// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_COMMON_GLOBALS_H_ #define V8_COMMON_GLOBALS_H_ #include <stddef.h> #include <stdint.h> #include <limits> #include <ostream> #include "include/v8-internal.h" #include "src/base/atomic-utils.h" #include "src/base/build_config.h" #include "src/base/flags.h" #include "src/base/logging.h" #include "src/base/macros.h" #define V8_INFINITY std::numeric_limits<double>::infinity() namespace v8 { namespace base { class Mutex; class RecursiveMutex; } // namespace base namespace internal { constexpr int KB = 1024; constexpr int MB = KB * 1024; constexpr int GB = MB * 1024; // Determine whether we are running in a simulated environment. // Setting USE_SIMULATOR explicitly from the build script will force // the use of a simulated environment. #if !defined(USE_SIMULATOR) #if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_PPC64 && !V8_HOST_ARCH_PPC64) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64) #define USE_SIMULATOR 1 #endif #if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390) #define USE_SIMULATOR 1 #endif #endif // Determine whether the architecture uses an embedded constant pool // (contiguous constant pool embedded in code object). #if V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64 #define V8_EMBEDDED_CONSTANT_POOL true #else #define V8_EMBEDDED_CONSTANT_POOL false #endif #ifdef V8_TARGET_ARCH_ARM // Set stack limit lower for ARM than for other architectures because // stack allocating MacroAssembler takes 120K bytes. // See issue crbug.com/405338 #define V8_DEFAULT_STACK_SIZE_KB 864 #else // Slightly less than 1MB, since Windows' default stack size for // the main execution thread is 1MB for both 32 and 64-bit. #define V8_DEFAULT_STACK_SIZE_KB 984 #endif // Minimum stack size in KB required by compilers. constexpr int kStackSpaceRequiredForCompilation = 40; // In order to emit more efficient stack checks in optimized code, // deoptimization may implicitly exceed the V8 stack limit by this many bytes. // Stack checks in functions with `difference between optimized and unoptimized // stack frame sizes <= slack` can simply emit the simple stack check. constexpr int kStackLimitSlackForDeoptimizationInBytes = 256; // Sanity-check, assuming that we aim for a real OS stack size of at least 1MB. STATIC_ASSERT(V8_DEFAULT_STACK_SIZE_KB* KB + kStackLimitSlackForDeoptimizationInBytes <= MB); // Determine whether double field unboxing feature is enabled. #if V8_TARGET_ARCH_64_BIT && !defined(V8_COMPRESS_POINTERS) #define V8_DOUBLE_FIELDS_UNBOXING false #else #define V8_DOUBLE_FIELDS_UNBOXING false #endif // Determine whether tagged pointers are 8 bytes (used in Torque layouts for // choosing where to insert padding). #if V8_TARGET_ARCH_64_BIT && !defined(V8_COMPRESS_POINTERS) #define TAGGED_SIZE_8_BYTES true #else #define TAGGED_SIZE_8_BYTES false #endif // Some types of tracing require the SFI to store a unique ID. #if defined(V8_TRACE_MAPS) || defined(V8_TRACE_IGNITION) #define V8_SFI_HAS_UNIQUE_ID true #else #define V8_SFI_HAS_UNIQUE_ID false #endif #if defined(V8_OS_WIN) && defined(V8_TARGET_ARCH_X64) #define V8_OS_WIN_X64 true #endif #if defined(V8_OS_WIN) && defined(V8_TARGET_ARCH_ARM64) #define V8_OS_WIN_ARM64 true #endif #if defined(V8_OS_WIN_X64) || defined(V8_OS_WIN_ARM64) #define V8_OS_WIN64 true #endif // Superclass for classes only using static method functions. // The subclass of AllStatic cannot be instantiated at all. class AllStatic { #ifdef DEBUG public: AllStatic() = delete; #endif }; using byte = uint8_t; // ----------------------------------------------------------------------------- // Constants constexpr int kMaxInt = 0x7FFFFFFF; constexpr int kMinInt = -kMaxInt - 1; constexpr int kMaxInt8 = (1 << 7) - 1; constexpr int kMinInt8 = -(1 << 7); constexpr int kMaxUInt8 = (1 << 8) - 1; constexpr int kMinUInt8 = 0; constexpr int kMaxInt16 = (1 << 15) - 1; constexpr int kMinInt16 = -(1 << 15); constexpr int kMaxUInt16 = (1 << 16) - 1; constexpr int kMinUInt16 = 0; constexpr uint32_t kMaxUInt32 = 0xFFFFFFFFu; constexpr int kMinUInt32 = 0; constexpr int kUInt8Size = sizeof(uint8_t); constexpr int kByteSize = sizeof(byte); constexpr int kCharSize = sizeof(char); constexpr int kShortSize = sizeof(short); // NOLINT constexpr int kUInt16Size = sizeof(uint16_t); constexpr int kIntSize = sizeof(int); constexpr int kInt32Size = sizeof(int32_t); constexpr int kInt64Size = sizeof(int64_t); constexpr int kUInt32Size = sizeof(uint32_t); constexpr int kSizetSize = sizeof(size_t); constexpr int kFloatSize = sizeof(float); constexpr int kDoubleSize = sizeof(double); constexpr int kIntptrSize = sizeof(intptr_t); constexpr int kUIntptrSize = sizeof(uintptr_t); constexpr int kSystemPointerSize = sizeof(void*); constexpr int kSystemPointerHexDigits = kSystemPointerSize == 4 ? 8 : 12; constexpr int kPCOnStackSize = kSystemPointerSize; constexpr int kFPOnStackSize = kSystemPointerSize; #if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_IA32 constexpr int kElidedFrameSlots = kPCOnStackSize / kSystemPointerSize; #else constexpr int kElidedFrameSlots = 0; #endif constexpr int kDoubleSizeLog2 = 3; constexpr size_t kMaxWasmCodeMB = 1024; constexpr size_t kMaxWasmCodeMemory = kMaxWasmCodeMB * MB; #if V8_TARGET_ARCH_ARM64 // ARM64 only supports direct calls within a 128 MB range. constexpr size_t kMaxWasmCodeSpaceSize = 128 * MB; #else constexpr size_t kMaxWasmCodeSpaceSize = kMaxWasmCodeMemory; #endif #if V8_HOST_ARCH_64_BIT constexpr int kSystemPointerSizeLog2 = 3; constexpr intptr_t kIntptrSignBit = static_cast<intptr_t>(uintptr_t{0x8000000000000000}); constexpr bool kPlatformRequiresCodeRange = true; #if (V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64) && \ (V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64) && V8_OS_LINUX constexpr size_t kMaximalCodeRangeSize = 512 * MB; constexpr size_t kMinExpectedOSPageSize = 64 * KB; // OS page on PPC Linux #elif V8_TARGET_ARCH_ARM64 constexpr size_t kMaximalCodeRangeSize = 128 * MB; constexpr size_t kMinExpectedOSPageSize = 4 * KB; // OS page. #else constexpr size_t kMaximalCodeRangeSize = 128 * MB; constexpr size_t kMinExpectedOSPageSize = 4 * KB; // OS page. #endif #if V8_OS_WIN constexpr size_t kMinimumCodeRangeSize = 4 * MB; constexpr size_t kReservedCodeRangePages = 1; #else constexpr size_t kMinimumCodeRangeSize = 3 * MB; constexpr size_t kReservedCodeRangePages = 0; #endif #else constexpr int kSystemPointerSizeLog2 = 2; constexpr intptr_t kIntptrSignBit = 0x80000000; #if (V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64) && \ (V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64) && V8_OS_LINUX constexpr bool kPlatformRequiresCodeRange = false; constexpr size_t kMaximalCodeRangeSize = 0 * MB; constexpr size_t kMinimumCodeRangeSize = 0 * MB; constexpr size_t kMinExpectedOSPageSize = 64 * KB; // OS page on PPC Linux #elif V8_TARGET_ARCH_MIPS constexpr bool kPlatformRequiresCodeRange = false; constexpr size_t kMaximalCodeRangeSize = 2048LL * MB; constexpr size_t kMinimumCodeRangeSize = 0 * MB; constexpr size_t kMinExpectedOSPageSize = 4 * KB; // OS page. #else constexpr bool kPlatformRequiresCodeRange = false; constexpr size_t kMaximalCodeRangeSize = 0 * MB; constexpr size_t kMinimumCodeRangeSize = 0 * MB; constexpr size_t kMinExpectedOSPageSize = 4 * KB; // OS page. #endif constexpr size_t kReservedCodeRangePages = 0; #endif STATIC_ASSERT(kSystemPointerSize == (1 << kSystemPointerSizeLog2)); #ifdef V8_COMPRESS_POINTERS static_assert( kSystemPointerSize == kInt64Size, "Pointer compression can be enabled only for 64-bit architectures"); constexpr int kTaggedSize = kInt32Size; constexpr int kTaggedSizeLog2 = 2; // These types define raw and atomic storage types for tagged values stored // on V8 heap. using Tagged_t = uint32_t; using AtomicTagged_t = base::Atomic32; #else constexpr int kTaggedSize = kSystemPointerSize; constexpr int kTaggedSizeLog2 = kSystemPointerSizeLog2; // These types define raw and atomic storage types for tagged values stored // on V8 heap. using Tagged_t = Address; using AtomicTagged_t = base::AtomicWord; #endif // V8_COMPRESS_POINTERS STATIC_ASSERT(kTaggedSize == (1 << kTaggedSizeLog2)); STATIC_ASSERT((kTaggedSize == 8) == TAGGED_SIZE_8_BYTES); using AsAtomicTagged = base::AsAtomicPointerImpl<AtomicTagged_t>; STATIC_ASSERT(sizeof(Tagged_t) == kTaggedSize); STATIC_ASSERT(sizeof(AtomicTagged_t) == kTaggedSize); STATIC_ASSERT(kTaggedSize == kApiTaggedSize); // TODO(ishell): use kTaggedSize or kSystemPointerSize instead. #ifndef V8_COMPRESS_POINTERS constexpr int kPointerSize = kSystemPointerSize; constexpr int kPointerSizeLog2 = kSystemPointerSizeLog2; STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2)); #endif // This type defines raw storage type for external (or off-V8 heap) pointers // stored on V8 heap. using ExternalPointer_t = Address; constexpr int kExternalPointerSize = sizeof(ExternalPointer_t); constexpr int kEmbedderDataSlotSize = kSystemPointerSize; constexpr int kEmbedderDataSlotSizeInTaggedSlots = kEmbedderDataSlotSize / kTaggedSize; STATIC_ASSERT(kEmbedderDataSlotSize >= kSystemPointerSize); constexpr int kExternalAllocationSoftLimit = internal::Internals::kExternalAllocationSoftLimit; // Maximum object size that gets allocated into regular pages. Objects larger // than that size are allocated in large object space and are never moved in // memory. This also applies to new space allocation, since objects are never // migrated from new space to large object space. Takes double alignment into // account. // // Current value: half of the page size. constexpr int kMaxRegularHeapObjectSize = (1 << (kPageSizeBits - 1)); constexpr int kBitsPerByte = 8; constexpr int kBitsPerByteLog2 = 3; constexpr int kBitsPerSystemPointer = kSystemPointerSize * kBitsPerByte; constexpr int kBitsPerSystemPointerLog2 = kSystemPointerSizeLog2 + kBitsPerByteLog2; constexpr int kBitsPerInt = kIntSize * kBitsPerByte; // IEEE 754 single precision floating point number bit layout. constexpr uint32_t kBinary32SignMask = 0x80000000u; constexpr uint32_t kBinary32ExponentMask = 0x7f800000u; constexpr uint32_t kBinary32MantissaMask = 0x007fffffu; constexpr int kBinary32ExponentBias = 127; constexpr int kBinary32MaxExponent = 0xFE; constexpr int kBinary32MinExponent = 0x01; constexpr int kBinary32MantissaBits = 23; constexpr int kBinary32ExponentShift = 23; // Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no // other bits set. constexpr uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51; // Latin1/UTF-16 constants // Code-point values in Unicode 4.0 are 21 bits wide. // Code units in UTF-16 are 16 bits wide. using uc16 = uint16_t; using uc32 = int32_t; constexpr int kOneByteSize = kCharSize; constexpr int kUC16Size = sizeof(uc16); // NOLINT // 128 bit SIMD value size. constexpr int kSimd128Size = 16; // FUNCTION_ADDR(f) gets the address of a C function f. #define FUNCTION_ADDR(f) (reinterpret_cast<v8::internal::Address>(f)) // FUNCTION_CAST<F>(addr) casts an address into a function // of type F. Used to invoke generated code from within C. template <typename F> F FUNCTION_CAST(byte* addr) { return reinterpret_cast<F>(reinterpret_cast<Address>(addr)); } template <typename F> F FUNCTION_CAST(Address addr) { return reinterpret_cast<F>(addr); } // Determine whether the architecture uses function descriptors // which provide a level of indirection between the function pointer // and the function entrypoint. #if (V8_HOST_ARCH_PPC || V8_HOST_ARCH_PPC64) && \ (V8_OS_AIX || (V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && \ (!defined(_CALL_ELF) || _CALL_ELF == 1))) #define USES_FUNCTION_DESCRIPTORS 1 #define FUNCTION_ENTRYPOINT_ADDRESS(f) \ (reinterpret_cast<v8::internal::Address*>( \ &(reinterpret_cast<intptr_t*>(f)[0]))) #else #define USES_FUNCTION_DESCRIPTORS 0 #endif // ----------------------------------------------------------------------------- // Declarations for use in both the preparser and the rest of V8. // The Strict Mode (ECMA-262 5th edition, 4.2.2). enum class LanguageMode : bool { kSloppy, kStrict }; static const size_t LanguageModeSize = 2; inline size_t hash_value(LanguageMode mode) { return static_cast<size_t>(mode); } inline const char* LanguageMode2String(LanguageMode mode) { switch (mode) { case LanguageMode::kSloppy: return "sloppy"; case LanguageMode::kStrict: return "strict"; } UNREACHABLE(); } inline std::ostream& operator<<(std::ostream& os, LanguageMode mode) { return os << LanguageMode2String(mode); } inline bool is_sloppy(LanguageMode language_mode) { return language_mode == LanguageMode::kSloppy; } inline bool is_strict(LanguageMode language_mode) { return language_mode != LanguageMode::kSloppy; } inline bool is_valid_language_mode(int language_mode) { return language_mode == static_cast<int>(LanguageMode::kSloppy) || language_mode == static_cast<int>(LanguageMode::kStrict); } inline LanguageMode construct_language_mode(bool strict_bit) { return static_cast<LanguageMode>(strict_bit); } // Return kStrict if either of the language modes is kStrict, or kSloppy // otherwise. inline LanguageMode stricter_language_mode(LanguageMode mode1, LanguageMode mode2) { STATIC_ASSERT(LanguageModeSize == 2); return static_cast<LanguageMode>(static_cast<int>(mode1) | static_cast<int>(mode2)); } // A non-keyed store is of the form a.x = foo or a["x"] = foo whereas // a keyed store is of the form a[expression] = foo. enum class StoreOrigin { kMaybeKeyed, kNamed }; enum TypeofMode : int { INSIDE_TYPEOF, NOT_INSIDE_TYPEOF }; // Enums used by CEntry. enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs }; enum ArgvMode { kArgvOnStack, kArgvInRegister }; // This constant is used as an undefined value when passing source positions. constexpr int kNoSourcePosition = -1; // This constant is used to signal the function entry implicit stack check // bytecode offset. constexpr int kFunctionEntryBytecodeOffset = -1; // This constant is used to indicate missing deoptimization information. constexpr int kNoDeoptimizationId = -1; // Deoptimize bailout kind: // - Eager: a check failed in the optimized code and deoptimization happens // immediately. // - Lazy: the code has been marked as dependent on some assumption which // is checked elsewhere and can trigger deoptimization the next time the // code is executed. // - Soft: similar to lazy deoptimization, but does not contribute to the // total deopt count which can lead to disabling optimization for a function. enum class DeoptimizeKind : uint8_t { kEager, kSoft, kLazy, kLastDeoptimizeKind = kLazy }; inline size_t hash_value(DeoptimizeKind kind) { return static_cast<size_t>(kind); } inline std::ostream& operator<<(std::ostream& os, DeoptimizeKind kind) { switch (kind) { case DeoptimizeKind::kEager: return os << "Eager"; case DeoptimizeKind::kSoft: return os << "Soft"; case DeoptimizeKind::kLazy: return os << "Lazy"; } UNREACHABLE(); } enum class IsolateAllocationMode { // Allocate Isolate in C++ heap using default new/delete operators. kInCppHeap, // Allocate Isolate in a committed region inside V8 heap reservation. kInV8Heap, #ifdef V8_COMPRESS_POINTERS kDefault = kInV8Heap, #else kDefault = kInCppHeap, #endif }; // Indicates whether the lookup is related to sloppy-mode block-scoped // function hoisting, and is a synthetic assignment for that. enum class LookupHoistingMode { kNormal, kLegacySloppy }; inline std::ostream& operator<<(std::ostream& os, const LookupHoistingMode& mode) { switch (mode) { case LookupHoistingMode::kNormal: return os << "normal hoisting"; case LookupHoistingMode::kLegacySloppy: return os << "legacy sloppy hoisting"; } UNREACHABLE(); } static_assert(kSmiValueSize <= 32, "Unsupported Smi tagging scheme"); // Smi sign bit position must be 32-bit aligned so we can use sign extension // instructions on 64-bit architectures without additional shifts. static_assert((kSmiValueSize + kSmiShiftSize + kSmiTagSize) % 32 == 0, "Unsupported Smi tagging scheme"); constexpr bool kIsSmiValueInUpper32Bits = (kSmiValueSize + kSmiShiftSize + kSmiTagSize) == 64; constexpr bool kIsSmiValueInLower32Bits = (kSmiValueSize + kSmiShiftSize + kSmiTagSize) == 32; static_assert(!SmiValuesAre32Bits() == SmiValuesAre31Bits(), "Unsupported Smi tagging scheme"); static_assert(SmiValuesAre32Bits() == kIsSmiValueInUpper32Bits, "Unsupported Smi tagging scheme"); static_assert(SmiValuesAre31Bits() == kIsSmiValueInLower32Bits, "Unsupported Smi tagging scheme"); // Mask for the sign bit in a smi. constexpr intptr_t kSmiSignMask = static_cast<intptr_t>( uintptr_t{1} << (kSmiValueSize + kSmiShiftSize + kSmiTagSize - 1)); // Desired alignment for tagged pointers. constexpr int kObjectAlignmentBits = kTaggedSizeLog2; constexpr intptr_t kObjectAlignment = 1 << kObjectAlignmentBits; constexpr intptr_t kObjectAlignmentMask = kObjectAlignment - 1; // Desired alignment for system pointers. constexpr intptr_t kPointerAlignment = (1 << kSystemPointerSizeLog2); constexpr intptr_t kPointerAlignmentMask = kPointerAlignment - 1; // Desired alignment for double values. constexpr intptr_t kDoubleAlignment = 8; constexpr intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1; // Desired alignment for generated code is 32 bytes (to improve cache line // utilization). constexpr int kCodeAlignmentBits = 5; constexpr intptr_t kCodeAlignment = 1 << kCodeAlignmentBits; constexpr intptr_t kCodeAlignmentMask = kCodeAlignment - 1; const Address kWeakHeapObjectMask = 1 << 1; // The lower 32 bits of the cleared weak reference value is always equal to // the |kClearedWeakHeapObjectLower32| constant but on 64-bit architectures // the value of the upper 32 bits part may be // 1) zero when pointer compression is disabled, // 2) upper 32 bits of the isolate root value when pointer compression is // enabled. // This is necessary to make pointer decompression computation also suitable // for cleared weak reference. // Note, that real heap objects can't have lower 32 bits equal to 3 because // this offset belongs to page header. So, in either case it's enough to // compare only the lower 32 bits of a MaybeObject value in order to figure // out if it's a cleared reference or not. const uint32_t kClearedWeakHeapObjectLower32 = 3; // Zap-value: The value used for zapping dead objects. // Should be a recognizable hex value tagged as a failure. #ifdef V8_HOST_ARCH_64_BIT constexpr uint64_t kClearedFreeMemoryValue = 0; constexpr uint64_t kZapValue = uint64_t{0xdeadbeedbeadbeef}; constexpr uint64_t kHandleZapValue = uint64_t{0x1baddead0baddeaf}; constexpr uint64_t kGlobalHandleZapValue = uint64_t{0x1baffed00baffedf}; constexpr uint64_t kFromSpaceZapValue = uint64_t{0x1beefdad0beefdaf}; constexpr uint64_t kDebugZapValue = uint64_t{0xbadbaddbbadbaddb}; constexpr uint64_t kSlotsZapValue = uint64_t{0xbeefdeadbeefdeef}; constexpr uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf; #else constexpr uint32_t kClearedFreeMemoryValue = 0; constexpr uint32_t kZapValue = 0xdeadbeef; constexpr uint32_t kHandleZapValue = 0xbaddeaf; constexpr uint32_t kGlobalHandleZapValue = 0xbaffedf; constexpr uint32_t kFromSpaceZapValue = 0xbeefdaf; constexpr uint32_t kSlotsZapValue = 0xbeefdeef; constexpr uint32_t kDebugZapValue = 0xbadbaddb; constexpr uint32_t kFreeListZapValue = 0xfeed1eaf; #endif constexpr int kCodeZapValue = 0xbadc0de; constexpr uint32_t kPhantomReferenceZap = 0xca11bac; // Page constants. static const intptr_t kPageAlignmentMask = (intptr_t{1} << kPageSizeBits) - 