// Copyright 2006-2009 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "bootstrapper.h" #include "codegen-inl.h" #include "debug.h" #include "ic-inl.h" #include "parser.h" #include "register-allocator-inl.h" #include "runtime.h" #include "scopes.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) // ------------------------------------------------------------------------- // Platform-specific DeferredCode functions. void DeferredCode::SaveRegisters() { for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) { int action = registers_[i]; if (action == kPush) { __ push(RegisterAllocator::ToRegister(i)); } else if (action != kIgnore && (action & kSyncedFlag) == 0) { __ mov(Operand(ebp, action), RegisterAllocator::ToRegister(i)); } } } void DeferredCode::RestoreRegisters() { // Restore registers in reverse order due to the stack. for (int i = RegisterAllocator::kNumRegisters - 1; i >= 0; i--) { int action = registers_[i]; if (action == kPush) { __ pop(RegisterAllocator::ToRegister(i)); } else if (action != kIgnore) { action &= ~kSyncedFlag; __ mov(RegisterAllocator::ToRegister(i), Operand(ebp, action)); } } } // ------------------------------------------------------------------------- // CodeGenState implementation. CodeGenState::CodeGenState(CodeGenerator* owner) : owner_(owner), typeof_state_(NOT_INSIDE_TYPEOF), destination_(NULL), previous_(NULL) { owner_->set_state(this); } CodeGenState::CodeGenState(CodeGenerator* owner, TypeofState typeof_state, ControlDestination* destination) : owner_(owner), typeof_state_(typeof_state), destination_(destination), previous_(owner->state()) { owner_->set_state(this); } CodeGenState::~CodeGenState() { ASSERT(owner_->state() == this); owner_->set_state(previous_); } // ------------------------------------------------------------------------- // CodeGenerator implementation CodeGenerator::CodeGenerator(int buffer_size, Handle<Script> script, bool is_eval) : is_eval_(is_eval), script_(script), deferred_(8), masm_(new MacroAssembler(NULL, buffer_size)), scope_(NULL), frame_(NULL), allocator_(NULL), state_(NULL), loop_nesting_(0), function_return_is_shadowed_(false), in_spilled_code_(false) { } // Calling conventions: // ebp: caller's frame pointer // esp: stack pointer // edi: called JS function // esi: callee's context void CodeGenerator::GenCode(FunctionLiteral* fun) { // Record the position for debugging purposes. CodeForFunctionPosition(fun); ZoneList<Statement*>* body = fun->body(); // Initialize state. ASSERT(scope_ == NULL); scope_ = fun->scope(); ASSERT(allocator_ == NULL); RegisterAllocator register_allocator(this); allocator_ = ®ister_allocator; ASSERT(frame_ == NULL); frame_ = new VirtualFrame(); set_in_spilled_code(false); // Adjust for function-level loop nesting. loop_nesting_ += fun->loop_nesting(); JumpTarget::set_compiling_deferred_code(false); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && fun->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { frame_->SpillAll(); __ int3(); } #endif // New scope to get automatic timing calculation. { // NOLINT HistogramTimerScope codegen_timer(&Counters::code_generation); CodeGenState state(this); // Entry: // Stack: receiver, arguments, return address. // ebp: caller's frame pointer // esp: stack pointer // edi: called JS function // esi: callee's context allocator_->Initialize(); frame_->Enter(); // Allocate space for locals and initialize them. frame_->AllocateStackSlots(); // Initialize the function return target after the locals are set // up, because it needs the expected frame height from the frame. function_return_.set_direction(JumpTarget::BIDIRECTIONAL); function_return_is_shadowed_ = false; // Allocate the local context if needed. if (scope_->num_heap_slots() > 0) { Comment cmnt(masm_, "[ allocate local context"); // Allocate local context. // Get outer context and create a new context based on it. frame_->PushFunction(); Result context = frame_->CallRuntime(Runtime::kNewContext, 1); // Update context local. frame_->SaveContextRegister(); // Verify that the runtime call result and esi agree. if (FLAG_debug_code) { __ cmp(context.reg(), Operand(esi)); __ Assert(equal, "Runtime::NewContext should end up in esi"); } } // TODO(1241774): Improve this code: // 1) only needed if we have a context // 2) no need to recompute context ptr every single time // 3) don't copy parameter operand code from SlotOperand! { Comment cmnt2(masm_, "[ copy context parameters into .context"); // Note that iteration order is relevant here! If we have the same // parameter twice (e.g., function (x, y, x)), and that parameter // needs to be copied into the context, it must be the last argument // passed to the parameter that needs to be copied. This is a rare // case so we don't check for it, instead we rely on the copying // order: such a parameter is copied repeatedly into the same // context location and thus the last value is what is seen inside // the function. for (int i = 0; i < scope_->num_parameters(); i++) { Variable* par = scope_->parameter(i); Slot* slot = par->slot(); if (slot != NULL && slot->type() == Slot::CONTEXT) { // The use of SlotOperand below is safe in unspilled code // because the slot is guaranteed to be a context slot. // // There are no parameters in the global scope. ASSERT(!scope_->is_global_scope()); frame_->PushParameterAt(i); Result value = frame_->Pop(); value.ToRegister(); // SlotOperand loads context.reg() with the context object // stored to, used below in RecordWrite. Result context = allocator_->Allocate(); ASSERT(context.is_valid()); __ mov(SlotOperand(slot, context.reg()), value.reg()); int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; Result scratch = allocator_->Allocate(); ASSERT(scratch.is_valid()); frame_->Spill(context.reg()); frame_->Spill(value.reg()); __ RecordWrite(context.reg(), offset, value.reg(), scratch.reg()); } } } // Store the arguments object. This must happen after context // initialization because the arguments object may be stored in // the context. if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) { StoreArgumentsObject(true); } // Generate code to 'execute' declarations and initialize functions // (source elements). In case of an illegal redeclaration we need to // handle that instead of processing the declarations. if (scope_->HasIllegalRedeclaration()) { Comment cmnt(masm_, "[ illegal redeclarations"); scope_->VisitIllegalRedeclaration(this); } else { Comment cmnt(masm_, "[ declarations"); ProcessDeclarations(scope_->declarations()); // Bail out if a stack-overflow exception occurred when processing // declarations. if (HasStackOverflow()) return; } if (FLAG_trace) { frame_->CallRuntime(Runtime::kTraceEnter, 0); // Ignore the return value. } CheckStack(); // Compile the body of the function in a vanilla state. Don't // bother compiling all the code if the scope has an illegal // redeclaration. if (!scope_->HasIllegalRedeclaration()) { Comment cmnt(masm_, "[ function body"); #ifdef DEBUG bool is_builtin = Bootstrapper::IsActive(); bool should_trace = is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; if (should_trace) { frame_->CallRuntime(Runtime::kDebugTrace, 0); // Ignore the return value. } #endif VisitStatements(body); // Handle the return from the function. if (has_valid_frame()) { // If there is a valid frame, control flow can fall off the end of // the body. In that case there is an implicit return statement. ASSERT(!function_return_is_shadowed_); CodeForReturnPosition(fun); frame_->PrepareForReturn(); Result undefined(Factory::undefined_value()); if (function_return_.is_bound()) { function_return_.Jump(&undefined); } else { function_return_.Bind(&undefined); GenerateReturnSequence(&undefined); } } else if (function_return_.is_linked()) { // If the return target has dangling jumps to it, then we have not // yet generated the return sequence. This can happen when (a) // control does not flow off the end of the body so we did not // compile an artificial return statement just above, and (b) there // are return statements in the body but (c) they are all shadowed. Result return_value; function_return_.Bind(&return_value); GenerateReturnSequence(&return_value); } } } // Adjust for function-level loop nesting. loop_nesting_ -= fun->loop_nesting(); // Code generation state must be reset. ASSERT(state_ == NULL); ASSERT(loop_nesting() == 0); ASSERT(!function_return_is_shadowed_); function_return_.Unuse(); DeleteFrame(); // Process any deferred code using the register allocator. if (!HasStackOverflow()) { HistogramTimerScope deferred_timer(&Counters::deferred_code_generation); JumpTarget::set_compiling_deferred_code(true); ProcessDeferred(); JumpTarget::set_compiling_deferred_code(false); } // There is no need to delete the register allocator, it is a // stack-allocated local. allocator_ = NULL; scope_ = NULL; } Operand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { // Currently, this assertion will fail if we try to assign to // a constant variable that is constant because it is read-only // (such as the variable referring to a named function expression). // We need to implement assignments to read-only variables. // Ideally, we should do this during AST generation (by converting // such assignments into expression statements); however, in general // we may not be able to make the decision until past AST generation, // that is when the entire program is known. ASSERT(slot != NULL); int index = slot->index(); switch (slot->type()) { case Slot::PARAMETER: return frame_->ParameterAt(index); case Slot::LOCAL: return frame_->LocalAt(index); case Slot::CONTEXT: { // Follow the context chain if necessary. ASSERT(!tmp.is(esi)); // do not overwrite context register Register context = esi; int chain_length = scope()->ContextChainLength(slot->var()->scope()); for (int i = 0; i < chain_length; i++) { // Load the closure. // (All contexts, even 'with' contexts, have a closure, // and it is the same for all contexts inside a function. // There is no need to go to the function context first.) __ mov(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); // Load the function context (which is the incoming, outer context). __ mov(tmp, FieldOperand(tmp, JSFunction::kContextOffset)); context = tmp; } // We may have a 'with' context now. Get the function context. // (In fact this mov may never be the needed, since the scope analysis // may not permit a direct context access in this case and thus we are // always at a function context. However it is safe to dereference be- // cause the function context of a function context is itself. Before // deleting this mov we should try to create a counter-example first, // though...) __ mov(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); return ContextOperand(tmp, index); } default: UNREACHABLE(); return Operand(eax); } } Operand CodeGenerator::ContextSlotOperandCheckExtensions(Slot* slot, Result tmp, JumpTarget* slow) { ASSERT(slot->type() == Slot::CONTEXT); ASSERT(tmp.is_register()); Register context = esi; for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { if (s->num_heap_slots() > 0) { if (s->calls_eval()) { // Check that extension is NULL. __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal, not_taken); } __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); context = tmp.reg(); } } // Check that last extension is NULL. __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal, not_taken); __ mov(tmp.reg(), ContextOperand(context, Context::FCONTEXT_INDEX)); return ContextOperand(tmp.reg(), slot->index()); } // Emit code to load the value of an expression to the top of the // frame. If the expression is boolean-valued it may be compiled (or // partially compiled) into control flow to the control destination. // If force_control is true, control flow is forced. void CodeGenerator::LoadCondition(Expression* x, TypeofState typeof_state, ControlDestination* dest, bool force_control) { ASSERT(!in_spilled_code()); int original_height = frame_->height(); { CodeGenState new_state(this, typeof_state, dest); Visit(x); // If we hit a stack overflow, we may not have actually visited // the expression. In that case, we ensure that we have a // valid-looking frame state because we will continue to generate // code as we unwind the C++ stack. // // It's possible to have both a stack overflow and a valid frame // state (eg, a subexpression overflowed, visiting it returned // with a dummied frame state, and visiting this expression // returned with a normal-looking state). if (HasStackOverflow() && !dest->is_used() && frame_->height() == original_height) { dest->Goto(true); } } if (force_control && !dest->is_used()) { // Convert the TOS value into flow to the control destination. ToBoolean(dest); } ASSERT(!