// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/mips64/codegen-mips64.h" #if V8_TARGET_ARCH_MIPS64 #include "src/codegen.h" #include "src/macro-assembler.h" #include "src/mips64/simulator-mips64.h" namespace v8 { namespace internal { #define __ masm. #if defined(V8_HOST_ARCH_MIPS) MemCopyUint8Function CreateMemCopyUint8Function(Isolate* isolate, MemCopyUint8Function stub) { #if defined(USE_SIMULATOR) return stub; #else size_t actual_size; byte* buffer = static_cast<byte*>(base::OS::Allocate(3 * KB, &actual_size, true)); if (buffer == nullptr) return stub; // This code assumes that cache lines are 32 bytes and if the cache line is // larger it will not work correctly. MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size), CodeObjectRequired::kNo); { Label lastb, unaligned, aligned, chkw, loop16w, chk1w, wordCopy_loop, skip_pref, lastbloop, leave, ua_chk16w, ua_loop16w, ua_skip_pref, ua_chkw, ua_chk1w, ua_wordCopy_loop, ua_smallCopy, ua_smallCopy_loop; // The size of each prefetch. uint32_t pref_chunk = 32; // The maximum size of a prefetch, it must not be less then pref_chunk. // If the real size of a prefetch is greater then max_pref_size and // the kPrefHintPrepareForStore hint is used, the code will not work // correctly. uint32_t max_pref_size = 128; DCHECK(pref_chunk < max_pref_size); // pref_limit is set based on the fact that we never use an offset // greater then 5 on a store pref and that a single pref can // never be larger then max_pref_size. uint32_t pref_limit = (5 * pref_chunk) + max_pref_size; int32_t pref_hint_load = kPrefHintLoadStreamed; int32_t pref_hint_store = kPrefHintPrepareForStore; uint32_t loadstore_chunk = 4; // The initial prefetches may fetch bytes that are before the buffer being // copied. Start copies with an offset of 4 so avoid this situation when // using kPrefHintPrepareForStore. DCHECK(pref_hint_store != kPrefHintPrepareForStore || pref_chunk * 4 >= max_pref_size); // If the size is less than 8, go to lastb. Regardless of size, // copy dst pointer to v0 for the retuen value. __ slti(a6, a2, 2 * loadstore_chunk); __ bne(a6, zero_reg, &lastb); __ mov(v0, a0); // In delay slot. // If src and dst have different alignments, go to unaligned, if they // have the same alignment (but are not actually aligned) do a partial // load/store to make them aligned. If they are both already aligned // we can start copying at aligned. __ xor_(t8, a1, a0); __ andi(t8, t8, loadstore_chunk - 1); // t8 is a0/a1 word-displacement. __ bne(t8, zero_reg, &unaligned); __ subu(a3, zero_reg, a0); // In delay slot. __ andi(a3, a3, loadstore_chunk - 1); // Copy a3 bytes to align a0/a1. __ beq(a3, zero_reg, &aligned); // Already aligned. __ subu(a2, a2, a3); // In delay slot. a2 is the remining bytes count. if (kArchEndian == kLittle) { __ lwr(t8, MemOperand(a1)); __ addu(a1, a1, a3); __ swr(t8, MemOperand(a0)); __ addu(a0, a0, a3); } else { __ lwl(t8, MemOperand(a1)); __ addu(a1, a1, a3); __ swl(t8, MemOperand(a0)); __ addu(a0, a0, a3); } // Now dst/src are both aligned to (word) aligned addresses. Set a2 to // count how many bytes we have to copy after all the 64 byte chunks are // copied and a3 to the dst pointer after all the 64 byte chunks have been // copied. We will loop, incrementing a0 and a1 until a0 equals a3. __ bind(&aligned); __ andi(t8, a2, 0x3f); __ beq(a2, t8, &chkw); // Less than 64? __ subu(a3, a2, t8); // In delay slot. __ addu(a3, a0, a3); // Now a3 is the final dst after loop. // When in the loop we prefetch with kPrefHintPrepareForStore hint, // in this case the a0+x should be past the "a4-32" address. This means: // for x=128 the last "safe" a0 address is "a4-160". Alternatively, for // x=64 the last "safe" a0 address is "a4-96". In the current version we // will use "pref hint, 128(a0)", so "a4-160" is the limit. if (pref_hint_store == kPrefHintPrepareForStore) { __ addu(a4, a0, a2); // a4 is the "past the end" address. __ Subu(t9, a4, pref_limit); // t9 is the "last safe pref" address. } __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk)); __ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk)); __ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk)); __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk)); if (pref_hint_store != kPrefHintPrepareForStore) { __ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk)); __ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk)); __ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk)); } __ bind(&loop16w); __ lw(a4, MemOperand(a1)); if (pref_hint_store == kPrefHintPrepareForStore) { __ sltu(v1, t9, a0); // If a0 > t9, don't use next prefetch. __ Branch(USE_DELAY_SLOT, &skip_pref, gt, v1, Operand(zero_reg)); } __ lw(a5, MemOperand(a1, 1, loadstore_chunk)); // Maybe in delay slot. __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk)); __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk)); __ bind(&skip_pref); __ lw(a6, MemOperand(a1, 2, loadstore_chunk)); __ lw(a7, MemOperand(a1, 3, loadstore_chunk)); __ lw(t0, MemOperand(a1, 4, loadstore_chunk)); __ lw(t1, MemOperand(a1, 5, loadstore_chunk)); __ lw(t2, MemOperand(a1, 6, loadstore_chunk)); __ lw(t3, MemOperand(a1, 7, loadstore_chunk)); __ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk)); __ sw(a4, MemOperand(a0)); __ sw(a5, MemOperand(a0, 1, loadstore_chunk)); __ sw(a6, MemOperand(a0, 2, loadstore_chunk)); __ sw(a7, MemOperand(a0, 3, loadstore_chunk)); __ sw(t0, MemOperand(a0, 4, loadstore_chunk)); __ sw(t1, MemOperand(a0, 5, loadstore_chunk)); __ sw(t2, MemOperand(a0, 6, loadstore_chunk)); __ sw(t3, MemOperand(a0, 7, loadstore_chunk)); __ lw(a4, MemOperand(a1, 8, loadstore_chunk)); __ lw(a5, MemOperand(a1, 9, loadstore_chunk)); __ lw(a6, MemOperand(a1, 10, loadstore_chunk)); __ lw(a7, MemOperand(a1, 11, loadstore_chunk)); __ lw(t0, MemOperand(a1, 12, loadstore_chunk)); __ lw(t1, MemOperand(a1, 13, loadstore_chunk)); __ lw(t2, MemOperand(a1, 14, loadstore_chunk)); __ lw(t3, MemOperand(a1, 15, loadstore_chunk)); __ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk)); __ sw(a4, MemOperand(a0, 8, loadstore_chunk)); __ sw(a5, MemOperand(a0, 9, loadstore_chunk)); __ sw(a6, MemOperand(a0, 10, loadstore_chunk)); __ sw(a7, MemOperand(a0, 11, loadstore_chunk)); __ sw(t0, MemOperand(a0, 12, loadstore_chunk)); __ sw(t1, MemOperand(a0, 13, loadstore_chunk)); __ sw(t2, MemOperand(a0, 14, loadstore_chunk)); __ sw(t3, MemOperand(a0, 15, loadstore_chunk)); __ addiu(a0, a0, 16 * loadstore_chunk); __ bne(a0, a3, &loop16w); __ addiu(a1, a1, 16 * loadstore_chunk); // In delay slot. __ mov(a2, t8); // Here we have src and dest word-aligned but less than 64-bytes to go. // Check for a 32 bytes chunk and copy if there is one. Otherwise jump // down to chk1w to handle the tail end of the copy. __ bind(&chkw); __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk)); __ andi(t8, a2, 0x1f); __ beq(a2, t8, &chk1w); // Less than 32? __ nop(); // In delay slot. __ lw(a4, MemOperand(a1)); __ lw(a5, MemOperand(a1, 1, loadstore_chunk)); __ lw(a6, MemOperand(a1, 2, loadstore_chunk)); __ lw(a7, MemOperand(a1, 3, loadstore_chunk)); __ lw(t0, MemOperand(a1, 4, loadstore_chunk)); __ lw(t1, MemOperand(a1, 5, loadstore_chunk)); __ lw(t2, MemOperand(a1, 6, loadstore_chunk)); __ lw(t3, MemOperand(a1, 7, loadstore_chunk)); __ addiu(a1, a1, 8 * loadstore_chunk); __ sw(a4, MemOperand(a0)); __ sw(a5, MemOperand(a0, 1, loadstore_chunk)); __ sw(a6, MemOperand(a0, 2, loadstore_chunk)); __ sw(a7, MemOperand(a0, 3, loadstore_chunk)); __ sw(t0, MemOperand(a0, 4, loadstore_chunk)); __ sw(t1, MemOperand(a0, 5, loadstore_chunk)); __ sw(t2, MemOperand(a0, 6, loadstore_chunk)); __ sw(t3, MemOperand(a0, 7, loadstore_chunk)); __ addiu(a0, a0, 8 * loadstore_chunk); // Here we have less than 32 bytes to copy. Set up for a loop to copy // one word at a time. Set a2 to count how many bytes we have to copy // after all the word chunks are copied and a3 to the dst pointer after // all the word chunks have been copied. We will loop, incrementing a0 // and a1 untill a0 equals a3. __ bind(&chk1w); __ andi(a2, t8, loadstore_chunk - 1); __ beq(a2, t8, &lastb); __ subu(a3, t8, a2); // In delay slot. __ addu(a3, a0, a3); __ bind(&wordCopy_loop); __ lw(a7, MemOperand(a1)); __ addiu(a0, a0, loadstore_chunk); __ addiu(a1, a1, loadstore_chunk); __ bne(a0, a3, &wordCopy_loop); __ sw(a7, MemOperand(a0, -1, loadstore_chunk)); // In delay slot. __ bind(&lastb); __ Branch(&leave, le, a2, Operand(zero_reg)); __ addu(a3, a0, a2); __ bind(&lastbloop); __ lb(v1, MemOperand(a1)); __ addiu(a0, a0, 1); __ addiu(a1, a1, 1); __ bne(a0, a3, &lastbloop); __ sb(v1, MemOperand(a0, -1)); // In delay slot. __ bind(&leave); __ jr(ra); __ nop(); // Unaligned case. Only the dst gets aligned so we need to do partial // loads of the source followed by normal stores to the dst (once we // have aligned the destination). __ bind(&unaligned); __ andi(a3, a3, loadstore_chunk - 1); // Copy a3 bytes to align a0/a1. __ beq(a3, zero_reg, &ua_chk16w); __ subu(a2, a2, a3); // In delay slot. if (kArchEndian == kLittle) { __ lwr(v1, MemOperand(a1)); __ lwl(v1, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); __ addu(a1, a1, a3); __ swr(v1, MemOperand(a0)); __ addu(a0, a0, a3); } else { __ lwl(v1, MemOperand(a1)); __ lwr(v1, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); __ addu(a1, a1, a3); __ swl(v1, MemOperand(a0)); __ addu(a0, a0, a3); } // Now the dst (but not the source) is aligned. Set a2 to count how many // bytes we have to copy after all the 64 byte chunks are copied and a3 to // the dst pointer after all the 64 byte chunks have been copied. We will // loop, incrementing a0 and a1 until a0 equals a3. __ bind(&ua_chk16w); __ andi(t8, a2, 0x3f); __ beq(a2, t8, &ua_chkw); __ subu(a3, a2, t8); // In delay slot. __ addu(a3, a0, a3); if (pref_hint_store == kPrefHintPrepareForStore) { __ addu(a4, a0, a2); __ Subu(t9, a4, pref_limit); } __ Pref(pref_hint_load, MemOperand(a1, 0 * pref_chunk)); __ Pref(pref_hint_load, MemOperand(a1, 1 * pref_chunk)); __ Pref(pref_hint_load, MemOperand(a1, 2 * pref_chunk)); if (pref_hint_store != kPrefHintPrepareForStore) { __ Pref(pref_hint_store, MemOperand(a0, 1 * pref_chunk)); __ Pref(pref_hint_store, MemOperand(a0, 2 * pref_chunk)); __ Pref(pref_hint_store, MemOperand(a0, 3 * pref_chunk)); } __ bind(&ua_loop16w); if (kArchEndian == kLittle) { __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk)); __ lwr(a4, MemOperand(a1)); __ lwr(a5, MemOperand(a1, 1, loadstore_chunk)); __ lwr(a6, MemOperand(a1, 2, loadstore_chunk)); if (pref_hint_store == kPrefHintPrepareForStore) { __ sltu(v1, t9, a0); __ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg)); } __ lwr(a7, MemOperand(a1, 3, loadstore_chunk)); // Maybe in delay slot. __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk)); __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk)); __ bind(&ua_skip_pref); __ lwr(t0, MemOperand(a1, 4, loadstore_chunk)); __ lwr(t1, MemOperand(a1, 5, loadstore_chunk)); __ lwr(t2, MemOperand(a1, 6, loadstore_chunk)); __ lwr(t3, MemOperand(a1, 7, loadstore_chunk)); __ lwl(a4, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(a5, MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(a6, MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(a7, MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t0, MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t1, MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t2, MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t3, MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one)); } else { __ Pref(pref_hint_load, MemOperand(a1, 3 * pref_chunk)); __ lwl(a4, MemOperand(a1)); __ lwl(a5, MemOperand(a1, 1, loadstore_chunk)); __ lwl(a6, MemOperand(a1, 2, loadstore_chunk)); if (pref_hint_store == kPrefHintPrepareForStore) { __ sltu(v1, t9, a0); __ Branch(USE_DELAY_SLOT, &ua_skip_pref, gt, v1, Operand(zero_reg)); } __ lwl(a7, MemOperand(a1, 3, loadstore_chunk)); // Maybe in delay slot. __ Pref(pref_hint_store, MemOperand(a0, 4 * pref_chunk)); __ Pref(pref_hint_store, MemOperand(a0, 5 * pref_chunk)); __ bind(&ua_skip_pref); __ lwl(t0, MemOperand(a1, 4, loadstore_chunk)); __ lwl(t1, MemOperand(a1, 5, loadstore_chunk)); __ lwl(t2, MemOperand(a1, 6, loadstore_chunk)); __ lwl(t3, MemOperand(a1, 7, loadstore_chunk)); __ lwr(a4, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(a5, MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(a6, MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(a7, MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t0, MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t1, MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t2, MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t3, MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one)); } __ Pref(pref_hint_load, MemOperand(a1, 4 * pref_chunk)); __ sw(a4, MemOperand(a0)); __ sw(a5, MemOperand(a0, 1, loadstore_chunk)); __ sw(a6, MemOperand(a0, 2, loadstore_chunk)); __ sw(a7, MemOperand(a0, 3, loadstore_chunk)); __ sw(t0, MemOperand(a0, 4, loadstore_chunk)); __ sw(t1, MemOperand(a0, 5, loadstore_chunk)); __ sw(t2, MemOperand(a0, 6, loadstore_chunk)); __ sw(t3, MemOperand(a0, 7, loadstore_chunk)); if (kArchEndian == kLittle) { __ lwr(a4, MemOperand(a1, 8, loadstore_chunk)); __ lwr(a5, MemOperand(a1, 9, loadstore_chunk)); __ lwr(a6, MemOperand(a1, 10, loadstore_chunk)); __ lwr(a7, MemOperand(a1, 11, loadstore_chunk)); __ lwr(t0, MemOperand(a1, 12, loadstore_chunk)); __ lwr(t1, MemOperand(a1, 13, loadstore_chunk)); __ lwr(t2, MemOperand(a1, 14, loadstore_chunk)); __ lwr(t3, MemOperand(a1, 15, loadstore_chunk)); __ lwl(a4, MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(a5, MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(a6, MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(a7, MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t0, MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t1, MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t2, MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t3, MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one)); } else { __ lwl(a4, MemOperand(a1, 8, loadstore_chunk)); __ lwl(a5, MemOperand(a1, 9, loadstore_chunk)); __ lwl(a6, MemOperand(a1, 10, loadstore_chunk)); __ lwl(a7, MemOperand(a1, 11, loadstore_chunk)); __ lwl(t0, MemOperand(a1, 12, loadstore_chunk)); __ lwl(t1, MemOperand(a1, 13, loadstore_chunk)); __ lwl(t2, MemOperand(a1, 14, loadstore_chunk)); __ lwl(t3, MemOperand(a1, 15, loadstore_chunk)); __ lwr(a4, MemOperand(a1, 9, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(a5, MemOperand(a1, 10, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(a6, MemOperand(a1, 11, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(a7, MemOperand(a1, 12, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t0, MemOperand(a1, 13, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t1, MemOperand(a1, 14, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t2, MemOperand(a1, 15, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t3, MemOperand(a1, 16, loadstore_chunk, MemOperand::offset_minus_one)); } __ Pref(pref_hint_load, MemOperand(a1, 5 * pref_chunk)); __ sw(a4, MemOperand(a0, 8, loadstore_chunk)); __ sw(a5, MemOperand(a0, 9, loadstore_chunk)); __ sw(a6, MemOperand(a0, 10, loadstore_chunk)); __ sw(a7, MemOperand(a0, 11, loadstore_chunk)); __ sw(t0, MemOperand(a0, 12, loadstore_chunk)); __ sw(t1, MemOperand(a0, 13, loadstore_chunk)); __ sw(t2, MemOperand(a0, 14, loadstore_chunk)); __ sw(t3, MemOperand(a0, 15, loadstore_chunk)); __ addiu(a0, a0, 16 * loadstore_chunk); __ bne(a0, a3, &ua_loop16w); __ addiu(a1, a1, 16 * loadstore_chunk); // In delay slot. __ mov(a2, t8); // Here less than 64-bytes. Check for // a 32 byte chunk and copy if there is one. Otherwise jump down to // ua_chk1w to handle the tail end of the copy. __ bind(&ua_chkw); __ Pref(pref_hint_load, MemOperand(a1)); __ andi(t8, a2, 0x1f); __ beq(a2, t8, &ua_chk1w); __ nop(); // In delay slot. if (kArchEndian == kLittle) { __ lwr(a4, MemOperand(a1)); __ lwr(a5, MemOperand(a1, 1, loadstore_chunk)); __ lwr(a6, MemOperand(a1, 2, loadstore_chunk)); __ lwr(a7, MemOperand(a1, 3, loadstore_chunk)); __ lwr(t0, MemOperand(a1, 4, loadstore_chunk)); __ lwr(t1, MemOperand(a1, 5, loadstore_chunk)); __ lwr(t2, MemOperand(a1, 6, loadstore_chunk)); __ lwr(t3, MemOperand(a1, 7, loadstore_chunk)); __ lwl(a4, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(a5, MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(a6, MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(a7, MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t0, MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t1, MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t2, MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one)); __ lwl(t3, MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one)); } else { __ lwl(a4, MemOperand(a1)); __ lwl(a5, MemOperand(a1, 1, loadstore_chunk)); __ lwl(a6, MemOperand(a1, 2, loadstore_chunk)); __ lwl(a7, MemOperand(a1, 3, loadstore_chunk)); __ lwl(t0, MemOperand(a1, 4, loadstore_chunk)); __ lwl(t1, MemOperand(a1, 5, loadstore_chunk)); __ lwl(t2, MemOperand(a1, 6, loadstore_chunk)); __ lwl(t3, MemOperand(a1, 7, loadstore_chunk)); __ lwr(a4, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(a5, MemOperand(a1, 2, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(a6, MemOperand(a1, 3, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(a7, MemOperand(a1, 4, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t0, MemOperand(a1, 5, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t1, MemOperand(a1, 6, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t2, MemOperand(a1, 7, loadstore_chunk, MemOperand::offset_minus_one)); __ lwr(t3, MemOperand(a1, 8, loadstore_chunk, MemOperand::offset_minus_one)); } __ addiu(a1, a1, 8 * loadstore_chunk); __ sw(a4, MemOperand(a0)); __ sw(a5, MemOperand(a0, 1, loadstore_chunk)); __ sw(a6, MemOperand(a0, 2, loadstore_chunk)); __ sw(a7, MemOperand(a0, 3, loadstore_chunk)); __ sw(t0, MemOperand(a0, 4, loadstore_chunk)); __ sw(t1, MemOperand(a0, 5, loadstore_chunk)); __ sw(t2, MemOperand(a0, 6, loadstore_chunk)); __ sw(t3, MemOperand(a0, 7, loadstore_chunk)); __ addiu(a0, a0, 8 * loadstore_chunk); // Less than 32 bytes to copy. Set up for a loop to // copy one word at a time. __ bind(&ua_chk1w); __ andi(a2, t8, loadstore_chunk - 1); __ beq(a2, t8, &ua_smallCopy); __ subu(a3, t8, a2); // In delay slot. __ addu(a3, a0, a3); __ bind(&ua_wordCopy_loop); if (kArchEndian == kLittle) { __ lwr(v1, MemOperand(a1)); __ lwl(v1, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); } else { __ lwl(v1, MemOperand(a1)); __ lwr(v1, MemOperand(a1, 1, loadstore_chunk, MemOperand::offset_minus_one)); } __ addiu(a0, a0, loadstore_chunk); __ addiu(a1, a1, loadstore_chunk); __ bne(a0, a3, &ua_wordCopy_loop); __ sw(v1, MemOperand(a0, -1, loadstore_chunk)); // In delay slot. // Copy the last 8 bytes. __ bind(&ua_smallCopy); __ beq(a2, zero_reg, &leave); __ addu(a3, a0, a2); // In delay slot. __ bind(&ua_smallCopy_loop); __ lb(v1, MemOperand(a1)); __ addiu(a0, a0, 1); __ addiu(a1, a1, 1); __ bne(a0, a3, &ua_smallCopy_loop); __ sb(v1, MemOperand(a0, -1)); // In delay slot. __ jr(ra); __ nop(); } CodeDesc desc; masm.GetCode(&desc); DCHECK(!RelocInfo::RequiresRelocation(desc)); Assembler::FlushICache(isolate, buffer, actual_size); base::OS::ProtectCode(buffer, actual_size); return FUNCTION_CAST<MemCopyUint8Function>(buffer); #endif } #endif UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) { #if defined(USE_SIMULATOR) return nullptr; #else size_t actual_size; byte* buffer = static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true)); if (buffer == nullptr) return nullptr; MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size), CodeObjectRequired::kNo); __ MovFromFloatParameter(f12); __ sqrt_d(f0, f12); __ MovToFloatResult(f0); __ Ret(); CodeDesc desc; masm.GetCode(&desc); DCHECK(!RelocInfo::RequiresRelocation(desc)); Assembler::FlushICache(isolate, buffer, actual_size); base::OS::ProtectCode(buffer, actual_size); return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer); #endif } #undef __ // ------------------------------------------------------------------------- // Platform-specific RuntimeCallHelper functions. void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { masm->EnterFrame(StackFrame::INTERNAL); DCHECK(!masm->has_frame()); masm->set_has_frame(true); } void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { masm->LeaveFrame(StackFrame::INTERNAL); DCHECK(masm->has_frame()); masm->set_has_frame(false); } // ------------------------------------------------------------------------- // Code generators #define __ ACCESS_MASM(masm) void ElementsTransitionGenerator::GenerateMapChangeElementsTransition( MacroAssembler* masm, Register receiver, Register key, Register value, Register target_map, AllocationSiteMode mode, Label* allocation_memento_found) { Register scratch_elements = a4; DCHECK(!AreAliased(receiver, key, value, target_map, scratch_elements)); if (mode == TRACK_ALLOCATION_SITE) { __ JumpIfJSArrayHasAllocationMemento( receiver, scratch_elements, allocation_memento_found); } // Set transitioned map. __ sd(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, t1, kRAHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } void ElementsTransitionGenerator::GenerateSmiToDouble( MacroAssembler* masm, Register receiver, Register key, Register value, Register target_map, AllocationSiteMode mode, Label* fail) { // Register ra contains the return address. Label loop, entry, convert_hole, gc_required, only_change_map, done; Register elements = a4; Register length = a5; Register array = a6; Register array_end = array; // target_map parameter can be clobbered. Register scratch1 = target_map; Register scratch2 = t1; Register scratch3 = a7; // Verify input registers don't conflict with locals. DCHECK(!AreAliased(receiver, key, value, target_map, elements, length, array, scratch2)); Register scratch = t2; if (mode == TRACK_ALLOCATION_SITE) { __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail); } // Check for empty arrays, which only require a map transition and no changes // to the backing store. __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex); __ Branch(&only_change_map, eq, at, Operand(elements)); __ push(ra); __ ld(length, FieldMemOperand(elements, FixedArray::kLengthOffset)); // elements: source FixedArray // length: number of elements (smi-tagged) // Allocate new FixedDoubleArray. __ SmiScale(scratch, length, kDoubleSizeLog2); __ Daddu(scratch, scratch, FixedDoubleArray::kHeaderSize); __ Allocate(scratch, array, t3, scratch2, &gc_required, DOUBLE_ALIGNMENT); __ Dsubu(array, array, kHeapObjectTag); // array: destination FixedDoubleArray, not tagged as heap object // Set destination FixedDoubleArray's length and map. __ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex); __ sd(length, MemOperand(array, FixedDoubleArray::kLengthOffset)); // Update receiver's map. __ sd(scratch2, MemOperand(array, HeapObject::kMapOffset)); __ sd(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2, kRAHasBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Replace receiver's backing store with newly created FixedDoubleArray. __ Daddu(scratch1, array, Operand(kHeapObjectTag)); __ sd(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ RecordWriteField(receiver, JSObject::kElementsOffset, scratch1, scratch2, kRAHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // Prepare for conversion loop. __ Daddu(scratch1, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ Daddu(scratch3, array, Operand(FixedDoubleArray::kHeaderSize)); __ SmiScale(array_end, length, kDoubleSizeLog2); __ Daddu(array_end, array_end, scratch3); // Repurpose registers no longer in use. Register hole_lower = elements; Register hole_upper = length; __ li(hole_lower, Operand(kHoleNanLower32)); __ li(hole_upper, Operand(kHoleNanUpper32)); // scratch1: begin of source FixedArray element fields, not tagged // hole_lower: kHoleNanLower32 // hole_upper: kHoleNanUpper32 // array_end: end of destination FixedDoubleArray, not tagged // scratch3: begin of FixedDoubleArray element fields, not tagged __ Branch(&entry); __ bind(&only_change_map); __ sd(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2, kRAHasBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Branch(&done); // Call into runtime if GC is required. __ bind(&gc_required); __ ld(ra, MemOperand(sp, 0)); __ Branch(USE_DELAY_SLOT, fail); __ daddiu(sp, sp, kPointerSize); // In delay slot. // Convert and copy elements. __ bind(&loop); __ ld(scratch2, MemOperand(scratch1)); __ Daddu(scratch1, scratch1, kPointerSize); // scratch2: current element __ JumpIfNotSmi(scratch2, &convert_hole); __ SmiUntag(scratch2); // Normal smi, convert to double and store. __ mtc1(scratch2, f0); __ cvt_d_w(f0, f0); __ sdc1(f0, MemOperand(scratch3)); __ Branch(USE_DELAY_SLOT, &entry); __ daddiu(scratch3, scratch3, kDoubleSize); // In delay slot. // Hole found, store the-hole NaN. __ bind(&convert_hole); if (FLAG_debug_code) { // Restore a "smi-untagged" heap object. __ Or(scratch2, scratch2, Operand(1)); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ Assert(eq, kObjectFoundInSmiOnlyArray, at, Operand(scratch2)); } // mantissa __ sw(hole_lower, MemOperand(scratch3, Register::kMantissaOffset)); // exponent __ sw(hole_upper, MemOperand(scratch3, Register::kExponentOffset)); __ Daddu(scratch3, scratch3, kDoubleSize); __ bind(&entry); __ Branch(&loop, lt, scratch3, Operand(array_end)); __ bind(&done); __ pop(ra); } void ElementsTransitionGenerator::GenerateDoubleToObject( MacroAssembler* masm, Register receiver, Register key, Register value, Register target_map, AllocationSiteMode mode, Label* fail) { // Register ra contains the return address. Label entry, loop, convert_hole, gc_required, only_change_map; Register elements = a4; Register array = a6; Register length = a5; Register scratch = t1; // Verify input registers don't conflict with locals. DCHECK(!AreAliased(receiver, key, value, target_map, elements, array, length, scratch)); if (mode == TRACK_ALLOCATION_SITE) { __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail); } // Check for empty arrays, which only require a map transition and no changes // to the backing store. __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex); __ Branch(&only_change_map, eq, at, Operand(elements)); __ MultiPush( value.bit() | key.bit() | receiver.bit() | target_map.bit() | ra.bit()); __ ld(length, FieldMemOperand(elements, FixedArray::kLengthOffset)); // elements: source FixedArray // length: number of elements (smi-tagged) // Allocate new FixedArray. // Re-use value and target_map registers, as they have been saved on the // stack. Register array_size = value; Register allocate_scratch = target_map; __ SmiScale(array_size, length, kPointerSizeLog2); __ Daddu(array_size, array_size, FixedDoubleArray::kHeaderSize); __ Allocate(array_size, array, allocate_scratch, scratch, &gc_required, NO_ALLOCATION_FLAGS); __ Dsubu(array, array, kHeapObjectTag); // array: destination FixedArray, not tagged as heap object // Set destination FixedDoubleArray's length and map. __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex); __ sd(length, MemOperand(array, FixedDoubleArray::kLengthOffset)); __ sd(scratch, MemOperand(array, HeapObject::kMapOffset)); // Prepare for conversion loop. Register src_elements = elements; Register dst_elements = target_map; Register dst_end = length; Register heap_number_map = scratch; __ Daddu(src_elements, src_elements, Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); __ Daddu(dst_elements, array, Operand(FixedArray::kHeaderSize)); __ SmiScale(dst_end, dst_end, kPointerSizeLog2); __ Daddu(dst_end, dst_elements, dst_end); // Allocating heap numbers in the loop below can fail and cause a jump to // gc_required. We can't leave a partly initialized FixedArray behind, // so pessimistically fill it with holes now. Label initialization_loop, initialization_loop_entry; __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); __ Branch(&initialization_loop_entry); __ bind(&initialization_loop); __ sd(scratch, MemOperand(dst_elements)); __ Daddu(dst_elements, dst_elements, Operand(kPointerSize)); __ bind(&initialization_loop_entry); __ Branch(&initialization_loop, lt, dst_elements, Operand(dst_end)); __ Daddu(dst_elements, array, Operand(FixedArray::kHeaderSize)); __ Daddu(array, array, Operand(kHeapObjectTag)); __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); // Using offsetted addresses. // dst_elements: begin of destination FixedArray element fields, not tagged // src_elements: begin of source FixedDoubleArray element fields, not tagged, // points to the exponent // dst_end: end of destination FixedArray, not tagged // array: destination FixedArray // heap_number_map: heap number map __ Branch(&entry); // Call into runtime if GC is required. __ bind(&gc_required); __ MultiPop( value.bit() | key.bit() | receiver.bit() | target_map.bit() | ra.bit()); __ Branch(fail); __ bind(&loop); Register upper_bits = key; __ lw(upper_bits, MemOperand(src_elements, Register::kExponentOffset)); __ Daddu(src_elements, src_elements, kDoubleSize); // upper_bits: current element's upper 32 bit // src_elements: address of next element __ Branch(&convert_hole, eq, a1, Operand(kHoleNanUpper32)); // Non-hole double, copy value into a heap number. Register heap_number = receiver; Register scratch2 = value; Register scratch3 = t2; __ AllocateHeapNumber(heap_number, scratch2, scratch3, heap_number_map, &gc_required); // heap_number: new heap number // Load current element, src_elements point to next element. __ ld(scratch2, MemOperand(src_elements, -kDoubleSize)); __ sd(scratch2, FieldMemOperand(heap_number, HeapNumber::kValueOffset)); __ mov(scratch2, dst_elements); __ sd(heap_number, MemOperand(dst_elements)); __ Daddu(dst_elements, dst_elements, kPointerSize); __ RecordWrite(array, scratch2, heap_number, kRAHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Branch(&entry); // Replace the-hole NaN with the-hole pointer. __ bind(&convert_hole); __ LoadRoot(scratch2, Heap::kTheHoleValueRootIndex); __ sd(scratch2, MemOperand(dst_elements)); __ Daddu(dst_elements, dst_elements, kPointerSize); __ bind(&entry); __ Branch(&loop, lt, dst_elements, Operand(dst_end)); __ MultiPop(receiver.bit() | target_map.bit() | value.bit() | key.bit()); // Replace receiver's backing store with newly created and filled FixedArray. __ sd(array, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ RecordWriteField(receiver, JSObject::kElementsOffset, array, scratch, kRAHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ pop(ra); __ bind(&only_change_map); // Update receiver's map. __ sd(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch, kRAHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); } void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string, Register index, Register result, Label* call_runtime) { // Fetch the instance type of the receiver into result register. __ ld(result, FieldMemOperand(string, HeapObject::kMapOffset)); __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); // We need special handling for indirect strings. Label check_sequential; __ And(at, result, Operand(kIsIndirectStringMask)); __ Branch(&check_sequential, eq, at, Operand(zero_reg)); // Dispatch on the indirect string shape: slice or cons. Label cons_string; __ And(at, result, Operand(kSlicedNotConsMask)); __ Branch(&cons_string, eq, at, Operand(zero_reg)); // Handle slices. Label indirect_string_loaded; __ ld(result, FieldMemOperand(string, SlicedString::kOffsetOffset)); __ ld(string, FieldMemOperand(string, SlicedString::kParentOffset)); __ dsra32(at, result, 0); __ Daddu(index, index, at); __ jmp(&indirect_string_loaded); // Handle cons strings. // Check whether the right hand side is the empty string (i.e. if // this is really a flat string in a cons string). If that is not // the case we would rather go to the runtime system now to flatten // the string. __ bind(&cons_string); __ ld(result, FieldMemOperand(string, ConsString::kSecondOffset)); __ LoadRoot(at, Heap::kempty_stringRootIndex); __ Branch(call_runtime, ne, result, Operand(at)); // Get the first of the two strings and load its instance type. __ ld(string, FieldMemOperand(string, ConsString::kFirstOffset)); __ bind(&indirect_string_loaded); __ ld(result, FieldMemOperand(string, HeapObject::kMapOffset)); __ lbu(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); // Distinguish sequential and external strings. Only these two string // representations can reach here (slices and flat cons strings have been // reduced to the underlying sequential or external string). Label external_string, check_encoding; __ bind(&check_sequential); STATIC_ASSERT(kSeqStringTag == 0); __ And(at, result, Operand(kStringRepresentationMask)); __ Branch(&external_string, ne, at, Operand(zero_reg)); // Prepare sequential strings STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ Daddu(string, string, SeqTwoByteString::kHeaderSize - kHeapObjectTag); __ jmp(&check_encoding); // Handle external strings. __ bind(&external_string); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ And(at, result, Operand(kIsIndirectStringMask)); __ Assert(eq, kExternalStringExpectedButNotFound, at, Operand(zero_reg)); } // Rule out short external strings. STATIC_ASSERT(kShortExternalStringTag != 0); __ And(at, result, Operand(kShortExternalStringMask)); __ Branch(call_runtime, ne, at, Operand(zero_reg)); __ ld(string, FieldMemOperand(string, ExternalString::kResourceDataOffset)); Label one_byte, done; __ bind(&check_encoding); STATIC_ASSERT(kTwoByteStringTag == 0); __ And(at, result, Operand(kStringEncodingMask)); __ Branch(&one_byte, ne, at, Operand(zero_reg)); // Two-byte string. __ Dlsa(at, string, index, 1); __ lhu(result, MemOperand(at)); __ jmp(&done); __ bind(&one_byte); // One_byte string. __ Daddu(at, string, index); __ lbu(result, MemOperand(at)); __ bind(&done); } #ifdef DEBUG // nop(CODE_AGE_MARKER_NOP) static const uint32_t kCodeAgePatchFirstInstruction = 0x00010180; #endif CodeAgingHelper::CodeAgingHelper(Isolate* isolate) { USE(isolate); DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength); // Since patcher is a large object, allocate it dynamically when needed, // to avoid overloading the stack in stress conditions. // DONT_FLUSH is used because the CodeAgingHelper is initialized early in // the process, before MIPS simulator ICache is setup. base::SmartPointer<CodePatcher> patcher( new CodePatcher(isolate, young_sequence_.start(), young_sequence_.length() / Assembler::kInstrSize, CodePatcher::DONT_FLUSH)); PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length()); patcher->masm()->PushStandardFrame(a1); patcher->masm()->nop(Assembler::CODE_AGE_SEQUENCE_NOP); patcher->masm()->nop(Assembler::CODE_AGE_SEQUENCE_NOP); patcher->masm()->nop(Assembler::CODE_AGE_SEQUENCE_NOP); } #ifdef DEBUG bool CodeAgingHelper::IsOld(byte* candidate) const { return Memory::uint32_at(candidate) == kCodeAgePatchFirstInstruction; } #endif bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) { bool result = isolate->code_aging_helper()->IsYoung(sequence); DCHECK(result || isolate->code_aging_helper()->IsOld(sequence)); return result; } void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age, MarkingParity* parity) { if (IsYoungSequence(isolate, sequence)) { *age = kNoAgeCodeAge; *parity = NO_MARKING_PARITY; } else { Address target_address = Assembler::target_address_at( sequence + Assembler::kInstrSize); Code* stub = GetCodeFromTargetAddress(target_address); GetCodeAgeAndParity(stub, age, parity); } } void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence, Code::Age age, MarkingParity parity) { uint32_t young_length = isolate->code_aging_helper()->young_sequence_length(); if (age == kNoAgeCodeAge) { isolate->code_aging_helper()->CopyYoungSequenceTo(sequence); Assembler::FlushICache(isolate, sequence, young_length); } else { Code* stub = GetCodeAgeStub(isolate, age, parity); CodePatcher patcher(isolate, sequence, young_length / Assembler::kInstrSize); // Mark this code sequence for FindPlatformCodeAgeSequence(). patcher.masm()->nop(Assembler::CODE_AGE_MARKER_NOP); // Load the stub address to t9 and call it, // GetCodeAgeAndParity() extracts the stub address from this instruction. patcher.masm()->li( t9, Operand(reinterpret_cast<uint64_t>(stub->instruction_start())), ADDRESS_LOAD); patcher.masm()->nop(); // Prevent jalr to jal optimization. patcher.masm()->jalr(t9, a0); patcher.masm()->nop(); // Branch delay slot nop. patcher.masm()->nop(); // Pad the empty space. } } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS64