// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_IC_H_ #define V8_IC_H_ #include "src/ic/ic-state.h" #include "src/macro-assembler.h" #include "src/messages.h" namespace v8 { namespace internal { // IC_UTIL_LIST defines all utility functions called from generated // inline caching code. The argument for the macro, ICU, is the function name. #define IC_UTIL_LIST(ICU) \ ICU(LoadIC_Miss) \ ICU(KeyedLoadIC_Miss) \ ICU(CallIC_Miss) \ ICU(CallIC_Customization_Miss) \ ICU(StoreIC_Miss) \ ICU(StoreIC_Slow) \ ICU(KeyedStoreIC_Miss) \ ICU(KeyedStoreIC_Slow) \ /* Utilities for IC stubs. */ \ ICU(StoreCallbackProperty) \ ICU(LoadPropertyWithInterceptorOnly) \ ICU(LoadPropertyWithInterceptor) \ ICU(LoadElementWithInterceptor) \ ICU(StorePropertyWithInterceptor) \ ICU(CompareIC_Miss) \ ICU(BinaryOpIC_Miss) \ ICU(CompareNilIC_Miss) \ ICU(Unreachable) \ ICU(ToBooleanIC_Miss) // // IC is the base class for LoadIC, StoreIC, KeyedLoadIC, and KeyedStoreIC. // class IC { public: // The ids for utility called from the generated code. enum UtilityId { #define CONST_NAME(name) k##name, IC_UTIL_LIST(CONST_NAME) #undef CONST_NAME kUtilityCount }; // Looks up the address of the named utility. static Address AddressFromUtilityId(UtilityId id); // Alias the inline cache state type to make the IC code more readable. typedef InlineCacheState State; // The IC code is either invoked with no extra frames on the stack // or with a single extra frame for supporting calls. enum FrameDepth { NO_EXTRA_FRAME = 0, EXTRA_CALL_FRAME = 1 }; // Construct the IC structure with the given number of extra // JavaScript frames on the stack. IC(FrameDepth depth, Isolate* isolate, FeedbackNexus* nexus = NULL, bool for_queries_only = false); virtual ~IC() {} State state() const { return state_; } inline Address address() const; // Compute the current IC state based on the target stub, receiver and name. void UpdateState(Handle<Object> receiver, Handle<Object> name); bool IsNameCompatibleWithPrototypeFailure(Handle<Object> name); void MarkPrototypeFailure(Handle<Object> name) { DCHECK(IsNameCompatibleWithPrototypeFailure(name)); old_state_ = state_; state_ = PROTOTYPE_FAILURE; } // Clear the inline cache to initial state. static void Clear(Isolate* isolate, Address address, Address constant_pool); #ifdef DEBUG bool IsLoadStub() const { return target()->is_load_stub() || target()->is_keyed_load_stub(); } bool IsStoreStub() const { return target()->is_store_stub() || target()->is_keyed_store_stub(); } bool IsCallStub() const { return target()->is_call_stub(); } #endif static inline JSFunction* GetRootConstructor(Map* receiver_map, Context* native_context); static inline Handle<Map> GetHandlerCacheHolder(Handle<Map> receiver_map, bool receiver_is_holder, Isolate* isolate, CacheHolderFlag* flag); static inline Handle<Map> GetICCacheHolder(Handle<Map> receiver_map, Isolate* isolate, CacheHolderFlag* flag); static bool IsCleared(Code* code) { InlineCacheState state = code->ic_state(); return !FLAG_use_ic || state == UNINITIALIZED || state == PREMONOMORPHIC; } static bool IsCleared(FeedbackNexus* nexus) { InlineCacheState state = nexus->StateFromFeedback(); return !FLAG_use_ic || state == UNINITIALIZED || state == PREMONOMORPHIC; } static bool ICUseVector(Code::Kind kind) { return kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC || kind == Code::CALL_IC; } protected: // Get the call-site target; used for determining the state. Handle<Code> target() const { return target_; } Address fp() const { return fp_; } Address pc() const { return *pc_address_; } Isolate* isolate() const { return isolate_; } // Get the shared function info of the