1, r0, r2); WriteInt32ToHeapNumberStub stub2(isolate, r2, r0, r3); stub1.GetCode(); stub2.GetCode(); } // See comment for class. void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) { Label max_negative_int; // the_int_ has the answer which is a signed int32 but not a Smi. // We test for the special value that has a different exponent. This test // has the neat side effect of setting the flags according to the sign. STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u); __ cmp(the_int_, Operand(0x80000000u)); __ b(eq, &max_negative_int); // Set up the correct exponent in scratch_. All non-Smi int32s have the same. // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). uint32_t non_smi_exponent = (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; __ mov(scratch_, Operand(non_smi_exponent)); // Set the sign bit in scratch_ if the value was negative. __ orr(scratch_, scratch_, Operand(HeapNumber::kSignMask), LeaveCC, cs); // Subtract from 0 if the value was negative. __ rsb(the_int_, the_int_, Operand::Zero(), LeaveCC, cs); // We should be masking the implict first digit of the mantissa away here, // but it just ends up combining harmlessly with the last digit of the // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get // the most significant 1 to hit the last bit of the 12 bit sign and exponent. ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0); const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; __ orr(scratch_, scratch_, Operand(the_int_, LSR, shift_distance)); __ str(scratch_, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); __ mov(scratch_, Operand(the_int_, LSL, 32 - shift_distance)); __ str(scratch_, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); __ Ret(); __ bind(&max_negative_int); // The max negative int32 is stored as a positive number in the mantissa of // a double because it uses a sign bit instead of using two's complement. // The actual mantissa bits stored are all 0 because the implicit most // significant 1 bit is not stored. non_smi_exponent += 1 << HeapNumber::kExponentShift; __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent)); __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset)); __ mov(ip, Operand::Zero()); __ str(ip, FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset)); __ Ret(); } // Handle the case where the lhs and rhs are the same object. // Equality is almost reflexive (everything but NaN), so this is a test // for "identity and not NaN". static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cond) { Label not_identical; Label heap_number, return_equal; __ cmp(r0, r1); __ b(ne, ¬_identical); // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), // so we do the second best thing - test it ourselves. // They are both equal and they are not both Smis so both of them are not // Smis. If it's not a heap number, then return equal. if (cond == lt || cond == gt) { __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE); __ b(ge, slow); } else { __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); __ b(eq, &heap_number); // Comparing JS objects with <=, >= is complicated. if (cond != eq) { __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE)); __ b(ge, slow); // Normally here we fall through to return_equal, but undefined is // special: (undefined == undefined) == true, but // (undefined <= undefined) == false! See ECMAScript 11.8.5. if (cond == le || cond == ge) { __ cmp(r4, Operand(ODDBALL_TYPE)); __ b(ne, &return_equal); __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); __ cmp(r0, r2); __ b(ne, &return_equal); if (cond == le) { // undefined <= undefined should fail. __ mov(r0, Operand(GREATER)); } else { // undefined >= undefined should fail. __ mov(r0, Operand(LESS)); } __ Ret(); } } } __ bind(&return_equal); if (cond == lt) { __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. } else if (cond == gt) { __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. } else { __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. } __ Ret(); // For less and greater we don't have to check for NaN since the result of // x < x is false regardless. For the others here is some code to check // for NaN. if (cond != lt && cond != gt) { __ bind(&heap_number); // It is a heap number, so return non-equal if it's NaN and equal if it's // not NaN. // The representation of NaN values has all exponent bits (52..62) set, // and not all mantissa bits (0..51) clear. // Read top bits of double representation (second word of value). __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); // Test that exponent bits are all set. __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // NaNs have all-one exponents so they sign extend to -1. __ cmp(r3, Operand(-1)); __ b(ne, &return_equal); // Shift out flag and all exponent bits, retaining only mantissa. __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); // Or with all low-bits of mantissa. __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); __ orr(r0, r3, Operand(r2), SetCC); // For equal we already have the right value in r0: Return zero (equal) // if all bits in mantissa are zero (it's an Infinity) and non-zero if // not (it's a NaN). For <= and >= we need to load r0 with the failing // value if it's a NaN. if (cond != eq) { // All-zero means Infinity means equal. __ Ret(eq); if (cond == le) { __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. } else { __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. } } __ Ret(); } // No fall through here. __ bind(¬_identical); } // See comment at call site. static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* lhs_not_nan, Label* slow, bool strict) { ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); Label rhs_is_smi; __ JumpIfSmi(rhs, &rhs_is_smi); // Lhs is a Smi. Check whether the rhs is a heap number. __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE); if (strict) { // If rhs is not a number and lhs is a Smi then strict equality cannot // succeed. Return non-equal // If rhs is r0 then there is already a non zero value in it. if (!rhs.is(r0)) { __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); } __ Ret(ne); } else { // Smi compared non-strictly with a non-Smi non-heap-number. Call // the runtime. __ b(ne, slow); } // Lhs is a smi, rhs is a number. // Convert lhs to a double in d7. __ SmiToDouble(d7, lhs); // Load the double from rhs, tagged HeapNumber r0, to d6. __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag); // We now have both loaded as doubles but we can skip the lhs nan check // since it's a smi. __ jmp(lhs_not_nan); __ bind(&rhs_is_smi); // Rhs is a smi. Check whether the non-smi lhs is a heap number. __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE); if (strict) { // If lhs is not a number and rhs is a smi then strict equality cannot // succeed. Return non-equal. // If lhs is r0 then there is already a non zero value in it. if (!lhs.is(r0)) { __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); } __ Ret(ne); } else { // Smi compared non-strictly with a non-smi non-heap-number. Call // the runtime. __ b(ne, slow); } // Rhs is a smi, lhs is a heap number. // Load the double from lhs, tagged HeapNumber r1, to d7. __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag); // Convert rhs to a double in d6 . __ SmiToDouble(d6, rhs); // Fall through to both_loaded_as_doubles. } // See comment at call site. static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs) { ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); // If either operand is a JS object or an oddball value, then they are // not equal since their pointers are different. // There is no test for undetectability in strict equality. STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); Label first_non_object; // Get the type of the first operand into r2 and compare it with // FIRST_SPEC_OBJECT_TYPE. __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE); __ b(lt, &first_non_object); // Return non-zero (r0 is not zero) Label return_not_equal; __ bind(&return_not_equal); __ Ret(); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ cmp(r2, Operand(ODDBALL_TYPE)); __ b(eq, &return_not_equal); __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE); __ b(ge, &return_not_equal); // Check for oddballs: true, false, null, undefined. __ cmp(r3, Operand(ODDBALL_TYPE)); __ b(eq, &return_not_equal); // Now that we have the types we might as well check for // internalized-internalized. STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ orr(r2, r2, Operand(r3)); __ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask)); __ b(eq, &return_not_equal); } // See comment at call site. static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs, Register rhs, Label* both_loaded_as_doubles, Label* not_heap_numbers, Label* slow) { ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE); __ b(ne, not_heap_numbers); __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ cmp(r2, r3); __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. // Both are heap numbers. Load them up then jump to the code we have // for that. __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag); __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag); __ jmp(both_loaded_as_doubles); } // Fast negative check for internalized-to-internalized equality. static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, Register lhs, Register rhs, Label* possible_strings, Label* not_both_strings) { ASSERT((lhs.is(r0) && rhs.is(r1)) || (lhs.is(r1) && rhs.is(r0))); // r2 is object type of rhs. Label object_test; STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ tst(r2, Operand(kIsNotStringMask)); __ b(ne, &object_test); __ tst(r2, Operand(kIsNotInternalizedMask)); __ b(ne, possible_strings); __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE); __ b(ge, not_both_strings); __ tst(r3, Operand(kIsNotInternalizedMask)); __ b(ne, possible_strings); // Both are internalized. We already checked they weren't the same pointer // so they are not equal. __ mov(r0, Operand(NOT_EQUAL)); __ Ret(); __ bind(&object_test); __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE)); __ b(lt, not_both_strings); __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE); __ b(lt, not_both_strings); // If both objects are undetectable, they are equal. Otherwise, they // are not equal, since they are different objects and an object is not // equal to undefined. __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset)); __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset)); __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); __ and_(r0, r2, Operand(r3)); __ and_(r0, r0, Operand(1 << Map::kIsUndetectable)); __ eor(r0, r0, Operand(1 << Map::kIsUndetectable)); __ Ret(); } static void ICCompareStub_CheckInputType(MacroAssembler* masm, Register input, Register scratch, CompareIC::State expected, Label* fail) { Label ok; if (expected == CompareIC::SMI) { __ JumpIfNotSmi(input, fail); } else if (expected == CompareIC::NUMBER) { __ JumpIfSmi(input, &ok); __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, DONT_DO_SMI_CHECK); } // We could be strict about internalized/non-internalized here, but as long as // hydrogen doesn't care, the stub doesn't have to care either. __ bind(&ok); } // On entry r1 and r2 are the values to be compared. // On exit r0 is 0, positive or negative to indicate the result of // the comparison. void ICCompareStub::GenerateGeneric(MacroAssembler* masm) { Register lhs = r1; Register rhs = r0; Condition cc = GetCondition(); Label miss; ICCompareStub_CheckInputType(masm, lhs, r2, left_, &miss); ICCompareStub_CheckInputType(masm, rhs, r3, right_, &miss); Label slow; // Call builtin. Label not_smis, both_loaded_as_doubles, lhs_not_nan; Label not_two_smis, smi_done; __ orr(r2, r1, r0); __ JumpIfNotSmi(r2, ¬_two_smis); __ mov(r1, Operand(r1, ASR, 1)); __ sub(r0, r1, Operand(r0, ASR, 1)); __ Ret(); __ bind(¬_two_smis); // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. // Handle the case where the objects are identical. Either returns the answer // or goes to slow. Only falls through if the objects were not identical. EmitIdenticalObjectComparison(masm, &slow, cc); // If either is a Smi (we know that not both are), then they can only // be strictly equal if the other is a HeapNumber. STATIC_ASSERT(kSmiTag == 0); ASSERT_EQ(0, Smi::FromInt(0)); __ and_(r2, lhs, Operand(rhs)); __ JumpIfNotSmi(r2, ¬_smis); // One operand is a smi. EmitSmiNonsmiComparison generates code that can: // 1) Return the answer. // 2) Go to slow. // 3) Fall through to both_loaded_as_doubles. // 4) Jump to lhs_not_nan. // In cases 3 and 4 we have found out we were dealing with a number-number // comparison. If VFP3 is supported the double values of the numbers have // been loaded into d7 and d6. Otherwise, the double values have been loaded // into r0, r1, r2, and r3. EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict()); __ bind(&both_loaded_as_doubles); // The arguments have been converted to doubles and stored in d6 and d7, if // VFP3 is supported, or in r0, r1, r2, and r3. __ bind(&lhs_not_nan); Label no_nan; // ARMv7 VFP3 instructions to implement double precision comparison. __ VFPCompareAndSetFlags(d7, d6); Label nan; __ b(vs, &nan); __ mov(r0, Operand(EQUAL), LeaveCC, eq); __ mov(r0, Operand(LESS), LeaveCC, lt); __ mov(r0, Operand(GREATER), LeaveCC, gt); __ Ret(); __ bind(&nan); // If one of the sides was a NaN then the v flag is set. Load r0 with // whatever it takes to make the comparison fail, since comparisons with NaN // always fail. if (cc == lt || cc == le) { __ mov(r0, Operand(GREATER)); } else { __ mov(r0, Operand(LESS)); } __ Ret(); __ bind(¬_smis); // At this point we know we are dealing with two different objects, // and neither of them is a Smi. The objects are in rhs_ and lhs_. if (strict()) { // This returns non-equal for some object types, or falls through if it // was not lucky. EmitStrictTwoHeapObjectCompare(masm, lhs, rhs); } Label check_for_internalized_strings; Label flat_string_check; // Check for heap-number-heap-number comparison. Can jump to slow case, // or load both doubles into r0, r1, r2, r3 and jump to the code that handles // that case. If the inputs are not doubles then jumps to // check_for_internalized_strings. // In this case r2 will contain the type of rhs_. Never falls through. EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles, &check_for_internalized_strings, &flat_string_check); __ bind(&check_for_internalized_strings); // In the strict case the EmitStrictTwoHeapObjectCompare already took care of // internalized strings. if (cc == eq && !strict()) { // Returns an answer for two internalized strings or two detectable objects. // Otherwise jumps to string case or not both strings case. // Assumes that r2 is the type of rhs_ on entry. EmitCheckForInternalizedStringsOrObjects( masm, lhs, rhs, &flat_string_check, &slow); } // Check for both being sequential ASCII strings, and inline if that is the // case. __ bind(&flat_string_check); __ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs, rhs, r2, r3, &slow); __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r2, r3); if (cc == eq) { StringCompareStub::GenerateFlatAsciiStringEquals(masm, lhs, rhs, r2, r3, r4); } else { StringCompareStub::GenerateCompareFlatAsciiStrings(masm, lhs, rhs, r2, r3, r4, r5); } // Never falls through to here. __ bind(&slow); __ Push(lhs, rhs); // Figure out which native to call and setup the arguments. Builtins::JavaScript native; if (cc == eq) { native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; } else { native = Builtins::COMPARE; int ncr; // NaN compare result if (cc == lt || cc == le) { ncr = GREATER; } else { ASSERT(cc == gt || cc == ge); // remaining cases ncr = LESS; } __ mov(r0, Operand(Smi::FromInt(ncr))); __ push(r0); } // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ InvokeBuiltin(native, JUMP_FUNCTION); __ bind(&miss); GenerateMiss(masm); } void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. __ stm(db_w, sp, kCallerSaved | lr.bit()); const Register scratch = r1; if (save_doubles_ == kSaveFPRegs) { __ SaveFPRegs(sp, scratch); } const int