// Copyright 2010 the V8 project authors. All rights reserved. // // Tests of the circular queue. #include "v8.h" #include "circular-queue-inl.h" #include "cctest.h" namespace i = v8::internal; using i::SamplingCircularQueue; TEST(SamplingCircularQueue) { typedef SamplingCircularQueue::Cell Record; const int kRecordsPerChunk = 4; SamplingCircularQueue scq(sizeof(Record), kRecordsPerChunk * sizeof(Record), 3); // Check that we are using non-reserved values. CHECK_NE(SamplingCircularQueue::kClear, 1); CHECK_NE(SamplingCircularQueue::kEnd, 1); // Fill up the first chunk. CHECK_EQ(NULL, scq.StartDequeue()); for (Record i = 1; i < 1 + kRecordsPerChunk; ++i) { Record* rec = reinterpret_cast<Record*>(scq.Enqueue()); CHECK_NE(NULL, rec); *rec = i; CHECK_EQ(NULL, scq.StartDequeue()); } // Fill up the second chunk. Consumption must still be unavailable. CHECK_EQ(NULL, scq.StartDequeue()); for (Record i = 10; i < 10 + kRecordsPerChunk; ++i) { Record* rec = reinterpret_cast<Record*>(scq.Enqueue()); CHECK_NE(NULL, rec); *rec = i; CHECK_EQ(NULL, scq.StartDequeue()); } Record* rec = reinterpret_cast<Record*>(scq.Enqueue()); CHECK_NE(NULL, rec); *rec = 20; // Now as we started filling up the third chunk, consumption // must become possible. CHECK_NE(NULL, scq.StartDequeue()); // Consume the first chunk. for (Record i = 1; i < 1 + kRecordsPerChunk; ++i) { Record* rec = reinterpret_cast<Record*>(scq.StartDequeue()); CHECK_NE(NULL, rec); CHECK_EQ(static_cast<int64_t>(i), static_cast<int64_t>(*rec)); CHECK_EQ(rec, reinterpret_cast<Record*>(scq.StartDequeue())); scq.FinishDequeue(); CHECK_NE(rec, reinterpret_cast<Record*>(scq.StartDequeue())); } // Now consumption must not be possible, as consumer now polls // the first chunk for emptinness. CHECK_EQ(NULL, scq.StartDequeue()); scq.FlushResidualRecords(); // From now, consumer no more polls ahead of the current chunk, // so it's possible to consume the second chunk. CHECK_NE(NULL, scq.StartDequeue()); // Consume the second chunk for (Record i = 10; i < 10 + kRecordsPerChunk; ++i) { Record* rec = reinterpret_cast<Record*>(scq.StartDequeue()); CHECK_NE(NULL, rec); CHECK_EQ(static_cast<int64_t>(i), static_cast<int64_t>(*rec)); CHECK_EQ(rec, reinterpret_cast<Record*>(scq.StartDequeue())); scq.FinishDequeue(); CHECK_NE(rec, reinterpret_cast<Record*>(scq.StartDequeue())); } // Consumption must still be possible as the first cell of the // last chunk is not clean. CHECK_NE(NULL, scq.StartDequeue()); } namespace { class ProducerThread: public i::Thread { public: typedef SamplingCircularQueue::Cell Record; ProducerThread(SamplingCircularQueue* scq, int records_per_chunk, Record value, i::Semaphore* finished) : scq_(scq), records_per_chunk_(records_per_chunk), value_(value), finished_(finished) { } virtual void Run() { for (Record i = value_; i < value_ + records_per_chunk_; ++i) { Record* rec = reinterpret_cast<Record*>(scq_->Enqueue()); CHECK_NE(NULL, rec); *rec = i; } finished_->Signal(); } private: SamplingCircularQueue* scq_; const int records_per_chunk_; Record value_; i::Semaphore* finished_; }; } // namespace TEST(SamplingCircularQueueMultithreading) { // Emulate multiple VM threads working 'one thread at a time.' // This test enqueues data from different threads. This corresponds // to the case of profiling under Linux, where signal handler that // does sampling is called in the context of different VM threads. typedef ProducerThread::Record Record; const int kRecordsPerChunk = 4; SamplingCircularQueue scq(sizeof(Record), kRecordsPerChunk * sizeof(Record), 3); i::Semaphore* semaphore = i::OS::CreateSemaphore(0); // Don't poll ahead, making possible to check data in the buffer // immediately after enqueuing. scq.FlushResidualRecords(); // Check that we are using non-reserved values. CHECK_NE(SamplingCircularQueue::kClear, 1); CHECK_NE(SamplingCircularQueue::kEnd, 1); ProducerThread producer1(&scq, kRecordsPerChunk, 1, semaphore); ProducerThread producer2(&scq, kRecordsPerChunk, 10, semaphore); ProducerThread producer3(&scq, kRecordsPerChunk, 20, semaphore); CHECK_EQ(NULL, scq.StartDequeue()); producer1.Start(); semaphore->Wait(); for (Record i = 1; i < 1 + kRecordsPerChunk; ++i) { Record* rec = reinterpret_cast<Record*>(scq.StartDequeue()); CHECK_NE(NULL, rec); CHECK_EQ(static_cast<int64_t>(i), static_cast<int64_t>(*rec)); CHECK_EQ(rec, reinterpret_cast<Record*>(scq.StartDequeue())); scq.FinishDequeue(); CHECK_NE(rec, reinterpret_cast<Record*>(scq.StartDequeue())); } CHECK_EQ(NULL, scq.StartDequeue()); producer2.Start(); semaphore->Wait(); for (Record i = 10; i < 10 + kRecordsPerChunk; ++i) { Record* rec = reinterpret_cast<Record*>(scq.StartDequeue()); CHECK_NE(NULL, rec); CHECK_EQ(static_cast<int64_t>(i), static_cast<int64_t>(*rec)); CHECK_EQ(rec, reinterpret_cast<Record*>(scq.StartDequeue())); scq.FinishDequeue(); CHECK_NE(rec, reinterpret_cast<Record*>(scq.StartDequeue())); } CHECK_EQ(NULL, scq.StartDequeue()); producer3.Start(); semaphore->Wait(); for (Record i = 20; i < 20 + kRecordsPerChunk; ++i) { Record* rec = reinterpret_cast<Record*>(scq.StartDequeue()); CHECK_NE(NULL, rec); CHECK_EQ(static_cast<int64_t>(i), static_cast<int64_t>(*rec)); CHECK_EQ(rec, reinterpret_cast<Record*>(scq.StartDequeue())); scq.FinishDequeue(); CHECK_NE(rec, reinterpret_cast<Record*>(scq.StartDequeue())); } CHECK_EQ(NULL, scq.StartDequeue()); delete semaphore; }