caller. SharedFunctionInfo* GetSharedFunctionInfo() const; // Get the code object of the caller. Code* GetCode() const; // Get the original (non-breakpointed) code object of the caller. Code* GetOriginalCode() const; bool AddressIsOptimizedCode() const; inline bool AddressIsDeoptimizedCode() const; inline static bool AddressIsDeoptimizedCode(Isolate* isolate, Address address); // Set the call-site target. inline void set_target(Code* code); bool is_target_set() { return target_set_; } bool is_vector_set() { return vector_set_; } bool UseVector() const { bool use = ICUseVector(kind()); // If we are supposed to use the nexus, verify the nexus is non-null. DCHECK(!use || nexus_ != NULL); return use; } // Configure for most states. void ConfigureVectorState(IC::State new_state); // Configure the vector for MONOMORPHIC. void ConfigureVectorState(Handle<Name> name, Handle<Map> map, Handle<Code> handler); // Configure the vector for POLYMORPHIC. void ConfigureVectorState(Handle<Name> name, MapHandleList* maps, CodeHandleList* handlers); char TransitionMarkFromState(IC::State state); void TraceIC(const char* type, Handle<Object> name); void TraceIC(const char* type, Handle<Object> name, State old_state, State new_state); MaybeHandle<Object> TypeError(MessageTemplate::Template, Handle<Object> object, Handle<Object> key); MaybeHandle<Object> ReferenceError(Handle<Name> name); // Access the target code for the given IC address. static inline Code* GetTargetAtAddress(Address address, Address constant_pool); static inline void SetTargetAtAddress(Address address, Code* target, Address constant_pool); static void OnTypeFeedbackChanged(Isolate* isolate, Address address, State old_state, State new_state, bool target_remains_ic_stub); // As a vector-based IC, type feedback must be updated differently. static void OnTypeFeedbackChanged(Isolate* isolate, Code* host, TypeFeedbackVector* vector, State old_state, State new_state); static void PostPatching(Address address, Code* target, Code* old_target); // Compute the handler either by compiling or by retrieving a cached version. Handle<Code> ComputeHandler(LookupIterator* lookup, Handle<Object> value = Handle<Code>::null()); virtual Handle<Code> CompileHandler(LookupIterator* lookup, Handle<Object> value, CacheHolderFlag cache_holder) { UNREACHABLE(); return Handle<Code>::null(); } void UpdateMonomorphicIC(Handle<Code> handler, Handle<Name> name); bool UpdatePolymorphicIC(Handle<Name> name, Handle<Code> code); void UpdateMegamorphicCache(Map* map, Name* name, Code* code); void CopyICToMegamorphicCache(Handle<Name> name); bool IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map); void PatchCache(Handle<Name> name, Handle<Code> code); Code::Kind kind() const { return kind_; } Code::Kind handler_kind() const { if (kind_ == Code::KEYED_LOAD_IC) return Code::LOAD_IC; DCHECK(kind_ == Code::LOAD_IC || kind_ == Code::STORE_IC || kind_ == Code::KEYED_STORE_IC); return kind_; } virtual Handle<Code> megamorphic_stub() { UNREACHABLE(); return Handle<Code>::null(); } bool TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver, Handle<String> name); ExtraICState extra_ic_state() const { return extra_ic_state_; } void set_extra_ic_state(ExtraICState state) { extra_ic_state_ = state; } Handle<Map> receiver_map() { return receiver_map_; } void update_receiver_map(Handle<Object> receiver) { if (receiver->IsSmi()) { receiver_map_ = isolate_->factory()->heap_number_map(); } else { receiver_map_ = handle(HeapObject::cast(*receiver)->map()); } } void TargetMaps(MapHandleList* list) { FindTargetMaps(); for (int i = 0; i < target_maps_.length(); i++) { list->Add(target_maps_.at(i)); } } Map* FirstTargetMap() { FindTargetMaps(); return target_maps_.length() > 0 ? *target_maps_.at(0) : NULL; } inline void UpdateTarget(); Handle<TypeFeedbackVector> vector() const { return nexus()->vector_handle(); } FeedbackVectorICSlot slot() const { return nexus()->slot(); } State saved_state() const { return state() == PROTOTYPE_FAILURE ? old_state_ : state(); } template <class NexusClass> NexusClass* casted_nexus() { return static_cast<NexusClass*>(nexus_); } FeedbackNexus* nexus() const { return nexus_; } inline Code* get_host(); private: inline Code* raw_target() const; inline Address constant_pool() const; inline Address raw_constant_pool() const; void FindTargetMaps() { if (target_maps_set_) return; target_maps_set_ = true; if (UseVector()) { nexus()->ExtractMaps(&target_maps_); } else { if (state_ == MONOMORPHIC) { Map* map = target_->FindFirstMap(); if (map != NULL) target_maps_.Add(handle(map)); } else if (state_ != UNINITIALIZED && state_ != PREMONOMORPHIC) { target_->FindAllMaps(&target_maps_); } } } // Frame pointer for the frame that uses (calls) the IC. Address fp_; // All access to the program counter and constant pool of an IC structure is // indirect to make the code GC safe. This feature is crucial since // GetProperty and SetProperty are called and they in turn might // invoke the garbage collector. Address* pc_address_; // The constant pool of the code which originally called the IC (which might // be for the breakpointed copy of the original code). Address* constant_pool_address_; Isolate* isolate_; // The original code target that missed. Handle<Code> target_; bool target_set_; bool vector_set_; State old_state_; // For saving if we marked as prototype failure. State state_; Code::Kind kind_; Handle<Map> receiver_map_; MaybeHandle<Code> maybe_handler_; ExtraICState extra_ic_state_; MapHandleList target_maps_; bool target_maps_set_; FeedbackNexus* nexus_; DISALLOW_IMPLICIT_CONSTRUCTORS(IC); }; // An IC_Utility encapsulates IC::UtilityId. It exists mainly because you // cannot make forward declarations to an enum. class IC_Utility { public: explicit IC_Utility(IC::UtilityId id) : address_(IC::AddressFromUtilityId(id)), id_(id) {} Address address() const { return address_; } IC::UtilityId id() const { return id_; } private: Address address_; IC::UtilityId id_; }; class CallIC : public IC { public: CallIC(Isolate* isolate, CallICNexus* nexus) : IC(EXTRA_CALL_FRAME, isolate, nexus) { DCHECK(nexus != NULL); } void PatchMegamorphic(Handle<Object> function); void HandleMiss(Handle<Object> function); // Returns true if a custom handler was installed. bool DoCustomHandler(Handle<Object> function, const CallICState& callic_state); // Code generator routines. static Handle<Code> initialize_stub(Isolate* isolate, int argc, CallICState::CallType call_type); static Handle<Code> initialize_stub_in_optimized_code( Isolate* isolate, int argc, CallICState::CallType call_type); static void Clear(Isolate* isolate, Code* host, CallICNexus* nexus); }; class LoadIC : public IC { public: static ExtraICState ComputeExtraICState(ContextualMode contextual_mode) { return LoadICState(contextual_mode).GetExtraICState(); } ContextualMode contextual_mode() const { return LoadICState::GetContextualMode(extra_ic_state()); } LoadIC(FrameDepth depth, Isolate* isolate, FeedbackNexus* nexus = NULL) : IC(depth, isolate, nexus) { DCHECK(nexus != NULL); DCHECK(IsLoadStub()); } // TODO(mvstanton): The for_queries_only is because we have a case where we // construct an IC only to gather the contextual mode, and we don't have // vector/slot information. for_queries_only is a temporary hack to enable the // strong DCHECK protection around vector/slot. LoadIC(FrameDepth depth, Isolate* isolate, bool for_queries_only) : IC(depth, isolate, NULL, for_queries_only) { DCHECK(IsLoadStub()); } // Returns if this IC is for contextual (no explicit receiver) // access to properties. bool IsUndeclaredGlobal(Handle<Object> receiver) { if (receiver->IsGlobalObject()) { return contextual_mode() == CONTEXTUAL; } else { DCHECK(contextual_mode() != CONTEXTUAL); return false; } } // Code generator routines. static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); } static void GenerateMiss(MacroAssembler* masm); static void GenerateNormal(MacroAssembler* masm); static void GenerateRuntimeGetProperty(MacroAssembler* masm); static Handle<Code> initialize_stub(Isolate* isolate, ExtraICState extra_state); static Handle<Code> initialize_stub_in_optimized_code( Isolate* isolate, ExtraICState extra_state, State initialization_state); MUST_USE_RESULT MaybeHandle<Object> Load(Handle<Object> object, Handle<Name> name); static void Clear(Isolate* isolate, Code* host, LoadICNexus* nexus); protected: inline void set_target(Code* code); Handle<Code> slow_stub() const { if (kind() == Code::LOAD_IC) { return isolate()->builtins()->LoadIC_Slow(); } else { DCHECK_EQ(Code::KEYED_LOAD_IC, kind()); return isolate()->builtins()->KeyedLoadIC_Slow(); } } Handle<Code> megamorphic_stub() override; // Update the inline cache and the global stub cache based on the // lookup result. void UpdateCaches(LookupIterator* lookup); virtual Handle<Code> CompileHandler(LookupIterator* lookup, Handle<Object> unused, CacheHolderFlag cache_holder) override; private: Handle<Code> SimpleFieldLoad(FieldIndex index); static void Clear(Isolate* isolate, Address address, Code* target, Address constant_pool); friend class IC; }; class KeyedLoadIC : public LoadIC { public: // ExtraICState bits (building on IC) class IcCheckTypeField : public BitField<IcCheckType, 1, 1> {}; static ExtraICState ComputeExtraICState(ContextualMode contextual_mode, IcCheckType key_type) { return LoadICState(contextual_mode).GetExtraICState() | IcCheckTypeField::encode(key_type); } static IcCheckType GetKeyType(ExtraICState extra_state) { return IcCheckTypeField::decode(extra_state); } KeyedLoadIC(FrameDepth depth, Isolate* isolate, KeyedLoadICNexus* nexus = NULL) : LoadIC(depth, isolate, nexus) { DCHECK(nexus != NULL); DCHECK(target()->is_keyed_load_stub()); } MUST_USE_RESULT MaybeHandle<Object> Load(Handle<Object> object, Handle<Object> key); // Code generator routines. static void GenerateMiss(MacroAssembler* masm); static void GenerateRuntimeGetProperty(MacroAssembler* masm); static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); } static void GenerateMegamorphic(MacroAssembler* masm); // Bit mask to be tested against bit field for the cases when // generic stub should go into slow case. // Access check is necessary explicitly since generic stub does not perform // map checks. static const int kSlowCaseBitFieldMask = (1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasIndexedInterceptor); static Handle<Code> initialize_stub(Isolate* isolate); static Handle<Code> initialize_stub_in_optimized_code( Isolate* isolate, State initialization_state); static Handle<Code> ChooseMegamorphicStub(Isolate* isolate); static void Clear(Isolate* isolate, Code* host, KeyedLoadICNexus* nexus); protected: // receiver is HeapObject because it could be a String or a JSObject Handle<Code> LoadElementStub(Handle<HeapObject> receiver); private: static void Clear(Isolate* isolate, Address address, Code* target, Address constant_pool); friend class IC; }; class StoreIC : public IC { public: static ExtraICState ComputeExtraICState(LanguageMode flag) { return StoreICState(flag).GetExtraICState(); } StoreIC(FrameDepth depth, Isolate* isolate) : IC(depth, isolate) { DCHECK(IsStoreStub()); } LanguageMode language_mode() const { return StoreICState::GetLanguageMode(extra_ic_state()); } // Code generators for stub routines. Only called once at startup. static void GenerateSlow(MacroAssembler* masm); static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); } static void GeneratePreMonomorphic(MacroAssembler* masm) { GenerateMiss(masm); } static void GenerateMiss(MacroAssembler* masm); static void GenerateMegamorphic(MacroAssembler* masm); static void GenerateNormal(MacroAssembler* masm); static void GenerateRuntimeSetProperty(MacroAssembler* masm, LanguageMode language_mode); static Handle<Code> initialize_stub(Isolate* isolate, LanguageMode language_mode, State initialization_state); MUST_USE_RESULT MaybeHandle<Object> Store( Handle<Object> object, Handle<Name> name, Handle<Object> value, JSReceiver::StoreFromKeyed store_mode = JSReceiver::CERTAINLY_NOT_STORE_FROM_KEYED); bool LookupForWrite(LookupIterator* it, Handle<Object> value, JSReceiver::StoreFromKeyed store_mode); protected: // Stub accessors. Handle<Code> megamorphic_stub() override; Handle<Code> slow_stub() const; virtual Handle<Code> pre_monomorphic_stub() const { return pre_monomorphic_stub(isolate(), language_mode()); } static Handle<Code> pre_monomorphic_stub(Isolate* isolate, LanguageMode language_mode); // Update the inline cache and the global stub cache based on the // lookup result. void UpdateCaches(LookupIterator* lookup, Handle<Object> value, JSReceiver::StoreFromKeyed store_mode); virtual Handle<Code> CompileHandler(LookupIterator* lookup, Handle<Object> value, CacheHolderFlag cache_holder) override; private: inline void set_target(Code* code); static void Clear(Isolate* isolate, Address address, Code* target, Address constant_pool); friend class IC; }; enum KeyedStoreCheckMap { kDontCheckMap, kCheckMap }; enum KeyedStoreIncrementLength { kDontIncrementLength, kIncrementLength }; class KeyedStoreIC : public StoreIC { public: // ExtraICState bits (building on IC) // ExtraICState bits // When more language modes are added, these BitFields need to move too. STATIC_ASSERT(i::LANGUAGE_END == 3); class ExtraICStateKeyedAccessStoreMode : public BitField<KeyedAccessStoreMode, 3, 4> {}; // NOLINT class IcCheckTypeField : public BitField<IcCheckType, 7, 1> {}; static ExtraICState ComputeExtraICState(LanguageMode flag, KeyedAccessStoreMode mode) { return StoreICState(flag).GetExtraICState() | ExtraICStateKeyedAccessStoreMode::encode(mode) | IcCheckTypeField::encode(ELEMENT); } static KeyedAccessStoreMode GetKeyedAccessStoreMode( ExtraICState extra_state) { return ExtraICStateKeyedAccessStoreMode::decode(extra_state); } static IcCheckType GetKeyType(ExtraICState extra_state) { return IcCheckTypeField::decode(extra_state); } KeyedStoreIC(FrameDepth depth, Isolate* isolate) : StoreIC(depth, isolate) { DCHECK(target()->is_keyed_store_stub()); } MUST_USE_RESULT MaybeHandle<Object> Store(Handle<Object> object, Handle<Object> name, Handle<Object> value); // Code generators for stub routines. Only called once at startup. static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); } static void GeneratePreMonomorphic(MacroAssembler* masm) { GenerateMiss(masm); } static void GenerateMiss(MacroAssembler* masm); static void GenerateSlow(MacroAssembler* masm); static void GenerateMegamorphic(MacroAssembler* masm, LanguageMode language_mode); static Handle<Code> initialize_stub(Isolate* isolate, LanguageMode language_mode, State initialization_state); protected: virtual Handle<Code> pre_monomorphic_stub() const { return pre_monomorphic_stub(isolate(), language_mode()); } static Handle<Code> pre_monomorphic_stub(Isolate* isolate, LanguageMode language_mode) { if (is_strict(language_mode)) { return isolate->builtins()->KeyedStoreIC_PreMonomorphic_Strict(); } else { return isolate->builtins()->KeyedStoreIC_PreMonomorphic(); } } Handle<Code> StoreElementStub(Handle<JSObject> receiver, KeyedAccessStoreMode store_mode); private: inline void set_target(Code* code); static void Clear(Isolate* isolate, Address address, Code* target, Address constant_pool); KeyedAccessStoreMode GetStoreMode(Handle<JSObject> receiver, Handle<Object> key, Handle<Object> value); Handle<Map> ComputeTransitionedMap(Handle<Map> map, KeyedAccessStoreMode store_mode); friend class IC; }; // Type Recording BinaryOpIC, that records the types of the inputs and outputs. class BinaryOpIC : public IC { public: explicit BinaryOpIC(Isolate* isolate) : IC(EXTRA_CALL_FRAME, isolate) {} static Builtins::JavaScript TokenToJSBuiltin(Token::Value op, LanguageMode language_mode); MaybeHandle<Object> Transition(Handle<AllocationSite> allocation_site, Handle<Object> left, Handle<Object> right) WARN_UNUSED_RESULT; }; class CompareIC : public IC { public: CompareIC(Isolate* isolate, Token::Value op) : IC(EXTRA_CALL_FRAME, isolate), op_(op) {} // Update the inline cache for the given operands. Code* UpdateCaches(Handle<Object> x, Handle<Object> y); // Helper function for computing the condition for a compare operation. static Condition ComputeCondition(Token::Value op); // Factory method for getting an uninitialized compare stub. static Handle<Code> GetUninitialized(Isolate* isolate, Token::Value op, bool strong); private: static bool HasInlinedSmiCode(Address address); bool strict() const { return op_ == Token::EQ_STRICT; } Condition GetCondition() const { return ComputeCondition(op_); } static Code* GetRawUninitialized(Isolate* isolate, Token::Value op, bool strong); static void Clear(Isolate* isolate, Address address, Code* target, Address constant_pool); Token::Value op_; friend class IC; }; class CompareNilIC : public IC { public: explicit CompareNilIC(Isolate* isolate) : IC(EXTRA_CALL_FRAME, isolate) {} Handle<Object> CompareNil(Handle<Object> object); static Handle<Code> GetUninitialized(); static void Clear(Address address, Code* target, Address constant_pool); static Handle<Object> DoCompareNilSlow(Isolate* isolate, NilValue nil, Handle<Object> object); }; class ToBooleanIC : public IC { public: explicit ToBooleanIC(Isolate* isolate) : IC(EXTRA_CALL_FRAME, isolate) {} Handle<Object> ToBoolean(Handle<Object> object); }; // Helper for BinaryOpIC and CompareIC. enum InlinedSmiCheck { ENABLE_INLINED_SMI_CHECK, DISABLE_INLINED_SMI_CHECK }; void PatchInlinedSmiCode(Address address, InlinedSmiCheck check); DECLARE_RUNTIME_FUNCTION(KeyedLoadIC_MissFromStubFailure); DECLARE_RUNTIME_FUNCTION(KeyedStoreIC_MissFromStubFailure); DECLARE_RUNTIME_FUNCTION(UnaryOpIC_Miss); DECLARE_RUNTIME_FUNCTION(StoreIC_MissFromStubFailure); DECLARE_RUNTIME_FUNCTION(ElementsTransitionAndStoreIC_Miss); DECLARE_RUNTIME_FUNCTION(BinaryOpIC_Miss); DECLARE_RUNTIME_FUNCTION(BinaryOpIC_MissWithAllocationSite); DECLARE_RUNTIME_FUNCTION(CompareNilIC_Miss); DECLARE_RUNTIME_FUNCTION(ToBooleanIC_Miss); DECLARE_RUNTIME_FUNCTION(LoadIC_MissFromStubFailure); // Support functions for callbacks handlers. DECLARE_RUNTIME_FUNCTION(StoreCallbackProperty); // Support functions for interceptor handlers. DECLARE_RUNTIME_FUNCTION(LoadPropertyWithInterceptorOnly); DECLARE_RUNTIME_FUNCTION(LoadPropertyWithInterceptor); DECLARE_RUNTIME_FUNCTION(LoadElementWithInterceptor); DECLARE_RUNTIME_FUNCTION(StorePropertyWithInterceptor); } } // namespace v8::internal #endif // V8_IC_H_