argument_count = 1; const int fp_argument_count = 0; AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(argument_count, fp_argument_count, scratch); __ mov(r0, Operand(ExternalReference::isolate_address(isolate()))); __ CallCFunction( ExternalReference::store_buffer_overflow_function(isolate()), argument_count); if (save_doubles_ == kSaveFPRegs) { __ RestoreFPRegs(sp, scratch); } __ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0). } void MathPowStub::Generate(MacroAssembler* masm) { const Register base = r1; const Register exponent = r2; const Register heapnumbermap = r5; const Register heapnumber = r0; const DwVfpRegister double_base = d0; const DwVfpRegister double_exponent = d1; const DwVfpRegister double_result = d2; const DwVfpRegister double_scratch = d3; const SwVfpRegister single_scratch = s6; const Register scratch = r9; const Register scratch2 = r4; Label call_runtime, done, int_exponent; if (exponent_type_ == ON_STACK) { Label base_is_smi, unpack_exponent; // The exponent and base are supplied as arguments on the stack. // This can only happen if the stub is called from non-optimized code. // Load input parameters from stack to double registers. __ ldr(base, MemOperand(sp, 1 * kPointerSize)); __ ldr(exponent, MemOperand(sp, 0 * kPointerSize)); __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); __ UntagAndJumpIfSmi(scratch, base, &base_is_smi); __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset)); __ cmp(scratch, heapnumbermap); __ b(ne, &call_runtime); __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); __ jmp(&unpack_exponent); __ bind(&base_is_smi); __ vmov(single_scratch, scratch); __ vcvt_f64_s32(double_base, single_scratch); __ bind(&unpack_exponent); __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); __ cmp(scratch, heapnumbermap); __ b(ne, &call_runtime); __ vldr(double_exponent, FieldMemOperand(exponent, HeapNumber::kValueOffset)); } else if (exponent_type_ == TAGGED) { // Base is already in double_base. __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); __ vldr(double_exponent, FieldMemOperand(exponent, HeapNumber::kValueOffset)); } if (exponent_type_ != INTEGER) { Label int_exponent_convert; // Detect integer exponents stored as double. __ vcvt_u32_f64(single_scratch, double_exponent); // We do not check for NaN or Infinity here because comparing numbers on // ARM correctly distinguishes NaNs. We end up calling the built-in. __ vcvt_f64_u32(double_scratch, single_scratch); __ VFPCompareAndSetFlags(double_scratch, double_exponent); __ b(eq, &int_exponent_convert); if (exponent_type_ == ON_STACK) { // Detect square root case. Crankshaft detects constant +/-0.5 at // compile time and uses DoMathPowHalf instead. We then skip this check // for non-constant cases of +/-0.5 as these hardly occur. Label not_plus_half; // Test for 0.5. __ vmov(double_scratch, 0.5, scratch); __ VFPCompareAndSetFlags(double_exponent, double_scratch); __ b(ne, ¬_plus_half); // Calculates square root of base. Check for the special case of // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). __ vmov(double_scratch, -V8_INFINITY, scratch); __ VFPCompareAndSetFlags(double_base, double_scratch); __ vneg(double_result, double_scratch, eq); __ b(eq, &done); // Add +0 to convert -0 to +0. __ vadd(double_scratch, double_base, kDoubleRegZero); __ vsqrt(double_result, double_scratch); __ jmp(&done); __ bind(¬_plus_half); __ vmov(double_scratch, -0.5, scratch); __ VFPCompareAndSetFlags(double_exponent, double_scratch); __ b(ne, &call_runtime); // Calculates square root of base. Check for the special case of // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). __ vmov(double_scratch, -V8_INFINITY, scratch); __ VFPCompareAndSetFlags(double_base, double_scratch); __ vmov(double_result, kDoubleRegZero, eq); __ b(eq, &done); // Add +0 to convert -0 to +0. __ vadd(double_scratch, double_base, kDoubleRegZero); __ vmov(double_result, 1.0, scratch); __ vsqrt(double_scratch, double_scratch); __ vdiv(double_result, double_result, double_scratch); __ jmp(&done); } __ push(lr); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 0, 2); } __ pop(lr); __ MovFromFloatResult(double_result); __ jmp(&done); __ bind(&int_exponent_convert); __ vcvt_u32_f64(single_scratch, double_exponent); __ vmov(scratch, single_scratch); } // Calculate power with integer exponent. __ bind(&int_exponent); // Get two copies of exponent in the registers scratch and exponent. if (exponent_type_ == INTEGER) { __ mov(scratch, exponent); } else { // Exponent has previously been stored into scratch as untagged integer. __ mov(exponent, scratch); } __ vmov(double_scratch, double_base); // Back up base. __ vmov(double_result, 1.0, scratch2); // Get absolute value of exponent. __ cmp(scratch, Operand::Zero()); __ mov(scratch2, Operand::Zero(), LeaveCC, mi); __ sub(scratch, scratch2, scratch, LeaveCC, mi); Label while_true; __ bind(&while_true); __ mov(scratch, Operand(scratch, ASR, 1), SetCC); __ vmul(double_result, double_result, double_scratch, cs); __ vmul(double_scratch, double_scratch, double_scratch, ne); __ b(ne, &while_true); __ cmp(exponent, Operand::Zero()); __ b(ge, &done); __ vmov(double_scratch, 1.0, scratch); __ vdiv(double_result, double_scratch, double_result); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ VFPCompareAndSetFlags(double_result, 0.0); __ b(ne, &done); // double_exponent may not containe the exponent value if the input was a // smi. We set it with exponent value before bailing out. __ vmov(single_scratch, exponent); __ vcvt_f64_s32(double_exponent, single_scratch); // Returning or bailing out. Counters* counters = isolate()->counters(); if (exponent_type_ == ON_STACK) { // The arguments are still on the stack. __ bind(&call_runtime); __ TailCallRuntime(Runtime::kMathPowRT, 2, 1); // The stub is called from non-optimized code, which expects the result // as heap number in exponent. __ bind(&done); __ AllocateHeapNumber( heapnumber, scratch, scratch2, heapnumbermap, &call_runtime); __ vstr(double_result, FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); ASSERT(heapnumber.is(r0)); __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); __ Ret(2); } else { __ push(lr); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 0, 2); } __ pop(lr); __ MovFromFloatResult(double_result); __ bind(&done); __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); __ Ret(); } } bool CEntryStub::NeedsImmovableCode() { return true; } void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { CEntryStub::GenerateAheadOfTime(isolate); WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); StubFailureTrampolineStub::GenerateAheadOfTime(isolate); ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); CreateAllocationSiteStub::GenerateAheadOfTime(isolate); BinaryOpICStub::GenerateAheadOfTime(isolate); BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); } void CodeStub::GenerateFPStubs(Isolate* isolate) { SaveFPRegsMode mode = kSaveFPRegs; CEntryStub save_doubles(isolate, 1, mode); StoreBufferOverflowStub stub(isolate, mode); // These stubs might already be in the snapshot, detect that and don't // regenerate, which would lead to code stub initialization state being messed // up. Code* save_doubles_code; if (!save_doubles.FindCodeInCache(&save_doubles_code)) { save_doubles_code = *save_doubles.GetCode(); } Code* store_buffer_overflow_code; if (!stub.FindCodeInCache(&store_buffer_overflow_code)) { store_buffer_overflow_code = *stub.GetCode(); } isolate->set_fp_stubs_generated(true); } void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { CEntryStub stub(isolate, 1, kDontSaveFPRegs); stub.GetCode(); } void CEntryStub::Generate(MacroAssembler* masm) { // Called from JavaScript; parameters are on stack as if calling JS function. // r0: number of arguments including receiver // r1: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) ProfileEntryHookStub::MaybeCallEntryHook(masm); __ mov(r5, Operand(r1)); // Compute the argv pointer in a callee-saved register. __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2)); __ sub(r1, r1, Operand(kPointerSize)); // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); __ EnterExitFrame(save_doubles_); // Store a copy of argc in callee-saved registers for later. __ mov(r4, Operand(r0)); // r0, r4: number of arguments including receiver (C callee-saved) // r1: pointer to the first argument (C callee-saved) // r5: pointer to builtin function (C callee-saved) // Result returned in r0 or r0+r1 by default. #if V8_HOST_ARCH_ARM int frame_alignment = MacroAssembler::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (FLAG_debug_code) { if (frame_alignment > kPointerSize) { Label alignment_as_expected; ASSERT(IsPowerOf2(frame_alignment)); __ tst(sp, Operand(frame_alignment_mask)); __ b(eq, &alignment_as_expected); // Don't use Check here, as it will call Runtime_Abort re-entering here. __ stop("Unexpected alignment"); __ bind(&alignment_as_expected); } } #endif // Call C built-in. // r0 = argc, r1 = argv __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); // To let the GC traverse the return address of the exit frames, we need to // know where the return address is. The CEntryStub is unmovable, so // we can store the address on the stack to be able to find it again and // we never have to restore it, because it will not change. // Compute the return address in lr to return to after the jump below. Pc is // already at '+ 8' from the current instruction but return is after three // instructions so add another 4 to pc to get the return address. { // Prevent literal pool emission before return address. Assembler::BlockConstPoolScope block_const_pool(masm); __ add(lr, pc, Operand(4)); __ str(lr, MemOperand(sp, 0)); __ Call(r5); } __ VFPEnsureFPSCRState(r2); // Runtime functions should not return 'the hole'. Allowing it to escape may // lead to crashes in the IC code later. if (FLAG_debug_code) { Label okay; __ CompareRoot(r0, Heap::kTheHoleValueRootIndex); __ b(ne, &okay); __ stop("The hole escaped"); __ bind(&okay); } // Check result for exception sentinel. Label exception_returned; __ CompareRoot(r0, Heap::kExceptionRootIndex); __ b(eq, &exception_returned); ExternalReference pending_exception_address( Isolate::kPendingExceptionAddress, isolate()); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { Label okay; __ mov(r2, Operand(pending_exception_address)); __ ldr(r2, MemOperand(r2)); __ CompareRoot(r2, Heap::kTheHoleValueRootIndex); // Cannot use check here as it attempts to generate call into runtime. __ b(eq, &okay); __ stop("Unexpected pending exception"); __ bind(&okay); } // Exit C frame and return. // r0:r1: result // sp: stack pointer // fp: frame pointer // Callee-saved register r4 still holds argc. __ LeaveExitFrame(save_doubles_, r4, true); __ mov(pc, lr); // Handling of exception. __ bind(&exception_returned); // Retrieve the pending exception. __ mov(r2, Operand(pending_exception_address)); __ ldr(r0, MemOperand(r2)); // Clear the pending exception. __ LoadRoot(r3, Heap::kTheHoleValueRootIndex); __ str(r3, MemOperand(r2)); // Special handling of termination exceptions which are uncatchable // by javascript code. Label throw_termination_exception; __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex); __ b(eq, &throw_termination_exception); // Handle normal exception. __ Throw(r0); __ bind(&throw_termination_exception); __ ThrowUncatchable(r0); } void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { // r0: code entry // r1: function // r2: receiver // r3: argc // [sp+0]: argv Label invoke, handler_entry, exit; ProfileEntryHookStub::MaybeCallEntryHook(masm); // Called from C, so do not pop argc and args on exit (preserve sp) // No need to save register-passed args // Save callee-saved registers (incl. cp and fp), sp, and lr __ stm(db_w, sp, kCalleeSaved | lr.bit()); // Save callee-saved vfp registers. __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); // Set up the reserved register for 0.0. __ vmov(kDoubleRegZero, 0.0); __ VFPEnsureFPSCRState(r4); // Get address of argv, see stm above. // r0: code entry // r1: function // r2: receiver // r3: argc // Set up argv in r4. int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize; offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize; __ ldr(r4, MemOperand(sp, offset_to_argv)); // Push a frame with special values setup to mark it as an entry frame. // r0: code entry // r1: function // r2: receiver // r3: argc // r4: argv int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; if (FLAG_enable_ool_constant_pool) { __ mov(r8, Operand(isolate()->factory()->empty_constant_pool_array())); } __ mov(r7, Operand(Smi::FromInt(marker))); __ mov(r6, Operand(Smi::FromInt(marker))); __ mov(r5, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); __ ldr(r5, MemOperand(r5)); __ mov(ip, Operand(-1)); // Push a bad frame pointer to fail if it is used. __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | (FLAG_enable_ool_constant_pool ? r8.bit() : 0) | ip.bit()); // Set up frame pointer for the frame to be pushed. __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); // If this is the outermost JS call, set js_entry_sp value. Label non_outermost_js; ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); __ mov(r5, Operand(ExternalReference(js_entry_sp))); __ ldr(r6, MemOperand(r5)); __ cmp(r6, Operand::Zero()); __ b(ne, &non_outermost_js); __ str(fp, MemOperand(r5)); __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); Label cont; __ b(&cont); __ bind(&non_outermost_js); __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); __ bind(&cont); __ push(ip); // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ jmp(&invoke); // Block literal pool emission whilst taking the position of the handler // entry. This avoids making the assumption that literal pools are always // emitted after an instruction is emitted, rather than before. { Assembler::BlockConstPoolScope block_const_pool(masm); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushTryHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate()))); } __ str(r0, MemOperand(ip)); __ LoadRoot(r0, Heap::kExceptionRootIndex); __ b(&exit); // Invoke: Link this frame into the handler chain. There's only one // handler block in this code object, so its index is 0. __ bind(&invoke); // Must preserve r0-r4, r5-r6 are available. __ PushTryHandler(StackHandler::JS_ENTRY, 0); // If an exception not caught by another handler occurs, this handler // returns control to the code after the bl(&invoke) above, which // restores all kCalleeSaved registers (including cp and fp) to their // saved values before returning a failure to C. // Clear any pending exceptions. __ mov(r5, Operand(isolate()->factory()->the_hole_value())); __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate()))); __ str(r5, MemOperand(ip)); // Invoke the function by calling through JS entry trampoline builtin. // Notice that we cannot store a reference to the trampoline code directly in // this stub, because runtime stubs are not traversed when doing GC. // Expected registers by Builtins::JSEntryTrampoline // r0: code entry // r1: function // r2: receiver // r3: argc // r4: argv if (is_construct) { ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, isolate()); __ mov(ip, Operand(construct_entry)); } else { ExternalReference entry(Builtins::kJSEntryTrampoline, isolate()); __ mov(ip, Operand(entry)); } __ ldr(ip, MemOperand(ip)); // deref address __ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); // Branch and link to JSEntryTrampoline. __ Call(ip); // Unlink this frame from the handler chain. __ PopTryHandler(); __ bind(&exit); // r0 holds result // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; __ pop(r5); __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); __ b(ne, &non_outermost_js_2); __ mov(r6, Operand::Zero()); __ mov(r5, Operand(ExternalReference(js_entry_sp))); __ str(r6, MemOperand(r5)); __ bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ pop(r3); __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); __ str(r3, MemOperand(ip)); // Reset the stack to the callee saved registers. __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); // Restore callee-saved registers and return. #ifdef DEBUG if (FLAG_debug_code) { __ mov(lr, Operand(pc)); } #endif // Restore callee-saved vfp registers. __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); } // Uses registers r0 to r4. // Expected input (depending on whether args are in registers or on the stack): // * object: r0 or at sp + 1 * kPointerSize. // * function: r1 or at sp. // // An inlined call site may have been generated before calling this stub. // In this case the offset to the inline sites to patch are passed in r5 and r6. // (See LCodeGen::DoInstanceOfKnownGlobal) void InstanceofStub::Generate(MacroAssembler* masm) { // Call site inlining and patching implies arguments in registers. ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck()); // ReturnTrueFalse is only implemented for inlined call sites. ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck()); // Fixed register usage throughout the stub: const Register object = r0; // Object (lhs). Register map = r3; // Map of the object. const Register function = r1; // Function (rhs). const Register prototype = r4; // Prototype of the function. const Register scratch = r2; Label slow, loop, is_instance, is_not_instance, not_js_object; if (!HasArgsInRegisters()) { __ ldr(object, MemOperand(sp, 1 * kPointerSize)); __ ldr(function, MemOperand(sp, 0)); } // Check that the left hand is a JS object and load map. __ JumpIfSmi(object, ¬_js_object); __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); // If there is a call site cache don't look in the global cache, but do the // real lookup and update the call site cache. if (!HasCallSiteInlineCheck()) { Label miss; __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex); __ b(ne, &miss); __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex); __ b(ne, &miss); __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); __ Ret(HasArgsInRegisters() ? 0 : 2); __ bind(&miss); } // Get the prototype of the function. __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true); // Check that the function prototype is a JS object. __ JumpIfSmi(prototype, &slow); __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); // Update the global instanceof or call site inlined cache with the current // map and function. The cached answer will be set when it is known below. if (!HasCallSiteInlineCheck()) { __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); } else { ASSERT(HasArgsInRegisters()); // Patch the (relocated) inlined map check. // The map_load_offset was stored in r5 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal). const Register map_load_offset = r5; __ sub(r9, lr, map_load_offset); // Get the map location in r5 and patch it. __ GetRelocatedValueLocation(r9, map_load_offset, scratch); __ ldr(map_load_offset, MemOperand(map_load_offset)); __ str(map, FieldMemOperand(map_load_offset, Cell::kValueOffset)); } // Register mapping: r3 is object map and r4 is function prototype. // Get prototype of object into r2. __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset)); // We don't need map any more. Use it as a scratch register. Register scratch2 = map; map = no_reg; // Loop through the prototype chain looking for the function prototype. __ LoadRoot(scratch2, Heap::kNullValueRootIndex); __ bind(&loop); __ cmp(scratch, Operand(prototype)); __ b(eq, &is_instance); __ cmp(scratch, scratch2); __ b(eq, &is_not_instance); __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset)); __ jmp(&loop); __ bind(&is_instance); if (!HasCallSiteInlineCheck()) { __ mov(r0, Operand(Smi::FromInt(0))); __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); } else { // Patch the call site to return true. __ LoadRoot(r0, Heap::kTrueValueRootIndex); // The bool_load_offset was stored in r6 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal). const Register bool_load_offset = r6; __ sub(r9, lr, bool_load_offset); // Get the boolean result location in scratch and patch it. __ GetRelocatedValueLocation(r9, scratch, scratch2); __ str(r0, MemOperand(scratch)); if (!ReturnTrueFalseObject()) { __ mov(r0, Operand(Smi::FromInt(0))); } } __ Ret(HasArgsInRegisters() ? 0 : 2); __ bind(&is_not_instance); if (!HasCallSiteInlineCheck()) { __ mov(r0, Operand(Smi::FromInt(1))); __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); } else { // Patch the call site to return false. __ LoadRoot(r0, Heap::kFalseValueRootIndex); // The bool_load_offset was stored in r6 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal). const Register bool_load_offset = r6; __ sub(r9, lr, bool_load_offset); ; // Get the boolean result location in scratch and patch it. __ GetRelocatedValueLocation(r9, scratch, scratch2); __ str(r0, MemOperand(scratch)); if (!ReturnTrueFalseObject()) { __ mov(r0, Operand(Smi::FromInt(1))); } } __ Ret(HasArgsInRegisters() ? 0 : 2); Label object_not_null, object_not_null_or_smi; __ bind(¬_js_object); // Before null, smi and string value checks, check that the rhs is a function // as for a non-function rhs an exception needs to be thrown. __ JumpIfSmi(function, &slow); __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE); __ b(ne, &slow); // Null is not instance of anything. __ cmp(scratch, Operand(isolate()->factory()->null_value())); __ b(ne, &object_not_null); __ mov(r0, Operand(Smi::FromInt(1))); __ Ret(HasArgsInRegisters() ? 0 : 2); __ bind(&object_not_null); // Smi values are not instances of anything. __ JumpIfNotSmi(object, &object_not_null_or_smi); __ mov(r0, Operand(Smi::FromInt(1))); __ Ret(HasArgsInRegisters() ? 0 : 2); __ bind(&object_not_null_or_smi); // String values are not instances of anything. __ IsObjectJSStringType(object, scratch, &slow); __ mov(r0, Operand(Smi::FromInt(1))); __ Ret(HasArgsInRegisters() ? 0 : 2); // Slow-case. Tail call builtin. __ bind(&slow); if (!ReturnTrueFalseObject()) { if (HasArgsInRegisters()) { __ Push(r0, r1); } __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); } else { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r0, r1); __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); } __ cmp(r0, Operand::Zero()); __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq); __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne); __ Ret(HasArgsInRegisters() ? 0 : 2); } } void FunctionPrototypeStub::Generate(MacroAssembler* masm) { Label miss; Register receiver = LoadIC::ReceiverRegister(); Register name = LoadIC::NameRegister(); ASSERT(kind() == Code::LOAD_IC || kind() == Code::KEYED_LOAD_IC); if (kind() == Code::KEYED_LOAD_IC) { __ cmp(name, Operand(isolate()->factory()->prototype_string())); __ b(ne, &miss); } StubCompiler::GenerateLoadFunctionPrototype(masm, receiver, r3, r4, &miss); __ bind(&miss); StubCompiler::TailCallBuiltin( masm, BaseLoadStoreStubCompiler::MissBuiltin(kind())); } Register InstanceofStub::left() { return r0; } Register InstanceofStub::right() { return r1; } void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { // The displacement is the offset of the last parameter (if any) // relative to the frame pointer. const int kDisplacement = StandardFrameConstants::kCallerSPOffset - kPointerSize; // Check that the key is a smi. Label slow; __ JumpIfNotSmi(r1, &slow); // Check if the calling frame is an arguments adaptor frame. Label adaptor; __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(eq, &adaptor); // Check index against formal parameters count limit passed in // through register r0. Use unsigned comparison to get negative // check for free. __ cmp(r1, r0); __ b(hs, &slow); // Read the argument from the stack and return it. __ sub(r3, r0, r1); __ add(r3, fp, Operand::PointerOffsetFromSmiKey(r3)); __ ldr(r0, MemOperand(r3, kDisplacement)); __ Jump(lr); // Arguments adaptor case: Check index against actual arguments // limit found in the arguments adaptor frame. Use unsigned // comparison to get negative check for free. __ bind(&adaptor); __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ cmp(r1, r0); __ b(cs, &slow); // Read the argument from the adaptor frame and return it. __ sub(r3, r0, r1); __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r3)); __ ldr(r0, MemOperand(r3, kDisplacement)); __ Jump(lr); // Slow-case: Handle non-smi or out-of-bounds access to arguments // by calling the runtime system. __ bind(&slow); __ push(r1); __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); } void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) { // sp[0] : number of parameters // sp[4] : receiver displacement // sp[8] : function // Check if the calling frame is an arguments adaptor frame. Label runtime; __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset)); __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(ne, &runtime); // Patch the arguments.length and the parameters pointer in the current frame. __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ str(r2, MemOperand(sp, 0 * kPointerSize)); __ add(r3, r3, Operand(r2, LSL, 1)); __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); __ str(r3, MemOperand(sp, 1 * kPointerSize)); __ bind(&runtime); __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); } void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) { // Stack layout: // sp[0] : number of parameters (tagged) // sp[4] : address of receiver argument // sp[8] : function // Registers used over whole function: // r6 : allocated object (tagged) // r9 : mapped parameter count (tagged) __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); // r1 = parameter count (tagged) // Check if the calling frame is an arguments adaptor frame. Label runtime; Label adaptor_frame, try_allocate; __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset)); __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(eq, &adaptor_frame); // No adaptor, parameter count = argument count. __ mov(r2, r1); __ b(&try_allocate); // We have an adaptor frame. Patch the parameters pointer. __ bind(&adaptor_frame); __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ add(r3, r3, Operand(r2, LSL, 1)); __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); __ str(r3, MemOperand(sp, 1 * kPointerSize)); // r1 = parameter count (tagged) // r2 = argument count (tagged) // Compute the mapped parameter count = min(r1, r2) in r1. __ cmp(r1, Operand(r2)); __ mov(r1, Operand(r2), LeaveCC, gt); __ bind(&try_allocate); // Compute the sizes of backing store, parameter map, and arguments object. // 1. Parameter map, has 2 extra words containing context and backing store. const int kParameterMapHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize; // If there are no mapped parameters, we do not need the parameter_map. __ cmp(r1, Operand(Smi::FromInt(0))); __ mov(r9, Operand::Zero(), LeaveCC, eq); __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne); __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne); // 2. Backing store. __ add(r9, r9, Operand(r2, LSL, 1)); __ add(r9, r9, Operand(FixedArray::kHeaderSize)); // 3. Arguments object. __ add(r9, r9, Operand(Heap::kSloppyArgumentsObjectSize)); // Do the allocation of all three objects in one go. __ Allocate(r9, r0, r3, r4, &runtime, TAG_OBJECT); // r0 = address of new object(s) (tagged) // r2 = argument count (smi-tagged) // Get the arguments boilerplate from the current native context into r4. const int kNormalOffset = Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX); const int kAliasedOffset = Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX); __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset)); __ cmp(r1, Operand::Zero()); __ ldr(r4, MemOperand(r4, kNormalOffset), eq); __ ldr(r4, MemOperand(r4, kAliasedOffset), ne); // r0 = address of new object (tagged) // r1 = mapped parameter count (tagged) // r2 = argument count (smi-tagged) // r4 = address of arguments map (tagged) __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset)); __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex); __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset)); __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); // Set up the callee in-object property. STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); __ AssertNotSmi(r3); const int kCalleeOffset = JSObject::kHeaderSize + Heap::kArgumentsCalleeIndex * kPointerSize; __ str(r3, FieldMemOperand(r0, kCalleeOffset)); // Use the length (smi tagged) and set that as an in-object property too. __ AssertSmi(r2); STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); const int kLengthOffset = JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize; __ str(r2, FieldMemOperand(r0, kLengthOffset)); // Set up the elements pointer in the allocated arguments object. // If we allocated a parameter map, r4 will point there, otherwise // it will point to the backing store. __ add(r4, r0, Operand(Heap::kSloppyArgumentsObjectSize)); __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); // r0 = address of new object (tagged) // r1 = mapped parameter count (tagged) // r2 = argument count (tagged) // r4 = address of parameter map or backing store (tagged) // Initialize parameter map. If there are no mapped arguments, we're done. Label skip_parameter_map; __ cmp(r1, Operand(Smi::FromInt(0))); // Move backing store address to r3, because it is // expected there when filling in the unmapped arguments. __ mov(r3, r4, LeaveCC, eq); __ b(eq, &skip_parameter_map); __ LoadRoot(r6, Heap::kSloppyArgumentsElementsMapRootIndex); __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset)); __ add(r6, r1, Operand(Smi::FromInt(2))); __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset)); __ str(cp, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize)); __ add(r6, r4, Operand(r1, LSL, 1)); __ add(r6, r6, Operand(kParameterMapHeaderSize)); __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize)); // Copy the parameter slots and the holes in the arguments. // We need to fill in mapped_parameter_count slots. They index the context, // where parameters are stored in reverse order, at // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 // The mapped parameter thus need to get indices // MIN_CONTEXT_SLOTS+parameter_count-1 .. // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count // We loop from right to left. Label parameters_loop, parameters_test; __ mov(r6, r1); __ ldr(r9, MemOperand(sp, 0 * kPointerSize)); __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS))); __ sub(r9, r9, Operand(r1)); __ LoadRoot(r5, Heap::kTheHoleValueRootIndex); __ add(r3, r4, Operand(r6, LSL, 1)); __ add(r3, r3, Operand(kParameterMapHeaderSize)); // r6 = loop variable (tagged) // r1 = mapping index (tagged) // r3 = address of backing store (tagged) // r4 = address of parameter map (tagged), which is also the address of new // object + Heap::kSloppyArgumentsObjectSize (tagged) // r0 = temporary scratch (a.o., for address calculation) // r5 = the hole value __ jmp(¶meters_test); __ bind(¶meters_loop); __ sub(r6, r6, Operand(Smi::FromInt(1))); __ mov(r0, Operand(r6, LSL, 1)); __ add(r0, r0, Operand(kParameterMapHeaderSize - kHeapObjectTag)); __ str(r9, MemOperand(r4, r0)); __ sub(r0, r0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize)); __ str(r5, MemOperand(r3, r0)); __ add(r9, r9, Operand(Smi::FromInt(1))); __ bind(¶meters_test); __ cmp(r6, Operand(Smi::FromInt(0))); __ b(ne, ¶meters_loop); // Restore r0 = new object (tagged) __ sub(r0, r4, Operand(Heap::kSloppyArgumentsObjectSize)); __ bind(&skip_parameter_map); // r0 = address of new object (tagged) // r2 = argument count (tagged) // r3 = address of backing store (tagged) // r5 = scratch // Copy arguments header and remaining slots (if there are any). __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex); __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset)); __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset)); Label arguments_loop, arguments_test; __ mov(r9, r1); __ ldr(r4, MemOperand(sp, 1 * kPointerSize)); __ sub(r4, r4, Operand(r9, LSL, 1)); __ jmp(&arguments_test); __ bind(&arguments_loop); __ sub(r4, r4, Operand(kPointerSize)); __ ldr(r6, MemOperand(r4, 0)); __ add(r5, r3, Operand(r9, LSL, 1)); __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize)); __ add(r9, r9, Operand(Smi::FromInt(1))); __ bind(&arguments_test); __ cmp(r9, Operand(r2)); __ b(lt, &arguments_loop); // Return and remove the on-stack parameters. __ add(sp, sp, Operand(3 * kPointerSize)); __ Ret(); // Do the runtime call to allocate the arguments object. // r0 = address of new object (tagged) // r2 = argument count (tagged) __ bind(&runtime); __ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count. __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); } void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { // sp[0] : number of parameters // sp[4] : receiver displacement // sp[8] : function // Check if the calling frame is an arguments adaptor frame. Label adaptor_frame, try_allocate, runtime; __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ b(eq, &adaptor_frame); // Get the length from the frame. __ ldr(r1, MemOperand(sp, 0)); __ b(&try_allocate); // Patch the arguments.length and the parameters pointer. __ bind(&adaptor_frame); __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ str(r1, MemOperand(sp, 0)); __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r1)); __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); __ str(r3, MemOperand(sp, 1 * kPointerSize)); // Try the new space allocation. Start out with computing the size // of the arguments object and the elements array in words. Label add_arguments_object; __ bind(&try_allocate); __ SmiUntag(r1, SetCC); __ b(eq, &add_arguments_object); __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize)); __ bind(&add_arguments_object); __ add(r1, r1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize)); // Do the allocation of both objects in one go. __ Allocate(r1, r0, r2, r3, &runtime, static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); // Get the arguments boilerplate from the current native context. __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset)); __ ldr(r4, MemOperand( r4, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX))); __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset)); __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex); __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset)); __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); // Get the length (smi tagged) and set that as an in-object property too. STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); __ AssertSmi(r1); __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize)); // If there are no actual arguments, we're done. Label done; __ cmp(r1, Operand::Zero()); __ b(eq, &done); // Get the parameters pointer from the stack. __ ldr(r2, MemOperand(sp, 1 * kPointerSize)); // Set up the elements pointer in the allocated arguments object and // initialize the header in the elements fixed array. __ add(r4, r0, Operand(Heap::kStrictArgumentsObjectSize)); __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex); __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset)); __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset)); __ SmiUntag(r1); // Copy the fixed array slots. Label loop; // Set up r4 to point to the first array slot. __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ bind(&loop); // Pre-decrement r2 with kPointerSize on each iteration. // Pre-decrement in order to skip receiver. __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex)); // Post-increment r4 with kPointerSize on each iteration. __ str(r3, MemOperand(r4, kPointerSize, PostIndex)); __ sub(r1, r1, Operand(1)); __ cmp(r1, Operand::Zero()); __ b(ne, &loop); // Return and remove the on-stack parameters. __ bind(&done); __ add(sp, sp, Operand(3 * kPointerSize)); __ Ret(); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); #else // V8_INTERPRETED_REGEXP // Stack frame on entry. // sp[0]: last_match_info (expected JSArray) // sp[4]: previous index // sp[8]: subject string // sp[12]: JSRegExp object const int kLastMatchInfoOffset = 0 * kPointerSize; const int kPreviousIndexOffset = 1 * kPointerSize; const int kSubjectOffset = 2 * kPointerSize; const int kJSRegExpOffset = 3 * kPointerSize; Label runtime; // Allocation of registers for this function. These are in callee save // registers and will be preserved by the call to the native RegExp code, as // this code is called using the normal C calling convention. When calling // directly from generated code the native RegExp code will not do a GC and // therefore the content of these registers are safe to use after the call. Register subject = r4; Register regexp_data = r5; Register last_match_info_elements = no_reg; // will be r6; // Ensure that a RegExp stack is allocated. ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address(isolate()); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(isolate()); __ mov(r0, Operand(address_of_regexp_stack_memory_size)); __ ldr(r0, MemOperand(r0, 0)); __ cmp(r0, Operand::Zero()); __ b(eq, &runtime); // Check that the first argument is a JSRegExp object. __ ldr(r0, MemOperand(sp, kJSRegExpOffset)); __ JumpIfSmi(r0, &runtime); __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); __ b(ne, &runtime); // Check that the RegExp has been compiled (data contains a fixed array). __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset)); if (FLAG_debug_code) { __ SmiTst(regexp_data); __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected); __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE); __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); } // regexp_data: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); __ b(ne, &runtime); // regexp_data: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ ldr(r2, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Check (number_of_captures + 1) * 2 <= offsets vector size // Or number_of_captures * 2 <= offsets vector size - 2 // Multiplying by 2 comes for free since r2 is smi-tagged. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2)); __ b(hi, &runtime); // Reset offset for possibly sliced string. __ mov(r9, Operand::Zero()); __ ldr(subject, MemOperand(sp, kSubjectOffset)); __ JumpIfSmi(subject, &runtime); __ mov(r3, subject); // Make a copy of the original subject string. __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); // subject: subject string // r3: subject string // r0: subject string instance type // regexp_data: RegExp data (FixedArray) // Handle subject string according to its encoding and representation: // (1) Sequential string? If yes, go to (5). // (2) Anything but sequential or cons? If yes, go to (6). // (3) Cons string. If the string is flat, replace subject with first string. // Otherwise bailout. // (4) Is subject external? If yes, go to (7). // (5) Sequential string. Load regexp code according to encoding. // (E) Carry on. /// [...] // Deferred code at the end of the stub: // (6) Not a long external string? If yes, go to (8). // (7) External string. Make it, offset-wise, look like a sequential string. // Go to (5). // (8) Short external string or not a string? If yes, bail out to runtime. // (9) Sliced string. Replace subject with parent. Go to (4). Label seq_string /* 5 */, external_string /* 7 */, check_underlying /* 4 */, not_seq_nor_cons /* 6 */, not_long_external /* 8 */; // (1) Sequential string? If yes, go to (5). __ and_(r1, r0, Operand(kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask), SetCC); STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); __ b(eq, &seq_string); // Go to (5). // (2) Anything but sequential or cons? If yes, go to (6). STATIC_ASSERT(kConsStringTag < kExternalStringTag); STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); __ cmp(r1, Operand(kExternalStringTag)); __ b(ge, ¬_seq_nor_cons); // Go to (6). // (3) Cons string. Check that it's flat. // Replace subject with first string and reload instance type. __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset)); __ CompareRoot(r0, Heap::kempty_stringRootIndex); __ b(ne, &runtime); __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); // (4) Is subject external? If yes, go to (7). __ bind(&check_underlying); __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); STATIC_ASSERT(kSeqStringTag == 0); __ tst(r0, Operand(kStringRepresentationMask)); // The underlying external string is never a short external string. STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength); STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength); __ b(ne, &external_string); // Go to (7). // (5) Sequential string. Load regexp code according to encoding. __ bind(&seq_string); // subject: sequential subject string (or look-alike, external string) // r3: original subject string // Load previous index and check range before r3 is overwritten. We have to // use r3 instead of subject here because subject might have been only made // to look like a sequential string when it actually is an external string. __ ldr(r1, MemOperand(sp, kPreviousIndexOffset)); __ JumpIfNotSmi(r1, &runtime); __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset)); __ cmp(r3, Operand(r1)); __ b(ls, &runtime); __ SmiUntag(r1); STATIC_ASSERT(4 == kOneByteStringTag); STATIC_ASSERT(kTwoByteStringTag == 0); __ and_(r0, r0, Operand(kStringEncodingMask)); __ mov(r3, Operand(r0, ASR, 2), SetCC); __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset), ne); __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq); // (E) Carry on. String handling is done. // r6: irregexp code // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // a smi (code flushing support). __ JumpIfSmi(r6, &runtime); // r1: previous index // r3: encoding of subject string (1 if ASCII, 0 if two_byte); // r6: code // subject: Subject string // regexp_data: RegExp data (FixedArray) // All checks done. Now push arguments for native regexp code. __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r0, r2); // Isolates: note we add an additional parameter here (isolate pointer). const int kRegExpExecuteArguments = 9; const int kParameterRegisters = 4; __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); // Stack pointer now points to cell where return address is to be written. // Arguments are before that on the stack or in registers. // Argument 9 (sp[20]): Pass current isolate address. __ mov(r0, Operand(ExternalReference::isolate_address(isolate()))); __ str(r0, MemOperand(sp, 5 * kPointerSize)); // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript. __ mov(r0, Operand(1)); __ str(r0, MemOperand(sp, 4 * kPointerSize)); // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area. __ mov(r0, Operand(address_of_regexp_stack_memory_address)); __ ldr(r0, MemOperand(r0, 0)); __ mov(r2, Operand(address_of_regexp_stack_memory_size)); __ ldr(r2, MemOperand(r2, 0)); __ add(r0, r0, Operand(r2)); __ str(r0, MemOperand(sp, 3 * kPointerSize)); // Argument 6: Set the number of capture registers to zero to force global // regexps to behave as non-global. This does not affect non-global regexps. __ mov(r0, Operand::Zero()); __ str(r0, MemOperand(sp, 2 * kPointerSize)); // Argument 5 (sp[4]): static offsets vector buffer. __ mov(r0, Operand(ExternalReference::address_of_static_offsets_vector( isolate()))); __ str(r0, MemOperand(sp, 1 * kPointerSize)); // For arguments 4 and 3 get string length, calculate start of string data and // calculate the shift of the index (0 for ASCII and 1 for two byte). __ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag)); __ eor(r3, r3, Operand(1)); // Load the length from the original subject string from the previous stack // frame. Therefore we have to use fp, which points exactly to two pointer // sizes below the previous sp. (Because creating a new stack frame pushes // the previous fp onto the stack and moves up sp by 2 * kPointerSize.) __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); // If slice offset is not 0, load the length from the original sliced string. // Argument 4, r3: End of string data // Argument 3, r2: Start of string data // Prepare start and end index of the input. __ add(r9, r7, Operand(r9, LSL, r3)); __ add(r2, r9, Operand(r1, LSL, r3)); __ ldr(r7, FieldMemOperand(subject, String::kLengthOffset)); __ SmiUntag(r7); __ add(r3, r9, Operand(r7, LSL, r3)); // Argument 2 (r1): Previous index. // Already there // Argument 1 (r0): Subject string. __ mov(r0, subject); // Locate the code entry and call it. __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag)); DirectCEntryStub stub(isolate()); stub.GenerateCall(masm, r6); __ LeaveExitFrame(false, no_reg, true); last_match_info_elements = r6; // r0: result // subject: subject string (callee saved) // regexp_data: RegExp data (callee saved) // last_match_info_elements: Last match info elements (callee saved) // Check the result. Label success; __ cmp(r0, Operand(1)); // We expect exactly one result since we force the called regexp to behave // as non-global. __ b(eq, &success); Label failure; __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE)); __ b(eq, &failure); __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); // If not exception it can only be retry. Handle that in the runtime system. __ b(ne, &runtime); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592): Rerunning the RegExp to get the stack overflow exception. __ mov(r1, Operand(isolate()->factory()->the_hole_value())); __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate()))); __ ldr(r0, MemOperand(r2, 0)); __ cmp(r0, r1); __ b(eq, &runtime); __ str(r1, MemOperand(r2, 0)); // Clear pending exception. // Check if the exception is a termination. If so, throw as uncatchable. __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex); Label termination_exception; __ b(eq, &termination_exception); __ Throw(r0); __ bind(&termination_exception); __ ThrowUncatchable(r0); __ bind(&failure); // For failure and exception return null. __ mov(r0, Operand(isolate()->factory()->null_value())); __ add(sp, sp, Operand(4 * kPointerSize)); __ Ret(); // Process the result from the native regexp code. __ bind(&success); __ ldr(r1, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. // Multiplying by 2 comes for free since r1 is smi-tagged. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); __ add(r1, r1, Operand(2)); // r1 was a smi. __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); __ JumpIfSmi(r0, &runtime); __ CompareObjectType(r0, r2, r2, JS_ARRAY_TYPE); __ b(ne, &runtime); // Check that the JSArray is in fast case. __ ldr(last_match_info_elements, FieldMemOperand(r0, JSArray::kElementsOffset)); __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex); __ b(ne, &runtime); // Check that the last match info has space for the capture registers and the // additional information. __ ldr(r0, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); __ add(r2, r1, Operand(RegExpImpl::kLastMatchOverhead)); __ cmp(r2, Operand::SmiUntag(r0)); __ b(gt, &runtime); // r1: number of capture registers // r4: subject string // Store the capture count. __ SmiTag(r2, r1); __ str(r2, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastCaptureCountOffset)); // Store last subject and last input. __ str(subject, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastSubjectOffset)); __ mov(r2, subject); __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastSubjectOffset, subject, r3, kLRHasNotBeenSaved, kDontSaveFPRegs); __ mov(subject, r2); __ str(subject, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastInputOffset)); __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastInputOffset, subject, r3, kLRHasNotBeenSaved, kDontSaveFPRegs); // Get the static offsets vector filled by the native regexp code. ExternalReference address_of_static_offsets_vector = ExternalReference::address_of_static_offsets_vector(isolate()); __ mov(r2, Operand(address_of_static_offsets_vector)); // r1: number of capture registers // r2: offsets vector Label next_capture, done; // Capture register counter starts from number of capture registers and // counts down until wraping after zero. __ add(r0, last_match_info_elements, Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); __ bind(&next_capture); __ sub(r1, r1, Operand(1), SetCC); __ b(mi, &done); // Read the value from the static offsets vector buffer. __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex)); // Store the smi value in the last match info. __ SmiTag(r3); __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); __ jmp(&next_capture); __ bind(&done); // Return last match info. __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); __ add(sp, sp, Operand(4 * kPointerSize)); __ Ret(); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); // Deferred code for string handling. // (6) Not a long external string? If yes, go to (8). __ bind(¬_seq_nor_cons); // Compare flags are still set. __ b(gt, ¬_long_external); // Go to (8). // (7) External string. Make it, offset-wise, look like a sequential string. __ bind(&external_string); __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ tst(r0, Operand(kIsIndirectStringMask)); __ Assert(eq, kExternalStringExpectedButNotFound); } __ ldr(subject, FieldMemOperand(subject, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ sub(subject, subject, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); __ jmp(&seq_string); // Go to (5). // (8) Short external string or not a string? If yes, bail out to runtime. __ bind(¬_long_external); STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask)); __ b(ne, &runtime); // (9) Sliced string. Replace subject with parent. Go to (4). // Load offset into r9 and replace subject string with parent. __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset)); __ SmiUntag(r9); __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); __ jmp(&check_underlying); // Go to (4). #endif // V8_INTERPRETED_REGEXP } static void GenerateRecordCallTarget(MacroAssembler* masm) { // Cache the called function in a feedback vector slot. Cache states // are uninitialized, monomorphic (indicated by a JSFunction), and // megamorphic. // r0 : number of arguments to the construct function // r1 : the function to call // r2 : Feedback vector // r3 : slot in feedback vector (Smi) Label initialize, done, miss, megamorphic, not_array_function; ASSERT_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()), masm->isolate()->heap()->megamorphic_symbol()); ASSERT_EQ(*TypeFeedbackInfo::UninitializedSentinel(masm->isolate()), masm->isolate()->heap()->uninitialized_symbol()); // Load the cache state into r4. __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize)); // A monomorphic cache hit or an already megamorphic state: invoke the // function without changing the state. __ cmp(r4, r1); __ b(eq, &done); if (!FLAG_pretenuring_call_new) { // If we came here, we need to see if we are the array function. // If we didn't have a matching function, and we didn't find the megamorph // sentinel, then we have in the slot either some other function or an // AllocationSite. Do a map check on the object in ecx. __ ldr(r5, FieldMemOperand(r4, 0)); __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); __ b(ne, &miss); // Make sure the function is the Array() function __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4); __ cmp(r1, r4); __ b(ne, &megamorphic); __ jmp(&done); } __ bind(&miss); // A monomorphic miss (i.e, here the cache is not uninitialized) goes // megamorphic. __ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex); __ b(eq, &initialize); // MegamorphicSentinel is an immortal immovable object (undefined) so no // write-barrier is needed. __ bind(&megamorphic); __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex); __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize)); __ jmp(&done); // An uninitialized cache is patched with the function __ bind(&initialize); if (!FLAG_pretenuring_call_new) { // Make sure the function is the Array() function __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4); __ cmp(r1, r4); __ b(ne, ¬_array_function); // The target function is the Array constructor, // Create an AllocationSite if we don't already have it, store it in the // slot. { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Arguments register must be smi-tagged to call out. __ SmiTag(r0); __ Push(r3, r2, r1, r0); CreateAllocationSiteStub create_stub(masm->isolate()); __ CallStub(&create_stub); __ Pop(r3, r2, r1, r0); __ SmiUntag(r0); } __ b(&done); __ bind(¬_array_function); } __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ str(r1, MemOperand(r4, 0)); __ Push(r4, r2, r1); __ RecordWrite(r2, r4, r1, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Pop(r4, r2, r1); __ bind(&done); } static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) { // Do not transform the receiver for strict mode functions. __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r4, FieldMemOperand(r3, SharedFunctionInfo::kCompilerHintsOffset)); __ tst(r4, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + kSmiTagSize))); __ b(ne, cont); // Do not transform the receiver for native (Compilerhints already in r3). __ tst(r4, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); __ b(ne, cont); } static void EmitSlowCase(MacroAssembler* masm, int argc, Label* non_function) { // Check for function proxy. __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE)); __ b(ne, non_function); __ push(r1); // put proxy as additional argument __ mov(r0, Operand(argc + 1, RelocInfo::NONE32)); __ mov(r2, Operand::Zero()); __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY); { Handle<Code> adaptor = masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); __ Jump(adaptor, RelocInfo::CODE_TARGET); } // CALL_NON_FUNCTION expects the non-function callee as receiver (instead // of the original receiver from the call site). __ bind(non_function); __ str(r1, MemOperand(sp, argc * kPointerSize)); __ mov(r0, Operand(argc)); // Set up the number of arguments. __ mov(r2, Operand::Zero()); __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); } static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) { // Wrap the receiver and patch it back onto the stack. { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL); __ Push(r1, r3); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ pop(r1); } __ str(r0, MemOperand(sp, argc * kPointerSize)); __ jmp(cont); } static void CallFunctionNoFeedback(MacroAssembler* masm, int argc, bool needs_checks, bool call_as_method) { // r1 : the function to call Label slow, non_function, wrap, cont; if (needs_checks) { // Check that the function is really a JavaScript function. // r1: pushed function (to be verified) __ JumpIfSmi(r1, &non_function); // Goto slow case if we do not have a function. __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE); __ b(ne, &slow); } // Fast-case: Invoke the function now. // r1: pushed function ParameterCount actual(argc); if (call_as_method) { if (needs_checks) { EmitContinueIfStrictOrNative(masm, &cont); } // Compute the receiver in sloppy mode. __ ldr(r3, MemOperand(sp, argc * kPointerSize)); if (needs_checks) { __ JumpIfSmi(r3, &wrap); __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE); __ b(lt, &wrap); } else { __ jmp(&wrap); } __ bind(&cont); } __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper()); if (needs_checks) { // Slow-case: Non-function called. __ bind(&slow); EmitSlowCase(masm, argc, &non_function); } if (call_as_method) { __ bind(&wrap); EmitWrapCase(masm, argc, &cont); } } void CallFunctionStub::Generate(MacroAssembler* masm) { CallFunctionNoFeedback(masm, argc_, NeedsChecks(), CallAsMethod()); } void CallConstructStub::Generate(MacroAssembler* masm) { // r0 : number of arguments // r1 : the function to call // r2 : feedback vector // r3 : (only if r2 is not the megamorphic symbol) slot in feedback // vector (Smi) Label slow, non_function_call; // Check that the function is not a smi. __ JumpIfSmi(r1, &non_function_call); // Check that the function is a JSFunction. __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE); __ b(ne, &slow); if (RecordCallTarget()) { GenerateRecordCallTarget(masm); __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3)); if (FLAG_pretenuring_call_new) { // Put the AllocationSite from the feedback vector into r2. // By adding kPointerSize we encode that we know the AllocationSite // entry is at the feedback vector slot given by r3 + 1. __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize + kPointerSize)); } else { Label feedback_register_initialized; // Put the AllocationSite from the feedback vector into r2, or undefined. __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize)); __ ldr(r5, FieldMemOperand(r2, AllocationSite::kMapOffset)); __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); __ b(eq, &feedback_register_initialized); __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); __ bind(&feedback_register_initialized); } __ AssertUndefinedOrAllocationSite(r2, r5); } // Jump to the function-specific construct stub. Register jmp_reg = r4; __ ldr(jmp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(jmp_reg, FieldMemOperand(jmp_reg, SharedFunctionInfo::kConstructStubOffset)); __ add(pc, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag)); // r0: number of arguments // r1: called object // r4: object type Label do_call; __ bind(&slow); __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE)); __ b(ne, &non_function_call); __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); __ jmp(&do_call); __ bind(&non_function_call); __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); __ bind(&do_call); // Set expected number of arguments to zero (not changing r0). __ mov(r2, Operand::Zero()); __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), RelocInfo::CODE_TARGET); } static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) { __ ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(vector, FieldMemOperand(vector, JSFunction::kSharedFunctionInfoOffset)); __ ldr(vector, FieldMemOperand(vector, SharedFunctionInfo::kFeedbackVectorOffset)); } void CallIC_ArrayStub::Generate(MacroAssembler* masm) { // r1 - function // r3 - slot id Label miss; int argc = state_.arg_count(); ParameterCount actual(argc); EmitLoadTypeFeedbackVector(masm, r2); __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4); __ cmp(r1, r4); __ b(ne, &miss); __ mov(r0, Operand(arg_count())); __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); __ ldr(r2, FieldMemOperand(r4, FixedArray::kHeaderSize)); // Verify that r2 contains an AllocationSite __ AssertUndefinedOrAllocationSite(r2, r4); ArrayConstructorStub stub(masm->isolate(), arg_count()); __ TailCallStub(&stub); __ bind(&miss); GenerateMiss(masm, IC::kCallIC_Customization_Miss); // The slow case, we need this no matter what to complete a call after a miss. CallFunctionNoFeedback(masm, arg_count(), true, CallAsMethod()); // Unreachable. __ stop("Unexpected code address"); } void CallICStub::Generate(MacroAssembler* masm) { // r1 - function // r3 - slot id (Smi) Label extra_checks_or_miss, slow_start; Label slow, non_function, wrap, cont; Label have_js_function; int argc = state_.arg_count(); ParameterCount actual(argc); EmitLoadTypeFeedbackVector(masm, r2); // The checks. First, does r1 match the recorded monomorphic target? __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize)); __ cmp(r1, r4); __ b(ne, &extra_checks_or_miss); __ bind(&have_js_function); if (state_.CallAsMethod()) { EmitContinueIfStrictOrNative(masm, &cont); // Compute the receiver in sloppy mode. __ ldr(r3, MemOperand(sp, argc * kPointerSize)); __ JumpIfSmi(r3, &wrap); __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE); __ b(lt, &wrap); __ bind(&cont); } __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper()); __ bind(&slow); EmitSlowCase(masm, argc, &non_function); if (state_.CallAsMethod()) { __ bind(&wrap); EmitWrapCase(masm, argc, &cont); } __ bind(&extra_checks_or_miss); Label miss; __ CompareRoot(r4, Heap::kMegamorphicSymbolRootIndex); __ b(eq, &slow_start); __ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex); __ b(eq, &miss); if (!FLAG_trace_ic) { // We are going megamorphic, and we don't want to visit the runtime. __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex); __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize)); __ jmp(&slow_start); } // We are here because tracing is on or we are going monomorphic. __ bind(&miss); GenerateMiss(masm, IC::kCallIC_Miss); // the slow case __ bind(&slow_start); // Check that the function is really a JavaScript function. // r1: pushed function (to be verified) __ JumpIfSmi(r1, &non_function); // Goto slow case if we do not have a function. __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE); __ b(ne, &slow); __ jmp(&have_js_function); } void CallICStub::GenerateMiss(MacroAssembler* masm, IC::UtilityId id) { // Get the receiver of the function from the stack; 1 ~ return address. __ ldr(r4, MemOperand(sp, (state_.arg_count() + 1) * kPointerSize)); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Push the receiver and the function and feedback info. __ Push(r4, r1, r2, r3); // Call the entry. ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate()); __ CallExternalReference(miss, 4); // Move result to edi and exit the internal frame. __ mov(r1, r0); } } // StringCharCodeAtGenerator void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { Label flat_string; Label ascii_string; Label got_char_code; Label sliced_string; // If the receiver is a smi trigger the non-string case. __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ tst(result_, Operand(kIsNotStringMask)); __ b(ne, receiver_not_string_); // If the index is non-smi trigger the non-smi case. __ JumpIfNotSmi(index_, &index_not_smi_); __ bind(&got_smi_index_); // Check for index out of range. __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset)); __ cmp(ip, Operand(index_)); __ b(ls, index_out_of_range_); __ SmiUntag(index_); StringCharLoadGenerator::Generate(masm, object_, index_, result_, &call_runtime_); __ SmiTag(result_); __ bind(&exit_); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); // Index is not a smi. __ bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_, DONT_DO_SMI_CHECK); call_helper.BeforeCall(masm); __ push(object_); __ push(index_); // Consumed by runtime conversion function. if (index_flags_ == STRING_INDEX_IS_NUMBER) { __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); } else { ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); // NumberToSmi discards numbers that are not exact integers. __ CallRuntime(Runtime::kNumberToSmi, 1); } // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ Move(index_, r0); __ pop(object_); // Reload the instance type. __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. __ JumpIfNotSmi(index_, index_out_of_range_); // Otherwise, return to the fast path. __ jmp(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ bind(&call_runtime_); call_helper.BeforeCall(masm); __ SmiTag(index_); __ Push(object_, index_); __ CallRuntime(Runtime::kStringCharCodeAtRT, 2); __ Move(result_, r0); call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); } // ------------------------------------------------------------------------- // StringCharFromCodeGenerator void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { // Fast case of Heap::LookupSingleCharacterStringFromCode. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiShiftSize == 0); ASSERT(IsPowerOf2(String::kMaxOneByteCharCode + 1)); __ tst(code_, Operand(kSmiTagMask | ((~String::kMaxOneByteCharCode) << kSmiTagSize))); __ b(ne, &slow_case_); __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); // At this point code register contains smi tagged ASCII char code. __ add(result_, result_, Operand::PointerOffsetFromSmiKey(code_)); __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); __ b(eq, &slow_case_); __ bind(&exit_); } void StringCharFromCodeGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); __ bind(&slow_case_); call_helper.BeforeCall(masm); __ push(code_); __ CallRuntime(Runtime::kCharFromCode, 1); __ Move(result_, r0); call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); } enum CopyCharactersFlags { COPY_ASCII = 1, DEST_ALWAYS_ALIGNED = 2 }; void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, String::Encoding encoding) { if (FLAG_debug_code) { // Check that destination is word aligned. __ tst(dest, Operand(kPointerAlignmentMask)); __ Check(eq, kDestinationOfCopyNotAligned); } // Assumes word reads and writes are little endian. // Nothing to do for zero characters. Label done; if (encoding == String::TWO_BYTE_ENCODING) { __ add(count, count, Operand(count), SetCC); } Register limit = count; // Read until dest equals this. __ add(limit, dest, Operand(count)); Label loop_entry, loop; // Copy bytes from src to dest until dest hits limit. __ b(&loop_entry); __ bind(&loop); __ ldrb(scratch, MemOperand(src, 1, PostIndex), lt); __ strb(scratch, MemOperand(dest, 1, PostIndex)); __ bind(&loop_entry); __ cmp(dest, Operand(limit)); __ b(lt, &loop); __ bind(&done); } void StringHelper::GenerateHashInit(MacroAssembler* masm, Register hash, Register character) { // hash = character + (character << 10); __ LoadRoot(hash, Heap::kHashSeedRootIndex); // Untag smi seed and add the character. __ add(hash, character, Operand(hash, LSR, kSmiTagSize)); // hash += hash << 10; __ add(hash, hash, Operand(hash, LSL, 10)); // hash ^= hash >> 6; __ eor(hash, hash, Operand(hash, LSR, 6)); } void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, Register hash, Register character) { // hash += character; __ add(hash, hash, Operand(character)); // hash += hash << 10; __ add(hash, hash, Operand(hash, LSL, 10)); // hash ^= hash >> 6; __ eor(hash, hash, Operand(hash, LSR, 6)); } void StringHelper::GenerateHashGetHash(MacroAssembler* masm, Register hash) { // hash += hash << 3; __ add(hash, hash, Operand(hash, LSL, 3)); // hash ^= hash >> 11; __ eor(hash, hash, Operand(hash, LSR, 11)); // hash += hash << 15; __ add(hash, hash, Operand(hash, LSL, 15)); __ and_(hash, hash, Operand(String::kHashBitMask), SetCC); // if (hash == 0) hash = 27; __ mov(hash, Operand(StringHasher::kZeroHash), LeaveCC, eq); } void SubStringStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // lr: return address // sp[0]: to // sp[4]: from // sp[8]: string // This stub is called from the native-call %_SubString(...), so // nothing can be assumed about the arguments. It is tested that: // "string" is a sequential string, // both "from" and "to" are smis, and // 0 <= from <= to <= string.length. // If any of these assumptions fail, we call the runtime system. const int kToOffset = 0 * kPointerSize; const int kFromOffset = 1 * kPointerSize; const int kStringOffset = 2 * kPointerSize; __ Ldrd(r2, r3, MemOperand(sp, kToOffset)); STATIC_ASSERT(kFromOffset == kToOffset + 4); STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); // Arithmetic shift right by one un-smi-tags. In this case we rotate right // instead because we bail out on non-smi values: ROR and ASR are equivalent // for smis but they set the flags in a way that's easier to optimize. __ mov(r2, Operand(r2, ROR, 1), SetCC); __ mov(r3, Operand(r3, ROR, 1), SetCC, cc); // If either to or from had the smi tag bit set, then C is set now, and N // has the same value: we rotated by 1, so the bottom bit is now the top bit. // We want to bailout to runtime here if From is negative. In that case, the // next instruction is not executed and we fall through to bailing out to // runtime. // Executed if both r2 and r3 are untagged integers. __ sub(r2, r2, Operand(r3), SetCC, cc); // One of the above un-smis or the above SUB could have set N==1. __ b(mi, &runtime); // Either "from" or "to" is not an smi, or from > to. // Make sure first argument is a string. __ ldr(r0, MemOperand(sp, kStringOffset)); __ JumpIfSmi(r0, &runtime); Condition is_string = masm->IsObjectStringType(r0, r1); __ b(NegateCondition(is_string), &runtime); Label single_char; __ cmp(r2, Operand(1)); __ b(eq, &single_char); // Short-cut for the case of trivial substring. Label return_r0; // r0: original string // r2: result string length __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset)); __ cmp(r2, Operand(r4, ASR, 1)); // Return original string. __ b(eq, &return_r0); // Longer than original string's length or negative: unsafe arguments. __ b(hi, &runtime); // Shorter than original string's length: an actual substring. // Deal with different string types: update the index if necessary // and put the underlying string into r5. // r0: original string // r1: instance type // r2: length // r3: from index (untagged) Label underlying_unpacked, sliced_string, seq_or_external_string; // If the string is not indirect, it can only be sequential or external. STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); STATIC_ASSERT(kIsIndirectStringMask != 0); __ tst(r1, Operand(kIsIndirectStringMask)); __ b(eq, &seq_or_external_string); __ tst(r1, Operand(kSlicedNotConsMask)); __ b(ne, &sliced_string); // Cons string. Check whether it is flat, then fetch first part. __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset)); __ CompareRoot(r5, Heap::kempty_stringRootIndex); __ b(ne, &runtime); __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset)); // Update instance type. __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset)); __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked); __ bind(&sliced_string); // Sliced string. Fetch parent and correct start index by offset. __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset)); __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset)); __ add(r3, r3, Operand(r4, ASR, 1)); // Add offset to index. // Update instance type. __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset)); __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked); __ bind(&seq_or_external_string); // Sequential or external string. Just move string to the expected register. __ mov(r5, r0); __ bind(&underlying_unpacked); if (FLAG_string_slices) { Label copy_routine; // r5: underlying subject string // r1: instance type of underlying subject string // r2: length // r3: adjusted start index (untagged) __ cmp(r2, Operand(SlicedString::kMinLength)); // Short slice. Copy instead of slicing. __ b(lt, ©_routine); // Allocate new sliced string. At this point we do not reload the instance // type including the string encoding because we simply rely on the info // provided by the original string. It does not matter if the original // string's encoding is wrong because we always have to recheck encoding of // the newly created string's parent anyways due to externalized strings. Label two_byte_slice, set_slice_header; STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ tst(r1, Operand(kStringEncodingMask)); __ b(eq, &two_byte_slice); __ AllocateAsciiSlicedString(r0, r2, r6, r4, &runtime); __ jmp(&set_slice_header); __ bind(&two_byte_slice); __ AllocateTwoByteSlicedString(r0, r2, r6, r4, &runtime); __ bind(&set_slice_header); __ mov(r3, Operand(r3, LSL, 1)); __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset)); __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset)); __ jmp(&return_r0); __ bind(©_routine); } // r5: underlying subject string // r1: instance type of underlying subject string // r2: length // r3: adjusted start index (untagged) Label two_byte_sequential, sequential_string, allocate_result; STATIC_ASSERT(kExternalStringTag != 0); STATIC_ASSERT(kSeqStringTag == 0); __ tst(r1, Operand(kExternalStringTag)); __ b(eq, &sequential_string); // Handle external string. // Rule out short external strings. STATIC_ASSERT(kShortExternalStringTag != 0); __ tst(r1, Operand(kShortExternalStringTag)); __ b(ne, &runtime); __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset)); // r5 already points to the first character of underlying string. __ jmp(&allocate_result); __ bind(&sequential_string); // Locate first character of underlying subject string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ add(r5, r5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); __ bind(&allocate_result); // Sequential acii string. Allocate the result. STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); __ tst(r1, Operand(kStringEncodingMask)); __ b(eq, &two_byte_sequential); // Allocate and copy the resulting ASCII string. __ AllocateAsciiString(r0, r2, r4, r6, r1, &runtime); // Locate first character of substring to copy. __ add(r5, r5, r3); // Locate first character of result. __ add(r1, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); // r0: result string // r1: first character of result string // r2: result string length // r5: first character of substring to copy STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); StringHelper::GenerateCopyCharacters( masm, r1, r5, r2, r3, String::ONE_BYTE_ENCODING); __ jmp(&return_r0); // Allocate and copy the resulting two-byte string. __ bind(&two_byte_sequential); __ AllocateTwoByteString(r0, r2, r4, r6, r1, &runtime); // Locate first character of substring to copy. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ add(r5, r5, Operand(r3, LSL, 1)); // Locate first character of result. __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // r0: result string. // r1: first character of result. // r2: result length. // r5: first character of substring to copy. STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); StringHelper::GenerateCopyCharacters( masm, r1, r5, r2, r3, String::TWO_BYTE_ENCODING); __ bind(&return_r0); Counters* counters = isolate()->counters(); __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); __ Drop(3); __ Ret(); // Just jump to runtime to create the sub string. __ bind(&runtime); __ TailCallRuntime(Runtime::kSubString, 3, 1); __ bind(&single_char); // r0: original string // r1: instance type // r2: length // r3: from index (untagged) __ SmiTag(r3, r3); StringCharAtGenerator generator( r0, r3, r2, r0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm); __ Drop(3); __ Ret(); generator.SkipSlow(masm, &runtime); } void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3) { Register length = scratch1; // Compare lengths. Label strings_not_equal, check_zero_length; __ ldr(length, FieldMemOperand(left, String::kLengthOffset)); __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ cmp(length, scratch2); __ b(eq, &check_zero_length); __ bind(&strings_not_equal); __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL))); __ Ret(); // Check if the length is zero. Label compare_chars; __ bind(&check_zero_length); STATIC_ASSERT(kSmiTag == 0); __ cmp(length, Operand::Zero()); __ b(ne, &compare_chars); __ mov(r0, Operand(Smi::FromInt(EQUAL))); __ Ret(); // Compare characters. __ bind(&compare_chars); GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2, scratch3, &strings_not_equal); // Characters are equal. __ mov(r0, Operand(Smi::FromInt(EQUAL))); __ Ret(); } void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { Label result_not_equal, compare_lengths; // Find minimum length and length difference. __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ sub(scratch3, scratch1, Operand(scratch2), SetCC); Register length_delta = scratch3; __ mov(scratch1, scratch2, LeaveCC, gt); Register min_length = scratch1; STATIC_ASSERT(kSmiTag == 0); __ cmp(min_length, Operand::Zero()); __ b(eq, &compare_lengths); // Compare loop. GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2, scratch4, &result_not_equal); // Compare lengths - strings up to min-length are equal. __ bind(&compare_lengths); ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); // Use length_delta as result if it's zero. __ mov(r0, Operand(length_delta), SetCC); __ bind(&result_not_equal); // Conditionally update the result based either on length_delta or // the last comparion performed in the loop above. __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt); __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt); __ Ret(); } void StringCompareStub::GenerateAsciiCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch1, Register scratch2, Label* chars_not_equal) { // Change index to run from -length to -1 by adding length to string // start. This means that loop ends when index reaches zero, which // doesn't need an additional compare. __ SmiUntag(length); __ add(scratch1, length, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); __ add(left, left, Operand(scratch1)); __ add(right, right, Operand(scratch1)); __ rsb(length, length, Operand::Zero()); Register index = length; // index = -length; // Compare loop. Label loop; __ bind(&loop); __ ldrb(scratch1, MemOperand(left, index)); __ ldrb(scratch2, MemOperand(right, index)); __ cmp(scratch1, scratch2); __ b(ne, chars_not_equal); __ add(index, index, Operand(1), SetCC); __ b(ne, &loop); } void StringCompareStub::Generate(MacroAssembler* masm) { Label runtime; Counters* counters = isolate()->counters(); // Stack frame on entry. // sp[0]: right string // sp[4]: left string __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1. Label not_same; __ cmp(r0, r1); __ b(ne, ¬_same); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ mov(r0, Operand(Smi::FromInt(EQUAL))); __ IncrementCounter(counters->string_compare_native(), 1, r1, r2); __ add(sp, sp, Operand(2 * kPointerSize)); __ Ret(); __ bind(¬_same); // Check that both objects are sequential ASCII strings. __ JumpIfNotBothSequentialAsciiStrings(r1, r0, r2, r3, &runtime); // Compare flat ASCII strings natively. Remove arguments from stack first. __ IncrementCounter(counters->string_compare_native(), 1, r2, r3); __ add(sp, sp, Operand(2 * kPointerSize)); GenerateCompareFlatAsciiStrings(masm, r1, r0, r2, r3, r4, r5); // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ bind(&runtime); __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r1 : left // -- r0 : right // -- lr : return address // ----------------------------------- // Load r2 with the allocation site. We stick an undefined dummy value here // and replace it with the real allocation site later when we instantiate this // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). __ Move(r2, handle(isolate()->heap()->undefined_value())); // Make sure that we actually patched the allocation site. if (FLAG_debug_code) { __ tst(r2, Operand(kSmiTagMask)); __ Assert(ne, kExpectedAllocationSite); __ push(r2); __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset)); __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex); __ cmp(r2, ip); __ pop(r2); __ Assert(eq, kExpectedAllocationSite); } // Tail call into the stub that handles binary operations with allocation // sites. BinaryOpWithAllocationSiteStub stub(isolate(), state_); __ TailCallStub(&stub); } void ICCompareStub::GenerateSmis(MacroAssembler* masm) { ASSERT(state_ == CompareIC::SMI); Label miss; __ orr(r2, r1, r0); __ JumpIfNotSmi(r2, &miss); if (GetCondition() == eq) { // For equality we do not care about the sign of the result. __ sub(r0, r0, r1, SetCC); } else { // Untag before subtracting to avoid handling overflow. __ SmiUntag(r1); __ sub(r0, r1, Operand::SmiUntag(r0)); } __ Ret(); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateNumbers(MacroAssembler* masm) { ASSERT(state_ == CompareIC::NUMBER); Label generic_stub; Label unordered, maybe_undefined1, maybe_undefined2; Label miss; if (left_ == CompareIC::SMI) { __ JumpIfNotSmi(r1, &miss); } if (right_ == CompareIC::SMI) { __ JumpIfNotSmi(r0, &miss); } // Inlining the double comparison and falling back to the general compare // stub if NaN is involved. // Load left and right operand. Label done, left, left_smi, right_smi; __ JumpIfSmi(r0, &right_smi); __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, DONT_DO_SMI_CHECK); __ sub(r2, r0, Operand(kHeapObjectTag)); __ vldr(d1, r2, HeapNumber::kValueOffset); __ b(&left); __ bind(&right_smi); __ SmiToDouble(d1, r0); __ bind(&left); __ JumpIfSmi(r1, &left_smi); __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, DONT_DO_SMI_CHECK); __ sub(r2, r1, Operand(kHeapObjectTag)); __ vldr(d0, r2, HeapNumber::kValueOffset); __ b(&done); __ bind(&left_smi); __ SmiToDouble(d0, r1); __ bind(&done); // Compare operands. __ VFPCompareAndSetFlags(d0, d1); // Don't base result on status bits when a NaN is involved. __ b(vs, &unordered); // Return a result of -1, 0, or 1, based on status bits. __ mov(r0, Operand(EQUAL), LeaveCC, eq); __ mov(r0, Operand(LESS), LeaveCC, lt); __ mov(r0, Operand(GREATER), LeaveCC, gt); __ Ret(); __ bind(&unordered); __ bind(&generic_stub); ICCompareStub