// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/ic/ic.h" #include "src/accessors.h" #include "src/api-arguments-inl.h" #include "src/api.h" #include "src/arguments.h" #include "src/base/bits.h" #include "src/codegen.h" #include "src/conversions.h" #include "src/execution.h" #include "src/field-type.h" #include "src/frames-inl.h" #include "src/ic/call-optimization.h" #include "src/ic/handler-compiler.h" #include "src/ic/handler-configuration-inl.h" #include "src/ic/ic-inl.h" #include "src/ic/ic-stats.h" #include "src/ic/stub-cache.h" #include "src/isolate-inl.h" #include "src/macro-assembler.h" #include "src/prototype.h" #include "src/runtime-profiler.h" #include "src/runtime/runtime-utils.h" #include "src/runtime/runtime.h" #include "src/tracing/trace-event.h" #include "src/tracing/tracing-category-observer.h" namespace v8 { namespace internal { char IC::TransitionMarkFromState(IC::State state) { switch (state) { case UNINITIALIZED: return '0'; case PREMONOMORPHIC: return '.'; case MONOMORPHIC: return '1'; case RECOMPUTE_HANDLER: return '^'; case POLYMORPHIC: return 'P'; case MEGAMORPHIC: return 'N'; case GENERIC: return 'G'; } UNREACHABLE(); return 0; } const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) { if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW"; if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) { return ".IGNORE_OOB"; } if (IsGrowStoreMode(mode)) return ".GROW"; return ""; } #define TRACE_GENERIC_IC(reason) set_slow_stub_reason(reason); void IC::TraceIC(const char* type, Handle<Object> name) { if (FLAG_ic_stats) { if (AddressIsDeoptimizedCode()) return; State new_state = nexus()->StateFromFeedback(); TraceIC(type, name, state(), new_state); } } Address IC::GetAbstractPC(int* line, int* column) const { JavaScriptFrameIterator it(isolate()); JavaScriptFrame* frame = it.frame(); DCHECK(!frame->is_builtin()); int position = frame->position(); Object* maybe_script = frame->function()->shared()->script(); if (maybe_script->IsScript()) { Handle<Script> script(Script::cast(maybe_script), isolate()); Script::PositionInfo info; Script::GetPositionInfo(script, position, &info, Script::WITH_OFFSET); *line = info.line + 1; *column = info.column + 1; } else { *line = position; *column = -1; } if (frame->is_interpreted()) { InterpretedFrame* iframe = static_cast<InterpretedFrame*>(frame); Address bytecode_start = reinterpret_cast<Address>(iframe->GetBytecodeArray()) - kHeapObjectTag + BytecodeArray::kHeaderSize; return bytecode_start + iframe->GetBytecodeOffset(); } return frame->pc(); } void IC::TraceIC(const char* type, Handle<Object> name, State old_state, State new_state) { if (V8_LIKELY(!FLAG_ic_stats)) return; Map* map = nullptr; if (!receiver_map().is_null()) { map = *receiver_map(); } const char* modifier = ""; if (IsKeyedStoreIC()) { KeyedAccessStoreMode mode = casted_nexus<KeyedStoreICNexus>()->GetKeyedAccessStoreMode(); modifier = GetTransitionMarkModifier(mode); } if (!(FLAG_ic_stats & v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING)) { int line; int column; Address pc = GetAbstractPC(&line, &column); LOG(isolate(), ICEvent(type, is_keyed(), pc, line, column, map, *name, TransitionMarkFromState(old_state), TransitionMarkFromState(new_state), modifier, slow_stub_reason_)); return; } ICStats::instance()->Begin(); ICInfo& ic_info = ICStats::instance()->Current(); ic_info.type = is_keyed() ? "Keyed" : ""; ic_info.type += type; Object* maybe_function = Memory::Object_at(fp_ + JavaScriptFrameConstants::kFunctionOffset); DCHECK(maybe_function->IsJSFunction()); JSFunction* function = JSFunction::cast(maybe_function); int code_offset = 0; if (function->IsInterpreted()) { code_offset = InterpretedFrame::GetBytecodeOffset(fp()); } else { code_offset = static_cast<int>(pc() - function->code()->instruction_start()); } JavaScriptFrame::CollectFunctionAndOffsetForICStats( function, function->abstract_code(), code_offset); // Reserve enough space for IC transition state, the longest length is 17. ic_info.state.reserve(17); ic_info.state = "("; ic_info.state += TransitionMarkFromState(old_state); ic_info.state += "->"; ic_info.state += TransitionMarkFromState(new_state); ic_info.state += modifier; ic_info.state += ")"; ic_info.map = reinterpret_cast<void*>(map); if (map != nullptr) { ic_info.is_dictionary_map = map->is_dictionary_map(); ic_info.number_of_own_descriptors = map->NumberOfOwnDescriptors(); ic_info.instance_type = std::to_string(map->instance_type()); } // TODO(lpy) Add name as key field in ICStats. ICStats::instance()->End(); } #define TRACE_IC(type, name) TraceIC(type, name) IC::IC(FrameDepth depth, Isolate* isolate, FeedbackNexus* nexus) : isolate_(isolate), vector_set_(false), kind_(FeedbackSlotKind::kInvalid), target_maps_set_(false), slow_stub_reason_(nullptr), nexus_(nexus) { // To improve the performance of the (much used) IC code, we unfold a few // levels of the stack frame iteration code. This yields a ~35% speedup when // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag. const Address entry = Isolate::c_entry_fp(isolate->thread_local_top()); Address* constant_pool = NULL; if (FLAG_enable_embedded_constant_pool) { constant_pool = reinterpret_cast<Address*>( entry + ExitFrameConstants::kConstantPoolOffset); } Address* pc_address = reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset); Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset); // If there's another JavaScript frame on the stack or a // StubFailureTrampoline, we need to look one frame further down the stack to // find the frame pointer and the return address stack slot. if (depth == EXTRA_CALL_FRAME) { if (FLAG_enable_embedded_constant_pool) { constant_pool = reinterpret_cast<Address*>( fp + StandardFrameConstants::kConstantPoolOffset); } const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset; pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset); fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset); } #ifdef DEBUG StackFrameIterator it(isolate); for (int i = 0; i < depth + 1; i++) it.Advance(); StackFrame* frame = it.frame(); DCHECK(fp == frame->fp() && pc_address == frame->pc_address()); #endif // For interpreted functions, some bytecode handlers construct a // frame. We have to skip the constructed frame to find the interpreted // function's frame. Check if the there is an additional frame, and if there // is skip this frame. However, the pc should not be updated. The call to // ICs happen from bytecode handlers. intptr_t frame_marker = Memory::intptr_at(fp + TypedFrameConstants::kFrameTypeOffset); if (frame_marker == StackFrame::TypeToMarker(StackFrame::STUB)) { fp = Memory::Address_at(fp + TypedFrameConstants::kCallerFPOffset); } fp_ = fp; if (FLAG_enable_embedded_constant_pool) { constant_pool_address_ = constant_pool; } pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address); if (nexus) { kind_ = nexus->kind(); state_ = nexus->StateFromFeedback(); extra_ic_state_ = kNoExtraICState; } else { Code* target = this->target(); Code::Kind kind = target->kind(); if (kind == Code::BINARY_OP_IC) { kind_ = FeedbackSlotKind::kBinaryOp; } else if (kind == Code::COMPARE_IC) { kind_ = FeedbackSlotKind::kCompareOp; } else if (kind == Code::TO_BOOLEAN_IC) { kind_ = FeedbackSlotKind::kToBoolean; } else { UNREACHABLE(); kind_ = FeedbackSlotKind::kInvalid; } state_ = StateFromCode(target); extra_ic_state_ = target->extra_ic_state(); } old_state_ = state_; } // The ICs that don't pass slot and vector through the stack have to // save/restore them in the dispatcher. bool IC::ShouldPushPopSlotAndVector(Code::Kind kind) { if (kind == Code::LOAD_IC || kind == Code::LOAD_GLOBAL_IC || kind == Code::KEYED_LOAD_IC) { return true; } if (kind == Code::STORE_IC || kind == Code::KEYED_STORE_IC) { return !StoreWithVectorDescriptor::kPassLastArgsOnStack; } return false; } InlineCacheState IC::StateFromCode(Code* code) { Isolate* isolate = code->GetIsolate(); switch (code->kind()) { case Code::BINARY_OP_IC: { BinaryOpICState state(isolate, code->extra_ic_state()); return state.GetICState(); } case Code::COMPARE_IC: { CompareICStub stub(isolate, code->extra_ic_state()); return stub.GetICState(); } case Code::TO_BOOLEAN_IC: { ToBooleanICStub stub(isolate, code->extra_ic_state()); return stub.GetICState(); } default: if (code->is_debug_stub()) return UNINITIALIZED; UNREACHABLE(); return UNINITIALIZED; } } JSFunction* IC::GetHostFunction() const { // Compute the JavaScript frame for the frame pointer of this IC // structure. We need this to be able to find the function // corresponding to the frame. StackFrameIterator it(isolate()); while (it.frame()->fp() != this->fp()) it.Advance(); JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame()); // Find the function on the stack and both the active code for the // function and the original code. return frame->function(); } static void LookupForRead(LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: return; case LookupIterator::INTERCEPTOR: { // If there is a getter, return; otherwise loop to perform the lookup. Handle<JSObject> holder = it->GetHolder<JSObject>(); if (!holder->GetNamedInterceptor()->getter()->IsUndefined( it->isolate())) { return; } break; } case LookupIterator::ACCESS_CHECK: // ICs know how to perform access checks on global proxies. if (it->GetHolder<JSObject>()->IsJSGlobalProxy() && it->HasAccess()) { break; } return; case LookupIterator::ACCESSOR: case LookupIterator::INTEGER_INDEXED_EXOTIC: case LookupIterator::DATA: return; } } } bool IC::ShouldRecomputeHandler(Handle<String> name) { if (!RecomputeHandlerForName(name)) return false; maybe_handler_ = nexus()->FindHandlerForMap(receiver_map()); // This is a contextual access, always just update the handler and stay // monomorphic. if (IsLoadGlobalIC()) return true; // The current map wasn't handled yet. There's no reason to stay monomorphic, // *unless* we're moving from a deprecated map to its replacement, or // to a more general elements kind. // TODO(verwaest): Check if the current map is actually what the old map // would transition to. if (maybe_handler_.is_null()) { if (!receiver_map()->IsJSObjectMap()) return false; Map* first_map = FirstTargetMap(); if (first_map == NULL) return false; Handle<Map> old_map(first_map); if (old_map->is_deprecated()) return true; return IsMoreGeneralElementsKindTransition(old_map->elements_kind(), receiver_map()->elements_kind()); } return true; } bool IC::RecomputeHandlerForName(Handle<Object> name) { if (is_keyed()) { // Determine whether the failure is due to a name failure. if (!name->IsName()) return false; Name* stub_name = nexus()->FindFirstName(); if (*name != stub_name) return false; } return true; } void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) { update_receiver_map(receiver); if (!name->IsString()) return; if (state() != MONOMORPHIC && state() != POLYMORPHIC) return; if (receiver->IsNullOrUndefined(isolate())) return; // Remove the target from the code cache if it became invalid // because of changes in the prototype chain to avoid hitting it // again. if (ShouldRecomputeHandler(Handle<String>::cast(name))) { MarkRecomputeHandler(name); } } MaybeHandle<Object> IC::TypeError(MessageTemplate::Template index, Handle<Object> object, Handle<Object> key) { HandleScope scope(isolate()); THROW_NEW_ERROR(isolate(), NewTypeError(index, key, object), Object); } MaybeHandle<Object> IC::ReferenceError(Handle<Name> name) { HandleScope scope(isolate()); THROW_NEW_ERROR( isolate(), NewReferenceError(MessageTemplate::kNotDefined, name), Object); } static void ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state, int* polymorphic_delta, int* generic_delta) { switch (old_state) { case UNINITIALIZED: case PREMONOMORPHIC: if (new_state == UNINITIALIZED || new_state == PREMONOMORPHIC) break; if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) { *polymorphic_delta = 1; } else if (new_state == MEGAMORPHIC || new_state == GENERIC) { *generic_delta = 1; } break; case MONOMORPHIC: case POLYMORPHIC: if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) break; *polymorphic_delta = -1; if (new_state == MEGAMORPHIC || new_state == GENERIC) { *generic_delta = 1; } break; case MEGAMORPHIC: case GENERIC: if (new_state == MEGAMORPHIC || new_state == GENERIC) break; *generic_delta = -1; if (new_state == MONOMORPHIC || new_state == POLYMORPHIC) { *polymorphic_delta = 1; } break; case RECOMPUTE_HANDLER: UNREACHABLE(); } } // static void IC::OnFeedbackChanged(Isolate* isolate, JSFunction* host_function) { Code* host = host_function->shared()->code(); if (host->kind() == Code::FUNCTION) { TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info()); info->change_own_type_change_checksum(); host->set_profiler_ticks(0); } else if (host_function->IsInterpreted()) { if (FLAG_trace_opt_verbose) { if (host_function->shared()->profiler_ticks() != 0) { PrintF("[resetting ticks for "); host_function->PrintName(); PrintF(" due from %d due to IC change]\n", host_function->shared()->profiler_ticks()); } } host_function->shared()->set_profiler_ticks(0); } isolate->runtime_profiler()->NotifyICChanged(); // TODO(2029): When an optimized function is patched, it would // be nice to propagate the corresponding type information to its // unoptimized version for the benefit of later inlining. } void IC::PostPatching(Address address, Code* target, Code* old_target) { // Type vector based ICs update these statistics at a different time because // they don't always patch on state change. DCHECK(target->kind() == Code::BINARY_OP_IC || target->kind() == Code::COMPARE_IC || target->kind() == Code::TO_BOOLEAN_IC); DCHECK(old_target->is_inline_cache_stub()); DCHECK(target->is_inline_cache_stub()); State old_state = StateFromCode(old_target); State new_state = StateFromCode(target); Isolate* isolate = target->GetIsolate(); Code* host = isolate->inner_pointer_to_code_cache()->GetCacheEntry(address)->code; if (host->kind() != Code::FUNCTION) return; // Not all Code objects have TypeFeedbackInfo. if (host->type_feedback_info()->IsTypeFeedbackInfo()) { if (FLAG_type_info_threshold > 0) { int polymorphic_delta = 0; // "Polymorphic" here includes monomorphic. int generic_delta = 0; // "Generic" here includes megamorphic. ComputeTypeInfoCountDelta(old_state, new_state, &polymorphic_delta, &generic_delta); TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info()); info->change_ic_with_type_info_count(polymorphic_delta); info->change_ic_generic_count(generic_delta); } TypeFeedbackInfo* info = TypeFeedbackInfo::cast(host->type_feedback_info()); info->change_own_type_change_checksum(); } host->set_profiler_ticks(0); isolate->runtime_profiler()->NotifyICChanged(); // TODO(2029): When an optimized function is patched, it would // be nice to propagate the corresponding type information to its // unoptimized version for the benefit of later inlining. } void IC::Clear(Isolate* isolate, Address address, Address constant_pool) { Code* target = GetTargetAtAddress(address, constant_pool); // Don't clear debug break inline cache as it will remove the break point. if (target->is_debug_stub()) return; if (target->kind() == Code::COMPARE_IC) { CompareIC::Clear(isolate, address, target, constant_pool); } } void CompareIC::Clear(Isolate* isolate, Address address, Code* target, Address constant_pool) { DCHECK(CodeStub::GetMajorKey(target) == CodeStub::CompareIC); CompareICStub stub(target->stub_key(), isolate); // Only clear CompareICs that can retain objects. if (stub.state() != CompareICState::KNOWN_RECEIVER) return; SetTargetAtAddress(address, GetRawUninitialized(isolate, stub.op()), constant_pool); PatchInlinedSmiCode(isolate, address, DISABLE_INLINED_SMI_CHECK); } static bool MigrateDeprecated(Handle<Object> object) { if (!object->IsJSObject()) return false; Handle<JSObject> receiver = Handle<JSObject>::cast(object); if (!receiver->map()->is_deprecated()) return false; JSObject::MigrateInstance(Handle<JSObject>::cast(object)); return true; } void IC::ConfigureVectorState(IC::State new_state, Handle<Object> key) { if (new_state == PREMONOMORPHIC) { nexus()->ConfigurePremonomorphic(); } else if (new_state == MEGAMORPHIC) { DCHECK_IMPLIES(!is_keyed(), key->IsName()); nexus()->ConfigureMegamorphic(key->IsName() ? PROPERTY : ELEMENT); } else { UNREACHABLE(); } vector_set_ = true; OnFeedbackChanged(isolate(), GetHostFunction()); } void IC::ConfigureVectorState(Handle<Name> name, Handle<Map> map, Handle<Object> handler) { if (IsLoadGlobalIC()) { LoadGlobalICNexus* nexus = casted_nexus<LoadGlobalICNexus>(); nexus->ConfigureHandlerMode(handler); } else { // Non-keyed ICs don't track the name explicitly. if (!is_keyed()) name = Handle<Name>::null(); nexus()->ConfigureMonomorphic(name, map, handler); } vector_set_ = true; OnFeedbackChanged(isolate(), GetHostFunction()); } void IC::ConfigureVectorState(Handle<Name> name, MapHandles const& maps, List<Handle<Object>>* handlers) { DCHECK(!IsLoadGlobalIC()); // Non-keyed ICs don't track the name explicitly. if (!is_keyed()) name = Handle<Name>::null(); nexus()->ConfigurePolymorphic(name, maps, handlers); vector_set_ = true; OnFeedbackChanged(isolate(), GetHostFunction()); } MaybeHandle<Object> LoadIC::Load(Handle<Object> object, Handle<Name> name) { // If the object is undefined or null it's illegal to try to get any // of its properties; throw a TypeError in that case. if (object->IsNullOrUndefined(isolate())) { if (FLAG_use_ic && state() != UNINITIALIZED && state() != PREMONOMORPHIC) { // Ensure the IC state progresses. TRACE_HANDLER_STATS(isolate(), LoadIC_NonReceiver); update_receiver_map(object); PatchCache(name, slow_stub()); TRACE_IC("LoadIC", name); } return TypeError(MessageTemplate::kNonObjectPropertyLoad, object, name); } bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic; if (state() != UNINITIALIZED) { JSObject::MakePrototypesFast(object, kStartAtReceiver, isolate()); update_receiver_map(object); } // Named lookup in the object. LookupIterator it(object, name); LookupForRead(&it); if (it.IsFound() || !ShouldThrowReferenceError()) { // Update inline cache and stub cache. if (use_ic) UpdateCaches(&it); // Get the property. Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::GetProperty(&it), Object); if (it.IsFound()) { return result; } else if (!ShouldThrowReferenceError()) { LOG(isolate(), SuspectReadEvent(*name, *object)); return result; } } return ReferenceError(name); } MaybeHandle<Object> LoadGlobalIC::Load(Handle<Name> name) { Handle<JSGlobalObject> global = isolate()->global_object(); if (name->IsString()) { // Look up in script context table. Handle<String> str_name = Handle<String>::cast(name); Handle<ScriptContextTable> script_contexts( global->native_context()->script_context_table()); ScriptContextTable::LookupResult lookup_result; if (ScriptContextTable::Lookup(script_contexts, str_name, &lookup_result)) { Handle<Object> result = FixedArray::get(*ScriptContextTable::GetContext( script_contexts, lookup_result.context_index), lookup_result.slot_index, isolate()); if (result->IsTheHole(isolate())) { // Do not install stubs and stay pre-monomorphic for // uninitialized accesses. return ReferenceError(name); } if (FLAG_use_ic && LoadScriptContextFieldStub::Accepted(&lookup_result)) { TRACE_HANDLER_STATS(isolate(), LoadIC_LoadScriptContextFieldStub); LoadScriptContextFieldStub stub(isolate(), &lookup_result); PatchCache(name, stub.GetCode()); TRACE_IC("LoadGlobalIC", name); } return result; } } return LoadIC::Load(global, name); } static bool AddOneReceiverMapIfMissing(MapHandles* receiver_maps, Handle<Map> new_receiver_map) { DCHECK(!new_receiver_map.is_null()); for (Handle<Map> map : *receiver_maps) { if (!map.is_null() && map.is_identical_to(new_receiver_map)) { return false; } } receiver_maps->push_back(new_receiver_map); return true; } bool IC::UpdatePolymorphicIC(Handle<Name> name, Handle<Object> handler) { DCHECK(IsHandler(*handler)); if (is_keyed() && state() != RECOMPUTE_HANDLER) return false; Handle<Map> map = receiver_map(); MapHandles maps; List<Handle<Object>> handlers; TargetMaps(&maps); int number_of_maps = static_cast<int>(maps.size()); int deprecated_maps = 0; int handler_to_overwrite = -1; for (int i = 0; i < number_of_maps; i++) { Handle<Map> current_map = maps.at(i); if (current_map->is_deprecated()) { // Filter out deprecated maps to ensure their instances get migrated. ++deprecated_maps; } else if (map.is_identical_to(current_map)) { // If the receiver type is already in the polymorphic IC, this indicates // there was a prototoype chain failure. In that case, just overwrite the // handler. handler_to_overwrite = i; } else if (handler_to_overwrite == -1 && IsTransitionOfMonomorphicTarget(*current_map, *map)) { handler_to_overwrite = i; } } int number_of_valid_maps = number_of_maps - deprecated_maps - (handler_to_overwrite != -1); if (number_of_valid_maps >= kMaxPolymorphicMapCount) return false; if (number_of_maps == 0 && state() != MONOMORPHIC && state() != POLYMORPHIC) { return false; } if (!nexus()->FindHandlers(&handlers, static_cast<int>(maps.size()))) { return false; } number_of_valid_maps++; if (number_of_valid_maps > 1 && is_keyed()) return false; if (number_of_valid_maps == 1) { ConfigureVectorState(name, receiver_map(), handler); } else { if (handler_to_overwrite >= 0) { handlers.Set(handler_to_overwrite, handler); if (!map.is_identical_to(maps.at(handler_to_overwrite))) { maps[handler_to_overwrite] = map; } } else { maps.push_back(map); handlers.Add(handler); } ConfigureVectorState(name, maps, &handlers); } return true; } void IC::UpdateMonomorphicIC(Handle<Object> handler, Handle<Name> name) { DCHECK(IsHandler(*handler)); ConfigureVectorState(name, receiver_map(), handler); } void IC::CopyICToMegamorphicCache(Handle<Name> name) { MapHandles maps; List<Handle<Object>> handlers; TargetMaps(&maps); if (!nexus()->FindHandlers(&handlers, static_cast<int>(maps.size()))) return; for (int i = 0; i < static_cast<int>(maps.size()); i++) { UpdateMegamorphicCache(*maps.at(i), *name, *handlers.at(i)); } } bool IC::IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map) { if (source_map == NULL) return true; if (target_map == NULL) return false; ElementsKind target_elements_kind = target_map->elements_kind(); bool more_general_transition = IsMoreGeneralElementsKindTransition( source_map->elements_kind(), target_elements_kind); Map* transitioned_map = nullptr; if (more_general_transition) { MapHandles map_list; map_list.push_back(handle(target_map)); transitioned_map = source_map->FindElementsKindTransitionedMap(map_list); } return transitioned_map == target_map; } void IC::PatchCache(Handle<Name> name, Handle<Object> handler) { DCHECK(IsHandler(*handler)); // Currently only load and store ICs support non-code handlers. DCHECK(IsAnyLoad() || IsAnyStore()); switch (state()) { case UNINITIALIZED: case PREMONOMORPHIC: UpdateMonomorphicIC(handler, name); break; case RECOMPUTE_HANDLER: case MONOMORPHIC: if (IsLoadGlobalIC()) { UpdateMonomorphicIC(handler, name); break; } // Fall through. case POLYMORPHIC: if (!is_keyed() || state() == RECOMPUTE_HANDLER) { if (UpdatePolymorphicIC(name, handler)) break; // For keyed stubs, we can't know whether old handlers were for the // same key. CopyICToMegamorphicCache(name); } ConfigureVectorState(MEGAMORPHIC, name); // Fall through. case MEGAMORPHIC: UpdateMegamorphicCache(*receiver_map(), *name, *handler); // Indicate that we've handled this case. vector_set_ = true; break; case GENERIC: UNREACHABLE(); break; } } Handle<Smi> LoadIC::SimpleFieldLoad(Isolate* isolate, FieldIndex index) { TRACE_HANDLER_STATS(isolate, LoadIC_LoadFieldDH); return LoadHandler::LoadField(isolate, index); } namespace { template <bool fill_array = true> int InitPrototypeChecks(Isolate* isolate, Handle<Map> receiver_map, Handle<JSObject> holder, Handle<Name> name, Handle<FixedArray> array, int first_index) { if (!holder.is_null() && holder->map() == *receiver_map) return 0; HandleScope scope(isolate); int checks_count = 0; if (receiver_map->IsPrimitiveMap() || receiver_map->IsJSGlobalProxyMap()) { // The validity cell check for primitive and global proxy receivers does // not guarantee that certain native context ever had access to other // native context. However, a handler created for one native context could // be used in other native context through the megamorphic stub cache. // So we record the original native context to which this handler // corresponds. if (fill_array) { Handle<Context> native_context = isolate->native_context(); array->set(LoadHandler::kFirstPrototypeIndex + checks_count, native_context->self_weak_cell()); } checks_count++; } else if (receiver_map->IsJSGlobalObjectMap()) { // If we are creating a handler for [Load/Store]GlobalIC then we need to // check that the property did not appear in the global object. if (fill_array) { Handle<JSGlobalObject> global = isolate->global_object(); Handle<PropertyCell> cell = JSGlobalObject::EnsureEmptyPropertyCell( global, name, PropertyCellType::kInvalidated); DCHECK(cell->value()->IsTheHole(isolate)); Handle<WeakCell> weak_cell = isolate->factory()->NewWeakCell(cell); array->set(LoadHandler::kFirstPrototypeIndex + checks_count, *weak_cell); } checks_count++; } // Create/count entries for each global or dictionary prototype appeared in // the prototype chain contains from receiver till holder. PrototypeIterator::WhereToEnd end = name->IsPrivate() ? PrototypeIterator::END_AT_NON_HIDDEN : PrototypeIterator::END_AT_NULL; for (PrototypeIterator iter(receiver_map, end); !iter.IsAtEnd(); iter.Advance()) { Handle<JSObject> current = PrototypeIterator::GetCurrent<JSObject>(iter); if (holder.is_identical_to(current)) break; Handle<Map> current_map(current->map(), isolate); if (current_map->IsJSGlobalObjectMap()) { if (fill_array) { Handle<JSGlobalObject> global = Handle<JSGlobalObject>::cast(current); Handle<PropertyCell> cell = JSGlobalObject::EnsureEmptyPropertyCell( global, name, PropertyCellType::kInvalidated); DCHECK(cell->value()->IsTheHole(isolate)); Handle<WeakCell> weak_cell = isolate->factory()->NewWeakCell(cell); array->set(first_index + checks_count, *weak_cell); } checks_count++; } else if (current_map->is_dictionary_map()) { DCHECK(!current_map->IsJSGlobalProxyMap()); // Proxy maps are fast. if (fill_array) { DCHECK_EQ(NameDictionary::kNotFound, current->property_dictionary()->FindEntry(name)); Handle<WeakCell> weak_cell = Map::GetOrCreatePrototypeWeakCell(current, isolate); array->set(first_index + checks_count, *weak_cell); } checks_count++; } } return checks_count; } // Returns 0 if the validity cell check is enough to ensure that the // prototype chain from |receiver_map| till |holder| did not change. // If the |holder| is an empty handle then the full prototype chain is // checked. // Returns -1 if the handler has to be compiled or the number of prototype // checks otherwise. int GetPrototypeCheckCount(Isolate* isolate, Handle<Map> receiver_map, Handle<JSObject> holder, Handle<Name> name) { return InitPrototypeChecks<false>(isolate, receiver_map, holder, name, Handle<FixedArray>(), 0); } Handle<WeakCell> HolderCell(Isolate* isolate, Handle<JSObject> holder, Handle<Name> name, Handle<Smi> smi_handler) { if (holder->IsJSGlobalObject() && *smi_handler != *LoadHandler::LoadInterceptor(isolate)) { Handle<JSGlobalObject> global = Handle<JSGlobalObject>::cast(holder); GlobalDictionary* dict = global->global_dictionary(); int number = dict->FindEntry(name); DCHECK_NE(NameDictionary::kNotFound, number); Handle<PropertyCell> cell(PropertyCell::cast(dict->ValueAt(number)), isolate); return isolate->factory()->NewWeakCell(cell); } return Map::GetOrCreatePrototypeWeakCell(holder, isolate); } } // namespace Handle<Object> LoadIC::LoadFromPrototype(Handle<Map> receiver_map, Handle<JSObject> holder, Handle<Name> name, Handle<Smi> smi_handler) { int checks_count = GetPrototypeCheckCount(isolate(), receiver_map, holder, name); DCHECK_LE(0, checks_count); if (receiver_map->IsPrimitiveMap() || receiver_map->is_access_check_needed()) { DCHECK(!receiver_map->is_dictionary_map()); DCHECK_LE(1, checks_count); // For native context. smi_handler = LoadHandler::EnableAccessCheckOnReceiver(isolate(), smi_handler); } else if (receiver_map->is_dictionary_map() && !receiver_map->IsJSGlobalObjectMap()) { smi_handler = LoadHandler::EnableLookupOnReceiver(isolate(), smi_handler); } Handle<Cell> validity_cell = Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate()); DCHECK(!validity_cell.is_null()); Handle<WeakCell> holder_cell = HolderCell(isolate(), holder, name, smi_handler); if (checks_count == 0) { return isolate()->factory()->NewTuple3(holder_cell, smi_handler, validity_cell); } Handle<FixedArray> handler_array(isolate()->factory()->NewFixedArray( LoadHandler::kFirstPrototypeIndex + checks_count, TENURED)); handler_array->set(LoadHandler::kSmiHandlerIndex, *smi_handler); handler_array->set(LoadHandler::kValidityCellIndex, *validity_cell); handler_array->set(LoadHandler::kHolderCellIndex, *holder_cell); InitPrototypeChecks(isolate(), receiver_map, holder, name, handler_array, LoadHandler::kFirstPrototypeIndex); return handler_array; } Handle<Object> LoadIC::LoadFullChain(Handle<Map> receiver_map, Handle<Object> holder, Handle<Name> name, Handle<Smi> smi_handler) { Handle<JSObject> end; // null handle int checks_count = GetPrototypeCheckCount(isolate(), receiver_map, end, name); DCHECK_LE(0, checks_count); if (receiver_map->IsPrimitiveMap() || receiver_map->is_access_check_needed()) { DCHECK(!receiver_map->is_dictionary_map()); DCHECK_LE(1, checks_count); // For native context. smi_handler = LoadHandler::EnableAccessCheckOnReceiver(isolate(), smi_handler); } else if (receiver_map->is_dictionary_map() && !receiver_map->IsJSGlobalObjectMap()) { smi_handler = LoadHandler::EnableLookupOnReceiver(isolate(), smi_handler); } Handle<Object> validity_cell = Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate()); if (validity_cell.is_null()) { DCHECK_EQ(0, checks_count); // Lookup on receiver isn't supported in case of a simple smi handler. if (!LoadHandler::LookupOnReceiverBits::decode(smi_handler->value())) { return smi_handler; } validity_cell = handle(Smi::kZero, isolate()); } Factory* factory = isolate()->factory(); if (checks_count == 0) { return factory->NewTuple3(holder, smi_handler, validity_cell); } Handle<FixedArray> handler_array(factory->NewFixedArray( LoadHandler::kFirstPrototypeIndex + checks_count, TENURED)); handler_array->set(LoadHandler::kSmiHandlerIndex, *smi_handler); handler_array->set(LoadHandler::kValidityCellIndex, *validity_cell); handler_array->set(LoadHandler::kHolderCellIndex, *holder); InitPrototypeChecks(isolate(), receiver_map, end, name, handler_array, LoadHandler::kFirstPrototypeIndex); return handler_array; } void LoadIC::UpdateCaches(LookupIterator* lookup) { if (state() == UNINITIALIZED && !IsLoadGlobalIC()) { // This is the first time we execute this inline cache. Set the target to // the pre monomorphic stub to delay setting the monomorphic state. TRACE_HANDLER_STATS(isolate(), LoadIC_Premonomorphic); ConfigureVectorState(PREMONOMORPHIC, Handle<Object>()); TRACE_IC("LoadIC", lookup->name()); return; } Handle<Object> code; if (lookup->state() == LookupIterator::JSPROXY || lookup->state() == LookupIterator::ACCESS_CHECK) { code = slow_stub(); } else if (!lookup->IsFound()) { TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNonexistentDH); Handle<Smi> smi_handler = LoadHandler::LoadNonExistent(isolate()); code = LoadFullChain(receiver_map(), isolate()->factory()->null_value(), lookup->name(), smi_handler); } else { if (IsLoadGlobalIC()) { if (lookup->TryLookupCachedProperty()) { DCHECK_EQ(LookupIterator::DATA, lookup->state()); } if (lookup->state() == LookupIterator::DATA && lookup->GetReceiver().is_identical_to(lookup->GetHolder<Object>())) { DCHECK(lookup->GetReceiver()->IsJSGlobalObject()); // Now update the cell in the feedback vector. LoadGlobalICNexus* nexus = casted_nexus<LoadGlobalICNexus>(); nexus->ConfigurePropertyCellMode(lookup->GetPropertyCell()); TRACE_IC("LoadGlobalIC", lookup->name()); return; } } code = ComputeHandler(lookup); } PatchCache(lookup->name(), code); TRACE_IC("LoadIC", lookup->name()); } StubCache* IC::stub_cache() { if (IsAnyLoad()) { return isolate()->load_stub_cache(); } else { DCHECK(IsAnyStore()); return isolate()->store_stub_cache(); } } void IC::UpdateMegamorphicCache(Map* map, Name* name, Object* handler) { stub_cache()->Set(name, map, handler); } void IC::TraceHandlerCacheHitStats(LookupIterator* lookup) { DCHECK_EQ(LookupIterator::ACCESSOR, lookup->state()); if (V8_LIKELY(!FLAG_runtime_stats)) return; if (IsAnyLoad()) { TRACE_HANDLER_STATS(isolate(), LoadIC_HandlerCacheHit_Accessor); } else { DCHECK(IsAnyStore()); TRACE_HANDLER_STATS(isolate(), StoreIC_HandlerCacheHit_Accessor); } } Handle<Object> IC::ComputeHandler(LookupIterator* lookup) { // Try to find a globally shared handler stub. Handle<Object> shared_handler = GetMapIndependentHandler(lookup); if (!shared_handler.is_null()) { DCHECK(IC::IsHandler(*shared_handler)); return shared_handler; } Handle<Code> handler = PropertyHandlerCompiler::Find( lookup->name(), receiver_map(), handler_kind()); // Use the cached value if it exists, and if it is different from the // handler that just missed. if (!handler.is_null()) { Handle<Object> current_handler; if (maybe_handler_.ToHandle(¤t_handler)) { if (!current_handler.is_identical_to(handler)) { TraceHandlerCacheHitStats(lookup); return handler; } } else { // maybe_handler_ is only populated for MONOMORPHIC and POLYMORPHIC ICs. // In MEGAMORPHIC case, check if the handler in the megamorphic stub // cache (which just missed) is different from the cached handler. if (state() == MEGAMORPHIC && lookup->GetReceiver()->IsHeapObject()) { Map* map = Handle<HeapObject>::cast(lookup->GetReceiver())->map(); Object* megamorphic_cached_handler = stub_cache()->Get(*lookup->name(), map); if (megamorphic_cached_handler != *handler) { TraceHandlerCacheHitStats(lookup); return handler; } } else { TraceHandlerCacheHitStats(lookup); return handler; } } } handler = CompileHandler(lookup); Map::UpdateCodeCache(receiver_map(), lookup->name(), handler); return handler; } Handle<Object> LoadIC::GetMapIndependentHandler(LookupIterator* lookup) { Handle<Object> receiver = lookup->GetReceiver(); if (receiver->IsString() && *lookup->name() == isolate()->heap()->length_string()) { FieldIndex index = FieldIndex::ForInObjectOffset(String::kLengthOffset); return SimpleFieldLoad(isolate(), index); } if (receiver->IsStringWrapper() && *lookup->name() == isolate()->heap()->length_string()) { TRACE_HANDLER_STATS(isolate(), LoadIC_StringLengthStub); StringLengthStub string_length_stub(isolate()); return string_length_stub.GetCode(); } // Use specialized code for getting prototype of functions. if (receiver->IsJSFunction() && *lookup->name() == isolate()->heap()->prototype_string() && receiver->IsConstructor() && !Handle<JSFunction>::cast(receiver) ->map() ->has_non_instance_prototype()) { Handle<Code> stub; TRACE_HANDLER_STATS(isolate(), LoadIC_FunctionPrototypeStub); return isolate()->builtins()->LoadIC_FunctionPrototype(); } Handle<Map> map = receiver_map(); Handle<JSObject> holder = lookup->GetHolder<JSObject>(); bool receiver_is_holder = receiver.is_identical_to(holder); switch (lookup->state()) { case LookupIterator::INTERCEPTOR: { Handle<Smi> smi_handler = LoadHandler::LoadInterceptor(isolate()); if (holder->GetNamedInterceptor()->non_masking()) { Handle<Object> holder_ref = isolate()->factory()->null_value(); if (!receiver_is_holder || IsLoadGlobalIC()) { holder_ref = Map::GetOrCreatePrototypeWeakCell(holder, isolate()); } TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNonMaskingInterceptorDH); return LoadFullChain(map, holder_ref, lookup->name(), smi_handler); } if (receiver_is_holder) { DCHECK(map->has_named_interceptor()); TRACE_HANDLER_STATS(isolate(), LoadIC_LoadInterceptorDH); return smi_handler; } TRACE_HANDLER_STATS(isolate(), LoadIC_LoadInterceptorFromPrototypeDH); return LoadFromPrototype(map, holder, lookup->name(), smi_handler); } case LookupIterator::ACCESSOR: { // Use simple field loads for some well-known callback properties. // The method will only return true for absolute truths based on the // receiver maps. int object_offset; if (Accessors::IsJSObjectFieldAccessor(map, lookup->name(), &object_offset)) { FieldIndex index = FieldIndex::ForInObjectOffset(object_offset, *map); return SimpleFieldLoad(isolate(), index); } Handle<Object> accessors = lookup->GetAccessors(); if (accessors->IsAccessorPair()) { if (lookup->TryLookupCachedProperty()) { DCHECK_EQ(LookupIterator::DATA, lookup->state()); return ComputeHandler(lookup); } // When debugging we need to go the slow path to flood the accessor. if (GetHostFunction()->shared()->HasDebugInfo()) { TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub); return slow_stub(); } Handle<Object> getter(AccessorPair::cast(*accessors)->getter(), isolate()); if (!getter->IsJSFunction() && !getter->IsFunctionTemplateInfo()) { TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub); return slow_stub(); } CallOptimization call_optimization(getter); if (call_optimization.is_simple_api_call()) { if (!call_optimization.IsCompatibleReceiverMap(map, holder) || !holder->HasFastProperties()) { TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub); return slow_stub(); } break; } // FunctionTemplate isn't yet supported as smi-handler. if (getter->IsFunctionTemplateInfo()) { if (!holder->HasFastProperties()) { TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub); return slow_stub(); } break; } Handle<Smi> smi_handler; if (holder->HasFastProperties()) { smi_handler = LoadHandler::LoadAccessor(isolate(), lookup->GetAccessorIndex()); if (receiver_is_holder) { TRACE_HANDLER_STATS(isolate(), LoadIC_LoadAccessorDH); return smi_handler; } TRACE_HANDLER_STATS(isolate(), LoadIC_LoadAccessorFromPrototypeDH); } else if (holder->IsJSGlobalObject()) { TRACE_HANDLER_STATS(isolate(), LoadIC_LoadGlobalFromPrototypeDH); smi_handler = LoadHandler::LoadGlobal(isolate()); } else { smi_handler = LoadHandler::LoadNormal(isolate()); if (receiver_is_holder) { TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNormalDH); return smi_handler; } TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNormalFromPrototypeDH); } return LoadFromPrototype(map, holder, lookup->name(), smi_handler); } Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(accessors); if (v8::ToCData<Address>(info->getter()) == nullptr || !AccessorInfo::IsCompatibleReceiverMap(isolate(), info, map) || !holder->HasFastProperties() || (info->is_sloppy() && !receiver->IsJSReceiver())) { TRACE_HANDLER_STATS(isolate(), LoadIC_SlowStub); return slow_stub(); } Handle<Smi> smi_handler = LoadHandler::LoadApiGetter(isolate(), lookup->GetAccessorIndex()); TRACE_HANDLER_STATS(isolate(), LoadIC_LoadApiGetterDH); if (receiver_is_holder) return smi_handler; TRACE_HANDLER_STATS(isolate(), LoadIC_LoadApiGetterFromPrototypeDH); return LoadFromPrototype(map, holder, lookup->name(), smi_handler); } case LookupIterator::DATA: { DCHECK_EQ(kData, lookup->property_details().kind()); Handle<Smi> smi_handler; if (lookup->is_dictionary_holder()) { smi_handler = LoadHandler::LoadNormal(isolate()); if (receiver_is_holder) { if (holder->IsJSGlobalObject()) { // TODO(verwaest): This is a workaround for code that leaks the // global object. TRACE_HANDLER_STATS(isolate(), LoadIC_LoadGlobalDH); smi_handler = LoadHandler::LoadGlobal(isolate()); return LoadFromPrototype(map, holder, lookup->name(), smi_handler); } DCHECK(!holder->IsJSGlobalObject()); TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNormalDH); return smi_handler; } if (holder->IsJSGlobalObject()) { TRACE_HANDLER_STATS(isolate(), LoadIC_LoadGlobalFromPrototypeDH); smi_handler = LoadHandler::LoadGlobal(isolate()); } else { TRACE_HANDLER_STATS(isolate(), LoadIC_LoadNormalFromPrototypeDH); } } else if (lookup->property_details().location() == kField) { FieldIndex field = lookup->GetFieldIndex(); smi_handler = SimpleFieldLoad(isolate(), field); if (receiver_is_holder) return smi_handler; TRACE_HANDLER_STATS(isolate(), LoadIC_LoadFieldFromPrototypeDH); } else { DCHECK_EQ(kDescriptor, lookup->property_details().location()); smi_handler = LoadHandler::LoadConstant(isolate(), lookup->GetConstantIndex()); TRACE_HANDLER_STATS(isolate(), LoadIC_LoadConstantDH); if (receiver_is_holder) return smi_handler; TRACE_HANDLER_STATS(isolate(), LoadIC_LoadConstantFromPrototypeDH); } return LoadFromPrototype(map, holder, lookup->name(), smi_handler); } case LookupIterator::INTEGER_INDEXED_EXOTIC: TRACE_HANDLER_STATS(isolate(), LoadIC_LoadIntegerIndexedExoticDH); return LoadHandler::LoadNonExistent(isolate()); case LookupIterator::ACCESS_CHECK: case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); } return Handle<Code>::null(); } Handle<Code> LoadIC::CompileHandler(LookupIterator* lookup) { DCHECK_EQ(LookupIterator::ACCESSOR, lookup->state()); Handle<JSObject> holder = lookup->GetHolder<JSObject>(); Handle<Map> map = receiver_map(); Handle<Object> accessors = lookup->GetAccessors(); DCHECK(accessors->IsAccessorPair()); DCHECK(holder->HasFastProperties()); DCHECK(!GetHostFunction()->shared()->HasDebugInfo()); Handle<Object> getter(Handle<AccessorPair>::cast(accessors)->getter(), isolate()); CallOptimization call_optimization(getter); NamedLoadHandlerCompiler compiler(isolate(), map, holder); DCHECK(call_optimization.is_simple_api_call()); TRACE_HANDLER_STATS(isolate(), LoadIC_LoadCallback); int index = lookup->GetAccessorIndex(); Handle<Code> code = compiler.CompileLoadCallback( lookup->name(), call_optimization, index, slow_stub()); return code; } static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) { // This helper implements a few common fast cases for converting // non-smi keys of keyed loads/stores to a smi or a string. if (key->IsHeapNumber()) { double value = Handle<HeapNumber>::cast(key)->value(); if (std::isnan(value)) { key = isolate->factory()->nan_string(); } else { int int_value = FastD2I(value); if (value == int_value && Smi::IsValid(int_value)) { key = handle(Smi::FromInt(int_value), isolate); } } } else if (key->IsUndefined(isolate)) { key = isolate->factory()->undefined_string(); } else if (key->IsString()) { key = isolate->factory()->InternalizeString(Handle<String>::cast(key)); } return key; } void KeyedLoadIC::UpdateLoadElement(Handle<HeapObject> receiver) { Handle<Map> receiver_map(receiver->map(), isolate()); DCHECK(receiver_map->instance_type() != JS_VALUE_TYPE && receiver_map->instance_type() != JS_PROXY_TYPE); // Checked by caller. MapHandles target_receiver_maps; TargetMaps(&target_receiver_maps); if (target_receiver_maps.empty()) { Handle<Object> handler = LoadElementHandler(receiver_map); return ConfigureVectorState(Handle<Name>(), receiver_map, handler); } for (Handle<Map> map : target_receiver_maps) { if (map.is_null()) continue; if (map->instance_type() == JS_VALUE_TYPE) { TRACE_GENERIC_IC("JSValue"); return; } if (map->instance_type() == JS_PROXY_TYPE) { TRACE_GENERIC_IC("JSProxy"); return; } } // The first time a receiver is seen that is a transitioned version of the // previous monomorphic receiver type, assume the new ElementsKind is the // monomorphic type. This benefits global arrays that only transition // once, and all call sites accessing them are faster if they remain // monomorphic. If this optimistic assumption is not true, the IC will // miss again and it will become polymorphic and support both the // untransitioned and transitioned maps. if (state() == MONOMORPHIC && !receiver->IsString() && IsMoreGeneralElementsKindTransition( target_receiver_maps.at(0)->elements_kind(), Handle<JSObject>::cast(receiver)->GetElementsKind())) { Handle<Object> handler = LoadElementHandler(receiver_map); return ConfigureVectorState(Handle<Name>(), receiver_map, handler); } DCHECK(state() != GENERIC); // Determine the list of receiver maps that this call site has seen, // adding the map that was just encountered. if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) { // If the miss wasn't due to an unseen map, a polymorphic stub // won't help, use the generic stub. TRACE_GENERIC_IC("same map added twice"); return; } // If the maximum number of receiver maps has been exceeded, use the generic // version of the IC. if (target_receiver_maps.size() > kMaxKeyedPolymorphism) { TRACE_GENERIC_IC("max polymorph exceeded"); return; } List<Handle<Object>> handlers(static_cast<int>(target_receiver_maps.size())); LoadElementPolymorphicHandlers(&target_receiver_maps, &handlers); DCHECK_LE(1, target_receiver_maps.size()); if (target_receiver_maps.size() == 1) { ConfigureVectorState(Handle<Name>(), target_receiver_maps[0], handlers.at(0)); } else { ConfigureVectorState(Handle<Name>(), target_receiver_maps, &handlers); } } Handle<Object> KeyedLoadIC::LoadElementHandler(Handle<Map> receiver_map) { if (receiver_map->has_indexed_interceptor() && !receiver_map->GetIndexedInterceptor()->getter()->IsUndefined( isolate()) && !receiver_map->GetIndexedInterceptor()->non_masking()) { TRACE_HANDLER_STATS(isolate(), KeyedLoadIC_LoadIndexedInterceptorStub); return LoadIndexedInterceptorStub(isolate()).GetCode(); } if (receiver_map->IsStringMap()) { TRACE_HANDLER_STATS(isolate(), KeyedLoadIC_LoadIndexedStringStub); return isolate()->builtins()->KeyedLoadIC_IndexedString(); } InstanceType instance_type = receiver_map->instance_type(); if (instance_type < FIRST_JS_RECEIVER_TYPE) { TRACE_HANDLER_STATS(isolate(), KeyedLoadIC_SlowStub); return isolate()->builtins()->KeyedLoadIC_Slow(); } ElementsKind elements_kind = receiver_map->elements_kind(); if (IsSloppyArgumentsElementsKind(elements_kind)) { TRACE_HANDLER_STATS(isolate(), KeyedLoadIC_KeyedLoadSloppyArgumentsStub); return KeyedLoadSloppyArgumentsStub(isolate()).GetCode(); } bool is_js_array = instance_type == JS_ARRAY_TYPE; if (elements_kind == DICTIONARY_ELEMENTS) { TRACE_HANDLER_STATS(isolate(), KeyedLoadIC_LoadElementDH); return LoadHandler::LoadElement(isolate(), elements_kind, false, is_js_array); } DCHECK(IsFastElementsKind(elements_kind) || IsFixedTypedArrayElementsKind(elements_kind)); // TODO(jkummerow): Use IsHoleyElementsKind(elements_kind). bool convert_hole_to_undefined = is_js_array && elements_kind == FAST_HOLEY_ELEMENTS && *receiver_map == isolate()->get_initial_js_array_map(elements_kind); TRACE_HANDLER_STATS(isolate(), KeyedLoadIC_LoadElementDH); return LoadHandler::LoadElement(isolate(), elements_kind, convert_hole_to_undefined, is_js_array); } void KeyedLoadIC::LoadElementPolymorphicHandlers( MapHandles* receiver_maps, List<Handle<Object>>* handlers) { // Filter out deprecated maps to ensure their instances get migrated. receiver_maps->erase( std::remove_if( receiver_maps->begin(), receiver_maps->end(), [](const Handle<Map>& map) { return map->is_deprecated(); }), receiver_maps->end()); for (Handle<Map> receiver_map : *receiver_maps) { // Mark all stable receiver maps that have elements kind transition map // among receiver_maps as unstable because the optimizing compilers may // generate an elements kind transition for this kind of receivers. if (receiver_map->is_stable()) { Map* tmap = receiver_map->FindElementsKindTransitionedMap(*receiver_maps); if (tmap != nullptr) { receiver_map->NotifyLeafMapLayoutChange(); } } handlers->Add(LoadElementHandler(receiver_map)); } } MaybeHandle<Object> KeyedLoadIC::Load(Handle<Object> object, Handle<Object> key) { if (MigrateDeprecated(object)) { Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Runtime::GetObjectProperty(isolate(), object, key), Object); return result; } Handle<Object> load_handle; // Check for non-string values that can be converted into an // internalized string directly or is representable as a smi. key = TryConvertKey(key, isolate()); uint32_t index; if ((key->IsInternalizedString() && !String::cast(*key)->AsArrayIndex(&index)) || key->IsSymbol()) { ASSIGN_RETURN_ON_EXCEPTION(isolate(), load_handle, LoadIC::Load(object, Handle<Name>::cast(key)), Object); } else if (FLAG_use_ic && !object->IsAccessCheckNeeded() && !object->IsJSValue()) { if ((object->IsJSObject() && key->IsSmi()) || (object->IsString() && key->IsNumber())) { UpdateLoadElement(Handle<HeapObject>::cast(object)); if (is_vector_set()) { TRACE_IC("LoadIC", key); } } } if (!is_vector_set()) { ConfigureVectorState(MEGAMORPHIC, key); TRACE_IC("LoadIC", key); } if (!load_handle.is_null()) return load_handle; Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Runtime::GetObjectProperty(isolate(), object, key), Object); return result; } bool StoreIC::LookupForWrite(LookupIterator* it, Handle<Object> value, JSReceiver::StoreFromKeyed store_mode) { // Disable ICs for non-JSObjects for now. Handle<Object> object = it->GetReceiver(); if (!object->IsJSObject()) return false; Handle<JSObject> receiver = Handle<JSObject>::cast(object); DCHECK(!receiver->map()->is_deprecated()); for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: return false; case LookupIterator::INTERCEPTOR: { Handle<JSObject> holder = it->GetHolder<JSObject>(); InterceptorInfo* info = holder->GetNamedInterceptor(); if (it->HolderIsReceiverOrHiddenPrototype()) { return !info->non_masking() && receiver.is_identical_to(holder) && !info->setter()->IsUndefined(it->isolate()); } else if (!info->getter()->IsUndefined(it->isolate()) || !info->query()->IsUndefined(it->isolate())) { return false; } break; } case LookupIterator::ACCESS_CHECK: if (it->GetHolder<JSObject>()->IsAccessCheckNeeded()) return false; break; case LookupIterator::ACCESSOR: return !it->IsReadOnly(); case LookupIterator::INTEGER_INDEXED_EXOTIC: return false; case LookupIterator::DATA: { if (it->IsReadOnly()) return false; Handle<JSObject> holder = it->GetHolder<JSObject>(); if (receiver.is_identical_to(holder)) { it->PrepareForDataProperty(value); // The previous receiver map might just have been deprecated, // so reload it. update_receiver_map(receiver); return true; } // Receiver != holder. if (receiver->IsJSGlobalProxy()) { PrototypeIterator iter(it->isolate(), receiver); return it->GetHolder<Object>().is_identical_to( PrototypeIterator::GetCurrent(iter)); } if (it->HolderIsReceiverOrHiddenPrototype()) return false; if (it->ExtendingNonExtensible(receiver)) return false; it->PrepareTransitionToDataProperty(receiver, value, NONE, store_mode); return it->IsCacheableTransition(); } } } receiver = it->GetStoreTarget(); if (it->ExtendingNonExtensible(receiver)) return false; it->PrepareTransitionToDataProperty(receiver, value, NONE, store_mode); return it->IsCacheableTransition(); } MaybeHandle<Object> StoreGlobalIC::Store(Handle<Object> object, Handle<Name> name, Handle<Object> value) { DCHECK(object->IsJSGlobalObject()); DCHECK(name->IsString()); // Look up in script context table. Handle<String> str_name = Handle<String>::cast(name); Handle<JSGlobalObject> global = Handle<JSGlobalObject>::cast(object); Handle<ScriptContextTable> script_contexts( global->native_context()->script_context_table()); ScriptContextTable::LookupResult lookup_result; if (ScriptContextTable::Lookup(script_contexts, str_name, &lookup_result)) { Handle<Context> script_context = ScriptContextTable::GetContext( script_contexts, lookup_result.context_index); if (lookup_result.mode == CONST) { return TypeError(MessageTemplate::kConstAssign, object, name); } Handle<Object> previous_value = FixedArray::get(*script_context, lookup_result.slot_index, isolate()); if (previous_value->IsTheHole(isolate())) { // Do not install stubs and stay pre-monomorphic for // uninitialized accesses. return ReferenceError(name); } if (FLAG_use_ic && StoreScriptContextFieldStub::Accepted(&lookup_result)) { TRACE_HANDLER_STATS(isolate(), StoreIC_StoreScriptContextFieldStub); StoreScriptContextFieldStub stub(isolate(), &lookup_result); PatchCache(name, stub.GetCode()); } script_context->set(lookup_result.slot_index, *value); return value; } return StoreIC::Store(object, name, value); } MaybeHandle<Object> StoreIC::Store(Handle<Object> object, Handle<Name> name, Handle<Object> value, JSReceiver::StoreFromKeyed store_mode) { // TODO(verwaest): Let SetProperty do the migration, since storing a property // might deprecate the current map again, if value does not fit. if (MigrateDeprecated(object) || object->IsJSProxy()) { Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::SetProperty(object, name, value, language_mode()), Object); return result; } // If the object is undefined or null it's illegal to try to set any // properties on it; throw a TypeError in that case. if (object->IsNullOrUndefined(isolate())) { if (FLAG_use_ic && state() != UNINITIALIZED && state() != PREMONOMORPHIC) { // Ensure the IC state progresses. TRACE_HANDLER_STATS(isolate(), StoreIC_NonReceiver); update_receiver_map(object); PatchCache(name, slow_stub()); TRACE_IC("StoreIC", name); } return TypeError(MessageTemplate::kNonObjectPropertyStore, object, name); } if (state() != UNINITIALIZED) { JSObject::MakePrototypesFast(object, kStartAtPrototype, isolate()); } LookupIterator it(object, name); if (FLAG_use_ic) UpdateCaches(&it, value, store_mode); MAYBE_RETURN_NULL( Object::SetProperty(&it, value, language_mode(), store_mode)); return value; } void StoreIC::UpdateCaches(LookupIterator* lookup, Handle<Object> value, JSReceiver::StoreFromKeyed store_mode) { if (state() == UNINITIALIZED) { // This is the first time we execute this inline cache. Set the target to // the pre monomorphic stub to delay setting the monomorphic state. TRACE_HANDLER_STATS(isolate(), StoreIC_Premonomorphic); ConfigureVectorState(PREMONOMORPHIC, Handle<Object>()); TRACE_IC("StoreIC", lookup->name()); return; } Handle<Object> handler; if (LookupForWrite(lookup, value, store_mode)) { handler = ComputeHandler(lookup); } else { TRACE_GENERIC_IC("LookupForWrite said 'false'"); handler = slow_stub(); } PatchCache(lookup->name(), handler); TRACE_IC("StoreIC", lookup->name()); } Handle<Object> StoreIC::StoreTransition(Handle<Map> receiver_map, Handle<JSObject> holder, Handle<Map> transition, Handle<Name> name) { Handle<Object> smi_handler; if (transition->is_dictionary_map()) { smi_handler = StoreHandler::StoreNormal(isolate()); } else { int descriptor = transition->LastAdded(); Handle<DescriptorArray> descriptors(transition->instance_descriptors()); PropertyDetails details = descriptors->GetDetails(descriptor); Representation representation = details.representation(); DCHECK(!representation.IsNone()); // Declarative handlers don't support access checks. DCHECK(!transition->is_access_check_needed()); DCHECK_EQ(kData, details.kind()); if (details.location() == kDescriptor) { smi_handler = StoreHandler::TransitionToConstant(isolate(), descriptor); } else { DCHECK_EQ(kField, details.location()); bool extend_storage = Map::cast(transition->GetBackPointer())->unused_property_fields() == 0; FieldIndex index = FieldIndex::ForDescriptor(*transition, descriptor); smi_handler = StoreHandler::TransitionToField( isolate(), descriptor, index, representation, extend_storage); } } // |holder| is either a receiver if the property is non-existent or // one of the prototypes. DCHECK(!holder.is_null()); bool is_nonexistent = holder->map() == transition->GetBackPointer(); if (is_nonexistent) holder = Handle<JSObject>::null(); int checks_count = GetPrototypeCheckCount(isolate(), receiver_map, holder, name); DCHECK_LE(0, checks_count); DCHECK(!receiver_map->IsJSGlobalObjectMap()); Handle<Object> validity_cell = Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate()); if (validity_cell.is_null()) { DCHECK_EQ(0, checks_count); validity_cell = handle(Smi::kZero, isolate()); } Handle<WeakCell> transition_cell = Map::WeakCellForMap(transition); Factory* factory = isolate()->factory(); if (checks_count == 0) { return factory->NewTuple3(transition_cell, smi_handler, validity_cell); } Handle<FixedArray> handler_array(factory->NewFixedArray( StoreHandler::kFirstPrototypeIndex + checks_count, TENURED)); handler_array->set(StoreHandler::kSmiHandlerIndex, *smi_handler); handler_array->set(StoreHandler::kValidityCellIndex, *validity_cell); handler_array->set(StoreHandler::kTransitionCellIndex, *transition_cell); InitPrototypeChecks(isolate(), receiver_map, holder, name, handler_array, StoreHandler::kFirstPrototypeIndex); return handler_array; } namespace { Handle<Object> StoreGlobal(Isolate* isolate, Handle<PropertyCell> cell) { return isolate->factory()->NewWeakCell(cell); } } // namespace Handle<Object> StoreIC::GetMapIndependentHandler(LookupIterator* lookup) { DCHECK_NE(LookupIterator::JSPROXY, lookup->state()); // This is currently guaranteed by checks in StoreIC::Store. Handle<JSObject> receiver = Handle<JSObject>::cast(lookup->GetReceiver()); Handle<JSObject> holder = lookup->GetHolder<JSObject>(); DCHECK(!receiver->IsAccessCheckNeeded() || lookup->name()->IsPrivate()); switch (lookup->state()) { case LookupIterator::TRANSITION: { auto store_target = lookup->GetStoreTarget(); if (store_target->IsJSGlobalObject()) { TRACE_HANDLER_STATS(isolate(), StoreIC_StoreGlobalTransitionDH); return StoreGlobal(isolate(), lookup->transition_cell()); } // Currently not handled by CompileStoreTransition. if (!holder->HasFastProperties()) { TRACE_GENERIC_IC("transition from slow"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } DCHECK(lookup->IsCacheableTransition()); Handle<Map> transition = lookup->transition_map(); TRACE_HANDLER_STATS(isolate(), StoreIC_StoreTransitionDH); return StoreTransition(receiver_map(), holder, transition, lookup->name()); } case LookupIterator::INTERCEPTOR: { DCHECK(!holder->GetNamedInterceptor()->setter()->IsUndefined(isolate())); TRACE_HANDLER_STATS(isolate(), StoreIC_StoreInterceptorStub); StoreInterceptorStub stub(isolate()); return stub.GetCode(); } case LookupIterator::ACCESSOR: { if (!holder->HasFastProperties()) { TRACE_GENERIC_IC("accessor on slow map"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } Handle<Object> accessors = lookup->GetAccessors(); if (accessors->IsAccessorInfo()) { Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(accessors); if (v8::ToCData<Address>(info->setter()) == nullptr) { TRACE_GENERIC_IC("setter == nullptr"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } if (AccessorInfo::cast(*accessors)->is_special_data_property() && !lookup->HolderIsReceiverOrHiddenPrototype()) { TRACE_GENERIC_IC("special data property in prototype chain"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } if (!AccessorInfo::IsCompatibleReceiverMap(isolate(), info, receiver_map())) { TRACE_GENERIC_IC("incompatible receiver type"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } break; // Custom-compiled handler. } else if (accessors->IsAccessorPair()) { Handle<Object> setter(Handle<AccessorPair>::cast(accessors)->setter(), isolate()); if (!setter->IsJSFunction() && !setter->IsFunctionTemplateInfo()) { TRACE_GENERIC_IC("setter not a function"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } CallOptimization call_optimization(setter); if (call_optimization.is_simple_api_call()) { if (call_optimization.IsCompatibleReceiver(receiver, holder)) { break; // Custom-compiled handler. } TRACE_GENERIC_IC("incompatible receiver"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } break; // Custom-compiled handler. } TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } case LookupIterator::DATA: { DCHECK_EQ(kData, lookup->property_details().kind()); if (lookup->is_dictionary_holder()) { if (holder->IsJSGlobalObject()) { TRACE_HANDLER_STATS(isolate(), StoreIC_StoreGlobalDH); return StoreGlobal(isolate(), lookup->GetPropertyCell()); } TRACE_HANDLER_STATS(isolate(), StoreIC_StoreNormalDH); DCHECK(holder.is_identical_to(receiver)); return StoreHandler::StoreNormal(isolate()); } // -------------- Fields -------------- if (lookup->property_details().location() == kField) { TRACE_HANDLER_STATS(isolate(), StoreIC_StoreFieldDH); int descriptor = lookup->GetFieldDescriptorIndex(); FieldIndex index = lookup->GetFieldIndex(); PropertyConstness constness = lookup->constness(); if (constness == kConst && IsStoreOwnICKind(nexus()->kind())) { // StoreOwnICs are used for initializing object literals therefore // we must store the value unconditionally even to kConst fields. constness = kMutable; } return StoreHandler::StoreField(isolate(), descriptor, index, constness, lookup->representation()); } // -------------- Constant properties -------------- DCHECK_EQ(kDescriptor, lookup->property_details().location()); TRACE_GENERIC_IC("constant property"); TRACE_HANDLER_STATS(isolate(), StoreIC_SlowStub); return slow_stub(); } case LookupIterator::INTEGER_INDEXED_EXOTIC: case LookupIterator::ACCESS_CHECK: case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: UNREACHABLE(); } return Handle<Code>::null(); } Handle<Code> StoreIC::CompileHandler(LookupIterator* lookup) { DCHECK_EQ(LookupIterator::ACCESSOR, lookup->state()); // This is currently guaranteed by checks in StoreIC::Store. Handle<JSObject> receiver = Handle<JSObject>::cast(lookup->GetReceiver()); Handle<JSObject> holder = lookup->GetHolder<JSObject>(); DCHECK(!receiver->IsAccessCheckNeeded() || lookup->name()->IsPrivate()); DCHECK(holder->HasFastProperties()); Handle<Object> accessors = lookup->GetAccessors(); if (accessors->IsAccessorInfo()) { Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(accessors); DCHECK(v8::ToCData<Address>(info->setter()) != 0); DCHECK(!AccessorInfo::cast(*accessors)->is_special_data_property() || lookup->HolderIsReceiverOrHiddenPrototype()); DCHECK( AccessorInfo::IsCompatibleReceiverMap(isolate(), info, receiver_map())); TRACE_HANDLER_STATS(isolate(), StoreIC_StoreCallback); NamedStoreHandlerCompiler compiler(isolate(), receiver_map(), holder); // TODO(ishell): don't hard-code language mode into the handler because // this handler can be re-used through megamorphic stub cache for wrong // language mode. // Better pass vector/slot to Runtime::kStoreCallbackProperty and // let it decode the language mode from the IC kind. Handle<Code> code = compiler.CompileStoreCallback(receiver, lookup->name(), info, language_mode()); return code; } DCHECK(accessors->IsAccessorPair()); Handle<Object> setter(Handle<AccessorPair>::cast(accessors)->setter(), isolate()); DCHECK(setter->IsJSFunction() || setter->IsFunctionTemplateInfo()); CallOptimization call_optimization(setter); NamedStoreHandlerCompiler compiler(isolate(), receiver_map(), holder); if (call_optimization.is_simple_api_call()) { DCHECK(call_optimization.IsCompatibleReceiver(receiver, holder)); TRACE_HANDLER_STATS(isolate(), StoreIC_StoreCallback); Handle<Code> code = compiler.CompileStoreCallback( receiver, lookup->name(), call_optimization, lookup->GetAccessorIndex(), slow_stub()); return code; } TRACE_HANDLER_STATS(isolate(), StoreIC_StoreViaSetter); int expected_arguments = JSFunction::cast(*setter)->shared()->internal_formal_parameter_count(); return compiler.CompileStoreViaSetter( receiver, lookup->name(), lookup->GetAccessorIndex(), expected_arguments); } void KeyedStoreIC::UpdateStoreElement(Handle<Map> receiver_map, KeyedAccessStoreMode store_mode) { MapHandles target_receiver_maps; TargetMaps(&target_receiver_maps); if (target_receiver_maps.empty()) { Handle<Map> monomorphic_map = ComputeTransitionedMap(receiver_map, store_mode); store_mode = GetNonTransitioningStoreMode(store_mode); Handle<Object> handler = StoreElementHandler(monomorphic_map, store_mode); return ConfigureVectorState(Handle<Name>(), monomorphic_map, handler); } for (Handle<Map> map : target_receiver_maps) { if (!map.is_null() && map->instance_type() == JS_VALUE_TYPE) { TRACE_GENERIC_IC("JSValue"); return; } } // There are several special cases where an IC that is MONOMORPHIC can still // transition to a different GetNonTransitioningStoreMode IC that handles a // superset of the original IC. Handle those here if the receiver map hasn't // changed or it has transitioned to a more general kind. KeyedAccessStoreMode old_store_mode = GetKeyedAccessStoreMode(); Handle<Map> previous_receiver_map = target_receiver_maps.at(0); if (state() == MONOMORPHIC) { Handle<Map> transitioned_receiver_map = receiver_map; if (IsTransitionStoreMode(store_mode)) { transitioned_receiver_map = ComputeTransitionedMap(receiver_map, store_mode); } if ((receiver_map.is_identical_to(previous_receiver_map) && IsTransitionStoreMode(store_mode)) || IsTransitionOfMonomorphicTarget(*previous_receiver_map, *transitioned_receiver_map)) { // If the "old" and "new" maps are in the same elements map family, or // if they at least come from the same origin for a transitioning store, // stay MONOMORPHIC and use the map for the most generic ElementsKind. store_mode = GetNonTransitioningStoreMode(store_mode); Handle<Object> handler = StoreElementHandler(transitioned_receiver_map, store_mode); ConfigureVectorState(Handle<Name>(), transitioned_receiver_map, handler); return; } if (receiver_map.is_identical_to(previous_receiver_map) && old_store_mode == STANDARD_STORE && (store_mode == STORE_AND_GROW_NO_TRANSITION || store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS || store_mode == STORE_NO_TRANSITION_HANDLE_COW)) { // A "normal" IC that handles stores can switch to a version that can // grow at the end of the array, handle OOB accesses or copy COW arrays // and still stay MONOMORPHIC. Handle<Object> handler = StoreElementHandler(receiver_map, store_mode); return ConfigureVectorState(Handle<Name>(), receiver_map, handler); } } DCHECK(state() != GENERIC); bool map_added = AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map); if (IsTransitionStoreMode(store_mode)) { Handle<Map> transitioned_receiver_map = ComputeTransitionedMap(receiver_map, store_mode); map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps, transitioned_receiver_map); } if (!map_added) { // If the miss wasn't due to an unseen map, a polymorphic stub // won't help, use the megamorphic stub which can handle everything. TRACE_GENERIC_IC("same map added twice"); return; } // If the maximum number of receiver maps has been exceeded, use the // megamorphic version of the IC. if (target_receiver_maps.size() > kMaxKeyedPolymorphism) return; // Make sure all polymorphic handlers have the same store mode, otherwise the // megamorphic stub must be used. store_mode = GetNonTransitioningStoreMode(store_mode); if (old_store_mode != STANDARD_STORE) { if (store_mode == STANDARD_STORE) { store_mode = old_store_mode; } else if (store_mode != old_store_mode) { TRACE_GENERIC_IC("store mode mismatch"); return; } } // If the store mode isn't the standard mode, make sure that all polymorphic // receivers are either external arrays, or all "normal" arrays. Otherwise, // use the megamorphic stub. if (store_mode != STANDARD_STORE) { size_t external_arrays = 0; for (Handle<Map> map : target_receiver_maps) { if (map->has_fixed_typed_array_elements()) { external_arrays++; } } if (external_arrays != 0 && external_arrays != target_receiver_maps.size()) { TRACE_GENERIC_IC("unsupported combination of external and normal arrays"); return; } } List<Handle<Object>> handlers(static_cast<int>(target_receiver_maps.size())); StoreElementPolymorphicHandlers(&target_receiver_maps, &handlers, store_mode); DCHECK_LE(1, target_receiver_maps.size()); if (target_receiver_maps.size() == 1) { ConfigureVectorState(Handle<Name>(), target_receiver_maps[0], handlers.at(0)); } else { ConfigureVectorState(Handle<Name>(), target_receiver_maps, &handlers); } } Handle<Map> KeyedStoreIC::ComputeTransitionedMap( Handle<Map> map, KeyedAccessStoreMode store_mode) { switch (store_mode) { case STORE_TRANSITION_TO_OBJECT: case STORE_AND_GROW_TRANSITION_TO_OBJECT: { ElementsKind kind = IsFastHoleyElementsKind(map->elements_kind()) ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS; return Map::TransitionElementsTo(map, kind); } case STORE_TRANSITION_TO_DOUBLE: case STORE_AND_GROW_TRANSITION_TO_DOUBLE: { ElementsKind kind = IsFastHoleyElementsKind(map->elements_kind()) ? FAST_HOLEY_DOUBLE_ELEMENTS : FAST_DOUBLE_ELEMENTS; return Map::TransitionElementsTo(map, kind); } case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS: DCHECK(map->has_fixed_typed_array_elements()); // Fall through case STORE_NO_TRANSITION_HANDLE_COW: case STANDARD_STORE: case STORE_AND_GROW_NO_TRANSITION: return map; } UNREACHABLE(); return MaybeHandle<Map>().ToHandleChecked(); } Handle<Object> KeyedStoreIC::StoreElementHandler( Handle<Map> receiver_map, KeyedAccessStoreMode store_mode) { DCHECK(store_mode == STANDARD_STORE || store_mode == STORE_AND_GROW_NO_TRANSITION || store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS || store_mode == STORE_NO_TRANSITION_HANDLE_COW); DCHECK(!receiver_map->DictionaryElementsInPrototypeChainOnly()); ElementsKind elements_kind = receiver_map->elements_kind(); bool is_jsarray = receiver_map->instance_type() == JS_ARRAY_TYPE; Handle<Code> stub; if (receiver_map->has_sloppy_arguments_elements()) { TRACE_HANDLER_STATS(isolate(), KeyedStoreIC_KeyedStoreSloppyArgumentsStub); stub = KeyedStoreSloppyArgumentsStub(isolate(), store_mode).GetCode(); } else if (receiver_map->has_fast_elements() || receiver_map->has_fixed_typed_array_elements()) { TRACE_HANDLER_STATS(isolate(), KeyedStoreIC_StoreFastElementStub); stub = StoreFastElementStub(isolate(), is_jsarray, elements_kind, store_mode) .GetCode(); } else { TRACE_HANDLER_STATS(isolate(), KeyedStoreIC_StoreElementStub); DCHECK_EQ(DICTIONARY_ELEMENTS, elements_kind); stub = StoreSlowElementStub(isolate(), store_mode).GetCode(); } Handle<Object> validity_cell = Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate()); if (validity_cell.is_null()) return stub; return isolate()->factory()->NewTuple2(validity_cell, stub); } void KeyedStoreIC::StoreElementPolymorphicHandlers( MapHandles* receiver_maps, List<Handle<Object>>* handlers, KeyedAccessStoreMode store_mode) { DCHECK(store_mode == STANDARD_STORE || store_mode == STORE_AND_GROW_NO_TRANSITION || store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS || store_mode == STORE_NO_TRANSITION_HANDLE_COW); // Filter out deprecated maps to ensure their instances get migrated. receiver_maps->erase( std::remove_if( receiver_maps->begin(), receiver_maps->end(), [](const Handle<Map>& map) { return map->is_deprecated(); }), receiver_maps->end()); for (Handle<Map> receiver_map : *receiver_maps) { Handle<Object> handler; Handle<Map> transitioned_map; if (receiver_map->instance_type() < FIRST_JS_RECEIVER_TYPE || receiver_map->DictionaryElementsInPrototypeChainOnly()) { // TODO(mvstanton): Consider embedding store_mode in the state of the slow // keyed store ic for uniformity. TRACE_HANDLER_STATS(isolate(), KeyedStoreIC_SlowStub); handler = isolate()->builtins()->KeyedStoreIC_Slow(); } else { { Map* tmap = receiver_map->FindElementsKindTransitionedMap(*receiver_maps); if (tmap != nullptr) { if (receiver_map->is_stable()) { receiver_map->NotifyLeafMapLayoutChange(); } transitioned_map = handle(tmap); } } // TODO(mvstanton): The code below is doing pessimistic elements // transitions. I would like to stop doing that and rely on Allocation // Site Tracking to do a better job of ensuring the data types are what // they need to be. Not all the elements are in place yet, pessimistic // elements transitions are still important for performance. if (!transitioned_map.is_null()) { bool is_js_array = receiver_map->instance_type() == JS_ARRAY_TYPE; ElementsKind elements_kind = receiver_map->elements_kind(); TRACE_HANDLER_STATS(isolate(), KeyedStoreIC_ElementsTransitionAndStoreStub); Handle<Code> stub = ElementsTransitionAndStoreStub(isolate(), elements_kind, transitioned_map->elements_kind(), is_js_array, store_mode) .GetCode(); Handle<Object> validity_cell = Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate()); if (validity_cell.is_null()) { validity_cell = handle(Smi::kZero, isolate()); } Handle<WeakCell> transition = Map::WeakCellForMap(transitioned_map); handler = isolate()->factory()->NewTuple3(transition, stub, validity_cell); } else { handler = StoreElementHandler(receiver_map, store_mode); } } DCHECK(!handler.is_null()); handlers->Add(handler); } } bool IsOutOfBoundsAccess(Handle<JSObject> receiver, uint32_t index) { uint32_t length = 0; if (receiver->IsJSArray()) { JSArray::cast(*receiver)->length()->ToArrayLength(&length); } else { length = static_cast<uint32_t>(receiver->elements()->length()); } return index >= length; } static KeyedAccessStoreMode GetStoreMode(Handle<JSObject> receiver, uint32_t index, Handle<Object> value) { bool oob_access = IsOutOfBoundsAccess(receiver, index); // Don't consider this a growing store if the store would send the receiver to // dictionary mode. bool allow_growth = receiver->IsJSArray() && oob_access && !receiver->WouldConvertToSlowElements(index); if (allow_growth) { // Handle growing array in stub if necessary. if (receiver->HasFastSmiElements()) { if (value->IsHeapNumber()) { return STORE_AND_GROW_TRANSITION_TO_DOUBLE; } if (value->IsHeapObject()) { return STORE_AND_GROW_TRANSITION_TO_OBJECT; } } else if (receiver->HasFastDoubleElements()) { if (!value->IsSmi() && !value->IsHeapNumber()) { return STORE_AND_GROW_TRANSITION_TO_OBJECT; } } return STORE_AND_GROW_NO_TRANSITION; } else { // Handle only in-bounds elements accesses. if (receiver->HasFastSmiElements()) { if (value->IsHeapNumber()) { return STORE_TRANSITION_TO_DOUBLE; } else if (value->IsHeapObject()) { return STORE_TRANSITION_TO_OBJECT; } } else if (receiver->HasFastDoubleElements()) { if (!value->IsSmi() && !value->IsHeapNumber()) { return STORE_TRANSITION_TO_OBJECT; } } if (!FLAG_trace_external_array_abuse && receiver->map()->has_fixed_typed_array_elements() && oob_access) { return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS; } Heap* heap = receiver->GetHeap(); if (receiver->elements()->map() == heap->fixed_cow_array_map()) { return STORE_NO_TRANSITION_HANDLE_COW; } else { return STANDARD_STORE; } } } MaybeHandle<Object> KeyedStoreIC::Store(Handle<Object> object, Handle<Object> key, Handle<Object> value) { // TODO(verwaest): Let SetProperty do the migration, since storing a property // might deprecate the current map again, if value does not fit. if (MigrateDeprecated(object)) { Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Runtime::SetObjectProperty(isolate(), object, key, value, language_mode()), Object); return result; } // Check for non-string values that can be converted into an // internalized string directly or is representable as a smi. key = TryConvertKey(key, isolate()); Handle<Object> store_handle; uint32_t index; if ((key->IsInternalizedString() && !String::cast(*key)->AsArrayIndex(&index)) || key->IsSymbol()) { ASSIGN_RETURN_ON_EXCEPTION( isolate(), store_handle, StoreIC::Store(object, Handle<Name>::cast(key), value, JSReceiver::MAY_BE_STORE_FROM_KEYED), Object); if (!is_vector_set()) { ConfigureVectorState(MEGAMORPHIC, key); TRACE_GENERIC_IC("unhandled internalized string key"); TRACE_IC("StoreIC", key); } return store_handle; } bool use_ic = FLAG_use_ic && !object->IsStringWrapper() && !object->IsAccessCheckNeeded() && !object->IsJSGlobalProxy(); if (use_ic && !object->IsSmi()) { // Don't use ICs for maps of the objects in Array's prototype chain. We // expect to be able to trap element sets to objects with those maps in // the runtime to enable optimization of element hole access. Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object); if (heap_object->map()->IsMapInArrayPrototypeChain()) { TRACE_GENERIC_IC("map in array prototype"); use_ic = false; } } Handle<Map> old_receiver_map; bool is_arguments = false; bool key_is_valid_index = false; KeyedAccessStoreMode store_mode = STANDARD_STORE; if (use_ic && object->IsJSObject()) { Handle<JSObject> receiver = Handle<JSObject>::cast(object); old_receiver_map = handle(receiver->map(), isolate()); is_arguments = receiver->IsJSArgumentsObject(); if (!is_arguments) { key_is_valid_index = key->IsSmi() && Smi::cast(*key)->value() >= 0; if (key_is_valid_index) { uint32_t index = static_cast<uint32_t>(Smi::cast(*key)->value()); store_mode = GetStoreMode(receiver, index, value); } } } DCHECK(store_handle.is_null()); ASSIGN_RETURN_ON_EXCEPTION(isolate(), store_handle, Runtime::SetObjectProperty(isolate(), object, key, value, language_mode()), Object); if (use_ic) { if (!old_receiver_map.is_null()) { if (is_arguments) { TRACE_GENERIC_IC("arguments receiver"); } else if (key_is_valid_index) { // We should go generic if receiver isn't a dictionary, but our // prototype chain does have dictionary elements. This ensures that // other non-dictionary receivers in the polymorphic case benefit // from fast path keyed stores. if (!old_receiver_map->DictionaryElementsInPrototypeChainOnly()) { UpdateStoreElement(old_receiver_map, store_mode); } else { TRACE_GENERIC_IC("dictionary or proxy prototype"); } } else { TRACE_GENERIC_IC("non-smi-like key"); } } else { TRACE_GENERIC_IC("non-JSObject receiver"); } } if (!is_vector_set()) { ConfigureVectorState(MEGAMORPHIC, key); } TRACE_IC("StoreIC", key); return store_handle; } #undef TRACE_IC // ---------------------------------------------------------------------------- // Static IC stub generators. // // Used from ic-<arch>.cc. RUNTIME_FUNCTION(Runtime_LoadIC_Miss) { HandleScope scope(isolate); DCHECK_EQ(4, args.length()); // Runtime functions don't follow the IC's calling convention. Handle<Object> receiver = args.at(0); Handle<Name> key = args.at<Name>(1); Handle<Smi> slot = args.at<Smi>(2); Handle<FeedbackVector> vector = args.at<FeedbackVector>(3); FeedbackSlot vector_slot = vector->ToSlot(slot->value()); // A monomorphic or polymorphic KeyedLoadIC with a string key can call the // LoadIC miss handler if the handler misses. Since the vector Nexus is // set up outside the IC, handle that here. FeedbackSlotKind kind = vector->GetKind(vector_slot); if (IsLoadICKind(kind)) { LoadICNexus nexus(vector, vector_slot); LoadIC ic(isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key)); } else if (IsLoadGlobalICKind(kind)) { DCHECK_EQ(isolate->native_context()->global_proxy(), *receiver); receiver = isolate->global_object(); LoadGlobalICNexus nexus(vector, vector_slot); LoadGlobalIC ic(isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Load(key)); } else { DCHECK(IsKeyedLoadICKind(kind)); KeyedLoadICNexus nexus(vector, vector_slot); KeyedLoadIC ic(isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key)); } } // Used from ic-<arch>.cc. RUNTIME_FUNCTION(Runtime_LoadGlobalIC_Miss) { HandleScope scope(isolate); DCHECK_EQ(3, args.length()); // Runtime functions don't follow the IC's calling convention. Handle<JSGlobalObject> global = isolate->global_object(); Handle<String> name = args.at<String>(0); Handle<Smi> slot = args.at<Smi>(1); Handle<FeedbackVector> vector = args.at<FeedbackVector>(2); FeedbackSlot vector_slot = vector->ToSlot(slot->value()); LoadGlobalICNexus nexus(vector, vector_slot); LoadGlobalIC ic(isolate, &nexus); ic.UpdateState(global, name); Handle<Object> result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(name)); return *result; } RUNTIME_FUNCTION(Runtime_LoadGlobalIC_Slow) { HandleScope scope(isolate); DCHECK_EQ(3, args.length()); CONVERT_ARG_HANDLE_CHECKED(String, name, 0); Handle<Context> native_context = isolate->native_context(); Handle<ScriptContextTable> script_contexts( native_context->script_context_table()); ScriptContextTable::LookupResult lookup_result; if (ScriptContextTable::Lookup(script_contexts, name, &lookup_result)) { Handle<Context> script_context = ScriptContextTable::GetContext( script_contexts, lookup_result.context_index); Handle<Object> result = FixedArray::get(*script_context, lookup_result.slot_index, isolate); if (*result == isolate->heap()->the_hole_value()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError(MessageTemplate::kNotDefined, name)); } return *result; } Handle<JSGlobalObject> global(native_context->global_object(), isolate); Handle<Object> result; bool is_found = false; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, Runtime::GetObjectProperty(isolate, global, name, &is_found)); if (!is_found) { Handle<Smi> slot = args.at<Smi>(1); Handle<FeedbackVector> vector = args.at<FeedbackVector>(2); FeedbackSlot vector_slot = vector->ToSlot(slot->value()); FeedbackSlotKind kind = vector->GetKind(vector_slot); // It is actually a LoadGlobalICs here but the predicate handles this case // properly. if (LoadIC::ShouldThrowReferenceError(kind)) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError(MessageTemplate::kNotDefined, name)); } } return *result; } // Used from ic-<arch>.cc RUNTIME_FUNCTION(Runtime_KeyedLoadIC_Miss) { HandleScope scope(isolate); DCHECK_EQ(4, args.length()); // Runtime functions don't follow the IC's calling convention. Handle<Object> receiver = args.at(0); Handle<Object> key = args.at(1); Handle<Smi> slot = args.at<Smi>(2); Handle<FeedbackVector> vector = args.at<FeedbackVector>(3); FeedbackSlot vector_slot = vector->ToSlot(slot->value()); KeyedLoadICNexus nexus(vector, vector_slot); KeyedLoadIC ic(isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Load(receiver, key)); } // Used from ic-<arch>.cc. RUNTIME_FUNCTION(Runtime_StoreIC_Miss) { HandleScope scope(isolate); DCHECK_EQ(5, args.length()); // Runtime functions don't follow the IC's calling convention. Handle<Object> value = args.at(0); Handle<Smi> slot = args.at<Smi>(1); Handle<FeedbackVector> vector = args.at<FeedbackVector>(2); Handle<Object> receiver = args.at(3); Handle<Name> key = args.at<Name>(4); FeedbackSlot vector_slot = vector->ToSlot(slot->value()); FeedbackSlotKind kind = vector->GetKind(vector_slot); if (IsStoreICKind(kind) || IsStoreOwnICKind(kind)) { StoreICNexus nexus(vector, vector_slot); StoreIC ic(isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value)); } else if (IsStoreGlobalICKind(kind)) { StoreICNexus nexus(vector, vector_slot); StoreGlobalIC ic(isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value)); } else { DCHECK(IsKeyedStoreICKind(kind)); KeyedStoreICNexus nexus(vector, vector_slot); KeyedStoreIC ic(isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value)); } } // Used from ic-<arch>.cc. RUNTIME_FUNCTION(Runtime_KeyedStoreIC_Miss) { HandleScope scope(isolate); DCHECK_EQ(5, args.length()); // Runtime functions don't follow the IC's calling convention. Handle<Object> value = args.at(0); Handle<Smi> slot = args.at<Smi>(1); Handle<FeedbackVector> vector = args.at<FeedbackVector>(2); Handle<Object> receiver = args.at(3); Handle<Object> key = args.at(4); FeedbackSlot vector_slot = vector->ToSlot(slot->value()); KeyedStoreICNexus nexus(vector, vector_slot); KeyedStoreIC ic(isolate, &nexus); ic.UpdateState(receiver, key); RETURN_RESULT_OR_FAILURE(isolate, ic.Store(receiver, key, value)); } RUNTIME_FUNCTION(Runtime_KeyedStoreIC_Slow) { HandleScope scope(isolate); DCHECK_EQ(5, args.length()); // Runtime functions don't follow the IC's calling convention. Handle<Object> value = args.at(0); Handle<Smi> slot = args.at<Smi>(1); Handle<FeedbackVector> vector = args.at<FeedbackVector>(2); Handle<Object> object = args.at(3); Handle<Object> key = args.at(4); FeedbackSlot vector_slot = vector->ToSlot(slot->value()); LanguageMode language_mode = vector->GetLanguageMode(vector_slot); RETURN_RESULT_OR_FAILURE( isolate, Runtime::SetObjectProperty(isolate, object, key, value, language_mode)); } RUNTIME_FUNCTION(Runtime_ElementsTransitionAndStoreIC_Miss) { HandleScope scope(isolate); DCHECK_EQ(6, args.length()); // Runtime functions don't follow the IC's calling convention. Handle<Object> object = args.at(0); Handle<Object> key = args.at(1); Handle<Object> value = args.at(2); Handle<Map> map = args.at<Map>(3); Handle<Smi> slot = args.at<Smi>(4); Handle<FeedbackVector> vector = args.at<FeedbackVector>(5); FeedbackSlot vector_slot = vector->ToSlot(slot->value()); LanguageMode language_mode = vector->GetLanguageMode(vector_slot); if (object->IsJSObject()) { JSObject::TransitionElementsKind(Handle<JSObject>::cast(object), map->elements_kind()); } RETURN_RESULT_OR_FAILURE( isolate, Runtime::SetObjectProperty(isolate, object, key, value, language_mode)); } MaybeHandle<Object> BinaryOpIC::Transition( Handle<AllocationSite> allocation_site, Handle<Object> left, Handle<Object> right) { BinaryOpICState state(isolate(), extra_ic_state()); // Compute the actual result using the builtin for the binary operation. Handle<Object> result; switch (state.op()) { default: UNREACHABLE(); case Token::ADD: ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::Add(isolate(), left, right), Object); break; case Token::SUB: ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::Subtract(isolate(), left, right), Object); break; case Token::MUL: ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::Multiply(isolate(), left, right), Object); break; case Token::DIV: ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::Divide(isolate(), left, right), Object); break; case Token::MOD: ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::Modulus(isolate(), left, right), Object); break; case Token::BIT_OR: ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::BitwiseOr(isolate(), left, right), Object); break; case Token::BIT_AND: ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::BitwiseAnd(isolate(), left, right), Object); break; case Token::BIT_XOR: ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::BitwiseXor(isolate(), left, right), Object); break; case Token::SAR: ASSIGN_RETURN_ON_EXCEPTION(isolate(), result, Object::ShiftRight(isolate(), left, right), Object); break; case Token::SHR: ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::ShiftRightLogical(isolate(), left, right), Object); break; case Token::SHL: ASSIGN_RETURN_ON_EXCEPTION( isolate(), result, Object::ShiftLeft(isolate(), left, right), Object); break; } // Do not try to update the target if the code was marked for lazy // deoptimization. (Since we do not relocate addresses in these // code objects, an attempt to access the target could fail.) if (AddressIsDeoptimizedCode()) { return result; } // Compute the new state. BinaryOpICState old_state(isolate(), target()->extra_ic_state()); state.Update(left, right, result); // Check if we have a string operation here. Handle<Code> new_target; if (!allocation_site.is_null() || state.ShouldCreateAllocationMementos()) { // Setup the allocation site on-demand. if (allocation_site.is_null()) { allocation_site = isolate()->factory()->NewAllocationSite(); } // Install the stub with an allocation site. BinaryOpICWithAllocationSiteStub stub(isolate(), state); new_target = stub.GetCodeCopyFromTemplate(allocation_site); // Sanity check the trampoline stub. DCHECK_EQ(*allocation_site, new_target->FindFirstAllocationSite()); } else { // Install the generic stub. BinaryOpICStub stub(isolate(), state); new_target = stub.GetCode(); // Sanity check the generic stub. DCHECK_NULL(new_target->FindFirstAllocationSite()); } set_target(*new_target); if (FLAG_ic_stats & v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING) { auto ic_stats = ICStats::instance(); ic_stats->Begin(); ICInfo& ic_info = ic_stats->Current(); ic_info.type = "BinaryOpIC"; ic_info.state = old_state.ToString(); ic_info.state += " => "; ic_info.state += state.ToString(); JavaScriptFrame::CollectTopFrameForICStats(isolate()); ic_stats->End(); } else if (FLAG_ic_stats) { int line; int column; Address pc = GetAbstractPC(&line, &column); LOG(isolate(), BinaryOpIC(pc, line, column, *new_target, old_state.ToString().c_str(), state.ToString().c_str(), allocation_site.is_null() ? nullptr : *allocation_site)); } // Patch the inlined smi code as necessary. if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) { PatchInlinedSmiCode(isolate(), address(), ENABLE_INLINED_SMI_CHECK); } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) { PatchInlinedSmiCode(isolate(), address(), DISABLE_INLINED_SMI_CHECK); } return result; } RUNTIME_FUNCTION(Runtime_BinaryOpIC_Miss) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); typedef BinaryOpDescriptor Descriptor; Handle<Object> left = args.at(Descriptor::kLeft); Handle<Object> right = args.at(Descriptor::kRight); BinaryOpIC ic(isolate); RETURN_RESULT_OR_FAILURE( isolate, ic.Transition(Handle<AllocationSite>::null(), left, right)); } RUNTIME_FUNCTION(Runtime_BinaryOpIC_MissWithAllocationSite) { HandleScope scope(isolate); DCHECK_EQ(3, args.length()); typedef BinaryOpWithAllocationSiteDescriptor Descriptor; Handle<AllocationSite> allocation_site = args.at<AllocationSite>(Descriptor::kAllocationSite); Handle<Object> left = args.at(Descriptor::kLeft); Handle<Object> right = args.at(Descriptor::kRight); BinaryOpIC ic(isolate); RETURN_RESULT_OR_FAILURE(isolate, ic.Transition(allocation_site, left, right)); } Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) { CompareICStub stub(isolate, op, CompareICState::UNINITIALIZED, CompareICState::UNINITIALIZED, CompareICState::UNINITIALIZED); Code* code = NULL; CHECK(stub.FindCodeInCache(&code)); return code; } Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) { HandleScope scope(isolate()); CompareICStub old_stub(target()->stub_key(), isolate()); CompareICState::State new_left = CompareICState::NewInputState(old_stub.left(), x); CompareICState::State new_right = CompareICState::NewInputState(old_stub.right(), y); CompareICState::State state = CompareICState::TargetState( isolate(), old_stub.state(), old_stub.left(), old_stub.right(), op_, HasInlinedSmiCode(address()), x, y); CompareICStub stub(isolate(), op_, new_left, new_right, state); if (state == CompareICState::KNOWN_RECEIVER) { stub.set_known_map( Handle<Map>(Handle<JSReceiver>::cast(x)->map(), isolate())); } Handle<Code> new_target = stub.GetCode(); set_target(*new_target); if (FLAG_ic_stats & v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING) { auto ic_stats = ICStats::instance(); ic_stats->Begin(); ICInfo& ic_info = ic_stats->Current(); ic_info.type = "CompareIC"; JavaScriptFrame::CollectTopFrameForICStats(isolate()); ic_info.state = "(("; ic_info.state += CompareICState::GetStateName(old_stub.left()); ic_info.state += "+"; ic_info.state += CompareICState::GetStateName(old_stub.right()); ic_info.state += "="; ic_info.state += CompareICState::GetStateName(old_stub.state()); ic_info.state += ")->("; ic_info.state += CompareICState::GetStateName(new_left); ic_info.state += "+"; ic_info.state += CompareICState::GetStateName(new_right); ic_info.state += "="; ic_info.state += CompareICState::GetStateName(state); ic_info.state += "))#"; ic_info.state += Token::Name(op_); ic_stats->End(); } else if (FLAG_ic_stats) { int line; int column; Address pc = GetAbstractPC(&line, &column); LOG(isolate(), CompareIC(pc, line, column, *stub.GetCode(), Token::Name(op_), CompareICState::GetStateName(old_stub.left()), CompareICState::GetStateName(old_stub.right()), CompareICState::GetStateName(old_stub.state()), CompareICState::GetStateName(new_left), CompareICState::GetStateName(new_right), CompareICState::GetStateName(state))); } // Activate inlined smi code. if (old_stub.state() == CompareICState::UNINITIALIZED) { PatchInlinedSmiCode(isolate(), address(), ENABLE_INLINED_SMI_CHECK); } return *new_target; } // Used from CompareICStub::GenerateMiss in code-stubs-<arch>.cc. RUNTIME_FUNCTION(Runtime_CompareIC_Miss) { HandleScope scope(isolate); DCHECK(args.length() == 3); CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2))); return ic.UpdateCaches(args.at(0), args.at(1)); } RUNTIME_FUNCTION(Runtime_Unreachable) { UNREACHABLE(); CHECK(false); return isolate->heap()->undefined_value(); } Handle<Object> ToBooleanIC::ToBoolean(Handle<Object> object) { ToBooleanICStub stub(isolate(), extra_ic_state()); ToBooleanHints old_hints = stub.hints(); bool to_boolean_value = stub.UpdateStatus(object); ToBooleanHints new_hints = stub.hints(); Handle<Code> code = stub.GetCode(); set_target(*code); // Note: Although a no-op transition is semantically OK, it is hinting at a // bug somewhere in our state transition machinery. DCHECK_NE(old_hints, new_hints); if (V8_UNLIKELY(FLAG_ic_stats)) { if (FLAG_ic_stats & v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING) { auto ic_stats = ICStats::instance(); ic_stats->Begin(); ICInfo& ic_info = ic_stats->Current(); ic_info.type = "ToBooleanIC"; ic_info.state = ToString(old_hints); ic_info.state += "=>"; ic_info.state += ToString(new_hints); ic_stats->End(); } else { int line; int column; Address pc = GetAbstractPC(&line, &column); LOG(isolate(), ToBooleanIC(pc, line, column, *code, ToString(old_hints).c_str(), ToString(new_hints).c_str())); } } return isolate()->factory()->ToBoolean(to_boolean_value); } RUNTIME_FUNCTION(Runtime_ToBooleanIC_Miss) { DCHECK(args.length() == 1); HandleScope scope(isolate); Handle<Object> object = args.at(0); ToBooleanIC ic(isolate); return *ic.ToBoolean(object); } RUNTIME_FUNCTION(Runtime_StoreCallbackProperty) { Handle<JSObject> receiver = args.at<JSObject>(0); Handle<JSObject> holder = args.at<JSObject>(1); Handle<HeapObject> callback_or_cell = args.at<HeapObject>(2); Handle<Name> name = args.at<Name>(3); Handle<Object> value = args.at(4); CONVERT_LANGUAGE_MODE_ARG_CHECKED(language_mode, 5); HandleScope scope(isolate); if (V8_UNLIKELY(FLAG_runtime_stats)) { RETURN_RESULT_OR_FAILURE( isolate, Runtime::SetObjectProperty(isolate, receiver, name, value, language_mode)); } Handle<AccessorInfo> callback( callback_or_cell->IsWeakCell() ? AccessorInfo::cast(WeakCell::cast(*callback_or_cell)->value()) : AccessorInfo::cast(*callback_or_cell)); DCHECK(callback->IsCompatibleReceiver(*receiver)); Address setter_address = v8::ToCData<Address>(callback->setter()); v8::AccessorNameSetterCallback fun = FUNCTION_CAST<v8::AccessorNameSetterCallback>(setter_address); DCHECK(fun != NULL); Object::ShouldThrow should_throw = is_sloppy(language_mode) ? Object::DONT_THROW : Object::THROW_ON_ERROR; PropertyCallbackArguments custom_args(isolate, callback->data(), *receiver, *holder, should_throw); custom_args.Call(fun, name, value); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); return *value; } /** * Loads a property with an interceptor performing post interceptor * lookup if interceptor failed. */ RUNTIME_FUNCTION(Runtime_LoadPropertyWithInterceptor) { HandleScope scope(isolate); DCHECK_EQ(5, args.length()); Handle<Name> name = args.at<Name>(0); Handle<Object> receiver = args.at(1); Handle<JSObject> holder = args.at<JSObject>(2); if (!receiver->IsJSReceiver()) { ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, receiver, Object::ConvertReceiver(isolate, receiver)); } InterceptorInfo* interceptor = holder->GetNamedInterceptor(); PropertyCallbackArguments arguments(isolate, interceptor->data(), *receiver, *holder, Object::DONT_THROW); v8::GenericNamedPropertyGetterCallback getter = v8::ToCData<v8::GenericNamedPropertyGetterCallback>( interceptor->getter()); Handle<Object> result = arguments.Call(getter, name); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); if (!result.is_null()) return *result; LookupIterator it(receiver, name, holder); // Skip any lookup work until we hit the (possibly non-masking) interceptor. while (it.state() != LookupIterator::INTERCEPTOR || !it.GetHolder<JSObject>().is_identical_to(holder)) { DCHECK(it.state() != LookupIterator::ACCESS_CHECK || it.HasAccess()); it.Next(); } // Skip past the interceptor. it.Next(); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, Object::GetProperty(&it)); if (it.IsFound()) return *result; Handle<Smi> slot = args.at<Smi>(3); Handle<FeedbackVector> vector = args.at<FeedbackVector>(4); FeedbackSlot vector_slot = vector->ToSlot(slot->value()); FeedbackSlotKind slot_kind = vector->GetKind(vector_slot); // It could actually be any kind of load IC slot here but the predicate // handles all the cases properly. if (!LoadIC::ShouldThrowReferenceError(slot_kind)) { return isolate->heap()->undefined_value(); } // Throw a reference error. THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError(MessageTemplate::kNotDefined, it.name())); } RUNTIME_FUNCTION(Runtime_StorePropertyWithInterceptor) { HandleScope scope(isolate); DCHECK_EQ(5, args.length()); // Runtime functions don't follow the IC's calling convention. Handle<Object> value = args.at(0); Handle<Smi> slot = args.at<Smi>(1); Handle<FeedbackVector> vector = args.at<FeedbackVector>(2); Handle<JSObject> receiver = args.at<JSObject>(3); Handle<Name> name = args.at<Name>(4); FeedbackSlot vector_slot = vector->ToSlot(slot->value()); LanguageMode language_mode = vector->GetLanguageMode(vector_slot); DCHECK(receiver->HasNamedInterceptor()); InterceptorInfo* interceptor = receiver->GetNamedInterceptor(); DCHECK(!interceptor->non_masking()); PropertyCallbackArguments arguments(isolate, interceptor->data(), *receiver, *receiver, Object::DONT_THROW); v8::GenericNamedPropertySetterCallback setter = v8::ToCData<v8::GenericNamedPropertySetterCallback>( interceptor->setter()); Handle<Object> result = arguments.Call(setter, name, value); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); if (!result.is_null()) return *value; LookupIterator it(receiver, name, receiver); // Skip past any access check on the receiver. if (it.state() == LookupIterator::ACCESS_CHECK) { DCHECK(it.HasAccess()); it.Next(); } // Skip past the interceptor on the receiver. DCHECK_EQ(LookupIterator::INTERCEPTOR, it.state()); it.Next(); MAYBE_RETURN(Object::SetProperty(&it, value, language_mode, JSReceiver::CERTAINLY_NOT_STORE_FROM_KEYED), isolate->heap()->exception()); return *value; } RUNTIME_FUNCTION(Runtime_LoadElementWithInterceptor) { // TODO(verwaest): This should probably get the holder and receiver as input. HandleScope scope(isolate); Handle<JSObject> receiver = args.at<JSObject>(0); DCHECK(args.smi_at(1) >= 0); uint32_t index = args.smi_at(1); InterceptorInfo* interceptor = receiver->GetIndexedInterceptor(); PropertyCallbackArguments arguments(isolate, interceptor->data(), *receiver, *receiver, Object::DONT_THROW); v8::IndexedPropertyGetterCallback getter = v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter()); Handle<Object> result = arguments.Call(getter, index); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); if (result.is_null()) { LookupIterator it(isolate, receiver, index, receiver); DCHECK_EQ(LookupIterator::INTERCEPTOR, it.state()); it.Next(); ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, Object::GetProperty(&it)); } return *result; } } // namespace internal } // namespace v8