(force_control && !dest->is_used())); ASSERT(dest->is_used() || frame_->height() == original_height + 1); } void CodeGenerator::LoadAndSpill(Expression* expression, TypeofState typeof_state) { ASSERT(in_spilled_code()); set_in_spilled_code(false); Load(expression, typeof_state); frame_->SpillAll(); set_in_spilled_code(true); } void CodeGenerator::Load(Expression* x, TypeofState typeof_state) { #ifdef DEBUG int original_height = frame_->height(); #endif ASSERT(!in_spilled_code()); JumpTarget true_target; JumpTarget false_target; ControlDestination dest(&true_target, &false_target, true); LoadCondition(x, typeof_state, &dest, false); if (dest.false_was_fall_through()) { // The false target was just bound. JumpTarget loaded; frame_->Push(Factory::false_value()); // There may be dangling jumps to the true target. if (true_target.is_linked()) { loaded.Jump(); true_target.Bind(); frame_->Push(Factory::true_value()); loaded.Bind(); } } else if (dest.is_used()) { // There is true, and possibly false, control flow (with true as // the fall through). JumpTarget loaded; frame_->Push(Factory::true_value()); if (false_target.is_linked()) { loaded.Jump(); false_target.Bind(); frame_->Push(Factory::false_value()); loaded.Bind(); } } else { // We have a valid value on top of the frame, but we still may // have dangling jumps to the true and false targets from nested // subexpressions (eg, the left subexpressions of the // short-circuited boolean operators). ASSERT(has_valid_frame()); if (true_target.is_linked() || false_target.is_linked()) { JumpTarget loaded; loaded.Jump(); // Don't lose the current TOS. if (true_target.is_linked()) { true_target.Bind(); frame_->Push(Factory::true_value()); if (false_target.is_linked()) { loaded.Jump(); } } if (false_target.is_linked()) { false_target.Bind(); frame_->Push(Factory::false_value()); } loaded.Bind(); } } ASSERT(has_valid_frame()); ASSERT(frame_->height() == original_height + 1); } void CodeGenerator::LoadGlobal() { if (in_spilled_code()) { frame_->EmitPush(GlobalObject()); } else { Result temp = allocator_->Allocate(); __ mov(temp.reg(), GlobalObject()); frame_->Push(&temp); } } void CodeGenerator::LoadGlobalReceiver() { Result temp = allocator_->Allocate(); Register reg = temp.reg(); __ mov(reg, GlobalObject()); __ mov(reg, FieldOperand(reg, GlobalObject::kGlobalReceiverOffset)); frame_->Push(&temp); } // TODO(1241834): Get rid of this function in favor of just using Load, now // that we have the INSIDE_TYPEOF typeof state. => Need to handle global // variables w/o reference errors elsewhere. void CodeGenerator::LoadTypeofExpression(Expression* x) { Variable* variable = x->AsVariableProxy()->AsVariable(); if (variable != NULL && !variable->is_this() && variable->is_global()) { // NOTE: This is somewhat nasty. We force the compiler to load // the variable as if through '<global>.<variable>' to make sure we // do not get reference errors. Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); Literal key(variable->name()); // TODO(1241834): Fetch the position from the variable instead of using // no position. Property property(&global, &key, RelocInfo::kNoPosition); Load(&property); } else { Load(x, INSIDE_TYPEOF); } } ArgumentsAllocationMode CodeGenerator::ArgumentsMode() const { if (scope_->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; ASSERT(scope_->arguments_shadow() != NULL); // We don't want to do lazy arguments allocation for functions that // have heap-allocated contexts, because it interfers with the // uninitialized const tracking in the context objects. return (scope_->num_heap_slots() > 0) ? EAGER_ARGUMENTS_ALLOCATION : LAZY_ARGUMENTS_ALLOCATION; } Result CodeGenerator::StoreArgumentsObject(bool initial) { ArgumentsAllocationMode mode = ArgumentsMode(); ASSERT(mode != NO_ARGUMENTS_ALLOCATION); Comment cmnt(masm_, "[ store arguments object"); if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { // When using lazy arguments allocation, we store the hole value // as a sentinel indicating that the arguments object hasn't been // allocated yet. frame_->Push(Factory::the_hole_value()); } else { ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); frame_->PushFunction(); frame_->PushReceiverSlotAddress(); frame_->Push(Smi::FromInt(scope_->num_parameters())); Result result = frame_->CallStub(&stub, 3); frame_->Push(&result); } { Reference shadow_ref(this, scope_->arguments_shadow()); Reference arguments_ref(this, scope_->arguments()); ASSERT(shadow_ref.is_slot() && arguments_ref.is_slot()); // Here we rely on the convenient property that references to slot // take up zero space in the frame (ie, it doesn't matter that the // stored value is actually below the reference on the frame). JumpTarget done; bool skip_arguments = false; if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { // We have to skip storing into the arguments slot if it has // already been written to. This can happen if the a function // has a local variable named 'arguments'. LoadFromSlot(scope_->arguments()->var()->slot(), NOT_INSIDE_TYPEOF); Result arguments = frame_->Pop(); if (arguments.is_constant()) { // We have to skip updating the arguments object if it has // been assigned a proper value. skip_arguments = !arguments.handle()->IsTheHole(); } else { __ cmp(Operand(arguments.reg()), Immediate(Factory::the_hole_value())); arguments.Unuse(); done.Branch(not_equal); } } if (!skip_arguments) { arguments_ref.SetValue(NOT_CONST_INIT); if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); } shadow_ref.SetValue(NOT_CONST_INIT); } return frame_->Pop(); } Reference::Reference(CodeGenerator* cgen, Expression* expression) : cgen_(cgen), expression_(expression), type_(ILLEGAL) { cgen->LoadReference(this); } Reference::~Reference() { cgen_->UnloadReference(this); } void CodeGenerator::LoadReference(Reference* ref) { // References are loaded from both spilled and unspilled code. Set the // state to unspilled to allow that (and explicitly spill after // construction at the construction sites). bool was_in_spilled_code = in_spilled_code_; in_spilled_code_ = false; Comment cmnt(masm_, "[ LoadReference"); Expression* e = ref->expression(); Property* property = e->AsProperty(); Variable* var = e->AsVariableProxy()->AsVariable(); if (property != NULL) { // The expression is either a property or a variable proxy that rewrites // to a property. Load(property->obj()); // We use a named reference if the key is a literal symbol, unless it is // a string that can be legally parsed as an integer. This is because // otherwise we will not get into the slow case code that handles [] on // String objects. Literal* literal = property->key()->AsLiteral(); uint32_t dummy; if (literal != NULL && literal->handle()->IsSymbol() && !String::cast(*(literal->handle()))->AsArrayIndex(&dummy)) { ref->set_type(Reference::NAMED); } else { Load(property->key()); ref->set_type(Reference::KEYED); } } else if (var != NULL) { // The expression is a variable proxy that does not rewrite to a // property. Global variables are treated as named property references. if (var->is_global()) { LoadGlobal(); ref->set_type(Reference::NAMED); } else { ASSERT(var->slot() != NULL); ref->set_type(Reference::SLOT); } } else { // Anything else is a runtime error. Load(e); frame_->CallRuntime(Runtime::kThrowReferenceError, 1); } in_spilled_code_ = was_in_spilled_code; } void CodeGenerator::UnloadReference(Reference* ref) { // Pop a reference from the stack while preserving TOS. Comment cmnt(masm_, "[ UnloadReference"); frame_->Nip(ref->size()); } // ECMA-262, section 9.2, page 30: ToBoolean(). Pop the top of stack and // convert it to a boolean in the condition code register or jump to // 'false_target'/'true_target' as appropriate. void CodeGenerator::ToBoolean(ControlDestination* dest) { Comment cmnt(masm_, "[ ToBoolean"); // The value to convert should be popped from the frame. Result value = frame_->Pop(); value.ToRegister(); // Fast case checks. // 'false' => false. __ cmp(value.reg(), Factory::false_value()); dest->false_target()->Branch(equal); // 'true' => true. __ cmp(value.reg(), Factory::true_value()); dest->true_target()->Branch(equal); // 'undefined' => false. __ cmp(value.reg(), Factory::undefined_value()); dest->false_target()->Branch(equal); // Smi => false iff zero. ASSERT(kSmiTag == 0); __ test(value.reg(), Operand(value.reg())); dest->false_target()->Branch(zero); __ test(value.reg(), Immediate(kSmiTagMask)); dest->true_target()->Branch(zero); // Call the stub for all other cases. frame_->Push(&value); // Undo the Pop() from above. ToBooleanStub stub; Result temp = frame_->CallStub(&stub, 1); // Convert the result to a condition code. __ test(temp.reg(), Operand(temp.reg())); temp.Unuse(); dest->Split(not_equal); } class FloatingPointHelper : public AllStatic { public: // Code pattern for loading a floating point value. Input value must // be either a smi or a heap number object (fp value). Requirements: // operand in register number. Returns operand as floating point number // on FPU stack. static void LoadFloatOperand(MacroAssembler* masm, Register number); // Code pattern for loading floating point values. Input values must // be either smi or heap number objects (fp values). Requirements: // operand_1 on TOS+1 , operand_2 on TOS+2; Returns operands as // floating point numbers on FPU stack. static void LoadFloatOperands(MacroAssembler* masm, Register scratch); // Test if operands are smi or number objects (fp). Requirements: // operand_1 in eax, operand_2 in edx; falls through on float // operands, jumps to the non_float label otherwise. static void CheckFloatOperands(MacroAssembler* masm, Label* non_float, Register scratch); // Test if operands are numbers (smi or HeapNumber objects), and load // them into xmm0 and xmm1 if they are. Jump to label not_numbers if // either operand is not a number. Operands are in edx and eax. // Leaves operands unchanged. static void LoadSse2Operands(MacroAssembler* masm, Label* not_numbers); }; const char* GenericBinaryOpStub::GetName() { switch (op_) { case Token::ADD: return "GenericBinaryOpStub_ADD"; case Token::SUB: return "GenericBinaryOpStub_SUB"; case Token::MUL: return "GenericBinaryOpStub_MUL"; case Token::DIV: return "GenericBinaryOpStub_DIV"; case Token::BIT_OR: return "GenericBinaryOpStub_BIT_OR"; case Token::BIT_AND: return "GenericBinaryOpStub_BIT_AND"; case Token::BIT_XOR: return "GenericBinaryOpStub_BIT_XOR"; case Token::SAR: return "GenericBinaryOpStub_SAR"; case Token::SHL: return "GenericBinaryOpStub_SHL"; case Token::SHR: return "GenericBinaryOpStub_SHR"; default: return "GenericBinaryOpStub"; } } // Call the specialized stub for a binary operation. class DeferredInlineBinaryOperation: public DeferredCode { public: DeferredInlineBinaryOperation(Token::Value op, Register dst, Register left, Register right, OverwriteMode mode) : op_(op), dst_(dst), left_(left), right_(right), mode_(mode) { set_comment("[ DeferredInlineBinaryOperation"); } virtual void Generate(); private: Token::Value op_; Register dst_; Register left_; Register right_; OverwriteMode mode_; }; void DeferredInlineBinaryOperation::Generate() { GenericBinaryOpStub stub(op_, mode_, NO_SMI_CODE_IN_STUB); stub.GenerateCall(masm_, left_, right_); if (!dst_.is(eax)) __ mov(dst_, eax); } void CodeGenerator::GenericBinaryOperation(Token::Value op, SmiAnalysis* type, OverwriteMode overwrite_mode) { Comment cmnt(masm_, "[ BinaryOperation"); Comment cmnt_token(masm_, Token::String(op)); if (op == Token::COMMA) { // Simply discard left value. frame_->Nip(1); return; } // Set the flags based on the operation, type and loop nesting level. GenericBinaryFlags flags; switch (op) { case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SHL: case Token::SHR: case Token::SAR: // Bit operations always assume they likely operate on Smis. Still only // generate the inline Smi check code if this operation is part of a loop. flags = (loop_nesting() > 0) ? NO_SMI_CODE_IN_STUB : NO_GENERIC_BINARY_FLAGS; break; default: // By default only inline the Smi check code for likely smis if this // operation is part of a loop. flags = ((loop_nesting() > 0) && type->IsLikelySmi()) ? NO_SMI_CODE_IN_STUB : NO_GENERIC_BINARY_FLAGS; break; } Result right = frame_->Pop(); Result left = frame_->Pop(); if (op == Token::ADD) { bool left_is_string = left.is_constant() && left.handle()->IsString(); bool right_is_string = right.is_constant() && right.handle()->IsString(); if (left_is_string || right_is_string) { frame_->Push(&left); frame_->Push(&right); Result answer; if (left_is_string) { if (right_is_string) { // TODO(lrn): if both are constant strings // -- do a compile time cons, if allocation during codegen is allowed. answer = frame_->CallRuntime(Runtime::kStringAdd, 2); } else { answer = frame_->InvokeBuiltin(Builtins::STRING_ADD_LEFT, CALL_FUNCTION, 2); } } else if (right_is_string) { answer = frame_->InvokeBuiltin(Builtins::STRING_ADD_RIGHT, CALL_FUNCTION, 2); } frame_->Push(&answer); return; } // Neither operand is known to be a string. } bool left_is_smi = left.is_constant() && left.handle()->IsSmi(); bool left_is_non_smi = left.is_constant() && !left.handle()->IsSmi(); bool right_is_smi = right.is_constant() && right.handle()->IsSmi(); bool right_is_non_smi = right.is_constant() && !right.handle()->IsSmi(); bool generate_no_smi_code = false; // No smi code at all, inline or in stub. if (left_is_smi && right_is_smi) { // Compute the constant result at compile time, and leave it on the frame. int left_int = Smi::cast(*left.handle())->value(); int right_int = Smi::cast(*right.handle())->value(); if (FoldConstantSmis(op, left_int, right_int)) return; } if (left_is_non_smi || right_is_non_smi) { // Set flag so that we go straight to the slow case, with no smi code. generate_no_smi_code = true; } else if (right_is_smi) { ConstantSmiBinaryOperation(op, &left, right.handle(), type, false, overwrite_mode); return; } else if (left_is_smi) { ConstantSmiBinaryOperation(op, &right, left.handle(), type, true, overwrite_mode); return; } if (((flags & NO_SMI_CODE_IN_STUB) != 0) && !generate_no_smi_code) { LikelySmiBinaryOperation(op, &left, &right, overwrite_mode); } else { frame_->Push(&left); frame_->Push(&right); // If we know the arguments aren't smis, use the binary operation stub // that does not check for the fast smi case. if (generate_no_smi_code) { flags = NO_SMI_CODE_IN_STUB; } GenericBinaryOpStub stub(op, overwrite_mode, flags); Result answer = frame_->CallStub(&stub, 2); frame_->Push(&answer); } } bool CodeGenerator::FoldConstantSmis(Token::Value op, int left, int right) { Object* answer_object = Heap::undefined_value(); switch (op) { case Token::ADD: if (Smi::IsValid(left + right)) { answer_object = Smi::FromInt(left + right); } break; case Token::SUB: if (Smi::IsValid(left - right)) { answer_object = Smi::FromInt(left - right); } break; case Token::MUL: { double answer = static_cast<double>(left) * right; if (answer >= Smi::kMinValue && answer <= Smi::kMaxValue) { // If the product is zero and the non-zero factor is negative, // the spec requires us to return floating point negative zero. if (answer != 0 || (left >= 0 && right >= 0)) { answer_object = Smi::FromInt(static_cast<int>(answer)); } } } break; case Token::DIV: case Token::MOD: break; case Token::BIT_OR: answer_object = Smi::FromInt(left | right); break; case Token::BIT_AND: answer_object = Smi::FromInt(left & right); break; case Token::BIT_XOR: answer_object = Smi::FromInt(left ^ right); break; case Token::SHL: { int shift_amount = right & 0x1F; if (Smi::IsValid(left << shift_amount)) { answer_object = Smi::FromInt(left << shift_amount); } break; } case Token::SHR: { int shift_amount = right & 0x1F; unsigned int unsigned_left = left; unsigned_left >>= shift_amount; if (unsigned_left <= static_cast<unsigned int>(Smi::kMaxValue)) { answer_object = Smi::FromInt(unsigned_left); } break; } case Token::SAR: { int shift_amount = right & 0x1F; unsigned int unsigned_left = left; if (left < 0) { // Perform arithmetic shift of a negative number by // complementing number, logical shifting, complementing again. unsigned_left = ~unsigned_left; unsigned_left >>= shift_amount; unsigned_left = ~unsigned_left; } else { unsigned_left >>= shift_amount; } ASSERT(Smi::IsValid(unsigned_left)); // Converted to signed. answer_object = Smi::FromInt(unsigned_left); // Converted to signed. break; } default: UNREACHABLE(); break; } if (answer_object == Heap::undefined_value()) { return false; } frame_->Push(Handle<Object>(answer_object)); return true; } // Implements a binary operation using a deferred code object and some // inline code to operate on smis quickly. void CodeGenerator::LikelySmiBinaryOperation(Token::Value op, Result* left, Result* right, OverwriteMode overwrite_mode) { // Special handling of div and mod because they use fixed registers. if (op == Token::DIV || op == Token::MOD) { // We need eax as the quotient register, edx as the remainder // register, neither left nor right in eax or edx, and left copied // to eax. Result quotient; Result remainder; bool left_is_in_eax = false; // Step 1: get eax for quotient. if ((left->is_register() && left->reg().is(eax)) || (right->is_register() && right->reg().is(eax))) { // One or both is in eax. Use a fresh non-edx register for // them. Result fresh = allocator_->Allocate(); ASSERT(fresh.is_valid()); if (fresh.reg().is(edx)) { remainder = fresh; fresh = allocator_->Allocate(); ASSERT(fresh.is_valid()); } if (left->is_register() && left->reg().is(eax)) { quotient = *left; *left = fresh; left_is_in_eax = true; } if (right->is_register() && right->reg().is(eax)) { quotient = *right; *right = fresh; } __ mov(fresh.reg(), eax); } else { // Neither left nor right is in eax. quotient = allocator_->Allocate(eax); } ASSERT(quotient.is_register() && quotient.reg().is(eax)); ASSERT(!(left->is_register() && left->reg().is(eax))); ASSERT(!(right->is_register() && right->reg().is(eax))); // Step 2: get edx for remainder if necessary. if (!remainder.is_valid()) { if ((left->is_register() && left->reg().is(edx)) || (right->is_register() && right->reg().is(edx))) { Result fresh = allocator_->Allocate(); ASSERT(fresh.is_valid()); if (left->is_register() && left->reg().is(edx)) { remainder = *left; *left = fresh; } if (right->is_register() && right->reg().is(edx)) { remainder = *right; *right = fresh; } __ mov(fresh.reg(), edx); } else { // Neither left nor right is in edx. remainder = allocator_->Allocate(edx); } } ASSERT(remainder.is_register() && remainder.reg().is(edx)); ASSERT(!(left->is_register() && left->reg().is(edx))); ASSERT(!(right->is_register() && right->reg().is(edx))); left->ToRegister(); right->ToRegister(); frame_->Spill(eax); frame_->Spill(edx); // Check that left and right are smi tagged. DeferredInlineBinaryOperation* deferred = new DeferredInlineBinaryOperation(op, (op == Token::DIV) ? eax : edx, left->reg(), right->reg(), overwrite_mode); if (left->reg().is(right->reg())) { __ test(left->reg(), Immediate(kSmiTagMask)); } else { // Use the quotient register as a scratch for the tag check. if (!left_is_in_eax) __ mov(eax, left->reg()); left_is_in_eax = false; // About to destroy the value in eax. __ or_(eax, Operand(right->reg())); ASSERT(kSmiTag == 0); // Adjust test if not the case. __ test(eax, Immediate(kSmiTagMask)); } deferred->Branch(not_zero); if (!left_is_in_eax) __ mov(eax, left->reg()); // Sign extend eax into edx:eax. __ cdq(); // Check for 0 divisor. __ test(right->reg(), Operand(right->reg())); deferred->Branch(zero); // Divide edx:eax by the right operand. __ idiv(right->reg()); // Complete the operation. if (op == Token::DIV) { // Check for negative zero result. If result is zero, and divisor // is negative, return a floating point negative zero. The // virtual frame is unchanged in this block, so local control flow // can use a Label rather than a JumpTarget. Label non_zero_result; __ test(left->reg(), Operand(left->reg())); __ j(not_zero, &non_zero_result); __ test(right->reg(), Operand(right->reg())); deferred->Branch(negative); __ bind(&non_zero_result); // Check for the corner case of dividing the most negative smi by // -1. We cannot use the overflow flag, since it is not set by // idiv instruction. ASSERT(kSmiTag == 0 && kSmiTagSize == 1); __ cmp(eax, 0x40000000); deferred->Branch(equal); // Check that the remainder is zero. __ test(edx, Operand(edx)); deferred->Branch(not_zero); // Tag the result and store it in the quotient register. ASSERT(kSmiTagSize == times_2); // adjust code if not the case __ lea(eax, Operand(eax, eax, times_1, kSmiTag)); deferred->BindExit(); left->Unuse(); right->Unuse(); frame_->Push("ient); } else { ASSERT(op == Token::MOD); // Check for a negative zero result. If the result is zero, and // the dividend is negative, return a floating point negative // zero. The frame is unchanged in this block, so local control // flow can use a Label rather than a JumpTarget. Label non_zero_result; __ test(edx, Operand(edx)); __ j(not_zero, &non_zero_result, taken); __ test(left->reg(), Operand(left->reg())); deferred->Branch(negative); __ bind(&non_zero_result); deferred->BindExit(); left->Unuse(); right->Unuse(); frame_->Push(&remainder); } return; } // Special handling of shift operations because they use fixed // registers. if (op == Token::SHL || op == Token::SHR || op == Token::SAR) { // Move left out of ecx if necessary. if (left->is_register() && left->reg().is(ecx)) { *left = allocator_->Allocate(); ASSERT(left->is_valid()); __ mov(left->reg(), ecx); } right->ToRegister(ecx); left->ToRegister(); ASSERT(left->is_register() && !left->reg().is(ecx)); ASSERT(right->is_register() && right->reg().is(ecx)); // We will modify right, it must be spilled. frame_->Spill(ecx); // Use a fresh answer register to avoid spilling the left operand. Result answer = allocator_->Allocate(); ASSERT(answer.is_valid()); // Check that both operands are smis using the answer register as a // temporary. DeferredInlineBinaryOperation* deferred = new DeferredInlineBinaryOperation(op, answer.reg(), left->reg(), ecx, overwrite_mode); __ mov(answer.reg(), left->reg()); __ or_(answer.reg(), Operand(ecx)); __ test(answer.reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); // Untag both operands. __ mov(answer.reg(), left->reg()); __ sar(answer.reg(), kSmiTagSize); __ sar(ecx, kSmiTagSize); // Perform the operation. switch (op) { case Token::SAR: __ sar(answer.reg()); // No checks of result necessary break; case Token::SHR: { Label result_ok; __ shr(answer.reg()); // Check that the *unsigned* result fits in a smi. Neither of // the two high-order bits can be set: // * 0x80000000: high bit would be lost when smi tagging. // * 0x40000000: this number would convert to negative when smi // tagging. // These two cases can only happen with shifts by 0 or 1 when // handed a valid smi. If the answer cannot be represented by a // smi, restore the left and right arguments, and jump to slow // case. The low bit of the left argument may be lost, but only // in a case where it is dropped anyway. __ test(answer.reg(), Immediate(0xc0000000)); __ j(zero, &result_ok); ASSERT(kSmiTag == 0); __ shl(ecx, kSmiTagSize); deferred->Jump(); __ bind(&result_ok); break; } case Token::SHL: { Label result_ok; __ shl(answer.reg()); // Check that the *signed* result fits in a smi. __ cmp(answer.reg(), 0xc0000000); __ j(positive, &result_ok); ASSERT(kSmiTag == 0); __ shl(ecx, kSmiTagSize); deferred->Jump(); __ bind(&result_ok); break; } default: UNREACHABLE(); } // Smi-tag the result in answer. ASSERT(kSmiTagSize == 1); // Adjust code if not the case. __ lea(answer.reg(), Operand(answer.reg(), answer.reg(), times_1, kSmiTag)); deferred->BindExit(); left->Unuse(); right->Unuse(); frame_->Push(&answer); return; } // Handle the other binary operations. left->ToRegister(); right->ToRegister(); // A newly allocated register answer is used to hold the answer. The // registers containing left and right are not modified so they don't // need to be spilled in the fast case. Result answer = allocator_->Allocate(); ASSERT(answer.is_valid()); // Perform the smi tag check. DeferredInlineBinaryOperation* deferred = new DeferredInlineBinaryOperation(op, answer.reg(), left->reg(), right->reg(), overwrite_mode); if (left->reg().is(right->reg())) { __ test(left->reg(), Immediate(kSmiTagMask)); } else { __ mov(answer.reg(), left->reg()); __ or_(answer.reg(), Operand(right->reg())); ASSERT(kSmiTag == 0); // Adjust test if not the case. __ test(answer.reg(), Immediate(kSmiTagMask)); } deferred->Branch(not_zero); __ mov(answer.reg(), left->reg()); switch (op) { case Token::ADD: __ add(answer.reg(), Operand(right->reg())); // Add optimistically. deferred->Branch(overflow); break; case Token::SUB: __ sub(answer.reg(), Operand(right->reg())); // Subtract optimistically. deferred->Branch(overflow); break; case Token::MUL: { // If the smi tag is 0 we can just leave the tag on one operand. ASSERT(kSmiTag == 0); // Adjust code below if not the case. // Remove smi tag from the left operand (but keep sign). // Left-hand operand has been copied into answer. __ sar(answer.reg(), kSmiTagSize); // Do multiplication of smis, leaving result in answer. __ imul(answer.reg(), Operand(right->reg())); // Go slow on overflows. deferred->Branch(overflow); // Check for negative zero result. If product is