stub(isolate(), op_, CompareIC::GENERIC, CompareIC::GENERIC, CompareIC::GENERIC); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); __ bind(&maybe_undefined1); if (Token::IsOrderedRelationalCompareOp(op_)) { __ CompareRoot(r0, Heap::kUndefinedValueRootIndex); __ b(ne, &miss); __ JumpIfSmi(r1, &unordered); __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE); __ b(ne, &maybe_undefined2); __ jmp(&unordered); } __ bind(&maybe_undefined2); if (Token::IsOrderedRelationalCompareOp(op_)) { __ CompareRoot(r1, Heap::kUndefinedValueRootIndex); __ b(eq, &unordered); } __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateInternalizedStrings(MacroAssembler* masm) { ASSERT(state_ == CompareIC::INTERNALIZED_STRING); Label miss; // Registers containing left and right operands respectively. Register left = r1; Register right = r0; Register tmp1 = r2; Register tmp2 = r3; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are internalized strings. __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ orr(tmp1, tmp1, Operand(tmp2)); __ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask)); __ b(ne, &miss); // Internalized strings are compared by identity. __ cmp(left, right); // Make sure r0 is non-zero. At this point input operands are // guaranteed to be non-zero. ASSERT(right.is(r0)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateUniqueNames(MacroAssembler* masm) { ASSERT(state_ == CompareIC::UNIQUE_NAME); ASSERT(GetCondition() == eq); Label miss; // Registers containing left and right operands respectively. Register left = r1; Register right = r0; Register tmp1 = r2; Register tmp2 = r3; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are unique names. This leaves the instance // types loaded in tmp1 and tmp2. __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueName(tmp1, &miss); __ JumpIfNotUniqueName(tmp2, &miss); // Unique names are compared by identity. __ cmp(left, right); // Make sure r0 is non-zero. At this point input operands are // guaranteed to be non-zero. ASSERT(right.is(r0)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateStrings(MacroAssembler* masm) { ASSERT(state_ == CompareIC::STRING); Label miss; bool equality = Token::IsEqualityOp(op_); // Registers containing left and right operands respectively. Register left = r1; Register right = r0; Register tmp1 = r2; Register tmp2 = r3; Register tmp3 = r4; Register tmp4 = r5; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are strings. This leaves the instance // types loaded in tmp1 and tmp2. __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ orr(tmp3, tmp1, tmp2); __ tst(tmp3, Operand(kIsNotStringMask)); __ b(ne, &miss); // Fast check for identical strings. __ cmp(left, right); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); __ Ret(eq); // Handle not identical strings. // Check that both strings are internalized strings. If they are, we're done // because we already know they are not identical. We know they are both // strings. if (equality) { ASSERT(GetCondition() == eq); STATIC_ASSERT(kInternalizedTag == 0); __ orr(tmp3, tmp1, Operand(tmp2)); __ tst(tmp3, Operand(kIsNotInternalizedMask)); // Make sure r0 is non-zero. At this point input operands are // guaranteed to be non-zero. ASSERT(right.is(r0)); __ Ret(eq); } // Check that both strings are sequential ASCII. Label runtime; __ JumpIfBothInstanceTypesAreNotSequentialAscii( tmp1, tmp2, tmp3, tmp4, &runtime); // Compare flat ASCII strings. Returns when done. if (equality) { StringCompareStub::GenerateFlatAsciiStringEquals( masm, left, right, tmp1, tmp2, tmp3); } else { StringCompareStub::GenerateCompareFlatAsciiStrings( masm, left, right, tmp1, tmp2, tmp3, tmp4); } // Handle more complex cases in runtime. __ bind(&runtime); __ Push(left, right); if (equality) { __ TailCallRuntime(Runtime::kStringEquals, 2, 1); } else { __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateObjects(MacroAssembler* masm) { ASSERT(state_ == CompareIC::OBJECT); Label miss; __ and_(r2, r1, Operand(r0)); __ JumpIfSmi(r2, &miss); __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE); __ b(ne, &miss); __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE); __ b(ne, &miss); ASSERT(GetCondition() == eq); __ sub(r0, r0, Operand(r1)); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) { Label miss; __ and_(r2, r1, Operand(r0)); __ JumpIfSmi(r2, &miss); __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); __ cmp(r2, Operand(known_map_)); __ b(ne, &miss); __ cmp(r3, Operand(known_map_)); __ b(ne, &miss); __ sub(r0, r0, Operand(r1)); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateMiss(MacroAssembler* masm) { { // Call the runtime system in a fresh internal frame. ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate()); FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r1, r0); __ Push(lr, r1, r0); __ mov(ip, Operand(Smi::FromInt(op_))); __ push(ip); __ CallExternalReference(miss, 3); // Compute the entry point of the rewritten stub. __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); // Restore registers. __ pop(lr); __ Pop(r1, r0); } __ Jump(r2); } void DirectCEntryStub::Generate(MacroAssembler* masm) { // Place the return address on the stack, making the call // GC safe. The RegExp backend also relies on this. __ str(lr, MemOperand(sp, 0)); __ blx(ip); // Call the C++ function. __ VFPEnsureFPSCRState(r2); __ ldr(pc, MemOperand(sp, 0)); } void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) { intptr_t code = reinterpret_cast<intptr_t>(GetCode().location()); __ Move(ip, target); __ mov(lr, Operand(code, RelocInfo::CODE_TARGET)); __ blx(lr); // Call the stub. } void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, Label* miss, Label* done, Register receiver, Register properties, Handle<Name> name, Register scratch0) { ASSERT(name->IsUniqueName()); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the hole value). for (int i = 0; i < kInlinedProbes; i++) { // scratch0 points to properties hash. // Compute the masked index: (hash + i + i * i) & mask. Register index = scratch0; // Capacity is smi 2^n. __ ldr(index, FieldMemOperand(properties, kCapacityOffset)); __ sub(index, index, Operand(1)); __ and_(index, index, Operand( Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)))); // Scale the index by multiplying by the entry size. ASSERT(NameDictionary::kEntrySize == 3); __ add(index, index, Operand(index, LSL, 1)); // index *= 3. Register entity_name = scratch0; // Having undefined at this place means the name is not contained. ASSERT_EQ(kSmiTagSize, 1); Register tmp = properties; __ add(tmp, properties, Operand(index, LSL, 1)); __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); ASSERT(!tmp.is(entity_name)); __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); __ cmp(entity_name, tmp); __ b(eq, done); // Load the hole ready for use below: __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex); // Stop if found the property. __ cmp(entity_name, Operand(Handle<Name>(name))); __ b(eq, miss); Label good; __ cmp(entity_name, tmp); __ b(eq, &good); // Check if the entry name is not a unique name. __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); __ ldrb(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueName(entity_name, miss); __ bind(&good); // Restore the properties. __ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); } const int spill_mask = (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() | r2.bit() | r1.bit() | r0.bit()); __ stm(db_w, sp, spill_mask); __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ mov(r1, Operand(Handle<Name>(name))); NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP); __ CallStub(&stub); __ cmp(r0, Operand::Zero()); __ ldm(ia_w, sp, spill_mask); __ b(eq, done); __ b(ne, miss); } // Probe the name dictionary in the |elements| register. Jump to the // |done| label if a property with the given name is found. Jump to // the |miss| label otherwise. // If lookup was successful |scratch2| will be equal to elements + 4 * index. void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, Label* miss, Label* done, Register elements, Register name, Register scratch1, Register scratch2) { ASSERT(!elements.is(scratch1)); ASSERT(!elements.is(scratch2)); ASSERT(!name.is(scratch1)); ASSERT(!name.is(scratch2)); __ AssertName(name); // Compute the capacity mask. __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset)); __ SmiUntag(scratch1); __ sub(scratch1, scratch1, Operand(1)); // Generate an unrolled loop that performs a few probes before // giving up. Measurements done on Gmail indicate that 2 probes // cover ~93% of loads from dictionaries. for (int i = 0; i < kInlinedProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset)); if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. ASSERT(NameDictionary::GetProbeOffset(i) < 1 << (32 - Name::kHashFieldOffset)); __ add(scratch2, scratch2, Operand( NameDictionary::GetProbeOffset(i) << Name::kHashShift)); } __ and_(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift)); // Scale the index by multiplying by the element size. ASSERT(NameDictionary::kEntrySize == 3); // scratch2 = scratch2 * 3. __ add(scratch2, scratch2, Operand(scratch2, LSL, 1)); // Check if the key is identical to the name. __ add(scratch2, elements, Operand(scratch2, LSL, 2)); __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset)); __ cmp(name, Operand(ip)); __ b(eq, done); } const int spill_mask = (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() | r2.bit() | r1.bit() | r0.bit()) & ~(scratch1.bit() | scratch2.bit()); __ stm(db_w, sp, spill_mask); if (name.is(r0)) { ASSERT(!elements.is(r1)); __ Move(r1, name); __ Move(r0, elements); } else { __ Move(r0, elements); __ Move(r1, name); } NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP); __ CallStub(&stub); __ cmp(r0, Operand::Zero()); __ mov(scratch2, Operand(r2)); __ ldm(ia_w, sp, spill_mask); __ b(ne, done); __ b(eq, miss); } void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. // Registers: // result: NameDictionary to probe // r1: key // dictionary: NameDictionary to probe. // index: will hold an index of entry if lookup is successful. // might alias with result_. // Returns: // result_ is zero if lookup failed, non zero otherwise. Register result = r0; Register dictionary = r0; Register key = r1; Register index = r2; Register mask = r3; Register hash = r4; Register undefined = r5; Register entry_key = r6; Label in_dictionary, maybe_in_dictionary, not_in_dictionary; __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset)); __ SmiUntag(mask); __ sub(mask, mask, Operand(1)); __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset)); __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); for (int i = kInlinedProbes; i < kTotalProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. // Capacity is smi 2^n. if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. ASSERT(NameDictionary::GetProbeOffset(i) < 1 << (32 - Name::kHashFieldOffset)); __ add(index, hash, Operand( NameDictionary::GetProbeOffset(i) << Name::kHashShift)); } else { __ mov(index, Operand(hash)); } __ and_(index, mask, Operand(index, LSR, Name::kHashShift)); // Scale the index by multiplying by the entry size. ASSERT(NameDictionary::kEntrySize == 3); __ add(index, index, Operand(index, LSL, 1)); // index *= 3. ASSERT_EQ(kSmiTagSize, 1); __ add(index, dictionary, Operand(index, LSL, 2)); __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset)); // Having undefined at this place means the name is not contained. __ cmp(entry_key, Operand(undefined)); __ b(eq, ¬_in_dictionary); // Stop if found the property. __ cmp(entry_key, Operand(key)); __ b(eq, &in_dictionary); if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { // Check if the entry name is not a unique name. __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); __ ldrb(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary); } } __ bind(&maybe_in_dictionary); // If we are doing negative lookup then probing failure should be // treated as a lookup success. For positive lookup probing failure // should be treated as lookup failure. if (mode_ == POSITIVE_LOOKUP) { __ mov(result, Operand::Zero()); __ Ret(); } __ bind(&in_dictionary); __ mov(result, Operand(1)); __ Ret(); __ bind(¬_in_dictionary); __ mov(result, Operand::Zero()); __ Ret(); } void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( Isolate* isolate) { StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); stub1.GetCode(); // Hydrogen code stubs need stub2 at snapshot time. StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); stub2.GetCode(); } // Takes the input in 3 registers: address_ value_ and object_. A pointer to // the value has just been written into the object, now this stub makes sure // we keep the GC informed. The word in the object where the value has been // written is in the address register. void RecordWriteStub::Generate(MacroAssembler* masm) { Label skip_to_incremental_noncompacting; Label skip_to_incremental_compacting; // The first two instructions are generated with labels so as to get the // offset fixed up correctly by the bind(Label*) call. We patch it back and // forth between a compare instructions (a nop in this position) and the // real branch when we start and stop incremental heap marking. // See RecordWriteStub::Patch for details. { // Block literal pool emission, as the position of these two instructions // is assumed by the patching code. Assembler::BlockConstPoolScope block_const_pool(masm); __ b(&skip_to_incremental_noncompacting); __ b(&skip_to_incremental_compacting); } if (remembered_set_action_ == EMIT_REMEMBERED_SET) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } __ Ret(); __ bind(&skip_to_incremental_noncompacting); GenerateIncremental(masm, INCREMENTAL); __ bind(&skip_to_incremental_compacting); GenerateIncremental(masm, INCREMENTAL_COMPACTION); // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. // Will be checked in IncrementalMarking::ActivateGeneratedStub. ASSERT(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12)); ASSERT(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12)); PatchBranchIntoNop(masm, 0); PatchBranchIntoNop(masm, Assembler::kInstrSize); } void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { regs_.Save(masm); if (remembered_set_action_ == EMIT_REMEMBERED_SET) { Label dont_need_remembered_set; __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0)); __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. regs_.scratch0(), &dont_need_remembered_set); __ CheckPageFlag(regs_.object(), regs_.scratch0(), 1 << MemoryChunk::SCAN_ON_SCAVENGE, ne, &dont_need_remembered_set); // First notify the incremental marker if necessary, then update the // remembered set. CheckNeedsToInformIncrementalMarker( masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); __ bind(&dont_need_remembered_set); } CheckNeedsToInformIncrementalMarker( masm, kReturnOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ Ret(); } void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_); int argument_count = 3; __ PrepareCallCFunction(argument_count, regs_.scratch0()); Register address = r0.is(regs_.address()) ? regs_.scratch0() : regs_.address(); ASSERT(!address.is(regs_.object())); ASSERT(!address.is(r0)); __ Move(address, regs_.address()); __ Move(r0, regs_.object()); __ Move(r1, address); __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction( ExternalReference::incremental_marking_record_write_function(isolate()), argument_count); regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_); } void RecordWriteStub::CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode) { Label on_black; Label need_incremental; Label need_incremental_pop_scratch; __ and_(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask)); __ ldr(regs_.scratch1(), MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset)); __ sub(regs_.scratch1(), regs_.scratch1(), Operand(1), SetCC); __ str(regs_.scratch1(), MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset)); __ b(mi, &need_incremental); // Let's look at the color of the object: If it is not black we don't have // to inform the incremental marker. __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&on_black); // Get