1; // On Intel architecture, cache line size is 64 bytes. // On ARM it may be less (32 bytes), but as far this constant is // used for aligning data, it doesn't hurt to align on a greater value. #define PROCESSOR_CACHE_LINE_SIZE 64 // Constants relevant to double precision floating point numbers. // If looking only at the top 32 bits, the QNaN mask is bits 19 to 30. constexpr uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32); enum class HeapObjectReferenceType { WEAK, STRONG, }; enum class ArgumentsType { kRuntime, kJS, }; // ----------------------------------------------------------------------------- // Forward declarations for frequently used classes class AccessorInfo; template <ArgumentsType> class Arguments; using RuntimeArguments = Arguments<ArgumentsType::kRuntime>; using JavaScriptArguments = Arguments<ArgumentsType::kJS>; class Assembler; class ClassScope; class Code; class CodeSpace; class Context; class DeclarationScope; class Debug; class DebugInfo; class Descriptor; class DescriptorArray; class TransitionArray; class ExternalReference; class FeedbackVector; class FixedArray; class Foreign; class FreeStoreAllocationPolicy; class FunctionTemplateInfo; class GlobalDictionary; template <typename T> class Handle; class Heap; class HeapObject; class HeapObjectReference; class IC; class InterceptorInfo; class Isolate; class JSReceiver; class JSArray; class JSFunction; class JSObject; class MacroAssembler; class Map; class MapSpace; class MarkCompactCollector; template <typename T> class MaybeHandle; class MaybeObject; class MemoryChunk; class MessageLocation; class ModuleScope; class Name; class NameDictionary; class NativeContext; class NewSpace; class NewLargeObjectSpace; class NumberDictionary; class Object; class OffThreadIsolate; class OldLargeObjectSpace; template <HeapObjectReferenceType kRefType, typename StorageType> class TaggedImpl; class StrongTaggedValue; class TaggedValue; class CompressedObjectSlot; class CompressedMaybeObjectSlot; class CompressedMapWordSlot; class CompressedHeapObjectSlot; class FullObjectSlot; class FullMaybeObjectSlot; class FullHeapObjectSlot; class OldSpace; class ReadOnlySpace; class RelocInfo; class Scope; class ScopeInfo; class Script; class SimpleNumberDictionary; class Smi; template <typename Config, class Allocator = FreeStoreAllocationPolicy> class SplayTree; class String; class StringStream; class Struct; class Symbol; class Variable; enum class SlotLocation { kOnHeap, kOffHeap }; template <SlotLocation slot_location> struct SlotTraits; // Off-heap slots are always full-pointer slots. template <> struct SlotTraits<SlotLocation::kOffHeap> { using TObjectSlot = FullObjectSlot; using TMaybeObjectSlot = FullMaybeObjectSlot; using THeapObjectSlot = FullHeapObjectSlot; }; // On-heap slots are either full-pointer slots or compressed slots depending // on whether the pointer compression is enabled or not. template <> struct SlotTraits<SlotLocation::kOnHeap> { #ifdef V8_COMPRESS_POINTERS using TObjectSlot = CompressedObjectSlot; using TMaybeObjectSlot = CompressedMaybeObjectSlot; using THeapObjectSlot = CompressedHeapObjectSlot; #else using TObjectSlot = FullObjectSlot; using TMaybeObjectSlot = FullMaybeObjectSlot; using THeapObjectSlot = FullHeapObjectSlot; #endif }; // An ObjectSlot instance describes a kTaggedSize-sized on-heap field ("slot") // holding Object value (smi or strong heap object). using ObjectSlot = SlotTraits<SlotLocation::kOnHeap>::TObjectSlot; // A MaybeObjectSlot instance describes a kTaggedSize-sized on-heap field // ("slot") holding MaybeObject (smi or weak heap object or strong heap object). using MaybeObjectSlot = SlotTraits<SlotLocation::kOnHeap>::TMaybeObjectSlot; // A HeapObjectSlot instance describes a kTaggedSize-sized field ("slot") // holding a weak or strong pointer to a heap object (think: // HeapObjectReference). using HeapObjectSlot = SlotTraits<SlotLocation::kOnHeap>::THeapObjectSlot; using WeakSlotCallback = bool (*)(FullObjectSlot pointer); using WeakSlotCallbackWithHeap = bool (*)(Heap* heap, FullObjectSlot pointer); // ----------------------------------------------------------------------------- // Miscellaneous // NOTE: SpaceIterator depends on AllocationSpace enumeration values being // consecutive. enum AllocationSpace { RO_SPACE, // Immortal, immovable and immutable objects, NEW_SPACE, // Young generation semispaces for regular objects collected with // Scavenger. OLD_SPACE, // Old generation regular object space. CODE_SPACE, // Old generation code object space, marked executable. MAP_SPACE, // Old generation map object space, non-movable. LO_SPACE, // Old generation large object space. CODE_LO_SPACE, // Old generation large code object space. NEW_LO_SPACE, // Young generation large object space. FIRST_SPACE = RO_SPACE, LAST_SPACE = NEW_LO_SPACE, FIRST_MUTABLE_SPACE = NEW_SPACE, LAST_MUTABLE_SPACE = NEW_LO_SPACE, FIRST_GROWABLE_PAGED_SPACE = OLD_SPACE, LAST_GROWABLE_PAGED_SPACE = MAP_SPACE }; constexpr int kSpaceTagSize = 4; STATIC_ASSERT(FIRST_SPACE == 0); enum class AllocationType : uint8_t { kYoung, // Regular object allocated in NEW_SPACE or NEW_LO_SPACE kOld, // Regular object allocated in OLD_SPACE or LO_SPACE kCode, // Code object allocated in CODE_SPACE or CODE_LO_SPACE kMap, // Map object allocated in MAP_SPACE kReadOnly // Object allocated in RO_SPACE }; inline size_t hash_value(AllocationType kind) { return static_cast<uint8_t>(kind); } inline std::ostream& operator<<(std::ostream& os, AllocationType kind) { switch (kind) { case AllocationType::kYoung: return os << "Young"; case AllocationType::kOld: return os << "Old"; case AllocationType::kCode: return os << "Code"; case AllocationType::kMap: return os << "Map"; case AllocationType::kReadOnly: return os << "ReadOnly"; } UNREACHABLE(); } // TODO(ishell): review and rename kWordAligned to kTaggedAligned. enum AllocationAlignment { kWordAligned, kDoubleAligned, kDoubleUnaligned, kCodeAligned }; enum class AccessMode { ATOMIC, NON_ATOMIC }; enum class AllowLargeObjects { kFalse, kTrue }; enum MinimumCapacity { USE_DEFAULT_MINIMUM_CAPACITY, USE_CUSTOM_MINIMUM_CAPACITY }; enum GarbageCollector { SCAVENGER, MARK_COMPACTOR, MINOR_MARK_COMPACTOR }; enum class LocalSpaceKind { kNone, kOffThreadSpace, kCompactionSpaceForScavenge, kCompactionSpaceForMarkCompact, kCompactionSpaceForMinorMarkCompact, kFirstCompactionSpace = kCompactionSpaceForScavenge, kLastCompactionSpace = kCompactionSpaceForMinorMarkCompact, }; enum Executability { NOT_EXECUTABLE, EXECUTABLE }; enum class BytecodeFlushMode { kDoNotFlushBytecode, kFlushBytecode, kStressFlushBytecode, }; // Indicates whether a script should be parsed and compiled in REPL mode. enum class REPLMode { kYes, kNo, }; inline REPLMode construct_repl_mode(bool is_repl_mode) { return is_repl_mode ? REPLMode::kYes : REPLMode::kNo; } // Flag indicating whether code is built into the VM (one of the natives files). enum NativesFlag { NOT_NATIVES_CODE, EXTENSION_CODE, INSPECTOR_CODE }; // ParseRestriction is used to restrict the set of valid statements in a // unit of compilation. Restriction violations cause a syntax error. enum ParseRestriction : bool { NO_PARSE_RESTRICTION, // All expressions are allowed. ONLY_SINGLE_FUNCTION_LITERAL // Only a single FunctionLiteral expression. }; // State for inline cache call sites. Aliased as IC::State. enum InlineCacheState { // No feedback will be collected. NO_FEEDBACK, // Has never been executed. UNINITIALIZED, // Has been executed and only one receiver type has been seen. MONOMORPHIC, // Check failed due to prototype (or map deprecation). RECOMPUTE_HANDLER, // Multiple receiver types have been seen. POLYMORPHIC, // Many receiver types have been seen. MEGAMORPHIC, // A generic handler is installed and no extra typefeedback is recorded. GENERIC, }; // Printing support. inline const char* InlineCacheState2String(InlineCacheState state) { switch (state) { case NO_FEEDBACK: return "NOFEEDBACK"; case UNINITIALIZED: return "UNINITIALIZED"; case MONOMORPHIC: return "MONOMORPHIC"; case RECOMPUTE_HANDLER: return "RECOMPUTE_HANDLER"; case POLYMORPHIC: return "POLYMORPHIC"; case MEGAMORPHIC: return "MEGAMORPHIC"; case GENERIC: return "GENERIC"; } UNREACHABLE(); } enum WhereToStart { kStartAtReceiver, kStartAtPrototype }; enum ResultSentinel { kNotFound = -1, kUnsupported = -2 }; enum ShouldThrow { kThrowOnError = Internals::kThrowOnError, kDontThrow = Internals::kDontThrow }; // The Store Buffer (GC). enum StoreBufferEvent { kStoreBufferFullEvent, kStoreBufferStartScanningPagesEvent, kStoreBufferScanningPageEvent }; using StoreBufferCallback = void (*)(Heap* heap, MemoryChunk* page, StoreBufferEvent event); // Union used for customized checking of the IEEE double types // inlined within v8 runtime, rather than going to the underlying // platform headers and libraries union IeeeDoubleLittleEndianArchType { double d; struct { unsigned int man_low : 32; unsigned int man_high : 20; unsigned int exp : 11; unsigned int sign : 1; } bits; }; union IeeeDoubleBigEndianArchType { double d; struct { unsigned int sign : 1; unsigned int exp : 11; unsigned int man_high : 20; unsigned int man_low : 32; } bits; }; #if V8_TARGET_LITTLE_ENDIAN using IeeeDoubleArchType = IeeeDoubleLittleEndianArchType; constexpr int kIeeeDoubleMantissaWordOffset = 0; constexpr int kIeeeDoubleExponentWordOffset = 4; #else using IeeeDoubleArchType = IeeeDoubleBigEndianArchType; constexpr int kIeeeDoubleMantissaWordOffset = 4; constexpr int kIeeeDoubleExponentWordOffset = 0; #endif // ----------------------------------------------------------------------------- // Macros // Testers for test. #define HAS_SMI_TAG(value) \ ((static_cast<i::Tagged_t>(value) & ::i::kSmiTagMask) == ::i::kSmiTag) #define HAS_STRONG_HEAP_OBJECT_TAG(value) \ (((static_cast<i::Tagged_t>(value) & ::i::kHeapObjectTagMask) == \ ::i::kHeapObjectTag)) #define HAS_WEAK_HEAP_OBJECT_TAG(value) \ (((static_cast<i::Tagged_t>(value) & ::i::kHeapObjectTagMask) == \ ::i::kWeakHeapObjectTag)) // OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer #define OBJECT_POINTER_ALIGN(value) \ (((value) + ::i::kObjectAlignmentMask) & ~::i::kObjectAlignmentMask) // OBJECT_POINTER_PADDING returns the padding size required to align value // as a HeapObject pointer #define OBJECT_POINTER_PADDING(value) (OBJECT_POINTER_ALIGN(value) - (value)) // POINTER_SIZE_ALIGN returns the value aligned as a system pointer. #define POINTER_SIZE_ALIGN(value) \ (((value) + ::i::kPointerAlignmentMask) & ~::i::kPointerAlignmentMask) // POINTER_SIZE_PADDING returns the padding size required to align value // as a system pointer. #define POINTER_SIZE_PADDING(value) (POINTER_SIZE_ALIGN(value) - (value)) // CODE_POINTER_ALIGN returns the value aligned as a generated code segment. #define CODE_POINTER_ALIGN(value) \ (((value) + ::i::kCodeAlignmentMask) & ~::i::kCodeAlignmentMask) // CODE_POINTER_PADDING returns the padding size required to align value // as a generated code segment. #define CODE_POINTER_PADDING(value) (CODE_POINTER_ALIGN(value) - (value)) // DOUBLE_POINTER_ALIGN returns the value algined for double pointers. #define DOUBLE_POINTER_ALIGN(value) \ (((value) + ::i::kDoubleAlignmentMask) & ~::i::kDoubleAlignmentMask) // Defines hints about receiver values based on structural knowledge. enum class ConvertReceiverMode : unsigned { kNullOrUndefined, // Guaranteed to be null or undefined. kNotNullOrUndefined, // Guaranteed to never be null or undefined. kAny // No specific knowledge about receiver. }; inline size_t hash_value(ConvertReceiverMode mode) { return bit_cast<unsigned>(mode); } inline std::ostream& operator<<(std::ostream& os, ConvertReceiverMode mode) { switch (mode) { case ConvertReceiverMode::kNullOrUndefined: return os << "NULL_OR_UNDEFINED"; case ConvertReceiverMode::kNotNullOrUndefined: return os << "NOT_NULL_OR_UNDEFINED"; case ConvertReceiverMode::kAny: return os << "ANY"; } UNREACHABLE(); } // Valid hints for the abstract operation OrdinaryToPrimitive, // implemented according to ES6, section 7.1.1. enum class OrdinaryToPrimitiveHint { kNumber, kString }; // Valid hints for the abstract operation ToPrimitive, // implemented according to ES6, section 7.1.1. enum class ToPrimitiveHint { kDefault, kNumber, kString }; // Defines specifics about arguments object or rest parameter creation. enum class CreateArgumentsType : uint8_t { kMappedArguments, kUnmappedArguments, kRestParameter }; inline size_t hash_value(CreateArgumentsType type) { return bit_cast<uint8_t>(type); } inline std::ostream& operator<<(std::ostream& os, CreateArgumentsType type) { switch (type) { case CreateArgumentsType::kMappedArguments: return os << "MAPPED_ARGUMENTS"; case CreateArgumentsType::kUnmappedArguments: return os << "UNMAPPED_ARGUMENTS"; case CreateArgumentsType::kRestParameter: return os << "REST_PARAMETER"; } UNREACHABLE(); } enum ScopeType : uint8_t { CLASS_SCOPE, // The scope introduced by a class. EVAL_SCOPE, // The top-level scope for an eval source. FUNCTION_SCOPE, // The top-level scope for a function. MODULE_SCOPE, // The scope introduced by a module literal SCRIPT_SCOPE, // The top-level scope for a script or a top-level eval. CATCH_SCOPE, // The scope introduced by catch. BLOCK_SCOPE, // The scope introduced by a new block. WITH_SCOPE // The scope introduced by with. }; inline std::ostream& operator<<(std::ostream& os, ScopeType type) { switch (type) { case ScopeType::EVAL_SCOPE: return os << "EVAL_SCOPE"; case ScopeType::FUNCTION_SCOPE: return os << "FUNCTION_SCOPE"; case ScopeType::MODULE_SCOPE: return os << "MODULE_SCOPE"; case ScopeType::SCRIPT_SCOPE: return os << "SCRIPT_SCOPE"; case ScopeType::CATCH_SCOPE: return os << "CATCH_SCOPE"; case ScopeType::BLOCK_SCOPE: return os << "BLOCK_SCOPE"; case ScopeType::CLASS_SCOPE: return os << "CLASS_SCOPE"; case ScopeType::WITH_SCOPE: return os << "WITH_SCOPE"; } UNREACHABLE(); } // AllocationSiteMode controls whether allocations are tracked by an allocation // site. enum AllocationSiteMode { DONT_TRACK_ALLOCATION_SITE, TRACK_ALLOCATION_SITE, LAST_ALLOCATION_SITE_MODE = TRACK_ALLOCATION_SITE }; enum class AllocationSiteUpdateMode { kUpdate, kCheckOnly }; // The mips architecture prior to revision 5 has inverted encoding for sNaN. #if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6) && \ (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) || \ (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6) && \ (!defined(USE_SIMULATOR) || !defined(_MIPS_TARGET_SIMULATOR))) constexpr uint32_t kHoleNanUpper32 = 0xFFFF7FFF; constexpr uint32_t kHoleNanLower32 = 0xFFFF7FFF; #else constexpr uint32_t kHoleNanUpper32 = 0xFFF7FFFF; constexpr uint32_t kHoleNanLower32 = 0xFFF7FFFF; #endif constexpr uint64_t kHoleNanInt64 = (static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32; // ES6 section 20.1.2.6 Number.MAX_SAFE_INTEGER constexpr uint64_t kMaxSafeIntegerUint64 = 9007199254740991; // 2^53-1 constexpr double kMaxSafeInteger = static_cast<double>(kMaxSafeIntegerUint64); constexpr double kMaxUInt32Double = double{kMaxUInt32}; // The order of this enum has to be kept in sync with the predicates below. enum class VariableMode : uint8_t { // User declared variables: kLet, // declared via 'let' declarations (first lexical) kConst, // declared via 'const' declarations (last lexical) kVar, // declared via 'var', and 'function' declarations // Variables introduced by the compiler: kTemporary, // temporary variables (not user-visible), stack-allocated // unless the scope as a whole has forced context allocation kDynamic, // always require dynamic lookup (we don't know // the declaration) kDynamicGlobal, // requires dynamic lookup, but we know that the // variable is global unless it has been shadowed // by an eval-introduced variable kDynamicLocal, // requires dynamic lookup, but we know that the // variable is local and where it is unless it // has been shadowed by an eval-introduced // variable // Variables for private methods or accessors whose access require // brand check. Declared only in class scopes by the compiler // and allocated only in class contexts: kPrivateMethod, // Does not coexist with any other variable with the same // name in the same scope. kPrivateSetterOnly, // Incompatible with variables with the same name but // any mode other than kPrivateGetterOnly. Transition to // kPrivateGetterAndSetter if a later declaration for the // same name with kPrivateGetterOnly is made. kPrivateGetterOnly, // Incompatible with variables with the same name but // any mode other than kPrivateSetterOnly. Transition to // kPrivateGetterAndSetter if a later declaration for the // same name with kPrivateSetterOnly is made. kPrivateGetterAndSetter, // Does not coexist with any other variable with the // same name in the same scope. kLastLexicalVariableMode = kConst, }; // Printing support #ifdef DEBUG inline const char* VariableMode2String(VariableMode mode) { switch (mode) { case VariableMode::kVar: return "VAR"; case VariableMode::kLet: return "LET"; case VariableMode::kPrivateGetterOnly: return "PRIVATE_GETTER_ONLY"; case VariableMode::kPrivateSetterOnly: return "PRIVATE_SETTER_ONLY"; case VariableMode::kPrivateMethod: return "PRIVATE_METHOD"; case VariableMode::kPrivateGetterAndSetter: return "PRIVATE_GETTER_AND_SETTER"; case VariableMode::kConst: return "CONST"; case VariableMode::kDynamic: return "DYNAMIC"; case VariableMode::kDynamicGlobal: return "DYNAMIC_GLOBAL"; case VariableMode::kDynamicLocal: return "DYNAMIC_LOCAL"; case VariableMode::kTemporary: return "TEMPORARY"; } UNREACHABLE(); } #endif enum VariableKind : uint8_t { NORMAL_VARIABLE, PARAMETER_VARIABLE, THIS_VARIABLE, SLOPPY_BLOCK_FUNCTION_VARIABLE, SLOPPY_FUNCTION_NAME_VARIABLE }; inline bool IsDynamicVariableMode(VariableMode mode) { return mode >= VariableMode::kDynamic && mode <= VariableMode::kDynamicLocal; } inline bool IsDeclaredVariableMode(VariableMode mode) { STATIC_ASSERT(static_cast<uint8_t>(VariableMode::kLet) == 0); // Implies that mode >= VariableMode::kLet. return mode <= VariableMode::kVar; } inline bool IsPrivateMethodOrAccessorVariableMode(VariableMode mode) { return mode >= VariableMode::kPrivateMethod && mode <= VariableMode::kPrivateGetterAndSetter; } inline bool IsSerializableVariableMode(VariableMode mode) { return IsDeclaredVariableMode(mode) || IsPrivateMethodOrAccessorVariableMode(mode); } inline bool IsConstVariableMode(VariableMode mode) { return mode == VariableMode::kConst || IsPrivateMethodOrAccessorVariableMode(mode); } inline bool IsLexicalVariableMode(VariableMode mode) { STATIC_ASSERT(static_cast<uint8_t>(VariableMode::kLet) == 0); // Implies that mode >= VariableMode::kLet. return mode <= VariableMode::kLastLexicalVariableMode; } enum VariableLocation : uint8_t { // Before and during variable allocation, a variable whose location is // not yet determined. After allocation, a variable looked up as a // property on the global object (and possibly absent). name() is the // variable name, index() is invalid. UNALLOCATED, // A slot in the parameter section on the stack. index() is the // parameter index, counting left-to-right. The receiver is index -1; // the first parameter is index 0. PARAMETER, // A slot in the local section on the stack. index() is the variable // index in the stack frame, starting at 0. LOCAL, // An indexed slot in a heap context. index() is the variable index in // the context object on the heap, starting at 0. scope() is the // corresponding scope. CONTEXT, // A named slot in a heap context. name() is the variable name in the // context object on the heap, with lookup starting at the current // context. index() is invalid. LOOKUP, // A named slot in a module's export table. MODULE, // An indexed slot in a script context. index() is the variable // index in the context object on the heap, starting at 0. // Important: REPL_GLOBAL variables from different scripts with the // same name share a single script context slot. Every // script context will reserve a slot, but only one will be used. // REPL_GLOBAL variables are stored in script contexts, but accessed like // globals, i.e. they always require a lookup at runtime to find the right // script context. REPL_GLOBAL, kLastVariableLocation = REPL_GLOBAL }; // ES6 specifies declarative environment records with mutable and immutable // bindings that can be in two states: initialized and uninitialized. // When accessing a binding, it needs to be checked for initialization. // However in the following cases the binding is initialized immediately // after creation so the initialization check can always be skipped: // // 1. Var declared local variables. // var foo; // 2. A local variable introduced by a function declaration. // function foo() {} // 3. Parameters // function x(foo) {} // 4. Catch bound variables. // try {} catch (foo) {} // 6. Function name variables of named function expressions. // var x = function foo() {} // 7. Implicit binding of 'this'. // 8. Implicit binding of 'arguments' in functions. // // The following enum specifies a flag that indicates if the binding needs a // distinct initialization step (kNeedsInitialization) or if the binding is // immediately initialized upon creation (kCreatedInitialized). enum InitializationFlag : uint8_t { kNeedsInitialization, kCreatedInitialized }; // Static variables can only be used with the class in the closest // class scope as receivers. enum class IsStaticFlag : uint8_t { kNotStatic, kStatic }; enum MaybeAssignedFlag : uint8_t { kNotAssigned, kMaybeAssigned }; enum class InterpreterPushArgsMode : unsigned { kArrayFunction, kWithFinalSpread, kOther }; inline size_t hash_value(InterpreterPushArgsMode mode) { return bit_cast<unsigned>(mode); } inline std::ostream& operator<<(std::ostream& os, InterpreterPushArgsMode mode) { switch (mode) { case InterpreterPushArgsMode::kArrayFunction: return os << "ArrayFunction"; case InterpreterPushArgsMode::kWithFinalSpread: return os << "WithFinalSpread"; case InterpreterPushArgsMode::kOther: return os << "Other"; } UNREACHABLE(); } inline uint32_t ObjectHash(Address address) { // All objects are at least pointer aligned, so we can remove the trailing // zeros. return static_cast<uint32_t>(address >> kTaggedSizeLog2); } // Type feedback is encoded in such a way that, we can combine the feedback // at different points by performing an 'OR' operation. Type feedback moves // to a more generic type when we combine feedback. // // kSignedSmall -> kSignedSmallInputs -> kNumber -> kNumberOrOddball -> kAny // kString -> kAny // kBigInt -> kAny // // Technically we wouldn't need the separation between the kNumber and the // kNumberOrOddball values here, since for binary operations, we always // truncate oddballs to numbers. In practice though it causes TurboFan to // generate quite a lot of unused code though if we always handle numbers // and oddballs everywhere, although in 99% of the use sites they are only // used with numbers. class BinaryOperationFeedback { public: enum { kNone = 0x0, kSignedSmall = 0x1, kSignedSmallInputs = 0x3, kNumber = 0x7, kNumberOrOddball = 0xF, kString = 0x10, kBigInt = 0x20, kAny = 0x7F }; }; // Type feedback is encoded in such a way that, we can combine the feedback // at different points by performing an 'OR' operation. Type feedback moves // to a more generic type when we combine feedback. // // kSignedSmall -> kNumber -> kNumberOrOddball -> kAny // kReceiver -> kReceiverOrNullOrUndefined -> kAny // kInternalizedString -> kString -> kAny // kSymbol -> kAny // kBigInt -> kAny // // This is distinct from BinaryOperationFeedback on purpose, because the // feedback that matters differs greatly as well as the way it is consumed. class CompareOperationFeedback { public: enum { kNone = 0x000, kSignedSmall = 0x001, kNumber = 0x003, kNumberOrOddball = 0x007, kInternalizedString = 0x008, kString = 0x018, kSymbol = 0x020, kBigInt = 0x040, kReceiver = 0x080, kReceiverOrNullOrUndefined = 0x180, kAny = 0x1ff }; }; enum class Operation { // Binary operations. kAdd, kSubtract, kMultiply, kDivide, kModulus, kExponentiate, kBitwiseAnd, kBitwiseOr, kBitwiseXor, kShiftLeft, kShiftRight, kShiftRightLogical, // Unary operations. kBitwiseNot, kNegate, kIncrement, kDecrement, // Compare operations. kEqual, kStrictEqual, kLessThan, kLessThanOrEqual, kGreaterThan, kGreaterThanOrEqual, }; // Type feedback is encoded in such a way that, we can combine the feedback // at different points by performing an 'OR' operation. Type feedback moves // to a more generic type when we combine feedback. // kNone -> kEnumCacheKeysAndIndices -> kEnumCacheKeys -> kAny class ForInFeedback { public: enum { kNone = 0x0, kEnumCacheKeysAndIndices = 0x1, kEnumCacheKeys = 0x3, kAny = 0x7 }; }; STATIC_ASSERT((ForInFeedback::kNone | ForInFeedback::kEnumCacheKeysAndIndices) == ForInFeedback::kEnumCacheKeysAndIndices); STATIC_ASSERT((ForInFeedback::kEnumCacheKeysAndIndices | ForInFeedback::kEnumCacheKeys) == ForInFeedback::kEnumCacheKeys); STATIC_ASSERT((ForInFeedback::kEnumCacheKeys | ForInFeedback::kAny) == ForInFeedback::kAny); enum class UnicodeEncoding : uint8_t { // Different unicode encodings in a |word32|: UTF16, // hi 16bits -> trailing surrogate or 0, low 16bits -> lead surrogate UTF32, // full UTF32 code unit / Unicode codepoint }; inline size_t hash_value(UnicodeEncoding encoding) { return static_cast<uint8_t>(encoding); } inline std::ostream& operator<<(std::ostream& os, UnicodeEncoding encoding) { switch (encoding) { case UnicodeEncoding::UTF16: return os << "UTF16"; case UnicodeEncoding::UTF32: return os << "UTF32"; } UNREACHABLE(); } enum class IterationKind { kKeys, kValues, kEntries }; inline std::ostream& operator<<(std::ostream& os, IterationKind kind) { switch (kind) { case IterationKind::kKeys: return os << "IterationKind::kKeys"; case IterationKind::kValues: return os << "IterationKind::kValues"; case IterationKind::kEntries: return os << "IterationKind::kEntries"; } UNREACHABLE(); } enum class CollectionKind { kMap, kSet }; inline std::ostream& operator<<(std::ostream& os, CollectionKind kind) { switch (kind) { case CollectionKind::kMap: return os << "CollectionKind::kMap"; case CollectionKind::kSet: return os << "CollectionKind::kSet"; } UNREACHABLE(); } // Flags for the runtime function kDefineDataPropertyInLiteral. A property can // be enumerable or not, and, in case of functions, the function name // can be set or not. enum class DataPropertyInLiteralFlag { kNoFlags = 0, kDontEnum = 1 << 0, kSetFunctionName = 1 << 1 }; using DataPropertyInLiteralFlags = base::Flags<DataPropertyInLiteralFlag>; DEFINE_OPERATORS_FOR_FLAGS(DataPropertyInLiteralFlags) enum ExternalArrayType { kExternalInt8Array = 1, kExternalUint8Array, kExternalInt16Array, kExternalUint16Array, kExternalInt32Array, kExternalUint32Array, kExternalFloat32Array, kExternalFloat64Array, kExternalUint8ClampedArray, kExternalBigInt64Array, kExternalBigUint64Array, }; struct AssemblerDebugInfo { AssemblerDebugInfo(const char* name, const char* file, int line) : name(name), file(file), line(line) {} const char* name; const char* file; int line; }; inline std::ostream& operator<<(std::ostream& os, const AssemblerDebugInfo& info) { os << "(" << info.name << ":" << info.file << ":" << info.line << ")"; return os; } enum class OptimizationMarker { kLogFirstExecution, kNone, kCompileOptimized, kCompileOptimizedConcurrent, kInOptimizationQueue }; inline std::ostream& operator<<(std::ostream& os, const OptimizationMarker& marker) { switch (marker) { case OptimizationMarker::kLogFirstExecution: return os << "OptimizationMarker::kLogFirstExecution"; case OptimizationMarker::kNone: return os << "OptimizationMarker::kNone"; case OptimizationMarker::kCompileOptimized: return os << "OptimizationMarker::kCompileOptimized"; case OptimizationMarker::kCompileOptimizedConcurrent: return os << "OptimizationMarker::kCompileOptimizedConcurrent"; case OptimizationMarker::kInOptimizationQueue: return os << "OptimizationMarker::kInOptimizationQueue"; } UNREACHABLE(); return os; } enum class SpeculationMode { kAllowSpeculation, kDisallowSpeculation }; inline std::ostream& operator<<(std::ostream& os, SpeculationMode speculation_mode) { switch (speculation_mode) { case SpeculationMode::kAllowSpeculation: return os << "SpeculationMode::kAllowSpeculation"; case SpeculationMode::kDisallowSpeculation: return os << "SpeculationMode::kDisallowSpeculation"; } UNREACHABLE(); return os; } enum class BlockingBehavior { kBlock, kDontBlock }; enum class ConcurrencyMode { kNotConcurrent, kConcurrent }; #define FOR_EACH_ISOLATE_ADDRESS_NAME(C) \ C(Handler, handler) \ C(CEntryFP, c_entry_fp) \ C(CFunction, c_function) \ C(Context, context) \ C(PendingException, pending_exception) \ C(PendingHandlerContext, pending_handler_context) \ C(PendingHandlerEntrypoint, pending_handler_entrypoint) \ C(PendingHandlerConstantPool, pending_handler_constant_pool) \ C(PendingHandlerFP, pending_handler_fp) \ C(PendingHandlerSP, pending_handler_sp) \ C(ExternalCaughtException, external_caught_exception) \ C(JSEntrySP, js_entry_sp) enum IsolateAddressId { #define DECLARE_ENUM(CamelName, hacker_name) k##CamelName##Address, FOR_EACH_ISOLATE_ADDRESS_NAME(DECLARE_ENUM) #undef DECLARE_ENUM kIsolateAddressCount }; enum class PoisoningMitigationLevel { kPoisonAll, kDontPoison, kPoisonCriticalOnly }; enum class LoadSensitivity { kCritical, // Critical loads are poisoned whenever we can run untrusted // code (i.e., when --untrusted-code-mitigations is on). kUnsafe, // Unsafe loads are poisoned when full poisoning is on // (--branch-load-poisoning). kSafe // Safe loads are never poisoned. }; // The reason for a WebAssembly trap. #define FOREACH_WASM_TRAPREASON(V) \ V(TrapUnreachable) \ V(TrapMemOutOfBounds) \ V(TrapUnalignedAccess) \ V(TrapDivByZero) \ V(TrapDivUnrepresentable) \ V(TrapRemByZero) \ V(TrapFloatUnrepresentable) \ V(TrapFuncInvalid) \ V(TrapFuncSigMismatch) \ V(TrapDataSegmentDropped) \ V(TrapElemSegmentDropped) \ V(TrapTableOutOfBounds) \ V(TrapBrOnExnNullRef) \ V(TrapRethrowNullRef) \ V(TrapNullDereference) \ V(TrapIllegalCast) \ V(TrapArrayOutOfBounds) enum KeyedAccessLoadMode { STANDARD_LOAD, LOAD_IGNORE_OUT_OF_BOUNDS, }; enum KeyedAccessStoreMode { STANDARD_STORE, STORE_AND_GROW_HANDLE_COW, STORE_IGNORE_OUT_OF_BOUNDS, STORE_HANDLE_COW }; enum MutableMode { MUTABLE, IMMUTABLE }; inline bool IsCOWHandlingStoreMode(KeyedAccessStoreMode store_mode) { return store_mode == STORE_HANDLE_COW || store_mode == STORE_AND_GROW_HANDLE_COW; } inline bool IsGrowStoreMode(KeyedAccessStoreMode store_mode) { return store_mode == STORE_AND_GROW_HANDLE_COW; } enum IcCheckType { ELEMENT, PROPERTY }; // Helper stubs can be called in different ways depending on where the target // code is located and how the call sequence is expected to look like: // - CodeObject: Call on-heap {Code} object via {RelocInfo::CODE_TARGET}. // - WasmRuntimeStub: Call native {WasmCode} stub via // {RelocInfo::WASM_STUB_CALL}. // - BuiltinPointer: Call a builtin based on a builtin pointer with dynamic // contents. If builtins are embedded, we call directly into off-heap code // without going through the on-heap Code trampoline. enum class StubCallMode { kCallCodeObject, kCallWasmRuntimeStub, kCallBuiltinPointer, }; constexpr int kFunctionLiteralIdInvalid = -1; constexpr int kFunctionLiteralIdTopLevel = 0; constexpr int kSmallOrderedHashSetMinCapacity = 4; constexpr int kSmallOrderedHashMapMinCapacity = 4; static const uint16_t kDontAdaptArgumentsSentinel = static_cast<uint16_t>(-1); // Opaque data type for identifying stack frames. Used extensively // by the debugger. // ID_MIN_VALUE and ID_MAX_VALUE are specified to ensure that enumeration type // has correct value range (see Issue 830 for more details). enum StackFrameId { ID_MIN_VALUE = kMinInt, ID_MAX_VALUE = kMaxInt, NO_ID = 0 }; enum class ExceptionStatus : bool { kException = false, kSuccess = true }; V8_INLINE bool operator!(ExceptionStatus status) { return !static_cast<bool>(status); } enum class TraceRetainingPathMode { kEnabled, kDisabled }; // Used in the ScopeInfo flags fields for the function name variable for named // function expressions, and for the receiver. Must be declared here so that it // can be used in Torque. enum class VariableAllocationInfo { NONE, STACK, CONTEXT, UNUSED }; } // namespace internal } // namespace v8 namespace i = v8::internal; #endif // V8_COMMON_GLOBALS_H_