// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/mark-compact.h" #include "src/base/atomicops.h" #include "src/base/bits.h" #include "src/base/sys-info.h" #include "src/code-stubs.h" #include "src/compilation-cache.h" #include "src/deoptimizer.h" #include "src/execution.h" #include "src/frames-inl.h" #include "src/gdb-jit.h" #include "src/global-handles.h" #include "src/heap/array-buffer-tracker.h" #include "src/heap/gc-tracer.h" #include "src/heap/incremental-marking.h" #include "src/heap/mark-compact-inl.h" #include "src/heap/object-stats.h" #include "src/heap/objects-visiting-inl.h" #include "src/heap/objects-visiting.h" #include "src/heap/slots-buffer.h" #include "src/heap/spaces-inl.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" #include "src/profiler/cpu-profiler.h" #include "src/utils-inl.h" #include "src/v8.h" namespace v8 { namespace internal { const char* Marking::kWhiteBitPattern = "00"; const char* Marking::kBlackBitPattern = "11"; const char* Marking::kGreyBitPattern = "10"; const char* Marking::kImpossibleBitPattern = "01"; // The following has to hold in order for {Marking::MarkBitFrom} to not produce // invalid {kImpossibleBitPattern} in the marking bitmap by overlapping. STATIC_ASSERT(Heap::kMinObjectSizeInWords >= 2); // ------------------------------------------------------------------------- // MarkCompactCollector MarkCompactCollector::MarkCompactCollector(Heap* heap) : // NOLINT #ifdef DEBUG state_(IDLE), #endif marking_parity_(ODD_MARKING_PARITY), was_marked_incrementally_(false), evacuation_(false), slots_buffer_allocator_(nullptr), migration_slots_buffer_(nullptr), heap_(heap), marking_deque_memory_(NULL), marking_deque_memory_committed_(0), code_flusher_(nullptr), have_code_to_deoptimize_(false), compacting_(false), sweeping_in_progress_(false), compaction_in_progress_(false), pending_sweeper_tasks_semaphore_(0), pending_compaction_tasks_semaphore_(0) { } #ifdef VERIFY_HEAP class VerifyMarkingVisitor : public ObjectVisitor { public: explicit VerifyMarkingVisitor(Heap* heap) : heap_(heap) {} void VisitPointers(Object** start, Object** end) override { for (Object** current = start; current < end; current++) { if ((*current)->IsHeapObject()) { HeapObject* object = HeapObject::cast(*current); CHECK(heap_->mark_compact_collector()->IsMarked(object)); } } } void VisitEmbeddedPointer(RelocInfo* rinfo) override { DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT); if (!rinfo->host()->IsWeakObject(rinfo->target_object())) { Object* p = rinfo->target_object(); VisitPointer(&p); } } void VisitCell(RelocInfo* rinfo) override { Code* code = rinfo->host(); DCHECK(rinfo->rmode() == RelocInfo::CELL); if (!code->IsWeakObject(rinfo->target_cell())) { ObjectVisitor::VisitCell(rinfo); } } private: Heap* heap_; }; static void VerifyMarking(Heap* heap, Address bottom, Address top) { VerifyMarkingVisitor visitor(heap); HeapObject* object; Address next_object_must_be_here_or_later = bottom; for (Address current = bottom; current < top; current += kPointerSize) { object = HeapObject::FromAddress(current); if (MarkCompactCollector::IsMarked(object)) { CHECK(Marking::IsBlack(Marking::MarkBitFrom(object))); CHECK(current >= next_object_must_be_here_or_later); object->Iterate(&visitor); next_object_must_be_here_or_later = current + object->Size(); // The next word for sure belongs to the current object, jump over it. current += kPointerSize; } } } static void VerifyMarking(NewSpace* space) { Address end = space->top(); NewSpacePageIterator it(space->bottom(), end); // The bottom position is at the start of its page. Allows us to use // page->area_start() as start of range on all pages. CHECK_EQ(space->bottom(), NewSpacePage::FromAddress(space->bottom())->area_start()); while (it.has_next()) { NewSpacePage* page = it.next(); Address limit = it.has_next() ? page->area_end() : end; CHECK(limit == end || !page->Contains(end)); VerifyMarking(space->heap(), page->area_start(), limit); } } static void VerifyMarking(PagedSpace* space) { PageIterator it(space); while (it.has_next()) { Page* p = it.next(); VerifyMarking(space->heap(), p->area_start(), p->area_end()); } } static void VerifyMarking(Heap* heap) { VerifyMarking(heap->old_space()); VerifyMarking(heap->code_space()); VerifyMarking(heap->map_space()); VerifyMarking(heap->new_space()); VerifyMarkingVisitor visitor(heap); LargeObjectIterator it(heap->lo_space()); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { if (MarkCompactCollector::IsMarked(obj)) { obj->Iterate(&visitor); } } heap->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG); } class VerifyEvacuationVisitor : public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) override { for (Object** current = start; current < end; current++) { if ((*current)->IsHeapObject()) { HeapObject* object = HeapObject::cast(*current); CHECK(!MarkCompactCollector::IsOnEvacuationCandidate(object)); } } } }; static void VerifyEvacuation(Page* page) { VerifyEvacuationVisitor visitor; HeapObjectIterator iterator(page); for (HeapObject* heap_object = iterator.Next(); heap_object != NULL; heap_object = iterator.Next()) { // We skip free space objects. if (!heap_object->IsFiller()) { heap_object->Iterate(&visitor); } } } static void VerifyEvacuation(NewSpace* space) { NewSpacePageIterator it(space->bottom(), space->top()); VerifyEvacuationVisitor visitor; while (it.has_next()) { NewSpacePage* page = it.next(); Address current = page->area_start(); Address limit = it.has_next() ? page->area_end() : space->top(); CHECK(limit == space->top() || !page->Contains(space->top())); while (current < limit) { HeapObject* object = HeapObject::FromAddress(current); object->Iterate(&visitor); current += object->Size(); } } } static void VerifyEvacuation(Heap* heap, PagedSpace* space) { if (FLAG_use_allocation_folding && (space == heap->old_space())) { return; } PageIterator it(space); while (it.has_next()) { Page* p = it.next(); if (p->IsEvacuationCandidate()) continue; VerifyEvacuation(p); } } static void VerifyEvacuation(Heap* heap) { VerifyEvacuation(heap, heap->old_space()); VerifyEvacuation(heap, heap->code_space()); VerifyEvacuation(heap, heap->map_space()); VerifyEvacuation(heap->new_space()); VerifyEvacuationVisitor visitor; heap->IterateStrongRoots(&visitor, VISIT_ALL); } #endif // VERIFY_HEAP void MarkCompactCollector::SetUp() { DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0); DCHECK(strcmp(Marking::kBlackBitPattern, "11") == 0); DCHECK(strcmp(Marking::kGreyBitPattern, "10") == 0); DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0); free_list_old_space_.Reset(new FreeList(heap_->old_space())); free_list_code_space_.Reset(new FreeList(heap_->code_space())); free_list_map_space_.Reset(new FreeList(heap_->map_space())); EnsureMarkingDequeIsReserved(); EnsureMarkingDequeIsCommitted(kMinMarkingDequeSize); slots_buffer_allocator_ = new SlotsBufferAllocator(); if (FLAG_flush_code) { code_flusher_ = new CodeFlusher(isolate()); if (FLAG_trace_code_flushing) { PrintF("[code-flushing is now on]\n"); } } } void MarkCompactCollector::TearDown() { AbortCompaction(); delete marking_deque_memory_; delete slots_buffer_allocator_; delete code_flusher_; } void MarkCompactCollector::AddEvacuationCandidate(Page* p) { DCHECK(!p->NeverEvacuate()); p->MarkEvacuationCandidate(); evacuation_candidates_.Add(p); } static void TraceFragmentation(PagedSpace* space) { int number_of_pages = space->CountTotalPages(); intptr_t reserved = (number_of_pages * space->AreaSize()); intptr_t free = reserved - space->SizeOfObjects(); PrintF("[%s]: %d pages, %d (%.1f%%) free\n", AllocationSpaceName(space->identity()), number_of_pages, static_cast<int>(free), static_cast<double>(free) * 100 / reserved); } bool MarkCompactCollector::StartCompaction(CompactionMode mode) { if (!compacting_) { DCHECK(evacuation_candidates_.length() == 0); CollectEvacuationCandidates(heap()->old_space()); if (FLAG_compact_code_space) { CollectEvacuationCandidates(heap()->code_space()); } else if (FLAG_trace_fragmentation) { TraceFragmentation(heap()->code_space()); } if (FLAG_trace_fragmentation) { TraceFragmentation(heap()->map_space()); } heap()->old_space()->EvictEvacuationCandidatesFromLinearAllocationArea(); heap()->code_space()->EvictEvacuationCandidatesFromLinearAllocationArea(); compacting_ = evacuation_candidates_.length() > 0; } return compacting_; } void MarkCompactCollector::ClearInvalidStoreAndSlotsBufferEntries() { { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_CLEAR_STORE_BUFFER); heap_->store_buffer()->ClearInvalidStoreBufferEntries(); } { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_CLEAR_SLOTS_BUFFER); for (Page* p : evacuation_candidates_) { SlotsBuffer::RemoveInvalidSlots(heap_, p->slots_buffer()); } } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyValidStoreAndSlotsBufferEntries(); } #endif } #ifdef VERIFY_HEAP static void VerifyValidSlotsBufferEntries(Heap* heap, PagedSpace* space) { PageIterator it(space); while (it.has_next()) { Page* p = it.next(); SlotsBuffer::VerifySlots(heap, p->slots_buffer()); } } void MarkCompactCollector::VerifyValidStoreAndSlotsBufferEntries() { heap()->store_buffer()->VerifyValidStoreBufferEntries(); VerifyValidSlotsBufferEntries(heap(), heap()->old_space()); VerifyValidSlotsBufferEntries(heap(), heap()->code_space()); VerifyValidSlotsBufferEntries(heap(), heap()->map_space()); LargeObjectIterator it(heap()->lo_space()); for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { MemoryChunk* chunk = MemoryChunk::FromAddress(object->address()); SlotsBuffer::VerifySlots(heap(), chunk->slots_buffer()); } } #endif void MarkCompactCollector::CollectGarbage() { // Make sure that Prepare() has been called. The individual steps below will // update the state as they proceed. DCHECK(state_ == PREPARE_GC); MarkLiveObjects(); DCHECK(heap_->incremental_marking()->IsStopped()); ClearNonLiveReferences(); #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyMarking(heap_); } #endif SweepSpaces(); EvacuateNewSpaceAndCandidates(); Finish(); } #ifdef VERIFY_HEAP void MarkCompactCollector::VerifyMarkbitsAreClean(PagedSpace* space) { PageIterator it(space); while (it.has_next()) { Page* p = it.next(); CHECK(p->markbits()->IsClean()); CHECK_EQ(0, p->LiveBytes()); } } void MarkCompactCollector::VerifyMarkbitsAreClean(NewSpace* space) { NewSpacePageIterator it(space->bottom(), space->top()); while (it.has_next()) { NewSpacePage* p = it.next(); CHECK(p->markbits()->IsClean()); CHECK_EQ(0, p->LiveBytes()); } } void MarkCompactCollector::VerifyMarkbitsAreClean() { VerifyMarkbitsAreClean(heap_->old_space()); VerifyMarkbitsAreClean(heap_->code_space()); VerifyMarkbitsAreClean(heap_->map_space()); VerifyMarkbitsAreClean(heap_->new_space()); LargeObjectIterator it(heap_->lo_space()); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { MarkBit mark_bit = Marking::MarkBitFrom(obj); CHECK(Marking::IsWhite(mark_bit)); CHECK_EQ(0, Page::FromAddress(obj->address())->LiveBytes()); } } void MarkCompactCollector::VerifyWeakEmbeddedObjectsInCode() { HeapObjectIterator code_iterator(heap()->code_space()); for (HeapObject* obj = code_iterator.Next(); obj != NULL; obj = code_iterator.Next()) { Code* code = Code::cast(obj); if (!code->is_optimized_code()) continue; if (WillBeDeoptimized(code)) continue; code->VerifyEmbeddedObjectsDependency(); } } void MarkCompactCollector::VerifyOmittedMapChecks() { HeapObjectIterator iterator(heap()->map_space()); for (HeapObject* obj = iterator.Next(); obj != NULL; obj = iterator.Next()) { Map* map = Map::cast(obj); map->VerifyOmittedMapChecks(); } } #endif // VERIFY_HEAP static void ClearMarkbitsInPagedSpace(PagedSpace* space) { PageIterator it(space); while (it.has_next()) { Bitmap::Clear(it.next()); } } static void ClearMarkbitsInNewSpace(NewSpace* space) { NewSpacePageIterator it(space->ToSpaceStart(), space->ToSpaceEnd()); while (it.has_next()) { Bitmap::Clear(it.next()); } } void MarkCompactCollector::ClearMarkbits() { ClearMarkbitsInPagedSpace(heap_->code_space()); ClearMarkbitsInPagedSpace(heap_->map_space()); ClearMarkbitsInPagedSpace(heap_->old_space()); ClearMarkbitsInNewSpace(heap_->new_space()); LargeObjectIterator it(heap_->lo_space()); for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { Marking::MarkWhite(Marking::MarkBitFrom(obj)); Page::FromAddress(obj->address())->ResetProgressBar(); Page::FromAddress(obj->address())->ResetLiveBytes(); } } class MarkCompactCollector::SweeperTask : public v8::Task { public: SweeperTask(Heap* heap, PagedSpace* space) : heap_(heap), space_(space) {} virtual ~SweeperTask() {} private: // v8::Task overrides. void Run() override { heap_->mark_compact_collector()->SweepInParallel(space_, 0); heap_->mark_compact_collector()->pending_sweeper_tasks_semaphore_.Signal(); } Heap* heap_; PagedSpace* space_; DISALLOW_COPY_AND_ASSIGN(SweeperTask); }; void MarkCompactCollector::StartSweeperThreads() { DCHECK(free_list_old_space_.get()->IsEmpty()); DCHECK(free_list_code_space_.get()->IsEmpty()); DCHECK(free_list_map_space_.get()->IsEmpty()); V8::GetCurrentPlatform()->CallOnBackgroundThread( new SweeperTask(heap(), heap()->old_space()), v8::Platform::kShortRunningTask); V8::GetCurrentPlatform()->CallOnBackgroundThread( new SweeperTask(heap(), heap()->code_space()), v8::Platform::kShortRunningTask); V8::GetCurrentPlatform()->CallOnBackgroundThread( new SweeperTask(heap(), heap()->map_space()), v8::Platform::kShortRunningTask); } void MarkCompactCollector::SweepOrWaitUntilSweepingCompleted(Page* page) { PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner()); if (!page->SweepingDone()) { SweepInParallel(page, owner); if (!page->SweepingDone()) { // We were not able to sweep that page, i.e., a concurrent // sweeper thread currently owns this page. Wait for the sweeper // thread to be done with this page. page->WaitUntilSweepingCompleted(); } } } void MarkCompactCollector::SweepAndRefill(CompactionSpace* space) { if (FLAG_concurrent_sweeping && !IsSweepingCompleted()) { SweepInParallel(heap()->paged_space(space->identity()), 0); space->RefillFreeList(); } } void MarkCompactCollector::EnsureSweepingCompleted() { DCHECK(sweeping_in_progress_ == true); // If sweeping is not completed or not running at all, we try to complete it // here. if (!FLAG_concurrent_sweeping || !IsSweepingCompleted()) { SweepInParallel(heap()->paged_space(OLD_SPACE), 0); SweepInParallel(heap()->paged_space(CODE_SPACE), 0); SweepInParallel(heap()->paged_space(MAP_SPACE), 0); } if (FLAG_concurrent_sweeping) { pending_sweeper_tasks_semaphore_.Wait(); pending_sweeper_tasks_semaphore_.Wait(); pending_sweeper_tasks_semaphore_.Wait(); } ParallelSweepSpacesComplete(); sweeping_in_progress_ = false; heap()->old_space()->RefillFreeList(); heap()->code_space()->RefillFreeList(); heap()->map_space()->RefillFreeList(); #ifdef VERIFY_HEAP if (FLAG_verify_heap && !evacuation()) { VerifyEvacuation(heap_); } #endif } bool MarkCompactCollector::IsSweepingCompleted() { if (!pending_sweeper_tasks_semaphore_.WaitFor( base::TimeDelta::FromSeconds(0))) { return false; } pending_sweeper_tasks_semaphore_.Signal(); return true; } void Marking::TransferMark(Heap* heap, Address old_start, Address new_start) { // This is only used when resizing an object. DCHECK(MemoryChunk::FromAddress(old_start) == MemoryChunk::FromAddress(new_start)); if (!heap->incremental_marking()->IsMarking()) return; // If the mark doesn't move, we don't check the color of the object. // It doesn't matter whether the object is black, since it hasn't changed // size, so the adjustment to the live