the value from the slot. __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0)); if (mode == INCREMENTAL_COMPACTION) { Label ensure_not_white; __ CheckPageFlag(regs_.scratch0(), // Contains value. regs_.scratch1(), // Scratch. MemoryChunk::kEvacuationCandidateMask, eq, &ensure_not_white); __ CheckPageFlag(regs_.object(), regs_.scratch1(), // Scratch. MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq, &need_incremental); __ bind(&ensure_not_white); } // We need extra registers for this, so we push the object and the address // register temporarily. __ Push(regs_.object(), regs_.address()); __ EnsureNotWhite(regs_.scratch0(), // The value. regs_.scratch1(), // Scratch. regs_.object(), // Scratch. regs_.address(), // Scratch. &need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); __ bind(&need_incremental); // Fall through when we need to inform the incremental marker. } void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : element value to store // -- r3 : element index as smi // -- sp[0] : array literal index in function as smi // -- sp[4] : array literal // clobbers r1, r2, r4 // ----------------------------------- Label element_done; Label double_elements; Label smi_element; Label slow_elements; Label fast_elements; // Get array literal index, array literal and its map. __ ldr(r4, MemOperand(sp, 0 * kPointerSize)); __ ldr(r1, MemOperand(sp, 1 * kPointerSize)); __ ldr(r2, FieldMemOperand(r1, JSObject::kMapOffset)); __ CheckFastElements(r2, r5, &double_elements); // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS __ JumpIfSmi(r0, &smi_element); __ CheckFastSmiElements(r2, r5, &fast_elements); // Store into the array literal requires a elements transition. Call into // the runtime. __ bind(&slow_elements); // call. __ Push(r1, r3, r0); __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset)); __ Push(r5, r4); __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. __ bind(&fast_elements); __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3)); __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ str(r0, MemOperand(r6, 0)); // Update the write barrier for the array store. __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Ret(); // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS, // and value is Smi. __ bind(&smi_element); __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3)); __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize)); __ Ret(); // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS. __ bind(&double_elements); __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); __ StoreNumberToDoubleElements(r0, r3, r5, r6, d0, &slow_elements); __ Ret(); } void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { CEntryStub ces(isolate(), 1, kSaveFPRegs); __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); int parameter_count_offset = StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; __ ldr(r1, MemOperand(fp, parameter_count_offset)); if (function_mode_ == JS_FUNCTION_STUB_MODE) { __ add(r1, r1, Operand(1)); } masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); __ mov(r1, Operand(r1, LSL, kPointerSizeLog2)); __ add(sp, sp, r1); __ Ret(); } void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { if (masm->isolate()->function_entry_hook() != NULL) { ProfileEntryHookStub stub(masm->isolate()); int code_size = masm->CallStubSize(&stub) + 2 * Assembler::kInstrSize; PredictableCodeSizeScope predictable(masm, code_size); __ push(lr); __ CallStub(&stub); __ pop(lr); } } void ProfileEntryHookStub::Generate(MacroAssembler* masm) { // The entry hook is a "push lr" instruction, followed by a call. const int32_t kReturnAddressDistanceFromFunctionStart = 3 * Assembler::kInstrSize; // This should contain all kCallerSaved registers. const RegList kSavedRegs = 1 << 0 | // r0 1 << 1 | // r1 1 << 2 | // r2 1 << 3 | // r3 1 << 5 | // r5 1 << 9; // r9 // We also save lr, so the count here is one higher than the mask indicates. const int32_t kNumSavedRegs = 7; ASSERT((kCallerSaved & kSavedRegs) == kCallerSaved); // Save all caller-save registers as this may be called from anywhere. __ stm(db_w, sp, kSavedRegs | lr.bit()); // Compute the function's address for the first argument. __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart)); // The caller's return address is above the saved temporaries. // Grab that for the second argument to the hook. __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize)); // Align the stack if necessary. int frame_alignment = masm->ActivationFrameAlignment(); if (frame_alignment > kPointerSize) { __ mov(r5, sp); ASSERT(IsPowerOf2(frame_alignment)); __ and_(sp, sp, Operand(-frame_alignment)); } #if V8_HOST_ARCH_ARM int32_t entry_hook = reinterpret_cast<int32_t>(isolate()->function_entry_hook()); __ mov(ip, Operand(entry_hook)); #else // Under the simulator we need to indirect the entry hook through a // trampoline function at a known address. // It additionally takes an isolate as a third parameter __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); __ mov(ip, Operand(ExternalReference(&dispatcher, ExternalReference::BUILTIN_CALL, isolate()))); #endif __ Call(ip); // Restore the stack pointer if needed. if (frame_alignment > kPointerSize) { __ mov(sp, r5); } // Also pop pc to get Ret(0). __ ldm(ia_w, sp, kSavedRegs | pc.bit()); } template<class T> static void CreateArrayDispatch(MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (mode == DISABLE_ALLOCATION_SITES) { T stub(masm->isolate(), GetInitialFastElementsKind(), mode); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { int last_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ cmp(r3, Operand(kind)); T stub(masm->isolate(), kind); __ TailCallStub(&stub, eq); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } static void CreateArrayDispatchOneArgument(MacroAssembler* masm, AllocationSiteOverrideMode mode) { // r2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) // r3 - kind (if mode != DISABLE_ALLOCATION_SITES) // r0 - number of arguments // r1 - constructor? // sp[0] - last argument Label normal_sequence; if (mode == DONT_OVERRIDE) { ASSERT(FAST_SMI_ELEMENTS == 0); ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); ASSERT(FAST_ELEMENTS == 2); ASSERT(FAST_HOLEY_ELEMENTS == 3); ASSERT(FAST_DOUBLE_ELEMENTS == 4); ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); // is the low bit set? If so, we are holey and that is good. __ tst(r3, Operand(1)); __ b(ne, &normal_sequence); } // look at the first argument __ ldr(r5, MemOperand(sp, 0)); __ cmp(r5, Operand::Zero()); __ b(eq, &normal_sequence); if (mode == DISABLE_ALLOCATION_SITES) { ElementsKind initial = GetInitialFastElementsKind(); ElementsKind holey_initial = GetHoleyElementsKind(initial); ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub_holey); __ bind(&normal_sequence); ArraySingleArgumentConstructorStub stub(masm->isolate(), initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { // We are going to create a holey array, but our kind is non-holey. // Fix kind and retry (only if we have an allocation site in the slot). __ add(r3, r3, Operand(1)); if (FLAG_debug_code) { __ ldr(r5, FieldMemOperand(r2, 0)); __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); __ Assert(eq, kExpectedAllocationSite); } // Save the resulting elements kind in type info. We can't just store r3 // in the AllocationSite::transition_info field because elements kind is // restricted to a portion of the field...upper bits need to be left alone. STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ ldr(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); __ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley))); __ str(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); __ bind(&normal_sequence); int last_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); __ cmp(r3, Operand(kind)); ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); __ TailCallStub(&stub, eq); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } template<class T> static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { int to_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= to_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); T stub(isolate, kind); stub.GetCode(); if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); stub1.GetCode(); } } } void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) { ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( isolate); ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( isolate); ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>( isolate); } void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime( Isolate* isolate) { ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; for (int i = 0; i < 2; i++) { // For internal arrays we only need a few things InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); stubh1.GetCode(); InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); stubh2.GetCode(); InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]); stubh3.GetCode(); } } void ArrayConstructorStub::GenerateDispatchToArrayStub( MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (argument_count_ == ANY) { Label not_zero_case, not_one_case; __ tst(r0, r0); __ b(ne, ¬_zero_case); CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); __ bind(¬_zero_case); __ cmp(r0, Operand(1)); __ b(gt, ¬_one_case); CreateArrayDispatchOneArgument(masm, mode); __ bind(¬_one_case); CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); } else if (argument_count_ == NONE) { CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); } else if (argument_count_ == ONE) { CreateArrayDispatchOneArgument(masm, mode); } else if (argument_count_ == MORE_THAN_ONE) { CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); } else { UNREACHABLE(); } } void ArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : argc (only if argument_count_ == ANY) // -- r1 : constructor // -- r2 : AllocationSite or undefined // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ ldr(r4, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ tst(r4, Operand(kSmiTagMask)); __ Assert(ne, kUnexpectedInitialMapForArrayFunction); __ CompareObjectType(r4, r4, r5, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); // We should either have undefined in r2 or a valid AllocationSite __ AssertUndefinedOrAllocationSite(r2, r4); } Label no_info; // Get the elements kind and case on that. __ CompareRoot(r2, Heap::kUndefinedValueRootIndex); __ b(eq, &no_info); __ ldr(r3, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); __ SmiUntag(r3); STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask)); GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); __ bind(&no_info); GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); } void InternalArrayConstructorStub::GenerateCase( MacroAssembler* masm, ElementsKind kind) { __ cmp(r0, Operand(1)); InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); __ TailCallStub(&stub0, lo); InternalArrayNArgumentsConstructorStub stubN(isolate(), kind); __ TailCallStub(&stubN, hi); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument __ ldr(r3, MemOperand(sp, 0)); __ cmp(r3, Operand::Zero()); InternalArraySingleArgumentConstructorStub stub1_holey(isolate(), GetHoleyElementsKind(kind)); __ TailCallStub(&stub1_holey, ne); } InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); __ TailCallStub(&stub1); } void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : argc // -- r1 : constructor // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ tst(r3, Operand(kSmiTagMask)); __ Assert(ne, kUnexpectedInitialMapForArrayFunction); __ CompareObjectType(r3, r3, r4, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); } // Figure out the right elements kind __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into |result|. We only need the first byte, // but the following bit field extraction takes care of that anyway. __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField<Map::ElementsKindBits>(r3); if (FLAG_debug_code) { Label done; __ cmp(r3, Operand(FAST_ELEMENTS)); __ b(eq, &done); __ cmp(r3, Operand(FAST_HOLEY_ELEMENTS)); __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray); __ bind(&done); } Label fast_elements_case; __ cmp(r3, Operand(FAST_ELEMENTS)); __ b(eq, &fast_elements_case); GenerateCase(masm, FAST_HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateCase(masm, FAST_ELEMENTS); } void CallApiFunctionStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : callee // -- r4 : call_data // -- r2 : holder // -- r1 : api_function_address // -- cp : context // -- // -- sp[0] : last argument // -- ... // -- sp[(argc - 1)* 4] : first argument // -- sp[argc * 4] : receiver // ----------------------------------- Register callee = r0; Register call_data = r4; Register holder = r2; Register api_function_address = r1; Register context = cp; int argc = ArgumentBits::decode(bit_field_); bool is_store = IsStoreBits::decode(bit_field_); bool call_data_undefined = CallDataUndefinedBits::decode(bit_field_); typedef FunctionCallbackArguments FCA; STATIC_ASSERT(FCA::kContextSaveIndex == 6); STATIC_ASSERT(FCA::kCalleeIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); STATIC_ASSERT(FCA::kArgsLength == 7); // context save __ push(context); // load context from callee __ ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset)); // callee __ push(callee); // call data __ push(call_data); Register scratch = call_data; if (!call_data_undefined) { __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); } // return value __ push(scratch); // return value default __ push(scratch); // isolate __ mov(scratch, Operand(ExternalReference::isolate_address(isolate()))); __ push(scratch); // holder __ push(holder); // Prepare arguments. __ mov(scratch, sp); // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. const int kApiStackSpace = 4; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); ASSERT(!api_function_address.is(r0) && !scratch.is(r0)); // r0 = FunctionCallbackInfo& // Arguments is after the return address. __ add(r0, sp, Operand(1 * kPointerSize)); // FunctionCallbackInfo::implicit_args_ __ str(scratch, MemOperand(r0, 0 * kPointerSize)); // FunctionCallbackInfo::values_ __ add(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize)); __ str(ip, MemOperand(r0, 1 * kPointerSize)); // FunctionCallbackInfo::length_ = argc __ mov(ip, Operand(argc)); __ str(ip, MemOperand(r0, 2 * kPointerSize)); // FunctionCallbackInfo::is_construct_call = 0 __ mov(ip, Operand::Zero()); __ str(ip, MemOperand(r0, 3 * kPointerSize)); const int kStackUnwindSpace = argc + FCA::kArgsLength + 1; ExternalReference thunk_ref = ExternalReference::invoke_function_callback(isolate()); AllowExternalCallThatCantCauseGC scope(masm); MemOperand context_restore_operand( fp, (2 + FCA::kContextSaveIndex) * kPointerSize); // Stores return the first js argument int return_value_offset = 0; if (is_store) { return_value_offset = 2 + FCA::kArgsLength; } else { return_value_offset = 2 + FCA::kReturnValueOffset; } MemOperand return_value_operand(fp, return_value_offset * kPointerSize); __ CallApiFunctionAndReturn(api_function_address, thunk_ref, kStackUnwindSpace, return_value_operand, &context_restore_operand); } void CallApiGetterStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- sp[0] : name // -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object // -- ... // -- r2 : api_function_address // ----------------------------------- Register api_function_address = r2; __ mov(r0, sp); // r0 = Handle<Name> __ add(r1, r0, Operand(1 * kPointerSize)); // r1 = PCA const int kApiStackSpace = 1; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); // Create PropertyAccessorInfo instance on the stack above the exit frame with // r1 (internal::Object** args_) as the data. __ str(r1, MemOperand(sp, 1 * kPointerSize)); __ add(r1, sp, Operand(1 * kPointerSize)); // r1 = AccessorInfo& const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(isolate()); __ CallApiFunctionAndReturn(api_function_address, thunk_ref, kStackUnwindSpace, MemOperand(fp, 6 * kPointerSize), NULL); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM