// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/handles.h" #include "src/address-map.h" #include "src/api.h" #include "src/base/logging.h" #include "src/identity-map.h" #include "src/objects-inl.h" namespace v8 { namespace internal { // Handles should be trivially copyable so that they can be efficiently passed // by value. If they are not trivially copyable, they cannot be passed in // registers. static_assert(IS_TRIVIALLY_COPYABLE(HandleBase), "HandleBase should be trivially copyable"); static_assert(IS_TRIVIALLY_COPYABLE(Handle<Object>), "Handle<Object> should be trivially copyable"); static_assert(IS_TRIVIALLY_COPYABLE(MaybeHandle<Object>), "MaybeHandle<Object> should be trivially copyable"); #ifdef DEBUG bool HandleBase::IsDereferenceAllowed(DereferenceCheckMode mode) const { DCHECK_NOT_NULL(location_); Object* object = *location_; if (object->IsSmi()) return true; HeapObject* heap_object = HeapObject::cast(object); Heap* heap = heap_object->GetHeap(); Object** roots_array_start = heap->roots_array_start(); if (roots_array_start <= location_ && location_ < roots_array_start + Heap::kStrongRootListLength && heap->RootCanBeTreatedAsConstant( static_cast<Heap::RootListIndex>(location_ - roots_array_start))) { return true; } if (!AllowHandleDereference::IsAllowed()) return false; if (mode == INCLUDE_DEFERRED_CHECK && !AllowDeferredHandleDereference::IsAllowed()) { // Accessing cells, maps and internalized strings is safe. if (heap_object->IsCell()) return true; if (heap_object->IsMap()) return true; if (heap_object->IsInternalizedString()) return true; return !heap->isolate()->IsDeferredHandle(location_); } return true; } #endif int HandleScope::NumberOfHandles(Isolate* isolate) { HandleScopeImplementer* impl = isolate->handle_scope_implementer(); int n = static_cast<int>(impl->blocks()->size()); if (n == 0) return 0; return ((n - 1) * kHandleBlockSize) + static_cast<int>( (isolate->handle_scope_data()->next - impl->blocks()->back())); } Object** HandleScope::Extend(Isolate* isolate) { HandleScopeData* current = isolate->handle_scope_data(); Object** result = current->next; DCHECK(result == current->limit); // Make sure there's at least one scope on the stack and that the // top of the scope stack isn't a barrier. if (!Utils::ApiCheck(current->level != current->sealed_level, "v8::HandleScope::CreateHandle()", "Cannot create a handle without a HandleScope")) { return nullptr; } HandleScopeImplementer* impl = isolate->handle_scope_implementer(); // If there's more room in the last block, we use that. This is used // for fast creation of scopes after scope barriers. if (!impl->blocks()->empty()) { Object** limit = &impl->blocks()->back()[kHandleBlockSize]; if (current->limit != limit) { current->limit = limit; DCHECK_LT(limit - current->next, kHandleBlockSize); } } // If we still haven't found a slot for the handle, we extend the // current handle scope by allocating a new handle block. if (result == current->limit) { // If there's a spare block, use it for growing the current scope. result = impl->GetSpareOrNewBlock(); // Add the extension to the global list of blocks, but count the // extension as part of the current scope. impl->blocks()->push_back(result); current->limit = &result[kHandleBlockSize]; } return result; } void HandleScope::DeleteExtensions(Isolate* isolate) { HandleScopeData* current = isolate->handle_scope_data(); isolate->handle_scope_implementer()->DeleteExtensions(current->limit); } #ifdef ENABLE_HANDLE_ZAPPING void HandleScope::ZapRange(Object** start, Object** end) { DCHECK_LE(end - start, kHandleBlockSize); for (Object** p = start; p != end; p++) { *reinterpret_cast<Address*>(p) = kHandleZapValue; } } #endif Address HandleScope::current_level_address(Isolate* isolate) { return reinterpret_cast<Address>(&isolate->handle_scope_data()->level); } Address HandleScope::current_next_address(Isolate* isolate) { return reinterpret_cast<Address>(&isolate->handle_scope_data()->next); } Address HandleScope::current_limit_address(Isolate* isolate) { return reinterpret_cast<Address>(&isolate->handle_scope_data()->limit); } CanonicalHandleScope::CanonicalHandleScope(Isolate* isolate) : isolate_(isolate), zone_(isolate->allocator(), ZONE_NAME) { HandleScopeData* handle_scope_data = isolate_->handle_scope_data(); prev_canonical_scope_ = handle_scope_data->canonical_scope; handle_scope_data->canonical_scope = this; root_index_map_ = new RootIndexMap(isolate); identity_map_ = new IdentityMap<Object**, ZoneAllocationPolicy>( isolate->heap(), ZoneAllocationPolicy(&zone_)); canonical_level_ = handle_scope_data->level; } CanonicalHandleScope::~CanonicalHandleScope() { delete root_index_map_; delete identity_map_; isolate_->handle_scope_data()->canonical_scope = prev_canonical_scope_; } Object** CanonicalHandleScope::Lookup(Object* object) { DCHECK_LE(canonical_level_, isolate_->handle_scope_data()->level); if (isolate_->handle_scope_data()->level != canonical_level_) { // We are in an inner handle scope. Do not canonicalize since we will leave // this handle scope while still being in the canonical scope. return HandleScope::CreateHandle(isolate_, object); } if (object->IsHeapObject()) { int index = root_index_map_->Lookup(HeapObject::cast(object)); if (index != RootIndexMap::kInvalidRootIndex) { return isolate_->heap() ->root_handle(static_cast<Heap::RootListIndex>(index)) .location(); } } Object*** entry = identity_map_->Get(object); if (*entry == nullptr) { // Allocate new handle location. *entry = HandleScope::CreateHandle(isolate_, object); } return reinterpret_cast<Object**>(*entry); } DeferredHandleScope::DeferredHandleScope(Isolate* isolate) : impl_(isolate->handle_scope_implementer()) { impl_->BeginDeferredScope(); HandleScopeData* data = impl_->isolate()->handle_scope_data(); Object** new_next = impl_->GetSpareOrNewBlock(); Object** new_limit = &new_next[kHandleBlockSize]; // Check that at least one HandleScope exists, see the class description. DCHECK(!impl_->blocks()->empty()); // Check that we are not in a SealedHandleScope. DCHECK(data->limit == &impl_->blocks()->back()[kHandleBlockSize]); impl_->blocks()->push_back(new_next); #ifdef DEBUG prev_level_ = data->level; #endif data->level++; prev_limit_ = data->limit; prev_next_ = data->next; data->next = new_next; data->limit = new_limit; } DeferredHandleScope::~DeferredHandleScope() { impl_->isolate()->handle_scope_data()->level--; DCHECK(handles_detached_); DCHECK(impl_->isolate()->handle_scope_data()->level == prev_level_); } DeferredHandles* DeferredHandleScope::Detach() { DeferredHandles* deferred = impl_->Detach(prev_limit_); HandleScopeData* data = impl_->isolate()->handle_scope_data(); data->next = prev_next_; data->limit = prev_limit_; #ifdef DEBUG handles_detached_ = true; #endif return deferred; } } // namespace internal } // namespace v8