zero, and one // argument is negative, go to slow case. The frame is unchanged // in this block, so local control flow can use a Label rather // than a JumpTarget. Label non_zero_result; __ test(answer.reg(), Operand(answer.reg())); __ j(not_zero, &non_zero_result, taken); __ mov(answer.reg(), left->reg()); __ or_(answer.reg(), Operand(right->reg())); deferred->Branch(negative); __ xor_(answer.reg(), Operand(answer.reg())); // Positive 0 is correct. __ bind(&non_zero_result); break; } case Token::BIT_OR: __ or_(answer.reg(), Operand(right->reg())); break; case Token::BIT_AND: __ and_(answer.reg(), Operand(right->reg())); break; case Token::BIT_XOR: __ xor_(answer.reg(), Operand(right->reg())); break; default: UNREACHABLE(); break; } deferred->BindExit(); left->Unuse(); right->Unuse(); frame_->Push(&answer); } // Call the appropriate binary operation stub to compute src op value // and leave the result in dst. class DeferredInlineSmiOperation: public DeferredCode { public: DeferredInlineSmiOperation(Token::Value op, Register dst, Register src, Smi* value, OverwriteMode overwrite_mode) : op_(op), dst_(dst), src_(src), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiOperation"); } virtual void Generate(); private: Token::Value op_; Register dst_; Register src_; Smi* value_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiOperation::Generate() { // For mod we don't generate all the Smi code inline. GenericBinaryOpStub stub( op_, overwrite_mode_, (op_ == Token::MOD) ? NO_GENERIC_BINARY_FLAGS : NO_SMI_CODE_IN_STUB); stub.GenerateCall(masm_, src_, value_); if (!dst_.is(eax)) __ mov(dst_, eax); } // Call the appropriate binary operation stub to compute value op src // and leave the result in dst. class DeferredInlineSmiOperationReversed: public DeferredCode { public: DeferredInlineSmiOperationReversed(Token::Value op, Register dst, Smi* value, Register src, OverwriteMode overwrite_mode) : op_(op), dst_(dst), value_(value), src_(src), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiOperationReversed"); } virtual void Generate(); private: Token::Value op_; Register dst_; Smi* value_; Register src_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiOperationReversed::Generate() { GenericBinaryOpStub igostub(op_, overwrite_mode_, NO_SMI_CODE_IN_STUB); igostub.GenerateCall(masm_, value_, src_); if (!dst_.is(eax)) __ mov(dst_, eax); } // The result of src + value is in dst. It either overflowed or was not // smi tagged. Undo the speculative addition and call the appropriate // specialized stub for add. The result is left in dst. class DeferredInlineSmiAdd: public DeferredCode { public: DeferredInlineSmiAdd(Register dst, Smi* value, OverwriteMode overwrite_mode) : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiAdd"); } virtual void Generate(); private: Register dst_; Smi* value_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiAdd::Generate() { // Undo the optimistic add operation and call the shared stub. __ sub(Operand(dst_), Immediate(value_)); GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB); igostub.GenerateCall(masm_, dst_, value_); if (!dst_.is(eax)) __ mov(dst_, eax); } // The result of value + src is in dst. It either overflowed or was not // smi tagged. Undo the speculative addition and call the appropriate // specialized stub for add. The result is left in dst. class DeferredInlineSmiAddReversed: public DeferredCode { public: DeferredInlineSmiAddReversed(Register dst, Smi* value, OverwriteMode overwrite_mode) : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiAddReversed"); } virtual void Generate(); private: Register dst_; Smi* value_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiAddReversed::Generate() { // Undo the optimistic add operation and call the shared stub. __ sub(Operand(dst_), Immediate(value_)); GenericBinaryOpStub igostub(Token::ADD, overwrite_mode_, NO_SMI_CODE_IN_STUB); igostub.GenerateCall(masm_, value_, dst_); if (!dst_.is(eax)) __ mov(dst_, eax); } // The result of src - value is in dst. It either overflowed or was not // smi tagged. Undo the speculative subtraction and call the // appropriate specialized stub for subtract. The result is left in // dst. class DeferredInlineSmiSub: public DeferredCode { public: DeferredInlineSmiSub(Register dst, Smi* value, OverwriteMode overwrite_mode) : dst_(dst), value_(value), overwrite_mode_(overwrite_mode) { set_comment("[ DeferredInlineSmiSub"); } virtual void Generate(); private: Register dst_; Smi* value_; OverwriteMode overwrite_mode_; }; void DeferredInlineSmiSub::Generate() { // Undo the optimistic sub operation and call the shared stub. __ add(Operand(dst_), Immediate(value_)); GenericBinaryOpStub igostub(Token::SUB, overwrite_mode_, NO_SMI_CODE_IN_STUB); igostub.GenerateCall(masm_, dst_, value_); if (!dst_.is(eax)) __ mov(dst_, eax); } void CodeGenerator::ConstantSmiBinaryOperation(Token::Value op, Result* operand, Handle<Object> value, SmiAnalysis* type, bool reversed, OverwriteMode overwrite_mode) { // NOTE: This is an attempt to inline (a bit) more of the code for // some possible smi operations (like + and -) when (at least) one // of the operands is a constant smi. // Consumes the argument "operand". // TODO(199): Optimize some special cases of operations involving a // smi literal (multiply by 2, shift by 0, etc.). if (IsUnsafeSmi(value)) { Result unsafe_operand(value); if (reversed) { LikelySmiBinaryOperation(op, &unsafe_operand, operand, overwrite_mode); } else { LikelySmiBinaryOperation(op, operand, &unsafe_operand, overwrite_mode); } ASSERT(!operand->is_valid()); return; } // Get the literal value. Smi* smi_value = Smi::cast(*value); int int_value = smi_value->value(); switch (op) { case Token::ADD: { operand->ToRegister(); frame_->Spill(operand->reg()); // Optimistically add. Call the specialized add stub if the // result is not a smi or overflows. DeferredCode* deferred = NULL; if (reversed) { deferred = new DeferredInlineSmiAddReversed(operand->reg(), smi_value, overwrite_mode); } else { deferred = new DeferredInlineSmiAdd(operand->reg(), smi_value, overwrite_mode); } __ add(Operand(operand->reg()), Immediate(value)); deferred->Branch(overflow); __ test(operand->reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); deferred->BindExit(); frame_->Push(operand); break; } case Token::SUB: { DeferredCode* deferred = NULL; Result answer; // Only allocate a new register if reversed. if (reversed) { // The reversed case is only hit when the right operand is not a // constant. ASSERT(operand->is_register()); answer = allocator()->Allocate(); ASSERT(answer.is_valid()); __ Set(answer.reg(), Immediate(value)); deferred = new DeferredInlineSmiOperationReversed(op, answer.reg(), smi_value, operand->reg(), overwrite_mode); __ sub(answer.reg(), Operand(operand->reg())); } else { operand->ToRegister(); frame_->Spill(operand->reg()); answer = *operand; deferred = new DeferredInlineSmiSub(operand->reg(), smi_value, overwrite_mode); __ sub(Operand(operand->reg()), Immediate(value)); } deferred->Branch(overflow); __ test(answer.reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); deferred->BindExit(); operand->Unuse(); frame_->Push(&answer); break; } case Token::SAR: if (reversed) { Result constant_operand(value); LikelySmiBinaryOperation(op, &constant_operand, operand, overwrite_mode); } else { // Only the least significant 5 bits of the shift value are used. // In the slow case, this masking is done inside the runtime call. int shift_value = int_value & 0x1f; operand->ToRegister(); frame_->Spill(operand->reg()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); __ test(operand->reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); if (shift_value > 0) { __ sar(operand->reg(), shift_value); __ and_(operand->reg(), ~kSmiTagMask); } deferred->BindExit(); frame_->Push(operand); } break; case Token::SHR: if (reversed) { Result constant_operand(value); LikelySmiBinaryOperation(op, &constant_operand, operand, overwrite_mode); } else { // Only the least significant 5 bits of the shift value are used. // In the slow case, this masking is done inside the runtime call. int shift_value = int_value & 0x1f; operand->ToRegister(); Result answer = allocator()->Allocate(); ASSERT(answer.is_valid()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, answer.reg(), operand->reg(), smi_value, overwrite_mode); __ test(operand->reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); __ mov(answer.reg(), operand->reg()); __ sar(answer.reg(), kSmiTagSize); __ shr(answer.reg(), shift_value); // A negative Smi shifted right two is in the positive Smi range. if (shift_value < 2) { __ test(answer.reg(), Immediate(0xc0000000)); deferred->Branch(not_zero); } operand->Unuse(); ASSERT(kSmiTagSize == times_2); // Adjust the code if not true. __ lea(answer.reg(), Operand(answer.reg(), answer.reg(), times_1, kSmiTag)); deferred->BindExit(); frame_->Push(&answer); } break; case Token::SHL: if (reversed) { Result constant_operand(value); LikelySmiBinaryOperation(op, &constant_operand, operand, overwrite_mode); } else { // Only the least significant 5 bits of the shift value are used. // In the slow case, this masking is done inside the runtime call. int shift_value = int_value & 0x1f; operand->ToRegister(); if (shift_value == 0) { // Spill operand so it can be overwritten in the slow case. frame_->Spill(operand->reg()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); __ test(operand->reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); deferred->BindExit(); frame_->Push(operand); } else { // Use a fresh temporary for nonzero shift values. Result answer = allocator()->Allocate(); ASSERT(answer.is_valid()); DeferredInlineSmiOperation* deferred = new DeferredInlineSmiOperation(op, answer.reg(), operand->reg(), smi_value, overwrite_mode); __ test(operand->reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); __ mov(answer.reg(), operand->reg()); ASSERT(kSmiTag == 0); // adjust code if not the case // We do no shifts, only the Smi conversion, if shift_value is 1. if (shift_value > 1) { __ shl(answer.reg(), shift_value - 1); } // Convert int result to Smi, checking that it is in int range. ASSERT(kSmiTagSize == 1); // adjust code if not the case __ add(answer.reg(), Operand(answer.reg())); deferred->Branch(overflow); deferred->BindExit(); operand->Unuse(); frame_->Push(&answer); } } break; case Token::BIT_OR: case Token::BIT_XOR: case Token::BIT_AND: { operand->ToRegister(); frame_->Spill(operand->reg()); DeferredCode* deferred = NULL; if (reversed) { deferred = new DeferredInlineSmiOperationReversed(op, operand->reg(), smi_value, operand->reg(), overwrite_mode); } else { deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); } __ test(operand->reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); if (op == Token::BIT_AND) { __ and_(Operand(operand->reg()), Immediate(value)); } else if (op == Token::BIT_XOR) { if (int_value != 0) { __ xor_(Operand(operand->reg()), Immediate(value)); } } else { ASSERT(op == Token::BIT_OR); if (int_value != 0) { __ or_(Operand(operand->reg()), Immediate(value)); } } deferred->BindExit(); frame_->Push(operand); break; } // Generate inline code for mod of powers of 2 and negative powers of 2. case Token::MOD: if (!reversed && int_value != 0 && (IsPowerOf2(int_value) || IsPowerOf2(-int_value))) { operand->ToRegister(); frame_->Spill(operand->reg()); DeferredCode* deferred = new DeferredInlineSmiOperation(op, operand->reg(), operand->reg(), smi_value, overwrite_mode); // Check for negative or non-Smi left hand side. __ test(operand->reg(), Immediate(kSmiTagMask | 0x80000000)); deferred->Branch(not_zero); if (int_value < 0) int_value = -int_value; if (int_value == 1) { __ mov(operand->reg(), Immediate(Smi::FromInt(0))); } else { __ and_(operand->reg(), (int_value << kSmiTagSize) - 1); } deferred->BindExit(); frame_->Push(operand); break; } // Fall through if we did not find a power of 2 on the right hand side! default: { Result constant_operand(value); if (reversed) { LikelySmiBinaryOperation(op, &constant_operand, operand, overwrite_mode); } else { LikelySmiBinaryOperation(op, operand, &constant_operand, overwrite_mode); } break; } } ASSERT(!operand->is_valid()); } void CodeGenerator::Comparison(Condition cc, bool strict, ControlDestination* dest) { // Strict only makes sense for equality comparisons. ASSERT(!strict || cc == equal); Result left_side; Result right_side; // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. if (cc == greater || cc == less_equal) { cc = ReverseCondition(cc); left_side = frame_->Pop(); right_side = frame_->Pop(); } else { right_side = frame_->Pop(); left_side = frame_->Pop(); } ASSERT(cc == less || cc == equal || cc == greater_equal); // If either side is a constant smi, optimize the comparison. bool left_side_constant_smi = left_side.is_constant() && left_side.handle()->IsSmi(); bool right_side_constant_smi = right_side.is_constant() && right_side.handle()->IsSmi(); bool left_side_constant_null = left_side.is_constant() && left_side.handle()->IsNull(); bool right_side_constant_null = right_side.is_constant() && right_side.handle()->IsNull(); if (left_side_constant_smi || right_side_constant_smi) { if (left_side_constant_smi && right_side_constant_smi) { // Trivial case, comparing two constants. int left_value = Smi::cast(*left_side.handle())->value(); int right_value = Smi::cast(*right_side.handle())->value(); switch (cc) { case less: dest->Goto(left_value < right_value); break; case equal: dest->Goto(left_value == right_value); break; case greater_equal: dest->Goto(left_value >= right_value); break; default: UNREACHABLE(); } } else { // Only one side is a constant Smi. // If left side is a constant Smi, reverse the operands. // Since one side is a constant Smi, conversion order does not matter. if (left_side_constant_smi) { Result temp = left_side; left_side = right_side; right_side = temp; cc = ReverseCondition(cc); // This may reintroduce greater or less_equal as the value of cc. // CompareStub and the inline code both support all values of cc. } // Implement comparison against a constant Smi, inlining the case // where both sides are Smis. left_side.ToRegister(); // Here we split control flow to the stub call and inlined cases // before finally splitting it to the control destination. We use // a jump target and branching to duplicate the virtual frame at // the first split. We manually handle the off-frame references // by reconstituting them on the non-fall-through path. JumpTarget is_smi; Register left_reg = left_side.reg(); Handle<Object> right_val = right_side.handle(); __ test(left_side.reg(), Immediate(kSmiTagMask)); is_smi.Branch(zero, taken); // Setup and call the compare stub. CompareStub stub(cc, strict); Result result = frame_->CallStub(&stub, &left_side, &right_side); result.ToRegister(); __ cmp(result.reg(), 0); result.Unuse(); dest->true_target()->Branch(cc); dest->false_target()->Jump(); is_smi.Bind(); left_side = Result(left_reg); right_side = Result(right_val); // Test smi equality and comparison by signed int comparison. if (IsUnsafeSmi(right_side.handle())) { right_side.ToRegister(); __ cmp(left_side.reg(), Operand(right_side.reg())); } else { __ cmp(Operand(left_side.reg()), Immediate(right_side.handle())); } left_side.Unuse(); right_side.Unuse(); dest->Split(cc); } } else if (cc == equal && (left_side_constant_null || right_side_constant_null)) { // To make null checks efficient, we check if either the left side or // the right side is the constant 'null'. // If so, we optimize the code by inlining a null check instead of // calling the (very) general runtime routine for checking equality. Result operand = left_side_constant_null ? right_side : left_side; right_side.Unuse(); left_side.Unuse(); operand.ToRegister(); __ cmp(operand.reg(), Factory::null_value()); if (strict) { operand.Unuse(); dest->Split(equal); } else { // The 'null' value is only equal to 'undefined' if using non-strict // comparisons. dest->true_target()->Branch(equal); __ cmp(operand.reg(), Factory::undefined_value()); dest->true_target()->Branch(equal); __ test(operand.reg(), Immediate(kSmiTagMask)); dest->false_target()->Branch(equal); // It can be an undetectable object. // Use a scratch register in preference to spilling operand.reg(). Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), FieldOperand(operand.reg(), HeapObject::kMapOffset)); __ movzx_b(temp.reg(), FieldOperand(temp.reg(), Map::kBitFieldOffset)); __ test(temp.reg(), Immediate(1 << Map::kIsUndetectable)); temp.Unuse(); operand.Unuse(); dest->Split(not_zero); } } else { // Neither side is a constant Smi or null. // If either side is a non-smi constant, skip the smi check. bool known_non_smi = (left_side.is_constant() && !left_side.handle()->IsSmi()) || (right_side.is_constant() && !right_side.handle()->IsSmi()); left_side.ToRegister(); right_side.ToRegister(); if (known_non_smi) { // When non-smi, call out to the compare stub. CompareStub stub(cc, strict); Result answer = frame_->CallStub(&stub, &left_side, &right_side); if (cc == equal) { __ test(answer.reg(), Operand(answer.reg())); } else { __ cmp(answer.reg(), 0); } answer.Unuse(); dest->Split(cc); } else { // Here we split control flow to the stub call and inlined cases // before finally splitting it to the control destination. We use // a jump target and branching to duplicate the virtual frame at // the first split. We manually handle the off-frame references // by reconstituting them on the non-fall-through path. JumpTarget is_smi; Register left_reg = left_side.reg(); Register right_reg = right_side.reg(); Result temp = allocator_->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), left_side.reg()); __ or_(temp.reg(), Operand(right_side.reg())); __ test(temp.reg(), Immediate(kSmiTagMask)); temp.Unuse(); is_smi.Branch(zero, taken); // When non-smi, call out to the compare stub. CompareStub stub(cc, strict); Result answer = frame_->CallStub(&stub, &left_side, &right_side); if (cc == equal) { __ test(answer.reg(), Operand(answer.reg())); } else { __ cmp(answer.reg(), 0); } answer.Unuse(); dest->true_target()->Branch(cc); dest->false_target()->Jump(); is_smi.Bind(); left_side = Result(left_reg); right_side = Result(right_reg); __ cmp(left_side.reg(), Operand(right_side.reg())); right_side.Unuse(); left_side.Unuse(); dest->Split(cc); } } } // Call the function just below TOS on the stack with the given // arguments. The receiver is the TOS. void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, int position) { // Push the arguments ("left-to-right") on the stack. int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Record the position for debugging purposes. CodeForSourcePosition(position); // Use the shared code stub to call the function. InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; CallFunctionStub call_function(arg_count, in_loop); Result answer = frame_->CallStub(&call_function, arg_count + 1); // Restore context and replace function on the stack with the // result of the stub invocation. frame_->RestoreContextRegister(); frame_->SetElementAt(0, &answer); } void CodeGenerator::CallApplyLazy(Property* apply, Expression* receiver, VariableProxy* arguments, int position) { ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION); ASSERT(arguments->IsArguments()); JumpTarget slow, done; // Load the apply function onto the stack. This will usually // give us a megamorphic load site. Not super, but it works. Reference ref(this, apply); ref.GetValue(NOT_INSIDE_TYPEOF); ASSERT(ref.type() == Reference::NAMED); // Load the receiver and the existing arguments object onto the // expression stack. Avoid allocating the arguments object here. Load(receiver); LoadFromSlot(scope_->arguments()->var()->slot(), NOT_INSIDE_TYPEOF); // Emit the source position information after having loaded the // receiver and the arguments. CodeForSourcePosition(position); // Check if the arguments object has been lazily allocated // already. If so, just use that instead of copying the arguments // from the stack. This also deals with cases where a local variable // named 'arguments' has been introduced. frame_->Dup(); Result probe = frame_->Pop(); bool try_lazy = true; if (probe.is_constant()) { try_lazy = probe.handle()->IsTheHole(); } else { __ cmp(Operand(probe.reg()), Immediate(Factory::the_hole_value())); probe.Unuse(); slow.Branch(not_equal); } if (try_lazy) { JumpTarget build_args; // Get rid of the arguments object probe. frame_->Drop(); // Before messing with the execution stack, we sync all // elements. This is bound to happen anyway because we're // about to call a function. frame_->SyncRange(0, frame_->element_count() - 1); // Check that the receiver really is a JavaScript object. { frame_->PushElementAt(0); Result receiver = frame_->Pop(); receiver.ToRegister(); __ test(receiver.reg(), Immediate(kSmiTagMask)); build_args.Branch(zero); Result tmp = allocator_->Allocate(); // We allow all JSObjects including JSFunctions. As long as // JS_FUNCTION_TYPE is the last instance type and it is right // after LAST_JS_OBJECT_TYPE, we do not have to check the upper // bound. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); __ CmpObjectType(receiver.reg(), FIRST_JS_OBJECT_TYPE, tmp.reg()); build_args.Branch(less); } // Verify that we're invoking Function.prototype.apply. { frame_->PushElementAt(1); Result apply = frame_->Pop(); apply.ToRegister(); __ test(apply.reg(), Immediate(kSmiTagMask)); build_args.Branch(zero); Result tmp = allocator_->Allocate(); __ CmpObjectType(apply.reg(), JS_FUNCTION_TYPE, tmp.reg()); build_args.Branch(not_equal); __ mov(tmp.reg(), FieldOperand(apply.reg(), JSFunction::kSharedFunctionInfoOffset)); Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply)); __ cmp(FieldOperand(tmp.reg(), SharedFunctionInfo::kCodeOffset), Immediate(apply_code)); build_args.Branch(not_equal); } // Get the function receiver from the stack. Check that it // really is a function. __ mov(edi, Operand(esp, 2 * kPointerSize)); __ test(edi, Immediate(kSmiTagMask)); build_args.Branch(zero); __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); build_args.Branch(not_equal); // Copy the arguments to this function possibly from the // adaptor frame below it. Label invoke, adapted; __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adapted); // No arguments adaptor frame. Copy fixed number of arguments. __ mov(eax, Immediate(scope_->num_parameters())); for (int i = 0; i < scope_->num_parameters(); i++) { __ push(frame_->ParameterAt(i)); } __ jmp(&invoke); // Arguments adaptor frame present. Copy arguments from there, but // avoid copying too many arguments to avoid stack overflows. __ bind(&adapted); static const uint32_t kArgumentsLimit = 1 * KB; __ mov(eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ shr(eax, kSmiTagSize); __ mov(ecx, Operand(eax)); __ cmp(eax, kArgumentsLimit); build_args.Branch(above); // Loop through the arguments pushing them onto the execution // stack. We don't inform the virtual frame of the push, so we don't // have to worry about getting rid of the elements from the virtual // frame. Label loop; __ bind(&loop); __ test(ecx, Operand(ecx)); __ j(zero, &invoke); __ push(Operand(edx, ecx, times_4, 1 * kPointerSize)); __ dec(ecx); __ jmp(&loop); // Invoke the function. The virtual frame knows about the receiver // so make sure to forget that explicitly. __ bind(&invoke); ParameterCount actual(eax); __ InvokeFunction(edi, actual, CALL_FUNCTION); frame_->Forget(1); Result result = allocator()->Allocate(eax); frame_->SetElementAt(0, &result); done.Jump(); // Slow-case: Allocate the arguments object since we know it isn't // there, and fall-through to the slow-case where we call // Function.prototype.apply. build_args.Bind(); Result arguments_object = StoreArgumentsObject(false); frame_->Push(&arguments_object); slow.Bind(); } // Flip the apply function and the function to call on the stack, so // the function looks like the receiver of the apply call. This way, // the generic Function.prototype.apply implementation can deal with // the call like it usually does. Result a2 = frame_->Pop(); Result a1 = frame_->Pop(); Result ap = frame_->Pop(); Result fn = frame_->Pop(); frame_->Push(&ap); frame_->Push(&fn); frame_->Push(&a1); frame_->Push(&a2); CallFunctionStub call_function(2, NOT_IN_LOOP); Result res = frame_->CallStub(&call_function, 3); frame_->Push(&res); // All done. Restore context register after call. if (try_lazy) done.Bind(); frame_->RestoreContextRegister(); } class DeferredStackCheck: public DeferredCode { public: DeferredStackCheck() { set_comment("[ DeferredStackCheck"); } virtual void Generate(); }; void DeferredStackCheck::Generate() { StackCheckStub stub; __ CallStub(&stub); } void CodeGenerator::CheckStack() { DeferredStackCheck* deferred = new DeferredStackCheck; ExternalReference stack_guard_limit = ExternalReference::address_of_stack_guard_limit(); __ cmp(esp, Operand::StaticVariable(stack_guard_limit)); deferred->Branch(below); deferred->BindExit(); } void CodeGenerator::VisitAndSpill(Statement* statement) { ASSERT(in_spilled_code()); set_in_spilled_code(false); Visit(statement); if (frame_ != NULL) { frame_->SpillAll(); } set_in_spilled_code(true); } void CodeGenerator::VisitStatementsAndSpill(ZoneList<Statement*>* statements) { ASSERT(in_spilled_code()); set_in_spilled_code(false); VisitStatements(statements); if (frame_ != NULL) { frame_->SpillAll(); } set_in_spilled_code(true); } void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) { ASSERT(!in_spilled_code()); for (int i = 0; has_valid_frame() && i < statements->length(); i++) { Visit(statements->at(i)); } } void CodeGenerator::VisitBlock(Block* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ Block"); CodeForStatementPosition(node); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); VisitStatements(node->statements()); if (node->break_target()->is_linked()) { node->break_target()->Bind(); } node->break_target()->Unuse(); } void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { // Call the runtime to declare the globals. The inevitable call // will sync frame elements to memory anyway, so we do it eagerly to // allow us to push the arguments directly into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(esi); // The context is the first argument. frame_->EmitPush(Immediate(pairs)); frame_->EmitPush(Immediate(Smi::FromInt(is_eval() ? 