data count will be zero anyway. if (old_start == new_start) return; MarkBit new_mark_bit = MarkBitFrom(new_start); MarkBit old_mark_bit = MarkBitFrom(old_start); #ifdef DEBUG ObjectColor old_color = Color(old_mark_bit); #endif if (Marking::IsBlack(old_mark_bit)) { Marking::BlackToWhite(old_mark_bit); Marking::MarkBlack(new_mark_bit); return; } else if (Marking::IsGrey(old_mark_bit)) { Marking::GreyToWhite(old_mark_bit); heap->incremental_marking()->WhiteToGreyAndPush( HeapObject::FromAddress(new_start), new_mark_bit); heap->incremental_marking()->RestartIfNotMarking(); } #ifdef DEBUG ObjectColor new_color = Color(new_mark_bit); DCHECK(new_color == old_color); #endif } const char* AllocationSpaceName(AllocationSpace space) { switch (space) { case NEW_SPACE: return "NEW_SPACE"; case OLD_SPACE: return "OLD_SPACE"; case CODE_SPACE: return "CODE_SPACE"; case MAP_SPACE: return "MAP_SPACE"; case LO_SPACE: return "LO_SPACE"; default: UNREACHABLE(); } return NULL; } void MarkCompactCollector::ComputeEvacuationHeuristics( int area_size, int* target_fragmentation_percent, int* max_evacuated_bytes) { // For memory reducing mode we directly define both constants. const int kTargetFragmentationPercentForReduceMemory = 20; const int kMaxEvacuatedBytesForReduceMemory = 12 * Page::kPageSize; // For regular mode (which is latency critical) we define less aggressive // defaults to start and switch to a trace-based (using compaction speed) // approach as soon as we have enough samples. const int kTargetFragmentationPercent = 70; const int kMaxEvacuatedBytes = 4 * Page::kPageSize; // Time to take for a single area (=payload of page). Used as soon as there // exist enough compaction speed samples. const int kTargetMsPerArea = 1; if (heap()->ShouldReduceMemory()) { *target_fragmentation_percent = kTargetFragmentationPercentForReduceMemory; *max_evacuated_bytes = kMaxEvacuatedBytesForReduceMemory; } else { const intptr_t estimated_compaction_speed = heap()->tracer()->CompactionSpeedInBytesPerMillisecond(); if (estimated_compaction_speed != 0) { // Estimate the target fragmentation based on traced compaction speed // and a goal for a single page. const intptr_t estimated_ms_per_area = 1 + static_cast<intptr_t>(area_size) / estimated_compaction_speed; *target_fragmentation_percent = 100 - 100 * kTargetMsPerArea / estimated_ms_per_area; if (*target_fragmentation_percent < kTargetFragmentationPercentForReduceMemory) { *target_fragmentation_percent = kTargetFragmentationPercentForReduceMemory; } } else { *target_fragmentation_percent = kTargetFragmentationPercent; } *max_evacuated_bytes = kMaxEvacuatedBytes; } } void MarkCompactCollector::CollectEvacuationCandidates(PagedSpace* space) { DCHECK(space->identity() == OLD_SPACE || space->identity() == CODE_SPACE); int number_of_pages = space->CountTotalPages(); int area_size = space->AreaSize(); // Pairs of (live_bytes_in_page, page). typedef std::pair<int, Page*> LiveBytesPagePair; std::vector<LiveBytesPagePair> pages; pages.reserve(number_of_pages); PageIterator it(space); while (it.has_next()) { Page* p = it.next(); if (p->NeverEvacuate()) continue; if (p->IsFlagSet(Page::POPULAR_PAGE)) { // This page had slots buffer overflow on previous GC, skip it. p->ClearFlag(Page::POPULAR_PAGE); continue; } // Invariant: Evacuation candidates are just created when marking is // started. This means that sweeping has finished. Furthermore, at the end // of a GC all evacuation candidates are cleared and their slot buffers are // released. CHECK(!p->IsEvacuationCandidate()); CHECK(p->slots_buffer() == nullptr); CHECK(p->SweepingDone()); DCHECK(p->area_size() == area_size); pages.push_back(std::make_pair(p->LiveBytesFromFreeList(), p)); } int candidate_count = 0; int total_live_bytes = 0; const bool reduce_memory = heap()->ShouldReduceMemory(); if (FLAG_manual_evacuation_candidates_selection) { for (size_t i = 0; i < pages.size(); i++) { Page* p = pages[i].second; if (p->IsFlagSet(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING)) { candidate_count++; total_live_bytes += pages[i].first; p->ClearFlag(MemoryChunk::FORCE_EVACUATION_CANDIDATE_FOR_TESTING); AddEvacuationCandidate(p); } } } else if (FLAG_stress_compaction) { for (size_t i = 0; i < pages.size(); i++) { Page* p = pages[i].second; if (i % 2 == 0) { candidate_count++; total_live_bytes += pages[i].first; AddEvacuationCandidate(p); } } } else { // The following approach determines the pages that should be evacuated. // // We use two conditions to decide whether a page qualifies as an evacuation // candidate, or not: // * Target fragmentation: How fragmented is a page, i.e., how is the ratio // between live bytes and capacity of this page (= area). // * Evacuation quota: A global quota determining how much bytes should be // compacted. // // The algorithm sorts all pages by live bytes and then iterates through // them starting with the page with the most free memory, adding them to the // set of evacuation candidates as long as both conditions (fragmentation // and quota) hold. int max_evacuated_bytes; int target_fragmentation_percent; ComputeEvacuationHeuristics(area_size, &target_fragmentation_percent, &max_evacuated_bytes); const intptr_t free_bytes_threshold = target_fragmentation_percent * (area_size / 100); // Sort pages from the most free to the least free, then select // the first n pages for evacuation such that: // - the total size of evacuated objects does not exceed the specified // limit. // - fragmentation of (n+1)-th page does not exceed the specified limit. std::sort(pages.begin(), pages.end(), [](const LiveBytesPagePair& a, const LiveBytesPagePair& b) { return a.first < b.first; }); for (size_t i = 0; i < pages.size(); i++) { int live_bytes = pages[i].first; int free_bytes = area_size - live_bytes; if (FLAG_always_compact || ((free_bytes >= free_bytes_threshold) && ((total_live_bytes + live_bytes) <= max_evacuated_bytes))) { candidate_count++; total_live_bytes += live_bytes; } if (FLAG_trace_fragmentation_verbose) { PrintIsolate(isolate(), "compaction-selection-page: space=%s free_bytes_page=%d " "fragmentation_limit_kb=%d fragmentation_limit_percent=%d " "sum_compaction_kb=%d " "compaction_limit_kb=%d\n", AllocationSpaceName(space->identity()), free_bytes / KB, free_bytes_threshold / KB, target_fragmentation_percent, total_live_bytes / KB, max_evacuated_bytes / KB); } } // How many pages we will allocated for the evacuated objects // in the worst case: ceil(total_live_bytes / area_size) int estimated_new_pages = (total_live_bytes + area_size - 1) / area_size; DCHECK_LE(estimated_new_pages, candidate_count); int estimated_released_pages = candidate_count - estimated_new_pages; // Avoid (compact -> expand) cycles. if ((estimated_released_pages == 0) && !FLAG_always_compact) { candidate_count = 0; } for (int i = 0; i < candidate_count; i++) { AddEvacuationCandidate(pages[i].second); } } if (FLAG_trace_fragmentation) { PrintIsolate(isolate(), "compaction-selection: space=%s reduce_memory=%d pages=%d " "total_live_bytes=%d\n", AllocationSpaceName(space->identity()), reduce_memory, candidate_count, total_live_bytes / KB); } } void MarkCompactCollector::AbortCompaction() { if (compacting_) { for (Page* p : evacuation_candidates_) { slots_buffer_allocator_->DeallocateChain(p->slots_buffer_address()); p->ClearEvacuationCandidate(); p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION); } compacting_ = false; evacuation_candidates_.Rewind(0); } DCHECK_EQ(0, evacuation_candidates_.length()); } void MarkCompactCollector::Prepare() { was_marked_incrementally_ = heap()->incremental_marking()->IsMarking(); #ifdef DEBUG DCHECK(state_ == IDLE); state_ = PREPARE_GC; #endif DCHECK(!FLAG_never_compact || !FLAG_always_compact); if (sweeping_in_progress()) { // Instead of waiting we could also abort the sweeper threads here. EnsureSweepingCompleted(); } // If concurrent unmapping tasks are still running, we should wait for // them here. heap()->WaitUntilUnmappingOfFreeChunksCompleted(); // Clear marking bits if incremental marking is aborted. if (was_marked_incrementally_ && heap_->ShouldAbortIncrementalMarking()) { heap()->incremental_marking()->Stop(); ClearMarkbits(); AbortWeakCollections(); AbortWeakCells(); AbortTransitionArrays(); AbortCompaction(); was_marked_incrementally_ = false; } // Don't start compaction if we are in the middle of incremental // marking cycle. We did not collect any slots. if (!FLAG_never_compact && !was_marked_incrementally_) { StartCompaction(NON_INCREMENTAL_COMPACTION); } PagedSpaces spaces(heap()); for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->PrepareForMarkCompact(); } #ifdef VERIFY_HEAP if (!was_marked_incrementally_ && FLAG_verify_heap) { VerifyMarkbitsAreClean(); } #endif } void MarkCompactCollector::Finish() { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_FINISH); // The hashing of weak_object_to_code_table is no longer valid. heap()->weak_object_to_code_table()->Rehash( heap()->isolate()->factory()->undefined_value()); // Clear the marking state of live large objects. heap_->lo_space()->ClearMarkingStateOfLiveObjects(); #ifdef DEBUG DCHECK(state_ == SWEEP_SPACES || state_ == RELOCATE_OBJECTS); state_ = IDLE; #endif heap_->isolate()->inner_pointer_to_code_cache()->Flush(); // The stub cache is not traversed during GC; clear the cache to // force lazy re-initialization of it. This must be done after the // GC, because it relies on the new address of certain old space // objects (empty string, illegal builtin). isolate()->stub_cache()->Clear(); if (have_code_to_deoptimize_) { // Some code objects were marked for deoptimization during the GC. Deoptimizer::DeoptimizeMarkedCode(isolate()); have_code_to_deoptimize_ = false; } heap_->incremental_marking()->ClearIdleMarkingDelayCounter(); if (marking_parity_ == EVEN_MARKING_PARITY) { marking_parity_ = ODD_MARKING_PARITY; } else { DCHECK(marking_parity_ == ODD_MARKING_PARITY); marking_parity_ = EVEN_MARKING_PARITY; } } // ------------------------------------------------------------------------- // Phase 1: tracing and marking live objects. // before: all objects are in normal state. // after: a live object's map pointer is marked as '00'. // Marking all live objects in the heap as part of mark-sweep or mark-compact // collection. Before marking, all objects are in their normal state. After // marking, live objects' map pointers are marked indicating that the object // has been found reachable. // // The marking algorithm is a (mostly) depth-first (because of possible stack // overflow) traversal of the graph of objects reachable from the roots. It // uses an explicit stack of pointers rather than recursion. The young // generation's inactive ('from') space is used as a marking stack. The // objects in the marking stack are the ones that have been reached and marked // but their children have not yet been visited. // // The marking stack can overflow during traversal. In that case, we set an // overflow flag. When the overflow flag is set, we continue marking objects // reachable from the objects on the marking stack, but no longer push them on // the marking stack. Instead, we mark them as both marked and overflowed. // When the stack is in the overflowed state, objects marked as overflowed // have been reached and marked but their children have not been visited yet. // After emptying the marking stack, we clear the overflow flag and traverse // the heap looking for objects marked as overflowed, push them on the stack, // and continue with marking. This process repeats until all reachable // objects have been marked. void CodeFlusher::ProcessJSFunctionCandidates() { Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kCompileLazy); Object* undefined = isolate_->heap()->undefined_value(); JSFunction* candidate = jsfunction_candidates_head_; JSFunction* next_candidate; while (candidate != NULL) { next_candidate = GetNextCandidate(candidate); ClearNextCandidate(candidate, undefined); SharedFunctionInfo* shared = candidate->shared(); Code* code = shared->code(); MarkBit code_mark = Marking::MarkBitFrom(code); if (Marking::IsWhite(code_mark)) { if (FLAG_trace_code_flushing && shared->is_compiled()) { PrintF("[code-flushing clears: "); shared->ShortPrint(); PrintF(" - age: %d]\n", code->GetAge()); } // Always flush the optimized code map if there is one. if (!shared->OptimizedCodeMapIsCleared()) { shared->ClearOptimizedCodeMap(); } shared->set_code(lazy_compile); candidate->set_code(lazy_compile); } else { DCHECK(Marking::IsBlack(code_mark)); candidate->set_code(code); } // We are in the middle of a GC cycle so the write barrier in the code // setter did not record the slot update and we have to do that manually. Address slot = candidate->address() + JSFunction::kCodeEntryOffset; Code* target = Code::cast(Code::GetObjectFromEntryAddress(slot)); isolate_->heap()->mark_compact_collector()->RecordCodeEntrySlot( candidate, slot, target); Object** shared_code_slot = HeapObject::RawField(shared, SharedFunctionInfo::kCodeOffset); isolate_->heap()->mark_compact_collector()->RecordSlot( shared, shared_code_slot, *shared_code_slot); candidate = next_candidate; } jsfunction_candidates_head_ = NULL; } void CodeFlusher::ProcessSharedFunctionInfoCandidates() { Code* lazy_compile = isolate_->builtins()->builtin(Builtins::kCompileLazy); SharedFunctionInfo* candidate = shared_function_info_candidates_head_; SharedFunctionInfo* next_candidate; while (candidate != NULL) { next_candidate = GetNextCandidate(candidate); ClearNextCandidate(candidate); Code* code = candidate->code(); MarkBit code_mark = Marking::MarkBitFrom(code); if (Marking::IsWhite(code_mark)) { if (FLAG_trace_code_flushing && candidate->is_compiled()) { PrintF("[code-flushing clears: "); candidate->ShortPrint(); PrintF(" - age: %d]\n", code->GetAge()); } // Always flush the optimized code map if there is one. if (!candidate->OptimizedCodeMapIsCleared()) { candidate->ClearOptimizedCodeMap(); } candidate->set_code(lazy_compile); } Object** code_slot = HeapObject::RawField(candidate, SharedFunctionInfo::kCodeOffset); isolate_->heap()->mark_compact_collector()->RecordSlot(candidate, code_slot, *code_slot); candidate = next_candidate; } shared_function_info_candidates_head_ = NULL; } void CodeFlusher::EvictCandidate(SharedFunctionInfo* shared_info) { // Make sure previous flushing decisions are revisited. isolate_->heap()->incremental_marking()->RecordWrites(shared_info); if (FLAG_trace_code_flushing) { PrintF("[code-flushing abandons function-info: "); shared_info->ShortPrint(); PrintF("]\n"); } SharedFunctionInfo* candidate = shared_function_info_candidates_head_; SharedFunctionInfo* next_candidate; if (candidate == shared_info) { next_candidate = GetNextCandidate(shared_info); shared_function_info_candidates_head_ = next_candidate; ClearNextCandidate(shared_info); } else { while (candidate != NULL) { next_candidate = GetNextCandidate(candidate); if (next_candidate == shared_info) { next_candidate = GetNextCandidate(shared_info); SetNextCandidate(candidate, next_candidate); ClearNextCandidate(shared_info); break; } candidate = next_candidate; } } } void CodeFlusher::EvictCandidate(JSFunction* function) { DCHECK(!function->next_function_link()->IsUndefined()); Object* undefined = isolate_->heap()->undefined_value(); // Make sure previous flushing decisions are revisited. isolate_->heap()->incremental_marking()->RecordWrites(function); isolate_->heap()->incremental_marking()->RecordWrites(function->shared()); if (FLAG_trace_code_flushing) { PrintF("[code-flushing abandons closure: "); function->shared()->ShortPrint(); PrintF("]\n"); } JSFunction* candidate = jsfunction_candidates_head_; JSFunction* next_candidate; if (candidate == function) { next_candidate = GetNextCandidate(function); jsfunction_candidates_head_ = next_candidate; ClearNextCandidate(function, undefined); } else { while (candidate != NULL) { next_candidate = GetNextCandidate(candidate); if (next_candidate == function) { next_candidate = GetNextCandidate(function); SetNextCandidate(candidate, next_candidate); ClearNextCandidate(function, undefined); break; } candidate = next_candidate; } } } void CodeFlusher::IteratePointersToFromSpace(ObjectVisitor* v) { Heap* heap = isolate_->heap(); JSFunction** slot = &jsfunction_candidates_head_; JSFunction* candidate = jsfunction_candidates_head_; while (candidate != NULL) { if (heap->InFromSpace(candidate)) { v->VisitPointer(reinterpret_cast<Object**>(slot)); } candidate = GetNextCandidate(*slot); slot = GetNextCandidateSlot(*slot); } } class MarkCompactMarkingVisitor : public StaticMarkingVisitor<MarkCompactMarkingVisitor> { public: static void Initialize(); INLINE(static void VisitPointer(Heap* heap, HeapObject* object, Object** p)) { MarkObjectByPointer(heap->mark_compact_collector(), object, p); } INLINE(static void VisitPointers(Heap* heap, HeapObject* object, Object** start, Object** end)) { // Mark all objects pointed to in [start, end). const int kMinRangeForMarkingRecursion = 64; if (end - start >= kMinRangeForMarkingRecursion) { if (VisitUnmarkedObjects(heap, object, start, end)) return; // We are close to a stack overflow, so just mark the objects. } MarkCompactCollector* collector = heap->mark_compact_collector(); for (Object** p = start; p < end; p++) { MarkObjectByPointer(collector, object, p); } } // Marks the object black and pushes it on the marking stack. INLINE(static void MarkObject(Heap* heap, HeapObject* object)) { MarkBit mark = Marking::MarkBitFrom(object); heap->mark_compact_collector()->MarkObject(object, mark); } // Marks the object black without pushing it on the marking stack. // Returns true if object needed marking and false otherwise. INLINE(static bool MarkObjectWithoutPush(Heap* heap, HeapObject* object)) { MarkBit mark_bit = Marking::MarkBitFrom(object); if (Marking::IsWhite(mark_bit)) { heap->mark_compact_collector()->SetMark(object, mark_bit); return true; } return false; } // Mark object pointed to by p. INLINE(static void MarkObjectByPointer(MarkCompactCollector* collector, HeapObject* object, Object** p)) { if (!(*p)->IsHeapObject()) return; HeapObject* target_object = HeapObject::cast(*p); collector->RecordSlot(object, p, target_object); MarkBit mark = Marking::MarkBitFrom(target_object); collector->MarkObject(target_object, mark); } // Visit an unmarked object. INLINE(static void VisitUnmarkedObject(MarkCompactCollector* collector, HeapObject* obj)) { #ifdef DEBUG DCHECK(collector->heap()->Contains(obj)); DCHECK(!collector->heap()->mark_compact_collector()->IsMarked(obj)); #endif Map* map = obj->map(); Heap* heap = obj->GetHeap(); MarkBit mark = Marking::MarkBitFrom(obj); heap->mark_compact_collector()->SetMark(obj, mark); // Mark the map pointer and the body. MarkBit map_mark = Marking::MarkBitFrom(map); heap->mark_compact_collector()->MarkObject(map, map_mark); IterateBody(map, obj); } // Visit all unmarked objects pointed to by [start, end). // Returns false if the operation fails (lack of stack space). INLINE(static bool VisitUnmarkedObjects(Heap* heap, HeapObject* object, Object** start, Object** end)) { // Return false is we are close to the stack limit. StackLimitCheck check(heap->isolate()); if (check.HasOverflowed()) return false; MarkCompactCollector* collector = heap->mark_compact_collector(); // Visit the unmarked objects. for (Object** p = start; p < end; p++) { Object* o = *p; if (!o->IsHeapObject()) continue; collector->RecordSlot(object, p, o); HeapObject* obj = HeapObject::cast(o); MarkBit mark = Marking::MarkBitFrom(obj); if (Marking::IsBlackOrGrey(mark)) continue; VisitUnmarkedObject(collector, obj); } return true; } private: // Code flushing support. static const int kRegExpCodeThreshold = 5; static void UpdateRegExpCodeAgeAndFlush(Heap* heap, JSRegExp* re, bool is_one_byte) { // Make sure that the fixed array is in fact initialized on the RegExp. // We could potentially trigger a GC when initializing the RegExp. if (HeapObject::cast(re->data())->map()->instance_type() != FIXED_ARRAY_TYPE) return; // Make sure this is a RegExp that actually contains code. if (re->TypeTag() != JSRegExp::IRREGEXP) return; Object* code = re->DataAt(JSRegExp::code_index(is_one_byte)); if (!code->IsSmi() && HeapObject::cast(code)->map()->instance_type() == CODE_TYPE) { // Save a copy that can be reinstated if we need the code again. re->SetDataAt(JSRegExp::saved_code_index(is_one_byte), code); // Saving a copy might create a pointer into compaction candidate // that was not observed by marker. This might happen if JSRegExp data // was marked through the compilation cache before marker reached JSRegExp // object. FixedArray* data = FixedArray::cast(re->data()); Object** slot = data->data_start() + JSRegExp::saved_code_index(is_one_byte); heap->mark_compact_collector()->RecordSlot(data, slot, code); // Set a number in the 0-255 range to guarantee no smi overflow. re->SetDataAt(JSRegExp::code_index(is_one_byte), Smi::FromInt(heap->ms_count() & 0xff)); } else if (code->IsSmi()) { int value = Smi::cast(code)->value(); // The regexp has not been compiled yet or there was a compilation error. if (value == JSRegExp::kUninitializedValue || value == JSRegExp::kCompilationErrorValue) { return; } // Check if we should flush now. if (value == ((heap->ms_count() - kRegExpCodeThreshold) & 0xff)) { re->SetDataAt(JSRegExp::code_index(is_one_byte), Smi::FromInt(JSRegExp::kUninitializedValue)); re->SetDataAt(JSRegExp::saved_code_index(is_one_byte), Smi::FromInt(JSRegExp::kUninitializedValue)); } } } // Works by setting the current sweep_generation (as a smi) in the // code object place in the data array of the RegExp and keeps a copy // around that can be reinstated if we reuse the RegExp before flushing. // If we did not use the code for kRegExpCodeThreshold mark sweep GCs // we flush the code. static void VisitRegExpAndFlushCode(Map* map, HeapObject* object) { Heap* heap = map->GetHeap(); MarkCompactCollector* collector = heap->mark_compact_collector(); if (!collector->is_code_flushing_enabled()) { VisitJSRegExp(map, object); return; } JSRegExp* re = reinterpret_cast<JSRegExp*>(object); // Flush code or set age on both one byte and two byte code. UpdateRegExpCodeAgeAndFlush(heap, re, true); UpdateRegExpCodeAgeAndFlush(heap, re, false); // Visit the fields of the RegExp, including the updated FixedArray. VisitJSRegExp(map, object); } }; void MarkCompactMarkingVisitor::Initialize() { StaticMarkingVisitor<MarkCompactMarkingVisitor>::Initialize(); table_.Register(kVisitJSRegExp, &VisitRegExpAndFlushCode); if (FLAG_track_gc_object_stats) { ObjectStatsVisitor::Initialize(&table_); } } class CodeMarkingVisitor : public ThreadVisitor { public: explicit CodeMarkingVisitor(MarkCompactCollector* collector) : collector_(collector) {} void VisitThread(Isolate* isolate, ThreadLocalTop* top) { collector_->PrepareThreadForCodeFlushing(isolate, top); } private: MarkCompactCollector* collector_; }; class SharedFunctionInfoMarkingVisitor : public ObjectVisitor { public: explicit SharedFunctionInfoMarkingVisitor(MarkCompactCollector* collector) : collector_(collector) {} void VisitPointers(Object** start, Object** end) override { for (Object** p = start; p < end; p++) VisitPointer(p); } void VisitPointer(Object** slot) override { Object* obj = *slot; if (obj->IsSharedFunctionInfo()) { SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(obj); MarkBit shared_mark = Marking::MarkBitFrom(shared); MarkBit code_mark = Marking::MarkBitFrom(shared->code()); collector_->MarkObject(shared->code(), code_mark); collector_->MarkObject(shared, shared_mark); } } private: MarkCompactCollector* collector_; }; void MarkCompactCollector::PrepareThreadForCodeFlushing(Isolate* isolate, ThreadLocalTop* top) { for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) { // Note: for the frame that has a pending lazy deoptimization // StackFrame::unchecked_code will return a non-optimized code object for // the outermost function and StackFrame::LookupCode will return // actual optimized code object. StackFrame* frame = it.frame(); Code* code = frame->unchecked_code(); MarkBit code_mark = Marking::MarkBitFrom(code); MarkObject(code, code_mark); if (frame->is_optimized()) { Code* optimized_code = frame->LookupCode(); MarkBit optimized_code_mark = Marking::MarkBitFrom(optimized_code); MarkObject(optimized_code, optimized_code_mark); } } } void MarkCompactCollector::PrepareForCodeFlushing() { // If code flushing is disabled, there is no need to prepare for it. if (!is_code_flushing_enabled()) return; // Ensure that empty descriptor array is marked. Method MarkDescriptorArray // relies on it being marked before any other descriptor array. HeapObject* descriptor_array = heap()->empty_descriptor_array(); MarkBit descriptor_array_mark = Marking::MarkBitFrom(descriptor_array); MarkObject(descriptor_array, descriptor_array_mark); // Make sure we are not referencing the code from the stack. DCHECK(this == heap()->mark_compact_collector()); PrepareThreadForCodeFlushing(heap()->isolate(), heap()->isolate()->thread_local_top()); // Iterate the archived stacks in all threads to check if // the code is referenced. CodeMarkingVisitor code_marking_visitor(this); heap()->isolate()->thread_manager()->IterateArchivedThreads( &code_marking_visitor); SharedFunctionInfoMarkingVisitor visitor(this); heap()->isolate()->compilation_cache()->IterateFunctions(&visitor); heap()->isolate()->handle_scope_implementer()->Iterate(&visitor); ProcessMarkingDeque(); } // Visitor class for marking heap roots. class RootMarkingVisitor : public ObjectVisitor { public: explicit RootMarkingVisitor(Heap* heap) : collector_(heap->mark_compact_collector()) {} void VisitPointer(Object** p) override { MarkObjectByPointer(p); } void VisitPointers(Object** start, Object** end) override { for (Object** p = start; p < end; p++) MarkObjectByPointer(p); } // Skip the weak next code link in a code object, which is visited in // ProcessTopOptimizedFrame. void VisitNextCodeLink(Object** p) override {} private: void MarkObjectByPointer(Object** p) { if (!(*p)->IsHeapObject()) return; // Replace flat cons strings in place. HeapObject* object = HeapObject::cast(*p); MarkBit mark_bit = Marking::MarkBitFrom(object); if (Marking::IsBlackOrGrey(mark_bit)) return; Map* map = object->map(); // Mark the object. collector_->SetMark(object, mark_bit); // Mark the map pointer and body, and push them on the marking stack. MarkBit map_mark = Marking::MarkBitFrom(map); collector_->MarkObject(map, map_mark); MarkCompactMarkingVisitor::IterateBody(map, object); // Mark all the objects reachable from the map and body. May leave // overflowed objects in the heap. collector_->EmptyMarkingDeque(); } MarkCompactCollector* collector_; }; // Helper class for pruning the string table. template <bool finalize_external_strings> class StringTableCleaner : public ObjectVisitor { public: explicit StringTableCleaner(Heap* heap) : heap_(heap), pointers_removed_(0) {} void VisitPointers(Object** start, Object** end) override { // Visit all HeapObject pointers in [start, end). for (Object** p = start; p < end; p++) { Object* o = *p; if (o->IsHeapObject() && Marking::IsWhite(Marking::MarkBitFrom(HeapObject::cast(o)))) { if (finalize_external_strings) { DCHECK(o->IsExternalString()); heap_->FinalizeExternalString(String::cast(*p)); } else { pointers_removed_++; } // Set the entry to the_hole_value (as deleted). *p = heap_->the_hole_value(); } } } int PointersRemoved() { DCHECK(!finalize_external_strings); return pointers_removed_; } private: Heap* heap_; int pointers_removed_; }; typedef StringTableCleaner<false> InternalizedStringTableCleaner; typedef StringTableCleaner<true> ExternalStringTableCleaner; // Implementation of WeakObjectRetainer for mark compact GCs. All marked objects // are retained. class MarkCompactWeakObjectRetainer : public WeakObjectRetainer { public: virtual Object* RetainAs(Object* object) { MarkBit mark_bit = Marking::MarkBitFrom(HeapObject::cast(object)); DCHECK(!Marking::IsGrey(mark_bit)); if (Marking::IsBlack(mark_bit)) { return object; } else if (object->IsAllocationSite() && !(AllocationSite::cast(object)->IsZombie())) { // "dead" AllocationSites need to live long enough for a traversal of new // space. These sites get a one-time reprieve. AllocationSite* site = AllocationSite::cast(object); site->MarkZombie(); site->GetHeap()->mark_compact_collector()->MarkAllocationSite(site); return object; } else { return NULL; } } }; // Fill the marking stack with overflowed objects returned by the given // iterator. Stop when the marking stack is filled or the end of the space // is reached, whichever comes first. template <class T> void MarkCompactCollector::DiscoverGreyObjectsWithIterator(T* it) { // The caller should ensure that the marking stack is initially not full, // so that we don't waste effort pointlessly scanning for objects. DCHECK(!marking_deque()->IsFull()); Map* filler_map = heap()->one_pointer_filler_map(); for (HeapObject* object = it->Next(); object != NULL; object = it->Next()) { MarkBit markbit = Marking::MarkBitFrom(object); if ((object->map() != filler_map) && Marking::IsGrey(markbit)) { Marking::GreyToBlack(markbit); PushBlack(object); if (marking_deque()->IsFull()) return; } } } void MarkCompactCollector::DiscoverGreyObjectsOnPage(MemoryChunk* p) { DCHECK(!marking_deque()->IsFull()); LiveObjectIterator<kGreyObjects> it(p); HeapObject* object = NULL; while ((object = it.Next()) != NULL) { MarkBit markbit = Marking::MarkBitFrom(object); DCHECK(Marking::IsGrey(markbit)); Marking::GreyToBlack(markbit); PushBlack(object); if (marking_deque()->IsFull()) return; } } class MarkCompactCollector::HeapObjectVisitor { public: virtual ~HeapObjectVisitor() {} virtual bool Visit(HeapObject* object) = 0; }; class MarkCompactCollector::EvacuateVisitorBase : public MarkCompactCollector::HeapObjectVisitor { public: EvacuateVisitorBase(Heap* heap, CompactionSpaceCollection* compaction_spaces, SlotsBuffer** evacuation_slots_buffer, LocalStoreBuffer* local_store_buffer) : heap_(heap), evacuation_slots_buffer_(evacuation_slots_buffer), compaction_spaces_(compaction_spaces), local_store_buffer_(local_store_buffer) {} bool TryEvacuateObject(PagedSpace* target_space, HeapObject* object, HeapObject** target_object) { int size = object->Size(); AllocationAlignment alignment = object->RequiredAlignment(); AllocationResult allocation = target_space->AllocateRaw(size, alignment); if (allocation.To(target_object)) { heap_->mark_compact_collector()->MigrateObject( *target_object, object, size, target_space->identity(), evacuation_slots_buffer_, local_store_buffer_); return true; } return false; } protected: Heap* heap_; SlotsBuffer** evacuation_slots_buffer_; CompactionSpaceCollection* compaction_spaces_; LocalStoreBuffer* local_store_buffer_; }; class MarkCompactCollector::EvacuateNewSpaceVisitor final : public MarkCompactCollector::EvacuateVisitorBase { public: static const intptr_t kLabSize = 4 * KB; static const intptr_t kMaxLabObjectSize = 256; explicit EvacuateNewSpaceVisitor(Heap* heap, CompactionSpaceCollection* compaction_spaces, SlotsBuffer** evacuation_slots_buffer, LocalStoreBuffer* local_store_buffer, HashMap* local_pretenuring_feedback) : EvacuateVisitorBase(heap, compaction_spaces, evacuation_slots_buffer, local_store_buffer), buffer_(LocalAllocationBuffer::InvalidBuffer()), space_to_allocate_(NEW_SPACE), promoted_size_(0), semispace_copied_size_(0), local_pretenuring_feedback_(local_pretenuring_feedback) {} bool Visit(HeapObject* object) override { heap_->UpdateAllocationSite<Heap::kCached>(object, local_pretenuring_feedback_); int size = object->Size(); HeapObject* target_object = nullptr; if (heap_->ShouldBePromoted(object->address(), size) && TryEvacuateObject(compaction_spaces_->Get(OLD_SPACE), object, &target_object)) { // If we end up needing more special cases, we should factor this out. if (V8_UNLIKELY(target_object->IsJSArrayBuffer())) { heap_->array_buffer_tracker()->Promote( JSArrayBuffer::cast(target_object)); } promoted_size_ += size; return true; } HeapObject* target = nullptr; AllocationSpace space = AllocateTargetObject(object, &target); heap_->mark_compact_collector()->MigrateObject( HeapObject::cast(target), object, size, space, (space == NEW_SPACE) ? nullptr : evacuation_slots_buffer_, (space == NEW_SPACE) ? nullptr : local_store_buffer_); if (V8_UNLIKELY(target->IsJSArrayBuffer())) { heap_->array_buffer_tracker()->MarkLive(JSArrayBuffer::cast(target)); } semispace_copied_size_ += size; return true; } intptr_t promoted_size() { return promoted_size_; } intptr_t semispace_copied_size() { return semispace_copied_size_; } private: enum NewSpaceAllocationMode { kNonstickyBailoutOldSpace, kStickyBailoutOldSpace, }; inline AllocationSpace AllocateTargetObject(HeapObject* old_object, HeapObject** target_object) { const int size = old_object->Size(); AllocationAlignment alignment = old_object->RequiredAlignment(); AllocationResult allocation; if (space_to_allocate_ == NEW_SPACE) { if (size > kMaxLabObjectSize) { allocation = AllocateInNewSpace(size, alignment, kNonstickyBailoutOldSpace); } else { allocation = AllocateInLab(size, alignment); } } if (allocation.IsRetry() || (space_to_allocate_ == OLD_SPACE)) { allocation = AllocateInOldSpace(size, alignment); } bool ok = allocation.To(target_object); DCHECK(ok); USE(ok); return space_to_allocate_; } inline bool NewLocalAllocationBuffer() { AllocationResult result = AllocateInNewSpace(kLabSize, kWordAligned, kStickyBailoutOldSpace); LocalAllocationBuffer saved_old_buffer = buffer_; buffer_ = LocalAllocationBuffer::FromResult(heap_, result, kLabSize); if (buffer_.IsValid()) { buffer_.TryMerge(&saved_old_buffer); return true; } return false; } inline AllocationResult AllocateInNewSpace(int size_in_bytes, AllocationAlignment alignment, NewSpaceAllocationMode mode) { AllocationResult allocation = heap_->new_space()->AllocateRawSynchronized(size_in_bytes, alignment); if (allocation.IsRetry()) { if (!heap_->new_space()->AddFreshPageSynchronized()) { if (mode == kStickyBailoutOldSpace) space_to_allocate_ = OLD_SPACE; } else { allocation = heap_->new_space()->AllocateRawSynchronized(size_in_bytes, alignment); if (allocation.IsRetry()) { if (mode == kStickyBailoutOldSpace) space_to_allocate_ = OLD_SPACE; } } } return allocation; } inline AllocationResult AllocateInOldSpace(int size_in_bytes, AllocationAlignment alignment) { AllocationResult allocation = compaction_spaces_->Get(OLD_SPACE)->AllocateRaw(size_in_bytes, alignment); if (allocation.IsRetry()) { FatalProcessOutOfMemory( "MarkCompactCollector: semi-space copy, fallback in old gen\n"); } return allocation; } inline AllocationResult AllocateInLab(int size_in_bytes, AllocationAlignment alignment) { AllocationResult allocation; if (!buffer_.IsValid()) { if (!NewLocalAllocationBuffer()) { space_to_allocate_ = OLD_SPACE; return AllocationResult::Retry(OLD_SPACE); } } allocation = buffer_.AllocateRawAligned(size_in_bytes, alignment); if (allocation.IsRetry()) { if (!NewLocalAllocationBuffer()) { space_to_allocate_ = OLD_SPACE; return AllocationResult::Retry(OLD_SPACE); } else { allocation = buffer_.AllocateRawAligned(size_in_bytes, alignment); if (allocation.IsRetry()) { space_to_allocate_ = OLD_SPACE; return AllocationResult::Retry(OLD_SPACE); } } } return allocation; } LocalAllocationBuffer buffer_; AllocationSpace space_to_allocate_; intptr_t promoted_size_; intptr_t semispace_copied_size_; HashMap* local_pretenuring_feedback_; }; class MarkCompactCollector::EvacuateOldSpaceVisitor final : public MarkCompactCollector::EvacuateVisitorBase { public: EvacuateOldSpaceVisitor(Heap* heap, CompactionSpaceCollection* compaction_spaces, SlotsBuffer** evacuation_slots_buffer, LocalStoreBuffer* local_store_buffer) : EvacuateVisitorBase(heap, compaction_spaces, evacuation_slots_buffer, local_store_buffer) {} bool Visit(HeapObject* object) override { CompactionSpace* target_space = compaction_spaces_->Get( Page::FromAddress(object->address())->owner()->identity()); HeapObject* target_object = nullptr; if (TryEvacuateObject(target_space, object, &target_object)) { DCHECK(object->map_word().IsForwardingAddress()); return true; } return false; } }; void MarkCompactCollector::DiscoverGreyObjectsInSpace(PagedSpace* space) { PageIterator it(space); while (it.has_next()) { Page* p = it.next(); DiscoverGreyObjectsOnPage(p); if (marking_deque()->IsFull()) return; } } void MarkCompactCollector::DiscoverGreyObjectsInNewSpace() { NewSpace* space = heap()->new_space(); NewSpacePageIterator it(space->bottom(), space->top()); while (it.has_next()) { NewSpacePage* page = it.next(); DiscoverGreyObjectsOnPage(page); if (marking_deque()->IsFull()) return; } } bool MarkCompactCollector::IsUnmarkedHeapObject(Object** p) { Object* o = *p; if (!o->IsHeapObject()) return false; HeapObject* heap_object = HeapObject::cast(o); MarkBit mark = Marking::MarkBitFrom(heap_object); return Marking::IsWhite(mark); } bool MarkCompactCollector::IsUnmarkedHeapObjectWithHeap(Heap* heap, Object** p) { Object* o = *p; DCHECK(o->IsHeapObject()); HeapObject* heap_object = HeapObject::cast(o); MarkBit mark = Marking::MarkBitFrom(heap_object); return Marking::IsWhite(mark); } void MarkCompactCollector::MarkStringTable(RootMarkingVisitor* visitor) { StringTable* string_table = heap()->string_table(); // Mark the string table itself. MarkBit string_table_mark = Marking::MarkBitFrom(string_table); if (Marking::IsWhite(string_table_mark)) { // String table could have already been marked by visiting the handles list. SetMark(string_table, string_table_mark); } // Explicitly mark the prefix. string_table->IteratePrefix(visitor); ProcessMarkingDeque(); } void MarkCompactCollector::MarkAllocationSite(AllocationSite* site) { MarkBit mark_bit = Marking::MarkBitFrom(site); SetMark(site, mark_bit); } void MarkCompactCollector::MarkRoots(RootMarkingVisitor* visitor) { // Mark the heap roots including global variables, stack variables, // etc., and all objects reachable from them. heap()->IterateStrongRoots(visitor, VISIT_ONLY_STRONG); // Handle the string table specially. MarkStringTable(visitor); // There may be overflowed objects in the heap. Visit them now. while (marking_deque_.overflowed()) { RefillMarkingDeque(); EmptyMarkingDeque(); } } void MarkCompactCollector::MarkImplicitRefGroups( MarkObjectFunction mark_object) { List<ImplicitRefGroup*>* ref_groups = isolate()->global_handles()->implicit_ref_groups(); int last = 0; for (int i = 0; i < ref_groups->length(); i++) { ImplicitRefGroup* entry = ref_groups->at(i); DCHECK(entry != NULL); if (!IsMarked(*entry->parent)) { (*ref_groups)[last++] = entry; continue; } Object*** children = entry->children; // A parent object is marked, so mark all child heap objects. for (size_t j = 0; j < entry->length; ++j) { if ((*children[j])->IsHeapObject()) { mark_object(heap(), HeapObject::cast(*children[j])); } } // Once the entire group has been marked, dispose it because it's // not needed anymore. delete entry; } ref_groups->Rewind(last); } // Mark all objects reachable from the objects on the marking stack. // Before: the marking stack contains zero or more heap object pointers. // After: the marking stack is empty, and all objects reachable from the // marking stack have been marked, or are overflowed in the heap. void MarkCompactCollector::EmptyMarkingDeque() { Map* filler_map = heap_->one_pointer_filler_map(); while (!marking_deque_.IsEmpty()) { HeapObject* object = marking_deque_.Pop(); // Explicitly skip one word fillers. Incremental markbit patterns are // correct only for objects that occupy at least two words. Map* map = object->map(); if (map == filler_map) continue; DCHECK(object->IsHeapObject()); DCHECK(heap()->Contains(object)); DCHECK(!Marking::IsWhite(Marking::MarkBitFrom(object))); MarkBit map_mark = Marking::MarkBitFrom(map); MarkObject(map, map_mark); MarkCompactMarkingVisitor::IterateBody(map, object); } } // Sweep the heap for overflowed objects, clear their overflow bits, and // push them on the marking stack. Stop early if the marking stack fills // before sweeping completes. If sweeping completes, there are no remaining // overflowed objects in the heap so the overflow flag on the markings stack // is cleared. void MarkCompactCollector::RefillMarkingDeque() { isolate()->CountUsage(v8::Isolate::UseCounterFeature::kMarkDequeOverflow); DCHECK(marking_deque_.overflowed()); DiscoverGreyObjectsInNewSpace(); if (marking_deque_.IsFull()) return; DiscoverGreyObjectsInSpace(heap()->old_space()); if (marking_deque_.IsFull()) return; DiscoverGreyObjectsInSpace(heap()->code_space()); if (marking_deque_.IsFull()) return; DiscoverGreyObjectsInSpace(heap()->map_space()); if (marking_deque_.IsFull()) return; LargeObjectIterator lo_it(heap()->lo_space()); DiscoverGreyObjectsWithIterator(&lo_it); if (marking_deque_.IsFull()) return; marking_deque_.ClearOverflowed(); } // Mark all objects reachable (transitively) from objects on the marking // stack. Before: the marking stack contains zero or more heap object // pointers. After: the marking stack is empty and there are no overflowed // objects in the heap. void MarkCompactCollector::ProcessMarkingDeque() { EmptyMarkingDeque(); while (marking_deque_.overflowed()) { RefillMarkingDeque(); EmptyMarkingDeque(); } } // Mark all objects reachable (transitively) from objects on the marking // stack including references only considered in the atomic marking pause. void MarkCompactCollector::ProcessEphemeralMarking( ObjectVisitor* visitor, bool only_process_harmony_weak_collections) { bool work_to_do = true; DCHECK(marking_deque_.IsEmpty() && !marking_deque_.overflowed()); while (work_to_do) { if (!only_process_harmony_weak_collections) { isolate()->global_handles()->IterateObjectGroups( visitor, &IsUnmarkedHeapObjectWithHeap); MarkImplicitRefGroups(&MarkCompactMarkingVisitor::MarkObject); } ProcessWeakCollections(); work_to_do = !marking_deque_.IsEmpty(); ProcessMarkingDeque(); } } void MarkCompactCollector::ProcessTopOptimizedFrame(ObjectVisitor* visitor) { for (StackFrameIterator it(isolate(), isolate()->thread_local_top()); !it.done(); it.Advance()) { if (it.frame()->type() == StackFrame::JAVA_SCRIPT) { return; } if (it.frame()->type() == StackFrame::OPTIMIZED) { Code* code = it.frame()->LookupCode(); if (!code->CanDeoptAt(it.frame()->pc())) { Code::BodyDescriptor::IterateBody(code, visitor); } ProcessMarkingDeque(); return; } } } void MarkCompactCollector::EnsureMarkingDequeIsReserved() { DCHECK(!marking_deque_.in_use()); if (marking_deque_memory_ == NULL) { marking_deque_memory_ = new base::VirtualMemory(kMaxMarkingDequeSize); marking_deque_memory_committed_ = 0; } if (marking_deque_memory_ == NULL) { V8::FatalProcessOutOfMemory("EnsureMarkingDequeIsReserved"); } } void MarkCompactCollector::EnsureMarkingDequeIsCommitted(size_t max_size) { // If the marking deque is too small, we try to allocate a bigger one. // If that fails, make do with a smaller one. CHECK(!marking_deque_.in_use()); for (size_t size = max_size; size >= kMinMarkingDequeSize; size >>= 1) { base::VirtualMemory* memory = marking_deque_memory_; size_t currently_committed = marking_deque_memory_committed_; if (currently_committed == size) return; if (currently_committed > size) { bool success = marking_deque_memory_->Uncommit( reinterpret_cast<Address>(marking_deque_memory_->address()) + size, currently_committed - size); if (success) { marking_deque_memory_committed_ = size; return; } UNREACHABLE(); } bool success = memory->Commit( reinterpret_cast<Address>(memory->address()) + currently_committed, size - currently_committed, false); // Not executable. if (success) { marking_deque_memory_committed_ = size; return; } } V8::FatalProcessOutOfMemory("EnsureMarkingDequeIsCommitted"); } void MarkCompactCollector::InitializeMarkingDeque() { DCHECK(!marking_deque_.in_use()); DCHECK(marking_deque_memory_committed_ > 0); Address addr = static_cast<Address>(marking_deque_memory_->address()); size_t size = marking_deque_memory_committed_; if (FLAG_force_marking_deque_overflows) size = 64 * kPointerSize; marking_deque_.Initialize(addr, addr + size); } void MarkingDeque::Initialize(Address low, Address high) { DCHECK(!in_use_); HeapObject** obj_low = reinterpret_cast<HeapObject**>(low); HeapObject** obj_high = reinterpret_cast<HeapObject**>(high); array_ = obj_low; mask_ = base::bits::RoundDownToPowerOfTwo32( static_cast<uint32_t>(obj_high - obj_low)) - 1; top_ = bottom_ = 0; overflowed_ = false; in_use_ = true; } void MarkingDeque::Uninitialize(bool aborting) { if (!aborting) { DCHECK(IsEmpty()); DCHECK(!overflowed_); } DCHECK(in_use_); top_ = bottom_ = 0xdecbad; in_use_ = false; } void MarkCompactCollector::MarkLiveObjects() { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_MARK); double start_time = 0.0; if (FLAG_print_cumulative_gc_stat) { start_time = heap_->MonotonicallyIncreasingTimeInMs(); } // The recursive GC marker detects when it is nearing stack overflow, // and switches to a different marking system. JS interrupts interfere // with the C stack limit check. PostponeInterruptsScope postpone(isolate()); { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_MARK_FINISH_INCREMENTAL); IncrementalMarking* incremental_marking = heap_->incremental_marking(); if (was_marked_incrementally_) { incremental_marking->Finalize(); } else { // Abort any pending incremental activities e.g. incremental sweeping. incremental_marking->Stop(); if (marking_deque_.in_use()) { marking_deque_.Uninitialize(true); } } } #ifdef DEBUG DCHECK(state_ == PREPARE_GC); state_ = MARK_LIVE_OBJECTS; #endif EnsureMarkingDequeIsCommittedAndInitialize( MarkCompactCollector::kMaxMarkingDequeSize); { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_MARK_PREPARE_CODE_FLUSH); PrepareForCodeFlushing(); } RootMarkingVisitor root_visitor(heap()); { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_MARK_ROOTS); MarkRoots(&root_visitor); ProcessTopOptimizedFrame(&root_visitor); } { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_MARK_WEAK_CLOSURE); // The objects reachable from the roots are marked, yet unreachable // objects are unmarked. Mark objects reachable due to host // application specific logic or through Harmony weak maps. ProcessEphemeralMarking(&root_visitor, false); // The objects reachable from the roots, weak maps or object groups // are marked. Objects pointed to only by weak global handles cannot be // immediately reclaimed. Instead, we have to mark them as pending and mark // objects reachable from them. // // First we identify nonlive weak handles and mark them as pending // destruction. heap()->isolate()->global_handles()->IdentifyWeakHandles( &IsUnmarkedHeapObject); // Then we mark the objects. heap()->isolate()->global_handles()->IterateWeakRoots(&root_visitor); ProcessMarkingDeque(); // Repeat Harmony weak maps marking to mark unmarked objects reachable from // the weak roots we just marked as pending destruction. // // We only process harmony collections, as all object groups have been fully // processed and no weakly reachable node can discover new objects groups. ProcessEphemeralMarking(&root_visitor, true); } if (FLAG_print_cumulative_gc_stat) { heap_->tracer()->AddMarkingTime(heap_->MonotonicallyIncreasingTimeInMs() - start_time); } if (FLAG_track_gc_object_stats) { if (FLAG_trace_gc_object_stats) { heap()->object_stats_->TraceObjectStats(); } heap()->object_stats_->CheckpointObjectStats(); } } void MarkCompactCollector::ClearNonLiveReferences() { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_CLEAR); { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_CLEAR_STRING_TABLE); // Prune the string table removing all strings only pointed to by the // string table. Cannot use string_table() here because the string // table is marked. StringTable* string_table = heap()->string_table(); InternalizedStringTableCleaner internalized_visitor(heap()); string_table->IterateElements(&internalized_visitor); string_table->ElementsRemoved(internalized_visitor.PointersRemoved()); ExternalStringTableCleaner external_visitor(heap()); heap()->external_string_table_.Iterate(&external_visitor); heap()->external_string_table_.CleanUp(); } { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_CLEAR_WEAK_LISTS); // Process the weak references. MarkCompactWeakObjectRetainer mark_compact_object_retainer; heap()->ProcessAllWeakReferences(&mark_compact_object_retainer); } { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_CLEAR_GLOBAL_HANDLES); // Remove object groups after marking phase. heap()->isolate()->global_handles()->RemoveObjectGroups(); heap()->isolate()->global_handles()->RemoveImplicitRefGroups(); } // Flush code from collected candidates. if (is_code_flushing_enabled()) { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_CLEAR_CODE_FLUSH); code_flusher_->ProcessCandidates(); } DependentCode* dependent_code_list; Object* non_live_map_list; ClearWeakCells(&non_live_map_list, &dependent_code_list); { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_CLEAR_MAPS); ClearSimpleMapTransitions(non_live_map_list); ClearFullMapTransitions(); } MarkDependentCodeForDeoptimization(dependent_code_list); ClearWeakCollections(); ClearInvalidStoreAndSlotsBufferEntries(); } void MarkCompactCollector::MarkDependentCodeForDeoptimization( DependentCode* list_head) { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_CLEAR_DEPENDENT_CODE); Isolate* isolate = this->isolate(); DependentCode* current = list_head; while (current->length() > 0) { have_code_to_deoptimize_ |= current->MarkCodeForDeoptimization( isolate, DependentCode::kWeakCodeGroup); current = current->next_link(); } WeakHashTable* table = heap_->weak_object_to_code_table(); uint32_t capacity = table->Capacity(); for (uint32_t i = 0; i < capacity; i++) { uint32_t key_index = table->EntryToIndex(i); Object* key = table->get(key_index); if (!table->IsKey(key)) continue; uint32_t value_index = table->EntryToValueIndex(i); Object* value = table->get(value_index); DCHECK(key->IsWeakCell()); if (WeakCell::cast(key)->cleared()) { have_code_to_deoptimize_ |= DependentCode::cast(value)->MarkCodeForDeoptimization( isolate, DependentCode::kWeakCodeGroup); table->set(key_index, heap_->the_hole_value()); table->set(value_index, heap_->the_hole_value()); table->ElementRemoved(); } } } void MarkCompactCollector::ClearSimpleMapTransitions( Object* non_live_map_list) { Object* the_hole_value = heap()->the_hole_value(); Object* weak_cell_obj = non_live_map_list; while (weak_cell_obj != Smi::FromInt(0)) { WeakCell* weak_cell = WeakCell::cast(weak_cell_obj); Map* map = Map::cast(weak_cell->value()); DCHECK(Marking::IsWhite(Marking::MarkBitFrom(map))); Object* potential_parent = map->constructor_or_backpointer(); if (potential_parent->IsMap()) { Map* parent = Map::cast(potential_parent); if (Marking::IsBlackOrGrey(Marking::MarkBitFrom(parent)) && parent->raw_transitions() == weak_cell) { ClearSimpleMapTransition(parent, map); } } weak_cell->clear(); weak_cell_obj = weak_cell->next(); weak_cell->clear_next(the_hole_value); } } void MarkCompactCollector::ClearSimpleMapTransition(Map* map, Map* dead_transition) { // A previously existing simple transition (stored in a WeakCell) is going // to be cleared. Clear the useless cell pointer, and take ownership // of the descriptor array. map->set_raw_transitions(Smi::FromInt(0)); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); DescriptorArray* descriptors = map->instance_descriptors(); if (descriptors == dead_transition->instance_descriptors() && number_of_own_descriptors > 0) { TrimDescriptorArray(map, descriptors); DCHECK(descriptors->number_of_descriptors() == number_of_own_descriptors); map->set_owns_descriptors(true); } } void MarkCompactCollector::ClearFullMapTransitions() { HeapObject* undefined = heap()->undefined_value(); Object* obj = heap()->encountered_transition_arrays(); while (obj != Smi::FromInt(0)) { TransitionArray* array = TransitionArray::cast(obj); int num_transitions = array->number_of_entries(); DCHECK_EQ(TransitionArray::NumberOfTransitions(array), num_transitions); if (num_transitions > 0) { Map* map = array->GetTarget(0); Map* parent = Map::cast(map->constructor_or_backpointer()); bool parent_is_alive = Marking::IsBlackOrGrey(Marking::MarkBitFrom(parent)); DescriptorArray* descriptors = parent_is_alive ? parent->instance_descriptors() : nullptr; bool descriptors_owner_died = CompactTransitionArray(parent, array, descriptors); if (descriptors_owner_died) { TrimDescriptorArray(parent, descriptors); } } obj = array->next_link(); array->set_next_link(undefined, SKIP_WRITE_BARRIER); } heap()->set_encountered_transition_arrays(Smi::FromInt(0)); } bool MarkCompactCollector::CompactTransitionArray( Map* map, TransitionArray* transitions, DescriptorArray* descriptors) { int num_transitions = transitions->number_of_entries(); bool descriptors_owner_died = false; int transition_index = 0; // Compact all live transitions to the left. for (int i = 0; i < num_transitions; ++i) { Map* target = transitions->GetTarget(i); DCHECK_EQ(target->constructor_or_backpointer(), map); if (Marking::IsWhite(Marking::MarkBitFrom(target))) { if (descriptors != nullptr && target->instance_descriptors() == descriptors) { descriptors_owner_died = true; } } else { if (i != transition_index) { Name* key = transitions->GetKey(i); transitions->SetKey(transition_index, key); Object** key_slot = transitions->GetKeySlot(transition_index); RecordSlot(transitions, key_slot, key); // Target slots do not need to be recorded since maps are not compacted. transitions->SetTarget(transition_index, transitions->GetTarget(i)); } transition_index++; } } // If there are no transitions to be cleared, return. if (transition_index == num_transitions) { DCHECK(!descriptors_owner_died); return false; } // Note that we never eliminate a transition array, though we might right-trim // such that number_of_transitions() == 0. If this assumption changes, // TransitionArray::Insert() will need to deal with the case that a transition // array disappeared during GC. int trim = TransitionArray::Capacity(transitions) - transition_index; if (trim > 0) { heap_->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>( transitions, trim * TransitionArray::kTransitionSize); transitions->SetNumberOfTransitions(transition_index); } return descriptors_owner_died; } void MarkCompactCollector::TrimDescriptorArray(Map* map, DescriptorArray* descriptors) { int number_of_own_descriptors = map->NumberOfOwnDescriptors(); if (number_of_own_descriptors == 0) { DCHECK(descriptors == heap_->empty_descriptor_array()); return; } int number_of_descriptors = descriptors->number_of_descriptors_storage(); int to_trim = number_of_descriptors - number_of_own_descriptors; if (to_trim > 0) { heap_->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>( descriptors, to_trim * DescriptorArray::kDescriptorSize); descriptors->SetNumberOfDescriptors(number_of_own_descriptors); if (descriptors->HasEnumCache()) TrimEnumCache(map, descriptors); descriptors->Sort(); if (FLAG_unbox_double_fields) { LayoutDescriptor* layout_descriptor = map->layout_descriptor(); layout_descriptor = layout_descriptor->Trim(heap_, map, descriptors, number_of_own_descriptors); SLOW_DCHECK(layout_descriptor->IsConsistentWithMap(map, true)); } } DCHECK(descriptors->number_of_descriptors() == number_of_own_descriptors); map->set_owns_descriptors(true); } void MarkCompactCollector::TrimEnumCache(Map* map, DescriptorArray* descriptors) { int live_enum = map->EnumLength(); if (live_enum == kInvalidEnumCacheSentinel) { live_enum = map->NumberOfDescribedProperties(OWN_DESCRIPTORS, ENUMERABLE_STRINGS); } if (live_enum == 0) return descriptors->ClearEnumCache(); FixedArray* enum_cache = descriptors->GetEnumCache(); int to_trim = enum_cache->length() - live_enum; if (to_trim <= 0) return; heap_->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>( descriptors->GetEnumCache(), to_trim); if (!descriptors->HasEnumIndicesCache()) return; FixedArray* enum_indices_cache = descriptors->GetEnumIndicesCache(); heap_->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(enum_indices_cache, to_trim); } void MarkCompactCollector::ProcessWeakCollections() { Object* weak_collection_obj = heap()->encountered_weak_collections(); while (weak_collection_obj != Smi::FromInt(0)) { JSWeakCollection* weak_collection = reinterpret_cast<JSWeakCollection*>(weak_collection_obj); DCHECK(MarkCompactCollector::IsMarked(weak_collection)); if (weak_collection->table()->IsHashTable()) { ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table()); for (int i = 0; i < table->Capacity(); i++) { if (MarkCompactCollector::IsMarked(HeapObject::cast(table->KeyAt(i)))) { Object** key_slot = table->RawFieldOfElementAt(ObjectHashTable::EntryToIndex(i)); RecordSlot(table, key_slot, *key_slot); Object** value_slot = table->RawFieldOfElementAt(ObjectHashTable::EntryToValueIndex(i)); MarkCompactMarkingVisitor::MarkObjectByPointer(this, table, value_slot); } } } weak_collection_obj = weak_collection->next(); } } void MarkCompactCollector::ClearWeakCollections() { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_CLEAR_WEAK_COLLECTIONS); Object* weak_collection_obj = heap()->encountered_weak_collections(); while (weak_collection_obj != Smi::FromInt(0)) { JSWeakCollection* weak_collection = reinterpret_cast<JSWeakCollection*>(weak_collection_obj); DCHECK(MarkCompactCollector::IsMarked(weak_collection)); if (weak_collection->table()->IsHashTable()) { ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table()); for (int i = 0; i < table->Capacity(); i++) { HeapObject* key = HeapObject::cast(table->KeyAt(i)); if (!MarkCompactCollector::IsMarked(key)) { table->RemoveEntry(i); } } } weak_collection_obj = weak_collection->next(); weak_collection->set_next(heap()->undefined_value()); } heap()->set_encountered_weak_collections(Smi::FromInt(0)); } void MarkCompactCollector::AbortWeakCollections() { Object* weak_collection_obj = heap()->encountered_weak_collections(); while (weak_collection_obj != Smi::FromInt(0)) { JSWeakCollection* weak_collection = reinterpret_cast<JSWeakCollection*>(weak_collection_obj); weak_collection_obj = weak_collection->next(); weak_collection->set_next(heap()->undefined_value()); } heap()->set_encountered_weak_collections(Smi::FromInt(0)); } void MarkCompactCollector::ClearWeakCells(Object** non_live_map_list, DependentCode** dependent_code_list) { Heap* heap = this->heap(); GCTracer::Scope gc_scope(heap->tracer(), GCTracer::Scope::MC_CLEAR_WEAK_CELLS); Object* weak_cell_obj = heap->encountered_weak_cells(); Object* the_hole_value = heap->the_hole_value(); DependentCode* dependent_code_head = DependentCode::cast(heap->empty_fixed_array()); Object* non_live_map_head = Smi::FromInt(0); while (weak_cell_obj != Smi::FromInt(0)) { WeakCell* weak_cell = reinterpret_cast<WeakCell*>(weak_cell_obj); Object* next_weak_cell = weak_cell->next(); bool clear_value = true; bool clear_next = true; // We do not insert cleared weak cells into the list, so the value // cannot be a Smi here. HeapObject* value = HeapObject::cast(weak_cell->value()); if (!MarkCompactCollector::IsMarked(value)) { // Cells for new-space objects embedded in optimized code are wrapped in // WeakCell and put into Heap::weak_object_to_code_table. // Such cells do not have any strong references but we want to keep them // alive as long as the cell value is alive. // TODO(ulan): remove this once we remove Heap::weak_object_to_code_table. if (value->IsCell()) { Object* cell_value = Cell::cast(value)->value(); if (cell_value->IsHeapObject() && MarkCompactCollector::IsMarked(HeapObject::cast(cell_value))) { // Resurrect the cell. MarkBit mark = Marking::MarkBitFrom(value); SetMark(value, mark); Object** slot = HeapObject::RawField(value, Cell::kValueOffset); RecordSlot(value, slot, *slot); slot = HeapObject::RawField(weak_cell, WeakCell::kValueOffset); RecordSlot(weak_cell, slot, *slot); clear_value = false; } } if (value->IsMap()) { // The map is non-live. Map* map = Map::cast(value); // Add dependent code to the dependent_code_list. DependentCode* candidate = map->dependent_code(); // We rely on the fact that the weak code group comes first. STATIC_ASSERT(DependentCode::kWeakCodeGroup == 0); if (candidate->length() > 0 && candidate->group() == DependentCode::kWeakCodeGroup) { candidate->set_next_link(dependent_code_head); dependent_code_head = candidate; } // Add the weak cell to the non_live_map list. weak_cell->set_next(non_live_map_head); non_live_map_head = weak_cell; clear_value = false; clear_next = false; } } else { // The value of the weak cell is alive. Object** slot = HeapObject::RawField(weak_cell, WeakCell::kValueOffset); RecordSlot(weak_cell, slot, *slot); clear_value = false; } if (clear_value) { weak_cell->clear(); } if (clear_next) { weak_cell->clear_next(the_hole_value); } weak_cell_obj = next_weak_cell; } heap->set_encountered_weak_cells(Smi::FromInt(0)); *non_live_map_list = non_live_map_head; *dependent_code_list = dependent_code_head; } void MarkCompactCollector::AbortWeakCells() { Object* the_hole_value = heap()->the_hole_value(); Object* weak_cell_obj = heap()->encountered_weak_cells(); while (weak_cell_obj != Smi::FromInt(0)) { WeakCell* weak_cell = reinterpret_cast<WeakCell*>(weak_cell_obj); weak_cell_obj = weak_cell->next(); weak_cell->clear_next(the_hole_value); } heap()->set_encountered_weak_cells(Smi::FromInt(0)); } void MarkCompactCollector::AbortTransitionArrays() { HeapObject* undefined = heap()->undefined_value(); Object* obj = heap()->encountered_transition_arrays(); while (obj != Smi::FromInt(0)) { TransitionArray* array = TransitionArray::cast(obj); obj = array->next_link(); array->set_next_link(undefined, SKIP_WRITE_BARRIER); } heap()->set_encountered_transition_arrays(Smi::FromInt(0)); } void MarkCompactCollector::RecordMigratedSlot( Object* value, Address slot, SlotsBuffer** evacuation_slots_buffer, LocalStoreBuffer* local_store_buffer) { // When parallel compaction is in progress, store and slots buffer entries // require synchronization. if (heap_->InNewSpace(value)) { if (compaction_in_progress_) { local_store_buffer->Record(slot); } else { heap_->store_buffer()->Mark(slot); } } else if (value->IsHeapObject() && IsOnEvacuationCandidate(value)) { SlotsBuffer::AddTo(slots_buffer_allocator_, evacuation_slots_buffer, reinterpret_cast<Object**>(slot), SlotsBuffer::IGNORE_OVERFLOW); } } void MarkCompactCollector::RecordMigratedCodeEntrySlot( Address code_entry, Address code_entry_slot, SlotsBuffer** evacuation_slots_buffer) { if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) { SlotsBuffer::AddTo(slots_buffer_allocator_, evacuation_slots_buffer, SlotsBuffer::CODE_ENTRY_SLOT, code_entry_slot, SlotsBuffer::IGNORE_OVERFLOW); } } void MarkCompactCollector::RecordMigratedCodeObjectSlot( Address code_object, SlotsBuffer** evacuation_slots_buffer) { SlotsBuffer::AddTo(slots_buffer_allocator_, evacuation_slots_buffer, SlotsBuffer::RELOCATED_CODE_OBJECT, code_object, SlotsBuffer::IGNORE_OVERFLOW); } static inline SlotsBuffer::SlotType SlotTypeForRMode(RelocInfo::Mode rmode) { if (RelocInfo::IsCodeTarget(rmode)) { return SlotsBuffer::CODE_TARGET_SLOT; } else if (RelocInfo::IsCell(rmode)) { return SlotsBuffer::CELL_TARGET_SLOT; } else if (RelocInfo::IsEmbeddedObject(rmode)) { return SlotsBuffer::EMBEDDED_OBJECT_SLOT; } else if (RelocInfo::IsDebugBreakSlot(rmode)) { return SlotsBuffer::DEBUG_TARGET_SLOT; } UNREACHABLE(); return SlotsBuffer::NUMBER_OF_SLOT_TYPES; } static inline SlotsBuffer::SlotType DecodeSlotType( SlotsBuffer::ObjectSlot slot) { return static_cast<SlotsBuffer::SlotType>(reinterpret_cast<intptr_t>(slot)); } void MarkCompactCollector::RecordRelocSlot(RelocInfo* rinfo, Object* target) { Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target)); RelocInfo::Mode rmode = rinfo->rmode(); if (target_page->IsEvacuationCandidate() && (rinfo->host() == NULL || !ShouldSkipEvacuationSlotRecording(rinfo->host()))) { Address addr = rinfo->pc(); SlotsBuffer::SlotType slot_type = SlotTypeForRMode(rmode); if (rinfo->IsInConstantPool()) { addr = rinfo->constant_pool_entry_address(); if (RelocInfo::IsCodeTarget(rmode)) { slot_type = SlotsBuffer::CODE_ENTRY_SLOT; } else { DCHECK(RelocInfo::IsEmbeddedObject(rmode)); slot_type = SlotsBuffer::OBJECT_SLOT; } } bool success = SlotsBuffer::AddTo( slots_buffer_allocator_, target_page->slots_buffer_address(), slot_type, addr, SlotsBuffer::FAIL_ON_OVERFLOW); if (!success) { EvictPopularEvacuationCandidate(target_page); } } } class RecordMigratedSlotVisitor final : public ObjectVisitor { public: RecordMigratedSlotVisitor(MarkCompactCollector* collector, SlotsBuffer** evacuation_slots_buffer, LocalStoreBuffer* local_store_buffer) : collector_(collector), evacuation_slots_buffer_(evacuation_slots_buffer), local_store_buffer_(local_store_buffer) {} V8_INLINE void VisitPointer(Object** p) override { collector_->RecordMigratedSlot(*p, reinterpret_cast<Address>(p), evacuation_slots_buffer_, local_store_buffer_); } V8_INLINE void VisitPointers(Object** start, Object** end) override { while (start < end) { collector_->RecordMigratedSlot(*start, reinterpret_cast<Address>(start), evacuation_slots_buffer_, local_store_buffer_); ++start; } } V8_INLINE void VisitCodeEntry(Address code_entry_slot) override { if (collector_->compacting_) { Address code_entry = Memory::Address_at(code_entry_slot); collector_->RecordMigratedCodeEntrySlot(code_entry, code_entry_slot, evacuation_slots_buffer_); } } private: MarkCompactCollector* collector_; SlotsBuffer** evacuation_slots_buffer_; LocalStoreBuffer* local_store_buffer_; }; // We scavenge new space simultaneously with sweeping. This is done in two // passes. // // The first pass migrates all alive objects from one semispace to another or // promotes them to old space. Forwarding address is written directly into // first word of object without any encoding. If object is dead we write // NULL as a forwarding address. // // The second pass updates pointers to new space in all spaces. It is possible // to encounter pointers to dead new space objects during traversal of pointers // to new space. We should clear them to avoid encountering them during next // pointer iteration. This is an issue if the store buffer overflows and we // have to scan the entire old space, including dead objects, looking for // pointers to new space. void MarkCompactCollector::MigrateObject(HeapObject* dst, HeapObject* src, int size, AllocationSpace dest, SlotsBuffer** evacuation_slots_buffer, LocalStoreBuffer* local_store_buffer) { Address dst_addr = dst->address(); Address src_addr = src->address(); DCHECK(heap()->AllowedToBeMigrated(src, dest)); DCHECK(dest != LO_SPACE); if (dest == OLD_SPACE) { DCHECK_OBJECT_SIZE(size); DCHECK(evacuation_slots_buffer != nullptr); DCHECK(IsAligned(size, kPointerSize)); heap()->MoveBlock(dst->address(), src->address(), size); RecordMigratedSlotVisitor visitor(this, evacuation_slots_buffer, local_store_buffer); dst->IterateBody(&visitor); } else if (dest == CODE_SPACE) { DCHECK_CODEOBJECT_SIZE(size, heap()->code_space()); DCHECK(evacuation_slots_buffer != nullptr); PROFILE(isolate(), CodeMoveEvent(src_addr, dst_addr)); heap()->MoveBlock(dst_addr, src_addr, size); RecordMigratedCodeObjectSlot(dst_addr, evacuation_slots_buffer); Code::cast(dst)->Relocate(dst_addr - src_addr); } else { DCHECK_OBJECT_SIZE(size); DCHECK(evacuation_slots_buffer == nullptr); DCHECK(dest == NEW_SPACE); heap()->MoveBlock(dst_addr, src_addr, size); } heap()->OnMoveEvent(dst, src, size); Memory::Address_at(src_addr) = dst_addr; } static inline void UpdateSlot(Isolate* isolate, ObjectVisitor* v, SlotsBuffer::SlotType slot_type, Address addr) { switch (slot_type) { case SlotsBuffer::CODE_TARGET_SLOT: { RelocInfo rinfo(isolate, addr, RelocInfo::CODE_TARGET, 0, NULL); rinfo.Visit(isolate, v); break; } case SlotsBuffer::CELL_TARGET_SLOT: { RelocInfo rinfo(isolate, addr, RelocInfo::CELL, 0, NULL); rinfo.Visit(isolate, v); break; } case SlotsBuffer::CODE_ENTRY_SLOT: { v->VisitCodeEntry(addr); break; } case SlotsBuffer::RELOCATED_CODE_OBJECT: { HeapObject* obj = HeapObject::FromAddress(addr); Code::BodyDescriptor::IterateBody(obj, v); break; } case SlotsBuffer::DEBUG_TARGET_SLOT: { RelocInfo rinfo(isolate, addr, RelocInfo::DEBUG_BREAK_SLOT_AT_POSITION, 0, NULL); if (rinfo.IsPatchedDebugBreakSlotSequence()) rinfo.Visit(isolate, v); break; } case SlotsBuffer::EMBEDDED_OBJECT_SLOT: { RelocInfo rinfo(isolate, addr, RelocInfo::EMBEDDED_OBJECT, 0, NULL); rinfo.Visit(isolate, v); break; } case SlotsBuffer::OBJECT_SLOT: { v->VisitPointer(reinterpret_cast<Object**>(addr)); break; } default: UNREACHABLE(); break; } } // Visitor for updating pointers from live objects in old spaces to new space. // It does not expect to encounter pointers to dead objects. class PointersUpdatingVisitor : public ObjectVisitor { public: explicit PointersUpdatingVisitor(Heap* heap) : heap_(heap) {} void VisitPointer(Object** p) override { UpdatePointer(p); } void VisitPointers(Object** start, Object** end) override { for (Object** p = start; p < end; p++) UpdatePointer(p); } void VisitCell(RelocInfo* rinfo) override { DCHECK(rinfo->rmode() == RelocInfo::CELL); Object* cell = rinfo->target_cell(); Object* old_cell = cell; VisitPointer(&cell); if (cell != old_cell) { rinfo->set_target_cell(reinterpret_cast<Cell*>(cell)); } } void VisitEmbeddedPointer(RelocInfo* rinfo) override { DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT); Object* target = rinfo->target_object(); Object* old_target = target; VisitPointer(&target); // Avoid unnecessary changes that might unnecessary flush the instruction // cache. if (target != old_target) { rinfo->set_target_object(target); } } void VisitCodeTarget(RelocInfo* rinfo) override { DCHECK(RelocInfo::IsCodeTarget(rinfo->rmode())); Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); Object* old_target = target; VisitPointer(&target); if (target != old_target) { rinfo->set_target_address(Code::cast(target)->instruction_start()); } } void VisitCodeAgeSequence(RelocInfo* rinfo) override { DCHECK(RelocInfo::IsCodeAgeSequence(rinfo->rmode())); Object* stub = rinfo->code_age_stub(); DCHECK(stub != NULL); VisitPointer(&stub); if (stub != rinfo->code_age_stub()) { rinfo->set_code_age_stub(Code::cast(stub)); } } void VisitDebugTarget(RelocInfo* rinfo) override { DCHECK(RelocInfo::IsDebugBreakSlot(rinfo->rmode()) && rinfo->IsPatchedDebugBreakSlotSequence()); Object* target = Code::GetCodeFromTargetAddress(rinfo->debug_call_address()); VisitPointer(&target); rinfo->set_debug_call_address(Code::cast(target)->instruction_start()); } static inline void UpdateSlot(Heap* heap, Object** slot) { Object* obj = reinterpret_cast<Object*>( base::NoBarrier_Load(reinterpret_cast<base::AtomicWord*>(slot))); if (!obj->IsHeapObject()) return; HeapObject* heap_obj = HeapObject::cast(obj); MapWord map_word = heap_obj->map_word(); if (map_word.IsForwardingAddress()) { DCHECK(heap->InFromSpace(heap_obj) || MarkCompactCollector::IsOnEvacuationCandidate(heap_obj) || Page::FromAddress(heap_obj->address()) ->IsFlagSet(Page::COMPACTION_WAS_ABORTED)); HeapObject* target = map_word.ToForwardingAddress(); base::NoBarrier_CompareAndSwap( reinterpret_cast<base::AtomicWord*>(slot), reinterpret_cast<base::AtomicWord>(obj), reinterpret_cast<base::AtomicWord>(target)); DCHECK(!heap->InFromSpace(target) && !MarkCompactCollector::IsOnEvacuationCandidate(target)); } } private: inline void UpdatePointer(Object** p) { UpdateSlot(heap_, p); } Heap* heap_; }; void MarkCompactCollector::UpdateSlots(SlotsBuffer* buffer) { PointersUpdatingVisitor v(heap_); size_t buffer_size = buffer->Size(); for (size_t slot_idx = 0; slot_idx < buffer_size; ++slot_idx) { SlotsBuffer::ObjectSlot slot = buffer->Get(slot_idx); if (!SlotsBuffer::IsTypedSlot(slot)) { PointersUpdatingVisitor::UpdateSlot(heap_, slot); } else { ++slot_idx; DCHECK(slot_idx < buffer_size); UpdateSlot(heap_->isolate(), &v, DecodeSlotType(slot), reinterpret_cast<Address>(buffer->Get(slot_idx))); } } } void MarkCompactCollector::UpdateSlotsRecordedIn(SlotsBuffer* buffer) { while (buffer != NULL) { UpdateSlots(buffer); buffer = buffer->next(); } } static void UpdatePointer(HeapObject** address, HeapObject* object) { MapWord map_word = object->map_word(); // The store buffer can still contain stale pointers in dead large objects. // Ignore these pointers here. DCHECK(map_word.IsForwardingAddress() || object->GetHeap()->lo_space()->FindPage( reinterpret_cast<Address>(address)) != NULL); if (map_word.IsForwardingAddress()) { // Update the corresponding slot. *address = map_word.ToForwardingAddress(); } } static String* UpdateReferenceInExternalStringTableEntry(Heap* heap, Object** p) { MapWord map_word = HeapObject::cast(*p)->map_word(); if (map_word.IsForwardingAddress()) { return String::cast(map_word.ToForwardingAddress()); } return String::cast(*p); } bool MarkCompactCollector::IsSlotInBlackObject(Page* p, Address slot, HeapObject** out_object) { Space* owner = p->owner(); if (owner == heap_->lo_space() || owner == NULL) { Object* large_object = heap_->lo_space()->FindObject(slot); // This object has to exist, otherwise we would not have recorded a slot // for it. CHECK(large_object->IsHeapObject()); HeapObject* large_heap_object = HeapObject::cast(large_object); if (IsMarked(large_heap_object)) { *out_object = large_heap_object; return true; } return false; } uint32_t mark_bit_index = p->AddressToMarkbitIndex(slot); unsigned int cell_index = mark_bit_index >> Bitmap::kBitsPerCellLog2; MarkBit::CellType index_mask = 1u << Bitmap::IndexInCell(mark_bit_index); MarkBit::CellType* cells = p->markbits()->cells(); Address base_address = p->area_start(); unsigned int base_address_cell_index = Bitmap::IndexToCell( Bitmap::CellAlignIndex(p->AddressToMarkbitIndex(base_address))); // Check if the slot points to the start of an object. This can happen e.g. // when we left trim a fixed array. Such slots are invalid and we can remove // them. if (index_mask > 1) { if ((cells[cell_index] & index_mask) != 0 && (cells[cell_index] & (index_mask >> 1)) == 0) { return false; } } else { // Left trimming moves the mark bits so we cannot be in the very first cell. DCHECK(cell_index != base_address_cell_index); if ((cells[cell_index] & index_mask) != 0 && (cells[cell_index - 1] & (1u << Bitmap::kBitIndexMask)) == 0) { return false; } } // Check if the object is in the current cell. MarkBit::CellType slot_mask; if ((cells[cell_index] == 0) || (base::bits::CountTrailingZeros32(cells[cell_index]) > base::bits::CountTrailingZeros32(cells[cell_index] | index_mask))) { // If we are already in the first cell, there is no live object. if (cell_index == base_address_cell_index) return false; // If not, find a cell in a preceding cell slot that has a mark bit set. do { cell_index--; } while (cell_index > base_address_cell_index && cells[cell_index] == 0); // The slot must be in a dead object if there are no preceding cells that // have mark bits set. if (cells[cell_index] == 0) { return false; } // The object is in a preceding cell. Set the mask to find any object. slot_mask = ~0u; } else { // We are interested in object mark bits right before the slot. slot_mask = index_mask + (index_mask - 1); } MarkBit::CellType current_cell = cells[cell_index]; CHECK(current_cell != 0); // Find the last live object in the cell. unsigned int leading_zeros = base::bits::CountLeadingZeros32(current_cell & slot_mask); CHECK(leading_zeros != Bitmap::kBitsPerCell); int offset = static_cast<int>(Bitmap::kBitIndexMask - leading_zeros) - 1; base_address += (cell_index - base_address_cell_index) * Bitmap::kBitsPerCell * kPointerSize; Address address = base_address + offset * kPointerSize; HeapObject* object = HeapObject::FromAddress(address); CHECK(Marking::IsBlack(Marking::MarkBitFrom(object))); CHECK(object->address() < reinterpret_cast<Address>(slot)); if ((object->address() + kPointerSize) <= slot && (object->address() + object->Size()) > slot) { // If the slot is within the last found object in the cell, the slot is // in a live object. // Slots pointing to the first word of an object are invalid and removed. // This can happen when we move the object header while left trimming. *out_object = object; return true; } return false; } bool MarkCompactCollector::IsSlotInBlackObjectSlow(Page* p, Address slot) { // This function does not support large objects right now. Space* owner = p->owner(); if (owner == heap_->lo_space() || owner == NULL) { Object* large_object = heap_->lo_space()->FindObject(slot); // This object has to exist, otherwise we would not have recorded a slot // for it. CHECK(large_object->IsHeapObject()); HeapObject* large_heap_object = HeapObject::cast(large_object); if (IsMarked(large_heap_object)) { return true; } return false; } LiveObjectIterator<kBlackObjects> it(p); HeapObject* object = NULL; while ((object = it.Next()) != NULL) { int size = object->Size(); if (object->address() > slot) return false; if (object->address() <= slot && slot < (object->address() + size)) { return true; } } return false; } bool MarkCompactCollector::IsSlotInLiveObject(Address slot) { HeapObject* object = NULL; // The target object is black but we don't know if the source slot is black. // The source object could have died and the slot could be part of a free // space. Find out based on mark bits if the slot is part of a live object. if (!IsSlotInBlackObject(Page::FromAddress(slot), slot, &object)) { return false; } DCHECK(object != NULL); int offset = static_cast<int>(slot - object->address()); return object->IsValidSlot(offset); } void MarkCompactCollector::VerifyIsSlotInLiveObject(Address slot, HeapObject* object) { // The target object has to be black. CHECK(Marking::IsBlack(Marking::MarkBitFrom(object))); // The target object is black but we don't know if the source slot is black. // The source object could have died and the slot could be part of a free // space. Use the mark bit iterator to find out about liveness of the slot. CHECK(IsSlotInBlackObjectSlow(Page::FromAddress(slot), slot)); } void MarkCompactCollector::EvacuateNewSpacePrologue() { NewSpace* new_space = heap()->new_space(); NewSpacePageIterator it(new_space->bottom(), new_space->top()); // Append the list of new space pages to be processed. while (it.has_next()) { newspace_evacuation_candidates_.Add(it.next()); } new_space->Flip(); new_space->ResetAllocationInfo(); } void MarkCompactCollector::EvacuateNewSpaceEpilogue() { newspace_evacuation_candidates_.Rewind(0); } void MarkCompactCollector::AddEvacuationSlotsBufferSynchronized( SlotsBuffer* evacuation_slots_buffer) { base::LockGuard<base::Mutex> lock_guard(&evacuation_slots_buffers_mutex_); evacuation_slots_buffers_.Add(evacuation_slots_buffer); } class MarkCompactCollector::Evacuator : public Malloced { public: Evacuator(MarkCompactCollector* collector, const List<Page*>& evacuation_candidates, const List<NewSpacePage*>& newspace_evacuation_candidates) : collector_(collector), evacuation_candidates_(evacuation_candidates), newspace_evacuation_candidates_(newspace_evacuation_candidates), compaction_spaces_(collector->heap()), local_slots_buffer_(nullptr), local_store_buffer_(), local_pretenuring_feedback_(HashMap::PointersMatch, kInitialLocalPretenuringFeedbackCapacity), new_space_visitor_(collector->heap(), &compaction_spaces_, &local_slots_buffer_, &local_store_buffer_, &local_pretenuring_feedback_), old_space_visitor_(collector->heap(), &compaction_spaces_, &local_slots_buffer_, &local_store_buffer_), duration_(0.0), bytes_compacted_(0), task_id_(0) {} // Evacuate the configured set of pages in parallel. inline void EvacuatePages(); // Merge back locally cached info sequentially. Note that this method needs // to be called from the main thread. inline void Finalize(); CompactionSpaceCollection* compaction_spaces() { return &compaction_spaces_; } uint32_t task_id() { return task_id_; } void set_task_id(uint32_t id) { task_id_ = id; } private: static const int kInitialLocalPretenuringFeedbackCapacity = 256; Heap* heap() { return collector_->heap(); } void ReportCompactionProgress(double duration, intptr_t bytes_compacted) { duration_ += duration; bytes_compacted_ += bytes_compacted; } inline bool EvacuateSinglePage(MemoryChunk* p, HeapObjectVisitor* visitor); MarkCompactCollector* collector_; // Pages to process. const List<Page*>& evacuation_candidates_; const List<NewSpacePage*>& newspace_evacuation_candidates_; // Locally cached collector data. CompactionSpaceCollection compaction_spaces_; SlotsBuffer* local_slots_buffer_; LocalStoreBuffer local_store_buffer_; HashMap local_pretenuring_feedback_; // Vistors for the corresponding spaces. EvacuateNewSpaceVisitor new_space_visitor_; EvacuateOldSpaceVisitor old_space_visitor_; // Book keeping info. double duration_; intptr_t bytes_compacted_; // Task id, if this evacuator is executed on a background task instead of // the main thread. Can be used to try to abort the task currently scheduled // to executed to evacuate pages. uint32_t task_id_; }; bool MarkCompactCollector::Evacuator::EvacuateSinglePage( MemoryChunk* p, HeapObjectVisitor* visitor) { bool success = true; if (p->parallel_compaction_state().TrySetValue( MemoryChunk::kCompactingDone, MemoryChunk::kCompactingInProgress)) { if (p->IsEvacuationCandidate() || p->InNewSpace()) { DCHECK_EQ(p->parallel_compaction_state().Value(), MemoryChunk::kCompactingInProgress); int saved_live_bytes = p->LiveBytes(); double evacuation_time; { AlwaysAllocateScope always_allocate(heap()->isolate()); TimedScope timed_scope(&evacuation_time); success = collector_->VisitLiveObjects(p, visitor, kClearMarkbits); } if (success) { ReportCompactionProgress(evacuation_time, saved_live_bytes); p->parallel_compaction_state().SetValue( MemoryChunk::kCompactingFinalize); } else { p->parallel_compaction_state().SetValue( MemoryChunk::kCompactingAborted); } } else { // There could be popular pages in the list of evacuation candidates // which we do not compact. p->parallel_compaction_state().SetValue(MemoryChunk::kCompactingDone); } } return success; } void MarkCompactCollector::Evacuator::EvacuatePages() { for (NewSpacePage* p : newspace_evacuation_candidates_) { DCHECK(p->InNewSpace()); DCHECK_EQ(p->concurrent_sweeping_state().Value(), NewSpacePage::kSweepingDone); bool success = EvacuateSinglePage(p, &new_space_visitor_); DCHECK(success); USE(success); } for (Page* p : evacuation_candidates_) { DCHECK(p->IsEvacuationCandidate() || p->IsFlagSet(MemoryChunk::RESCAN_ON_EVACUATION)); DCHECK_EQ(p->concurrent_sweeping_state().Value(), Page::kSweepingDone); EvacuateSinglePage(p, &old_space_visitor_); } } void MarkCompactCollector::Evacuator::Finalize() { heap()->old_space()->MergeCompactionSpace(compaction_spaces_.Get(OLD_SPACE)); heap()->code_space()->MergeCompactionSpace( compaction_spaces_.Get(CODE_SPACE)); heap()->tracer()->AddCompactionEvent(duration_, bytes_compacted_); heap()->IncrementPromotedObjectsSize(new_space_visitor_.promoted_size()); heap()->IncrementSemiSpaceCopiedObjectSize( new_space_visitor_.semispace_copied_size()); heap()->IncrementYoungSurvivorsCounter( new_space_visitor_.promoted_size() + new_space_visitor_.semispace_copied_size()); heap()->MergeAllocationSitePretenuringFeedback(local_pretenuring_feedback_); local_store_buffer_.Process(heap()->store_buffer()); collector_->AddEvacuationSlotsBufferSynchronized(local_slots_buffer_); } class MarkCompactCollector::CompactionTask : public CancelableTask { public: explicit CompactionTask(Heap* heap, Evacuator* evacuator) : CancelableTask(heap->isolate()), heap_(heap), evacuator_(evacuator) { evacuator->set_task_id(id()); } virtual ~CompactionTask() {} private: // v8::internal::CancelableTask overrides. void RunInternal() override { evacuator_->EvacuatePages(); heap_->mark_compact_collector() ->pending_compaction_tasks_semaphore_.Signal(); } Heap* heap_; Evacuator* evacuator_; DISALLOW_COPY_AND_ASSIGN(CompactionTask); }; int MarkCompactCollector::NumberOfParallelCompactionTasks(int pages, intptr_t live_bytes) { if (!FLAG_parallel_compaction) return 1; // Compute the number of needed tasks based on a target compaction time, the // profiled compaction speed and marked live memory. // // The number of parallel compaction tasks is limited by: // - #evacuation pages // - (#cores - 1) const double kTargetCompactionTimeInMs = 1; const int kNumSweepingTasks = 3; intptr_t compaction_speed = heap()->tracer()->CompactionSpeedInBytesPerMillisecond(); const int available_cores = Max(1, base::SysInfo::NumberOfProcessors() - kNumSweepingTasks - 1); int tasks; if (compaction_speed > 0) { tasks = 1 + static_cast<int>(static_cast<double>(live_bytes) / compaction_speed / kTargetCompactionTimeInMs); } else { tasks = pages; } const int tasks_capped_pages = Min(pages, tasks); return Min(available_cores, tasks_capped_pages); } void MarkCompactCollector::EvacuatePagesInParallel() { int num_pages = 0; intptr_t live_bytes = 0; for (Page* page : evacuation_candidates_) { num_pages++; live_bytes += page->LiveBytes(); } for (NewSpacePage* page : newspace_evacuation_candidates_) { num_pages++; live_bytes += page->LiveBytes(); } DCHECK_GE(num_pages, 1); // Used for trace summary. intptr_t compaction_speed = 0; if (FLAG_trace_fragmentation) { compaction_speed = heap()->tracer()->CompactionSpeedInBytesPerMillisecond(); } const int num_tasks = NumberOfParallelCompactionTasks(num_pages, live_bytes); // Set up compaction spaces. Evacuator** evacuators = new Evacuator*[num_tasks]; for (int i = 0; i < num_tasks; i++) { evacuators[i] = new Evacuator(this, evacuation_candidates_, newspace_evacuation_candidates_); } // Kick off parallel tasks. StartParallelCompaction(evacuators, num_tasks); // Wait for unfinished and not-yet-started tasks. WaitUntilCompactionCompleted(&evacuators[1], num_tasks - 1); // Finalize local evacuators by merging back all locally cached data. for (int i = 0; i < num_tasks; i++) { evacuators[i]->Finalize(); delete evacuators[i]; } delete[] evacuators; // Finalize pages sequentially. for (NewSpacePage* p : newspace_evacuation_candidates_) { DCHECK_EQ(p->parallel_compaction_state().Value(), MemoryChunk::kCompactingFinalize); p->parallel_compaction_state().SetValue(MemoryChunk::kCompactingDone); } int abandoned_pages = 0; for (Page* p : evacuation_candidates_) { switch (p->parallel_compaction_state().Value()) { case MemoryChunk::ParallelCompactingState::kCompactingAborted: // We have partially compacted the page, i.e., some objects may have // moved, others are still in place. // We need to: // - Leave the evacuation candidate flag for later processing of // slots buffer entries. // - Leave the slots buffer there for processing of entries added by // the write barrier. // - Rescan the page as slot recording in the migration buffer only // happens upon moving (which we potentially didn't do). // - Leave the page in the list of pages of a space since we could not // fully evacuate it. // - Mark them for rescanning for store buffer entries as we otherwise // might have stale store buffer entries that become "valid" again // after reusing the memory. Note that all existing store buffer // entries of such pages are filtered before rescanning. DCHECK(p->IsEvacuationCandidate()); p->SetFlag(Page::COMPACTION_WAS_ABORTED); p->set_scan_on_scavenge(true); abandoned_pages++; break; case MemoryChunk::kCompactingFinalize: DCHECK(p->IsEvacuationCandidate()); DCHECK(p->SweepingDone()); p->Unlink(); break; case MemoryChunk::kCompactingDone: DCHECK(p->IsFlagSet(Page::POPULAR_PAGE)); DCHECK(p->IsFlagSet(Page::RESCAN_ON_EVACUATION)); break; default: // MemoryChunk::kCompactingInProgress. UNREACHABLE(); } p->parallel_compaction_state().SetValue(MemoryChunk::kCompactingDone); } if (FLAG_trace_fragmentation) { PrintIsolate(isolate(), "%8.0f ms: compaction: parallel=%d pages=%d aborted=%d " "tasks=%d cores=%d live_bytes=%" V8_PTR_PREFIX "d compaction_speed=%" V8_PTR_PREFIX "d\n", isolate()->time_millis_since_init(), FLAG_parallel_compaction, num_pages, abandoned_pages, num_tasks, base::SysInfo::NumberOfProcessors(), live_bytes, compaction_speed); } } void MarkCompactCollector::StartParallelCompaction(Evacuator** evacuators, int len) { compaction_in_progress_ = true; for (int i = 1; i < len; i++) { CompactionTask* task = new CompactionTask(heap(), evacuators[i]); V8::GetCurrentPlatform()->CallOnBackgroundThread( task, v8::Platform::kShortRunningTask); } // Contribute on main thread. evacuators[0]->EvacuatePages(); } void MarkCompactCollector::WaitUntilCompactionCompleted(Evacuator** evacuators, int len) { // Try to cancel compaction tasks that have not been run (as they might be // stuck in a worker queue). Tasks that cannot be canceled, have either // already completed or are still running, hence we need to wait for their // semaphore signal. for (int i = 0; i < len; i++) { if (!heap()->isolate()->cancelable_task_manager()->TryAbort( evacuators[i]->task_id())) { pending_compaction_tasks_semaphore_.Wait(); } } compaction_in_progress_ = false; } class EvacuationWeakObjectRetainer : public WeakObjectRetainer { public: virtual Object* RetainAs(Object* object) { if (object->IsHeapObject()) { HeapObject* heap_object = HeapObject::cast(object); MapWord map_word = heap_object->map_word(); if (map_word.IsForwardingAddress()) { return map_word.ToForwardingAddress(); } } return object; } }; enum SweepingMode { SWEEP_ONLY, SWEEP_AND_VISIT_LIVE_OBJECTS }; enum SkipListRebuildingMode { REBUILD_SKIP_LIST, IGNORE_SKIP_LIST }; enum FreeSpaceTreatmentMode { IGNORE_FREE_SPACE, ZAP_FREE_SPACE }; template <MarkCompactCollector::SweepingParallelism mode> static intptr_t Free(PagedSpace* space, FreeList* free_list, Address start, int size) { if (mode == MarkCompactCollector::SWEEP_ON_MAIN_THREAD) { DCHECK(free_list == NULL); return space->Free(start, size); } else { return size - free_list->Free(start, size); } } // Sweeps a page. After sweeping the page can be iterated. // Slots in live objects pointing into evacuation candidates are updated // if requested. // Returns the size of the biggest continuous freed memory chunk in bytes. template <SweepingMode sweeping_mode, MarkCompactCollector::SweepingParallelism parallelism, SkipListRebuildingMode skip_list_mode, FreeSpaceTreatmentMode free_space_mode> static int Sweep(PagedSpace* space, FreeList* free_list, Page* p, ObjectVisitor* v) { DCHECK(!p->IsEvacuationCandidate() && !p->SweepingDone()); DCHECK_EQ(skip_list_mode == REBUILD_SKIP_LIST, space->identity() == CODE_SPACE); DCHECK((p->skip_list() == NULL) || (skip_list_mode == REBUILD_SKIP_LIST)); DCHECK(parallelism == MarkCompactCollector::SWEEP_ON_MAIN_THREAD || sweeping_mode == SWEEP_ONLY); Address free_start = p->area_start(); DCHECK(reinterpret_cast<intptr_t>(free_start) % (32 * kPointerSize) == 0); // If we use the skip list for code space pages, we have to lock the skip // list because it could be accessed concurrently by the runtime or the // deoptimizer. SkipList* skip_list = p->skip_list(); if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list) { skip_list->Clear(); } intptr_t freed_bytes = 0; intptr_t max_freed_bytes = 0; int curr_region = -1; LiveObjectIterator<kBlackObjects> it(p); HeapObject* object = NULL; while ((object = it.Next()) != NULL) { DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object))); Address free_end = object->address(); if (free_end != free_start) { int size = static_cast<int>(free_end - free_start); if (free_space_mode == ZAP_FREE_SPACE) { memset(free_start, 0xcc, size); } freed_bytes = Free<parallelism>(space, free_list, free_start, size); max_freed_bytes = Max(freed_bytes, max_freed_bytes); } Map* map = object->synchronized_map(); int size = object->SizeFromMap(map); if (sweeping_mode == SWEEP_AND_VISIT_LIVE_OBJECTS) { object->IterateBody(map->instance_type(), size, v); } if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list != NULL) { int new_region_start = SkipList::RegionNumber(free_end); int new_region_end = SkipList::RegionNumber(free_end + size - kPointerSize); if (new_region_start != curr_region || new_region_end != curr_region) { skip_list->AddObject(free_end, size); curr_region = new_region_end; } } free_start = free_end + size; } // Clear the mark bits of that page and reset live bytes count. Bitmap::Clear(p); if (free_start != p->area_end()) { int size = static_cast<int>(p->area_end() - free_start); if (free_space_mode == ZAP_FREE_SPACE) { memset(free_start, 0xcc, size); } freed_bytes = Free<parallelism>(space, free_list, free_start, size); max_freed_bytes = Max(freed_bytes, max_freed_bytes); } p->concurrent_sweeping_state().SetValue(Page::kSweepingDone); return FreeList::GuaranteedAllocatable(static_cast<int>(max_freed_bytes)); } void MarkCompactCollector::InvalidateCode(Code* code) { if (heap_->incremental_marking()->IsCompacting() && !ShouldSkipEvacuationSlotRecording(code)) { DCHECK(compacting_); // If the object is white than no slots were recorded on it yet. MarkBit mark_bit = Marking::MarkBitFrom(code); if (Marking::IsWhite(mark_bit)) return; // Ignore all slots that might have been recorded in the body of the // deoptimized code object. Assumption: no slots will be recorded for // this object after invalidating it. RemoveObjectSlots(code->instruction_start(), code->address() + code->Size()); } } // Return true if the given code is deoptimized or will be deoptimized. bool MarkCompactCollector::WillBeDeoptimized(Code* code) { return code->is_optimized_code() && code->marked_for_deoptimization(); } void MarkCompactCollector::RemoveObjectSlots(Address start_slot, Address end_slot) { // Remove entries by replacing them with an old-space slot containing a smi // that is located in an unmovable page. for (Page* p : evacuation_candidates_) { DCHECK(p->IsEvacuationCandidate() || p->IsFlagSet(Page::RESCAN_ON_EVACUATION)); if (p->IsEvacuationCandidate()) { SlotsBuffer::RemoveObjectSlots(heap_, p->slots_buffer(), start_slot, end_slot); } } } #ifdef VERIFY_HEAP static void VerifyAllBlackObjects(MemoryChunk* page) { LiveObjectIterator<kAllLiveObjects> it(page); HeapObject* object = NULL; while ((object = it.Next()) != NULL) { CHECK(Marking::IsBlack(Marking::MarkBitFrom(object))); } } #endif // VERIFY_HEAP bool MarkCompactCollector::VisitLiveObjects(MemoryChunk* page, HeapObjectVisitor* visitor, IterationMode mode) { #ifdef VERIFY_HEAP VerifyAllBlackObjects(page); #endif // VERIFY_HEAP LiveObjectIterator<kBlackObjects> it(page); HeapObject* object = nullptr; while ((object = it.Next()) != nullptr) { DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object))); if (!visitor->Visit(object)) { if (mode == kClearMarkbits) { page->markbits()->ClearRange( page->AddressToMarkbitIndex(page->area_start()), page->AddressToMarkbitIndex(object->address())); RecomputeLiveBytes(page); } return false; } } if (mode == kClearMarkbits) { Bitmap::Clear(page); } return true; } void MarkCompactCollector::RecomputeLiveBytes(MemoryChunk* page) { LiveObjectIterator<kBlackObjects> it(page); int new_live_size = 0; HeapObject* object = nullptr; while ((object = it.Next()) != nullptr) { new_live_size += object->Size(); } page->SetLiveBytes(new_live_size); } void MarkCompactCollector::VisitLiveObjectsBody(Page* page, ObjectVisitor* visitor) { #ifdef VERIFY_HEAP VerifyAllBlackObjects(page); #endif // VERIFY_HEAP LiveObjectIterator<kBlackObjects> it(page); HeapObject* object = NULL; while ((object = it.Next()) != NULL) { DCHECK(Marking::IsBlack(Marking::MarkBitFrom(object))); Map* map = object->synchronized_map(); int size = object->SizeFromMap(map); object->IterateBody(map->instance_type(), size, visitor); } } void MarkCompactCollector::SweepAbortedPages() { // Second pass on aborted pages. for (Page* p : evacuation_candidates_) { if (p->IsFlagSet(Page::COMPACTION_WAS_ABORTED)) { p->ClearFlag(MemoryChunk::COMPACTION_WAS_ABORTED); p->concurrent_sweeping_state().SetValue(Page::kSweepingInProgress); PagedSpace* space = static_cast<PagedSpace*>(p->owner()); switch (space->identity()) { case OLD_SPACE: Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(space, nullptr, p, nullptr); break; case CODE_SPACE: if (FLAG_zap_code_space) { Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST, ZAP_FREE_SPACE>(space, NULL, p, nullptr); } else { Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p, nullptr); } break; default: UNREACHABLE(); break; } } } } void MarkCompactCollector::EvacuateNewSpaceAndCandidates() { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_EVACUATE); Heap::RelocationLock relocation_lock(heap()); { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_EVACUATE_NEW_SPACE); EvacuationScope evacuation_scope(this); EvacuateNewSpacePrologue(); EvacuatePagesInParallel(); EvacuateNewSpaceEpilogue(); heap()->new_space()->set_age_mark(heap()->new_space()->top()); } UpdatePointersAfterEvacuation(); { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_EVACUATE_CLEAN_UP); // After updating all pointers, we can finally sweep the aborted pages, // effectively overriding any forward pointers. SweepAbortedPages(); // EvacuateNewSpaceAndCandidates iterates over new space objects and for // ArrayBuffers either re-registers them as live or promotes them. This is // needed to properly free them. heap()->array_buffer_tracker()->FreeDead(false); // Deallocate evacuated candidate pages. ReleaseEvacuationCandidates(); } #ifdef VERIFY_HEAP if (FLAG_verify_heap && !sweeping_in_progress_) { VerifyEvacuation(heap()); } #endif } void MarkCompactCollector::UpdatePointersAfterEvacuation() { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_EVACUATE_UPDATE_POINTERS); { GCTracer::Scope gc_scope( heap()->tracer(), GCTracer::Scope::MC_EVACUATE_UPDATE_POINTERS_TO_EVACUATED); UpdateSlotsRecordedIn(migration_slots_buffer_); if (FLAG_trace_fragmentation_verbose) { PrintF(" migration slots buffer: %d\n", SlotsBuffer::SizeOfChain(migration_slots_buffer_)); } slots_buffer_allocator_->DeallocateChain(&migration_slots_buffer_); DCHECK(migration_slots_buffer_ == NULL); // TODO(hpayer): Process the slots buffers in parallel. This has to be done // after evacuation of all pages finishes. int buffers = evacuation_slots_buffers_.length(); for (int i = 0; i < buffers; i++) { SlotsBuffer* buffer = evacuation_slots_buffers_[i]; UpdateSlotsRecordedIn(buffer); slots_buffer_allocator_->DeallocateChain(&buffer); } evacuation_slots_buffers_.Rewind(0); } // Second pass: find pointers to new space and update them. PointersUpdatingVisitor updating_visitor(heap()); { GCTracer::Scope gc_scope( heap()->tracer(), GCTracer::Scope::MC_EVACUATE_UPDATE_POINTERS_TO_NEW); // Update pointers in to space. SemiSpaceIterator to_it(heap()->new_space()); for (HeapObject* object = to_it.Next(); object != NULL; object = to_it.Next()) { Map* map = object->map(); object->IterateBody(map->instance_type(), object->SizeFromMap(map), &updating_visitor); } // Update roots. heap_->IterateRoots(&updating_visitor, VISIT_ALL_IN_SWEEP_NEWSPACE); StoreBufferRebuildScope scope(heap_, heap_->store_buffer(), &Heap::ScavengeStoreBufferCallback); heap_->store_buffer()->IteratePointersToNewSpace(&UpdatePointer); } { GCTracer::Scope gc_scope( heap()->tracer(), GCTracer::Scope::MC_EVACUATE_UPDATE_POINTERS_BETWEEN_EVACUATED); for (Page* p : evacuation_candidates_) { DCHECK(p->IsEvacuationCandidate() || p->IsFlagSet(Page::RESCAN_ON_EVACUATION)); if (p->IsEvacuationCandidate()) { UpdateSlotsRecordedIn(p->slots_buffer()); if (FLAG_trace_fragmentation_verbose) { PrintF(" page %p slots buffer: %d\n", reinterpret_cast<void*>(p), SlotsBuffer::SizeOfChain(p->slots_buffer())); } slots_buffer_allocator_->DeallocateChain(p->slots_buffer_address()); // Important: skip list should be cleared only after roots were updated // because root iteration traverses the stack and might have to find // code objects from non-updated pc pointing into evacuation candidate. SkipList* list = p->skip_list(); if (list != NULL) list->Clear(); // First pass on aborted pages, fixing up all live objects. if (p->IsFlagSet(Page::COMPACTION_WAS_ABORTED)) { p->ClearEvacuationCandidate(); VisitLiveObjectsBody(p, &updating_visitor); } } if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) { if (FLAG_gc_verbose) { PrintF("Sweeping 0x%" V8PRIxPTR " during evacuation.\n", reinterpret_cast<intptr_t>(p)); } PagedSpace* space = static_cast<PagedSpace*>(p->owner()); p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION); p->concurrent_sweeping_state().SetValue(Page::kSweepingInProgress); switch (space->identity()) { case OLD_SPACE: Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD, IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p, &updating_visitor); break; case CODE_SPACE: if (FLAG_zap_code_space) { Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST, ZAP_FREE_SPACE>(space, NULL, p, &updating_visitor); } else { Sweep<SWEEP_AND_VISIT_LIVE_OBJECTS, SWEEP_ON_MAIN_THREAD, REBUILD_SKIP_LIST, IGNORE_FREE_SPACE>(space, NULL, p, &updating_visitor); } break; default: UNREACHABLE(); break; } } } } { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_EVACUATE_UPDATE_POINTERS_WEAK); heap_->string_table()->Iterate(&updating_visitor); // Update pointers from external string table. heap_->UpdateReferencesInExternalStringTable( &UpdateReferenceInExternalStringTableEntry); EvacuationWeakObjectRetainer evacuation_object_retainer; heap()->ProcessAllWeakReferences(&evacuation_object_retainer); } } void MarkCompactCollector::ReleaseEvacuationCandidates() { for (Page* p : evacuation_candidates_) { if (!p->IsEvacuationCandidate()) continue; PagedSpace* space = static_cast<PagedSpace*>(p->owner()); space->Free(p->area_start(), p->area_size()); p->set_scan_on_scavenge(false); p->ResetLiveBytes(); CHECK(p->SweepingDone()); space->ReleasePage(p, true); } evacuation_candidates_.Rewind(0); compacting_ = false; heap()->FilterStoreBufferEntriesOnAboutToBeFreedPages(); heap()->FreeQueuedChunks(); } int MarkCompactCollector::SweepInParallel(PagedSpace* space, int required_freed_bytes, int max_pages) { int max_freed = 0; int max_freed_overall = 0; int page_count = 0; for (Page* p : sweeping_list(space)) { max_freed = SweepInParallel(p, space); DCHECK(max_freed >= 0); if (required_freed_bytes > 0 && max_freed >= required_freed_bytes) { return max_freed; } max_freed_overall = Max(max_freed, max_freed_overall); page_count++; if (max_pages > 0 && page_count >= max_pages) { break; } } return max_freed_overall; } int MarkCompactCollector::SweepInParallel(Page* page, PagedSpace* space) { int max_freed = 0; if (page->TryLock()) { // If this page was already swept in the meantime, we can return here. if (page->concurrent_sweeping_state().Value() != Page::kSweepingPending) { page->mutex()->Unlock(); return 0; } page->concurrent_sweeping_state().SetValue(Page::kSweepingInProgress); FreeList* free_list; FreeList private_free_list(space); if (space->identity() == OLD_SPACE) { free_list = free_list_old_space_.get(); max_freed = Sweep<SWEEP_ONLY, SWEEP_IN_PARALLEL, IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(space, &private_free_list, page, NULL); } else if (space->identity() == CODE_SPACE) { free_list = free_list_code_space_.get(); max_freed = Sweep<SWEEP_ONLY, SWEEP_IN_PARALLEL, REBUILD_SKIP_LIST, IGNORE_FREE_SPACE>(space, &private_free_list, page, NULL); } else { free_list = free_list_map_space_.get(); max_freed = Sweep<SWEEP_ONLY, SWEEP_IN_PARALLEL, IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(space, &private_free_list, page, NULL); } free_list->Concatenate(&private_free_list); page->concurrent_sweeping_state().SetValue(Page::kSweepingDone); page->mutex()->Unlock(); } return max_freed; } void MarkCompactCollector::StartSweepSpace(PagedSpace* space) { space->ClearStats(); PageIterator it(space); int will_be_swept = 0; bool unused_page_present = false; while (it.has_next()) { Page* p = it.next(); DCHECK(p->SweepingDone()); if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION) || p->IsEvacuationCandidate()) { // Will be processed in EvacuateNewSpaceAndCandidates. DCHECK(evacuation_candidates_.length() > 0); continue; } if (p->IsFlagSet(Page::NEVER_ALLOCATE_ON_PAGE)) { // We need to sweep the page to get it into an iterable state again. Note // that this adds unusable memory into the free list that is later on // (in the free list) dropped again. Since we only use the flag for // testing this is fine. p->concurrent_sweeping_state().SetValue(Page::kSweepingInProgress); Sweep<SWEEP_ONLY, SWEEP_ON_MAIN_THREAD, IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(space, nullptr, p, nullptr); continue; } // One unused page is kept, all further are released before sweeping them. if (p->LiveBytes() == 0) { if (unused_page_present) { if (FLAG_gc_verbose) { PrintIsolate(isolate(), "sweeping: released page: %p", p); } space->ReleasePage(p, false); continue; } unused_page_present = true; } p->concurrent_sweeping_state().SetValue(Page::kSweepingPending); sweeping_list(space).push_back(p); int to_sweep = p->area_size() - p->LiveBytes(); space->accounting_stats_.ShrinkSpace(to_sweep); will_be_swept++; } if (FLAG_gc_verbose) { PrintIsolate(isolate(), "sweeping: space=%s initialized_for_sweeping=%d", AllocationSpaceName(space->identity()), will_be_swept); } std::sort(sweeping_list(space).begin(), sweeping_list(space).end(), [](Page* a, Page* b) { return a->LiveBytes() < b->LiveBytes(); }); } void MarkCompactCollector::SweepSpaces() { GCTracer::Scope gc_scope(heap()->tracer(), GCTracer::Scope::MC_SWEEP); double start_time = 0.0; if (FLAG_print_cumulative_gc_stat) { start_time = heap_->MonotonicallyIncreasingTimeInMs(); } #ifdef DEBUG state_ = SWEEP_SPACES; #endif { sweeping_in_progress_ = true; { GCTracer::Scope sweep_scope(heap()->tracer(), GCTracer::Scope::MC_SWEEP_OLD); StartSweepSpace(heap()->old_space()); } { GCTracer::Scope sweep_scope(heap()->tracer(), GCTracer::Scope::MC_SWEEP_CODE); StartSweepSpace(heap()->code_space()); } { GCTracer::Scope sweep_scope(heap()->tracer(), GCTracer::Scope::MC_SWEEP_MAP); StartSweepSpace(heap()->map_space()); } if (FLAG_concurrent_sweeping) { StartSweeperThreads(); } } // Deallocate unmarked large objects. heap_->lo_space()->FreeUnmarkedObjects(); // Give pages that are queued to be freed back to the OS. Invalid store // buffer entries are already filter out. We can just release the memory. heap()->FreeQueuedChunks(); if (FLAG_print_cumulative_gc_stat) { heap_->tracer()->AddSweepingTime(heap_->MonotonicallyIncreasingTimeInMs() - start_time); } } void MarkCompactCollector::ParallelSweepSpacesComplete() { sweeping_list(heap()->old_space()).clear(); sweeping_list(heap()->code_space()).clear(); sweeping_list(heap()->map_space()).clear(); } // TODO(1466) ReportDeleteIfNeeded is not called currently. // Our profiling tools do not expect intersections between // code objects. We should either reenable it or change our tools. void MarkCompactCollector::ReportDeleteIfNeeded(HeapObject* obj, Isolate* isolate) { if (obj->IsCode()) { PROFILE(isolate, CodeDeleteEvent(obj->address())); } } Isolate* MarkCompactCollector::isolate() const { return heap_->isolate(); } void MarkCompactCollector::Initialize() { MarkCompactMarkingVisitor::Initialize(); IncrementalMarking::Initialize(); } void MarkCompactCollector::EvictPopularEvacuationCandidate(Page* page) { if (FLAG_trace_fragmentation) { PrintF("Page %p is too popular. Disabling evacuation.\n", reinterpret_cast<void*>(page)); } isolate()->CountUsage(v8::Isolate::UseCounterFeature::kSlotsBufferOverflow); // TODO(gc) If all evacuation candidates are too popular we // should stop slots recording entirely. page->ClearEvacuationCandidate(); DCHECK(!page->IsFlagSet(Page::POPULAR_PAGE)); page->SetFlag(Page::POPULAR_PAGE); // We were not collecting slots on this page that point // to other evacuation candidates thus we have to // rescan the page after evacuation to discover and update all // pointers to evacuated objects. page->SetFlag(Page::RESCAN_ON_EVACUATION); } void MarkCompactCollector::RecordCodeEntrySlot(HeapObject* object, Address slot, Code* target) { Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target)); if (target_page->IsEvacuationCandidate() && !ShouldSkipEvacuationSlotRecording(object)) { if (!SlotsBuffer::AddTo(slots_buffer_allocator_, target_page->slots_buffer_address(), SlotsBuffer::CODE_ENTRY_SLOT, slot, SlotsBuffer::FAIL_ON_OVERFLOW)) { EvictPopularEvacuationCandidate(target_page); } } } void MarkCompactCollector::RecordCodeTargetPatch(Address pc, Code* target) { DCHECK(heap()->gc_state() == Heap::MARK_COMPACT); if (is_compacting()) { Code* host = isolate()->inner_pointer_to_code_cache()->GcSafeFindCodeForInnerPointer( pc); MarkBit mark_bit = Marking::MarkBitFrom(host); if (Marking::IsBlack(mark_bit)) { RelocInfo rinfo(isolate(), pc, RelocInfo::CODE_TARGET, 0, host); RecordRelocSlot(&rinfo, target); } } } } // namespace internal } // namespace v8