1 : 0))); Result ignored = frame_->CallRuntime(Runtime::kDeclareGlobals, 3); // Return value is ignored. } void CodeGenerator::VisitDeclaration(Declaration* node) { Comment cmnt(masm_, "[ Declaration"); Variable* var = node->proxy()->var(); ASSERT(var != NULL); // must have been resolved Slot* slot = var->slot(); // If it was not possible to allocate the variable at compile time, // we need to "declare" it at runtime to make sure it actually // exists in the local context. if (slot != NULL && slot->type() == Slot::LOOKUP) { // Variables with a "LOOKUP" slot were introduced as non-locals // during variable resolution and must have mode DYNAMIC. ASSERT(var->is_dynamic()); // For now, just do a runtime call. Sync the virtual frame eagerly // so we can simply push the arguments into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(esi); frame_->EmitPush(Immediate(var->name())); // Declaration nodes are always introduced in one of two modes. ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; frame_->EmitPush(Immediate(Smi::FromInt(attr))); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (node->mode() == Variable::CONST) { frame_->EmitPush(Immediate(Factory::the_hole_value())); } else if (node->fun() != NULL) { Load(node->fun()); } else { frame_->EmitPush(Immediate(Smi::FromInt(0))); // no initial value! } Result ignored = frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); // Ignore the return value (declarations are statements). return; } ASSERT(!var->is_global()); // If we have a function or a constant, we need to initialize the variable. Expression* val = NULL; if (node->mode() == Variable::CONST) { val = new Literal(Factory::the_hole_value()); } else { val = node->fun(); // NULL if we don't have a function } if (val != NULL) { { // Set the initial value. Reference target(this, node->proxy()); Load(val); target.SetValue(NOT_CONST_INIT); // The reference is removed from the stack (preserving TOS) when // it goes out of scope. } // Get rid of the assigned value (declarations are statements). frame_->Drop(); } } void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ExpressionStatement"); CodeForStatementPosition(node); Expression* expression = node->expression(); expression->MarkAsStatement(); Load(expression); // Remove the lingering expression result from the top of stack. frame_->Drop(); } void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "// EmptyStatement"); CodeForStatementPosition(node); // nothing to do } void CodeGenerator::VisitIfStatement(IfStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ IfStatement"); // Generate different code depending on which parts of the if statement // are present or not. bool has_then_stm = node->HasThenStatement(); bool has_else_stm = node->HasElseStatement(); CodeForStatementPosition(node); JumpTarget exit; if (has_then_stm && has_else_stm) { JumpTarget then; JumpTarget else_; ControlDestination dest(&then, &else_, true); LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true); if (dest.false_was_fall_through()) { // The else target was bound, so we compile the else part first. Visit(node->else_statement()); // We may have dangling jumps to the then part. if (then.is_linked()) { if (has_valid_frame()) exit.Jump(); then.Bind(); Visit(node->then_statement()); } } else { // The then target was bound, so we compile the then part first. Visit(node->then_statement()); if (else_.is_linked()) { if (has_valid_frame()) exit.Jump(); else_.Bind(); Visit(node->else_statement()); } } } else if (has_then_stm) { ASSERT(!has_else_stm); JumpTarget then; ControlDestination dest(&then, &exit, true); LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true); if (dest.false_was_fall_through()) { // The exit label was bound. We may have dangling jumps to the // then part. if (then.is_linked()) { exit.Unuse(); exit.Jump(); then.Bind(); Visit(node->then_statement()); } } else { // The then label was bound. Visit(node->then_statement()); } } else if (has_else_stm) { ASSERT(!has_then_stm); JumpTarget else_; ControlDestination dest(&exit, &else_, false); LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true); if (dest.true_was_fall_through()) { // The exit label was bound. We may have dangling jumps to the // else part. if (else_.is_linked()) { exit.Unuse(); exit.Jump(); else_.Bind(); Visit(node->else_statement()); } } else { // The else label was bound. Visit(node->else_statement()); } } else { ASSERT(!has_then_stm && !has_else_stm); // We only care about the condition's side effects (not its value // or control flow effect). LoadCondition is called without // forcing control flow. ControlDestination dest(&exit, &exit, true); LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, false); if (!dest.is_used()) { // We got a value on the frame rather than (or in addition to) // control flow. frame_->Drop(); } } if (exit.is_linked()) { exit.Bind(); } } void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ContinueStatement"); CodeForStatementPosition(node); node->target()->continue_target()->Jump(); } void CodeGenerator::VisitBreakStatement(BreakStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ BreakStatement"); CodeForStatementPosition(node); node->target()->break_target()->Jump(); } void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ReturnStatement"); CodeForStatementPosition(node); Load(node->expression()); Result return_value = frame_->Pop(); if (function_return_is_shadowed_) { function_return_.Jump(&return_value); } else { frame_->PrepareForReturn(); if (function_return_.is_bound()) { // If the function return label is already bound we reuse the // code by jumping to the return site. function_return_.Jump(&return_value); } else { function_return_.Bind(&return_value); GenerateReturnSequence(&return_value); } } } void CodeGenerator::GenerateReturnSequence(Result* return_value) { // The return value is a live (but not currently reference counted) // reference to eax. This is safe because the current frame does not // contain a reference to eax (it is prepared for the return by spilling // all registers). if (FLAG_trace) { frame_->Push(return_value); *return_value = frame_->CallRuntime(Runtime::kTraceExit, 1); } return_value->ToRegister(eax); // Add a label for checking the size of the code used for returning. Label check_exit_codesize; masm_->bind(&check_exit_codesize); // Leave the frame and return popping the arguments and the // receiver. frame_->Exit(); masm_->ret((scope_->num_parameters() + 1) * kPointerSize); DeleteFrame(); #ifdef ENABLE_DEBUGGER_SUPPORT // Check that the size of the code used for returning matches what is // expected by the debugger. ASSERT_EQ(Debug::kIa32JSReturnSequenceLength, masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); #endif } void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ WithEnterStatement"); CodeForStatementPosition(node); Load(node->expression()); Result context; if (node->is_catch_block()) { context = frame_->CallRuntime(Runtime::kPushCatchContext, 1); } else { context = frame_->CallRuntime(Runtime::kPushContext, 1); } // Update context local. frame_->SaveContextRegister(); // Verify that the runtime call result and esi agree. if (FLAG_debug_code) { __ cmp(context.reg(), Operand(esi)); __ Assert(equal, "Runtime::NewContext should end up in esi"); } } void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ WithExitStatement"); CodeForStatementPosition(node); // Pop context. __ mov(esi, ContextOperand(esi, Context::PREVIOUS_INDEX)); // Update context local. frame_->SaveContextRegister(); } void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ SwitchStatement"); CodeForStatementPosition(node); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); // Compile the switch value. Load(node->tag()); ZoneList<CaseClause*>* cases = node->cases(); int length = cases->length(); CaseClause* default_clause = NULL; JumpTarget next_test; // Compile the case label expressions and comparisons. Exit early // if a comparison is unconditionally true. The target next_test is // bound before the loop in order to indicate control flow to the // first comparison. next_test.Bind(); for (int i = 0; i < length && !next_test.is_unused(); i++) { CaseClause* clause = cases->at(i); // The default is not a test, but remember it for later. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); // We recycle the same target next_test for each test. Bind it if // the previous test has not done so and then unuse it for the // loop. if (next_test.is_linked()) { next_test.Bind(); } next_test.Unuse(); // Duplicate the switch value. frame_->Dup(); // Compile the label expression. Load(clause->label()); // Compare and branch to the body if true or the next test if // false. Prefer the next test as a fall through. ControlDestination dest(clause->body_target(), &next_test, false); Comparison(equal, true, &dest); // If the comparison fell through to the true target, jump to the // actual body. if (dest.true_was_fall_through()) { clause->body_target()->Unuse(); clause->body_target()->Jump(); } } // If there was control flow to a next test from the last one // compiled, compile a jump to the default or break target. if (!next_test.is_unused()) { if (next_test.is_linked()) { next_test.Bind(); } // Drop the switch value. frame_->Drop(); if (default_clause != NULL) { default_clause->body_target()->Jump(); } else { node->break_target()->Jump(); } } // The last instruction emitted was a jump, either to the default // clause or the break target, or else to a case body from the loop // that compiles the tests. ASSERT(!has_valid_frame()); // Compile case bodies as needed. for (int i = 0; i < length; i++) { CaseClause* clause = cases->at(i); // There are two ways to reach the body: from the corresponding // test or as the fall through of the previous body. if (clause->body_target()->is_linked() || has_valid_frame()) { if (clause->body_target()->is_linked()) { if (has_valid_frame()) { // If we have both a jump to the test and a fall through, put // a jump on the fall through path to avoid the dropping of // the switch value on the test path. The exception is the // default which has already had the switch value dropped. if (clause->is_default()) { clause->body_target()->Bind(); } else { JumpTarget body; body.Jump(); clause->body_target()->Bind(); frame_->Drop(); body.Bind(); } } else { // No fall through to worry about. clause->body_target()->Bind(); if (!clause->is_default()) { frame_->Drop(); } } } else { // Otherwise, we have only fall through. ASSERT(has_valid_frame()); } // We are now prepared to compile the body. Comment cmnt(masm_, "[ Case body"); VisitStatements(clause->statements()); } clause->body_target()->Unuse(); } // We may not have a valid frame here so bind the break target only // if needed. if (node->break_target()->is_linked()) { node->break_target()->Bind(); } node->break_target()->Unuse(); } void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ DoWhileStatement"); CodeForStatementPosition(node); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); JumpTarget body(JumpTarget::BIDIRECTIONAL); IncrementLoopNesting(); ConditionAnalysis info = AnalyzeCondition(node->cond()); // Label the top of the loop for the backward jump if necessary. switch (info) { case ALWAYS_TRUE: // Use the continue target. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); break; case ALWAYS_FALSE: // No need to label it. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); break; case DONT_KNOW: // Continue is the test, so use the backward body target. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); body.Bind(); break; } CheckStack(); // TODO(1222600): ignore if body contains calls. Visit(node->body()); // Compile the test. switch (info) { case ALWAYS_TRUE: // If control flow can fall off the end of the body, jump back to // the top and bind the break target at the exit. if (has_valid_frame()) { node->continue_target()->Jump(); } if (node->break_target()->is_linked()) { node->break_target()->Bind(); } break; case ALWAYS_FALSE: // We may have had continues or breaks in the body. if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } if (node->break_target()->is_linked()) { node->break_target()->Bind(); } break; case DONT_KNOW: // We have to compile the test expression if it can be reached by // control flow falling out of the body or via continue. if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } if (has_valid_frame()) { ControlDestination dest(&body, node->break_target(), false); LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true); } if (node->break_target()->is_linked()) { node->break_target()->Bind(); } break; } DecrementLoopNesting(); } void CodeGenerator::VisitWhileStatement(WhileStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ WhileStatement"); CodeForStatementPosition(node); // If the condition is always false and has no side effects, we do not // need to compile anything. ConditionAnalysis info = AnalyzeCondition(node->cond()); if (info == ALWAYS_FALSE) return; // Do not duplicate conditions that may have function literal // subexpressions. This can cause us to compile the function literal // twice. bool test_at_bottom = !node->may_have_function_literal(); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); IncrementLoopNesting(); JumpTarget body; if (test_at_bottom) { body.set_direction(JumpTarget::BIDIRECTIONAL); } // Based on the condition analysis, compile the test as necessary. switch (info) { case ALWAYS_TRUE: // We will not compile the test expression. Label the top of the // loop with the continue target. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); break; case DONT_KNOW: { if (test_at_bottom) { // Continue is the test at the bottom, no need to label the test // at the top. The body is a backward target. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); } else { // Label the test at the top as the continue target. The body // is a forward-only target. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); } // Compile the test with the body as the true target and preferred // fall-through and with the break target as the false target. ControlDestination dest(&body, node->break_target(), true); LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true); if (dest.false_was_fall_through()) { // If we got the break target as fall-through, the test may have // been unconditionally false (if there are no jumps to the // body). if (!body.is_linked()) { DecrementLoopNesting(); return; } // Otherwise, jump around the body on the fall through and then // bind the body target. node->break_target()->Unuse(); node->break_target()->Jump(); body.Bind(); } break; } case ALWAYS_FALSE: UNREACHABLE(); break; } CheckStack(); // TODO(1222600): ignore if body contains calls. Visit(node->body()); // Based on the condition analysis, compile the backward jump as // necessary. switch (info) { case ALWAYS_TRUE: // The loop body has been labeled with the continue target. if (has_valid_frame()) { node->continue_target()->Jump(); } break; case DONT_KNOW: if (test_at_bottom) { // If we have chosen to recompile the test at the bottom, then // it is the continue target. if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } if (has_valid_frame()) { // The break target is the fall-through (body is a backward // jump from here and thus an invalid fall-through). ControlDestination dest(&body, node->break_target(), false); LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true); } } else { // If we have chosen not to recompile the test at the bottom, // jump back to the one at the top. if (has_valid_frame()) { node->continue_target()->Jump(); } } break; case ALWAYS_FALSE: UNREACHABLE(); break; } // The break target may be already bound (by the condition), or there // may not be a valid frame. Bind it only if needed. if (node->break_target()->is_linked()) { node->break_target()->Bind(); } DecrementLoopNesting(); } void CodeGenerator::VisitForStatement(ForStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ ForStatement"); CodeForStatementPosition(node); // Compile the init expression if present. if (node->init() != NULL) { Visit(node->init()); } // If the condition is always false and has no side effects, we do not // need to compile anything else. ConditionAnalysis info = AnalyzeCondition(node->cond()); if (info == ALWAYS_FALSE) return; // Do not duplicate conditions that may have function literal // subexpressions. This can cause us to compile the function literal // twice. bool test_at_bottom = !node->may_have_function_literal(); node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); IncrementLoopNesting(); // Target for backward edge if no test at the bottom, otherwise // unused. JumpTarget loop(JumpTarget::BIDIRECTIONAL); // Target for backward edge if there is a test at the bottom, // otherwise used as target for test at the top. JumpTarget body; if (test_at_bottom) { body.set_direction(JumpTarget::BIDIRECTIONAL); } // Based on the condition analysis, compile the test as necessary. switch (info) { case ALWAYS_TRUE: // We will not compile the test expression. Label the top of the // loop. if (node->next() == NULL) { // Use the continue target if there is no update expression. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); } else { // Otherwise use the backward loop target. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); loop.Bind(); } break; case DONT_KNOW: { if (test_at_bottom) { // Continue is either the update expression or the test at the // bottom, no need to label the test at the top. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); } else if (node->next() == NULL) { // We are not recompiling the test at the bottom and there is no // update expression. node->continue_target()->set_direction(JumpTarget::BIDIRECTIONAL); node->continue_target()->Bind(); } else { // We are not recompiling the test at the bottom and there is an // update expression. node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); loop.Bind(); } // Compile the test with the body as the true target and preferred // fall-through and with the break target as the false target. ControlDestination dest(&body, node->break_target(), true); LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true); if (dest.false_was_fall_through()) { // If we got the break target as fall-through, the test may have // been unconditionally false (if there are no jumps to the // body). if (!body.is_linked()) { DecrementLoopNesting(); return; } // Otherwise, jump around the body on the fall through and then // bind the body target. node->break_target()->Unuse(); node->break_target()->Jump(); body.Bind(); } break; } case ALWAYS_FALSE: UNREACHABLE(); break; } CheckStack(); // TODO(1222600): ignore if body contains calls. Visit(node->body()); // If there is an update expression, compile it if necessary. if (node->next() != NULL) { if (node->continue_target()->is_linked()) { node->continue_target()->Bind(); } // Control can reach the update by falling out of the body or by a // continue. if (has_valid_frame()) { // Record the source position of the statement as this code which // is after the code for the body actually belongs to the loop // statement and not the body. CodeForStatementPosition(node); Visit(node->next()); } } // Based on the condition analysis, compile the backward jump as // necessary. switch (info) { case ALWAYS_TRUE: if (has_valid_frame()) { if (node->next() == NULL) { node->continue_target()->Jump(); } else { loop.Jump(); } } break; case DONT_KNOW: if (test_at_bottom) { if (node->continue_target()->is_linked()) { // We can have dangling jumps to the continue target if there // was no update expression. node->continue_target()->Bind(); } // Control can reach the test at the bottom by falling out of // the body, by a continue in the body, or from the update // expression. if (has_valid_frame()) { // The break target is the fall-through (body is a backward // jump from here). ControlDestination dest(&body, node->break_target(), false); LoadCondition(node->cond(), NOT_INSIDE_TYPEOF, &dest, true); } } else { // Otherwise, jump back to the test at the top. if (has_valid_frame()) { if (node->next() == NULL) { node->continue_target()->Jump(); } else { loop.Jump(); } } } break; case ALWAYS_FALSE: UNREACHABLE(); break; } // The break target may be already bound (by the condition), or // there may not be a valid frame. Bind it only if needed. if (node->break_target()->is_linked()) { node->break_target()->Bind(); } DecrementLoopNesting(); } void CodeGenerator::VisitForInStatement(ForInStatement* node) { ASSERT(!in_spilled_code()); VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ ForInStatement"); CodeForStatementPosition(node); JumpTarget primitive; JumpTarget jsobject; JumpTarget fixed_array; JumpTarget entry(JumpTarget::BIDIRECTIONAL); JumpTarget end_del_check; JumpTarget exit; // Get the object to enumerate over (converted to JSObject). LoadAndSpill(node->enumerable()); // Both SpiderMonkey and kjs ignore null and undefined in contrast // to the specification. 12.6.4 mandates a call to ToObject. frame_->EmitPop(eax); // eax: value to be iterated over __ cmp(eax, Factory::undefined_value()); exit.Branch(equal); __ cmp(eax, Factory::null_value()); exit.Branch(equal); // Stack layout in body: // [iteration counter (smi)] <- slot 0 // [length of array] <- slot 1 // [FixedArray] <- slot 2 // [Map or 0] <- slot 3 // [Object] <- slot 4 // Check if enumerable is already a JSObject // eax: value to be iterated over __ test(eax, Immediate(kSmiTagMask)); primitive.Branch(zero); __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ cmp(ecx, FIRST_JS_OBJECT_TYPE); jsobject.Branch(above_equal); primitive.Bind(); frame_->EmitPush(eax); frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION, 1); // function call returns the value in eax, which is where we want it below jsobject.Bind(); // Get the set of properties (as a FixedArray or Map). // eax: value to be iterated over frame_->EmitPush(eax); // push the object being iterated over (slot 4) frame_->EmitPush(eax); // push the Object (slot 4) for the runtime call frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); // If we got a Map, we can do a fast modification check. // Otherwise, we got a FixedArray, and we have to do a slow check. // eax: map or fixed array (result from call to // Runtime::kGetPropertyNamesFast) __ mov(edx, Operand(eax)); __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); __ cmp(ecx, Factory::meta_map()); fixed_array.Branch(not_equal); // Get enum cache // eax: map (result from call to Runtime::kGetPropertyNamesFast) __ mov(ecx, Operand(eax)); __ mov(ecx, FieldOperand(ecx, Map::kInstanceDescriptorsOffset)); // Get the bridge array held in the enumeration index field. __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumerationIndexOffset)); // Get the cache from the bridge array. __ mov(edx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset)); frame_->EmitPush(eax); // <- slot 3 frame_->EmitPush(edx); // <- slot 2 __ mov(eax, FieldOperand(edx, FixedArray::kLengthOffset)); __ shl(eax, kSmiTagSize); frame_->EmitPush(eax); // <- slot 1 frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0 entry.Jump(); fixed_array.Bind(); // eax: fixed array (result from call to Runtime::kGetPropertyNamesFast) frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 3 frame_->EmitPush(eax); // <- slot 2 // Push the length of the array and the initial index onto the stack. __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset)); __ shl(eax, kSmiTagSize); frame_->EmitPush(eax); // <- slot 1 frame_->EmitPush(Immediate(Smi::FromInt(0))); // <- slot 0 // Condition. entry.Bind(); // Grab the current frame's height for the break and continue // targets only after all the state is pushed on the frame. node->break_target()->set_direction(JumpTarget::FORWARD_ONLY); node->continue_target()->set_direction(JumpTarget::FORWARD_ONLY); __ mov(eax, frame_->ElementAt(0)); // load the current count __ cmp(eax, frame_->ElementAt(1)); // compare to the array length node->break_target()->Branch(above_equal); // Get the i'th entry of the array. __ mov(edx, frame_->ElementAt(2)); __ mov(ebx, Operand(edx, eax, times_2, FixedArray::kHeaderSize - kHeapObjectTag)); // Get the expected map from the stack or a zero map in the // permanent slow case eax: current iteration count ebx: i'th entry // of the enum cache __ mov(edx, frame_->ElementAt(3)); // Check if the expected map still matches that of the enumerable. // If not, we have to filter the key. // eax: current iteration count // ebx: i'th entry of the enum cache // edx: expected map value __ mov(ecx, frame_->ElementAt(4)); __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset)); __ cmp(ecx, Operand(edx)); end_del_check.Branch(equal); // Convert the entry to a string (or null if it isn't a property anymore). frame_->EmitPush(frame_->ElementAt(4)); // push enumerable frame_->EmitPush(ebx); // push entry frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION, 2); __ mov(ebx, Operand(eax)); // If the property has been removed while iterating, we just skip it. __ cmp(ebx, Factory::null_value()); node->continue_target()->Branch(equal); end_del_check.Bind(); // Store the entry in the 'each' expression and take another spin in the // loop. edx: i'th entry of the enum cache (or string there of) frame_->EmitPush(ebx); { Reference each(this, node->each()); // Loading a reference may leave the frame in an unspilled state. frame_->SpillAll(); if (!each.is_illegal()) { if (each.size() > 0) { frame_->EmitPush(frame_->ElementAt(each.size())); } // If the reference was to a slot we rely on the convenient property // that it doesn't matter whether a value (eg, ebx pushed above) is // right on top of or right underneath a zero-sized reference. each.SetValue(NOT_CONST_INIT); if (each.size() > 0) { // It's safe to pop the value lying on top of the reference before // unloading the reference itself (which preserves the top of stack, // ie, now the topmost value of the non-zero sized reference), since // we will discard the top of stack after unloading the reference // anyway. frame_->Drop(); } } } // Unloading a reference may leave the frame in an unspilled state. frame_->SpillAll(); // Discard the i'th entry pushed above or else the remainder of the // reference, whichever is currently on top of the stack. frame_->Drop(); // Body. CheckStack(); // TODO(1222600): ignore if body contains calls. VisitAndSpill(node->body()); // Next. Reestablish a spilled frame in case we are coming here via // a continue in the body. node->continue_target()->Bind(); frame_->SpillAll(); frame_->EmitPop(eax); __ add(Operand(eax), Immediate(Smi::FromInt(1))); frame_->EmitPush(eax); entry.Jump(); // Cleanup. No need to spill because VirtualFrame::Drop is safe for // any frame. node->break_target()->Bind(); frame_->Drop(5); // Exit. exit.Bind(); node->continue_target()->Unuse(); node->break_target()->Unuse(); } void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) { ASSERT(!in_spilled_code()); VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ TryCatchStatement"); CodeForStatementPosition(node); JumpTarget try_block; JumpTarget exit; try_block.Call(); // --- Catch block --- frame_->EmitPush(eax); // Store the caught exception in the catch variable. { Reference ref(this, node->catch_var()); ASSERT(ref.is_slot()); // Load the exception to the top of the stack. Here we make use of the // convenient property that it doesn't matter whether a value is // immediately on top of or underneath a zero-sized reference. ref.SetValue(NOT_CONST_INIT); } // Remove the exception from the stack. frame_->Drop(); VisitStatementsAndSpill(node->catch_block()->statements()); if (has_valid_frame()) { exit.Jump(); } // --- Try block --- try_block.Bind(); frame_->PushTryHandler(TRY_CATCH_HANDLER); int handler_height = frame_->height(); // Shadow the jump targets for all escapes from the try block, including // returns. During shadowing, the original target is hidden as the // ShadowTarget and operations on the original actually affect the // shadowing target. // // We should probably try to unify the escaping targets and the return // target. int nof_escapes = node->escaping_targets()->length(); List<ShadowTarget*> shadows(1 + nof_escapes); // Add the shadow target for the function return. static const int kReturnShadowIndex = 0; shadows.Add(new ShadowTarget(&function_return_)); bool function_return_was_shadowed = function_return_is_shadowed_; function_return_is_shadowed_ = true; ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); // Add the remaining shadow targets. for (int i = 0; i < nof_escapes; i++) { shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); } // Generate code for the statements in the try block. VisitStatementsAndSpill(node->try_block()->statements()); // Stop the introduced shadowing and count the number of required unlinks. // After shadowing stops, the original targets are unshadowed and the // ShadowTargets represent the formerly shadowing targets. bool has_unlinks = false; for (int i = 0; i < shadows.length(); i++) { shadows[i]->StopShadowing(); has_unlinks = has_unlinks || shadows[i]->is_linked(); } function_return_is_shadowed_ = function_return_was_shadowed; // Get an external reference to the handler address. ExternalReference handler_address(Top::k_handler_address); // Make sure that there's nothing left on the stack above the // handler structure. if (FLAG_debug_code) { __ mov(eax, Operand::StaticVariable(handler_address)); __ cmp(esp, Operand(eax)); __ Assert(equal, "stack pointer should point to top handler"); } // If we can fall off the end of the try block, unlink from try chain. if (has_valid_frame()) { // The next handler address is on top of the frame. Unlink from // the handler list and drop the rest of this handler from the // frame. ASSERT(StackHandlerConstants::kNextOffset == 0); frame_->EmitPop(Operand::StaticVariable(handler_address)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); if (has_unlinks) { exit.Jump(); } } // Generate unlink code for the (formerly) shadowing targets that // have been jumped to. Deallocate each shadow target. Result return_value; for (int i = 0; i < shadows.length(); i++) { if (shadows[i]->is_linked()) { // Unlink from try chain; be careful not to destroy the TOS if // there is one. if (i == kReturnShadowIndex) { shadows[i]->Bind(&return_value); return_value.ToRegister(eax); } else { shadows[i]->Bind(); } // Because we can be jumping here (to spilled code) from // unspilled code, we need to reestablish a spilled frame at // this block. frame_->SpillAll(); // Reload sp from the top handler, because some statements that we // break from (eg, for...in) may have left stuff on the stack. __ mov(esp, Operand::StaticVariable(handler_address)); frame_->Forget(frame_->height() - handler_height); ASSERT(StackHandlerConstants::kNextOffset == 0); frame_->EmitPop(Operand::StaticVariable(handler_address)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); if (i == kReturnShadowIndex) { if (!function_return_is_shadowed_) frame_->PrepareForReturn(); shadows[i]->other_target()->Jump(&return_value); } else { shadows[i]->other_target()->Jump(); } } } exit.Bind(); } void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) { ASSERT(!in_spilled_code()); VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ TryFinallyStatement"); CodeForStatementPosition(node); // State: Used to keep track of reason for entering the finally // block. Should probably be extended to hold information for // break/continue from within the try block. enum { FALLING, THROWING, JUMPING }; JumpTarget try_block; JumpTarget finally_block; try_block.Call(); frame_->EmitPush(eax); // In case of thrown exceptions, this is where we continue. __ Set(ecx, Immediate(Smi::FromInt(THROWING))); finally_block.Jump(); // --- Try block --- try_block.Bind(); frame_->PushTryHandler(TRY_FINALLY_HANDLER); int handler_height = frame_->height(); // Shadow the jump targets for all escapes from the try block, including // returns. During shadowing, the original target is hidden as the // ShadowTarget and operations on the original actually affect the // shadowing target. // // We should probably try to unify the escaping targets and the return // target. int nof_escapes = node->escaping_targets()->length(); List<ShadowTarget*> shadows(1 + nof_escapes); // Add the shadow target for the function return. static const int kReturnShadowIndex = 0; shadows.Add(new ShadowTarget(&function_return_)); bool function_return_was_shadowed = function_return_is_shadowed_; function_return_is_shadowed_ = true; ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); // Add the remaining shadow targets. for (int i = 0; i < nof_escapes; i++) { shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); } // Generate code for the statements in the try block. VisitStatementsAndSpill(node->try_block()->statements()); // Stop the introduced shadowing and count the number of required unlinks. // After shadowing stops, the original targets are unshadowed and the // ShadowTargets represent the formerly shadowing targets. int nof_unlinks = 0; for (int i = 0; i < shadows.length(); i++) { shadows[i]->StopShadowing(); if (shadows[i]->is_linked()) nof_unlinks++; } function_return_is_shadowed_ = function_return_was_shadowed; // Get an external reference to the handler address. ExternalReference handler_address(Top::k_handler_address); // If we can fall off the end of the try block, unlink from the try // chain and set the state on the frame to FALLING. if (has_valid_frame()) { // The next handler address is on top of the frame. ASSERT(StackHandlerConstants::kNextOffset == 0); frame_->EmitPop(Operand::StaticVariable(handler_address)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); // Fake a top of stack value (unneeded when FALLING) and set the // state in ecx, then jump around the unlink blocks if any. frame_->EmitPush(Immediate(Factory::undefined_value())); __ Set(ecx, Immediate(Smi::FromInt(FALLING))); if (nof_unlinks > 0) { finally_block.Jump(); } } // Generate code to unlink and set the state for the (formerly) // shadowing targets that have been jumped to. for (int i = 0; i < shadows.length(); i++) { if (shadows[i]->is_linked()) { // If we have come from the shadowed return, the return value is // on the virtual frame. We must preserve it until it is // pushed. if (i == kReturnShadowIndex) { Result return_value; shadows[i]->Bind(&return_value); return_value.ToRegister(eax); } else { shadows[i]->Bind(); } // Because we can be jumping here (to spilled code) from // unspilled code, we need to reestablish a spilled frame at // this block. frame_->SpillAll(); // Reload sp from the top handler, because some statements that // we break from (eg, for...in) may have left stuff on the // stack. __ mov(esp, Operand::StaticVariable(handler_address)); frame_->Forget(frame_->height() - handler_height); // Unlink this handler and drop it from the frame. ASSERT(StackHandlerConstants::kNextOffset == 0); frame_->EmitPop(Operand::StaticVariable(handler_address)); frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); if (i == kReturnShadowIndex) { // If this target shadowed the function return, materialize // the return value on the stack. frame_->EmitPush(eax); } else { // Fake TOS for targets that shadowed breaks and continues. frame_->EmitPush(Immediate(Factory::undefined_value())); } __ Set(ecx, Immediate(Smi::FromInt(JUMPING + i))); if (--nof_unlinks > 0) { // If this is not the last unlink block, jump around the next. finally_block.Jump(); } } } // --- Finally block --- finally_block.Bind(); // Push the state on the stack. frame_->EmitPush(ecx); // We keep two elements on the stack - the (possibly faked) result // and the state - while evaluating the finally block. // // Generate code for the statements in the finally block. VisitStatementsAndSpill(node->finally_block()->statements()); if (has_valid_frame()) { // Restore state and return value or faked TOS. frame_->EmitPop(ecx); frame_->EmitPop(eax); } // Generate code to jump to the right destination for all used // formerly shadowing targets. Deallocate each shadow target. for (int i = 0; i < shadows.length(); i++) { if (has_valid_frame() && shadows[i]->is_bound()) { BreakTarget* original = shadows[i]->other_target(); __ cmp(Operand(ecx), Immediate(Smi::FromInt(JUMPING + i))); if (i == kReturnShadowIndex) { // The return value is (already) in eax. Result return_value = allocator_->Allocate(eax); ASSERT(return_value.is_valid()); if (function_return_is_shadowed_) { original->Branch(equal, &return_value); } else { // Branch around the preparation for return which may emit // code. JumpTarget skip; skip.Branch(not_equal); frame_->PrepareForReturn(); original->Jump(&return_value); skip.Bind(); } } else { original->Branch(equal); } } } if (has_valid_frame()) { // Check if we need to rethrow the exception. JumpTarget exit; __ cmp(Operand(ecx), Immediate(Smi::FromInt(THROWING))); exit.Branch(not_equal); // Rethrow exception. frame_->EmitPush(eax); // undo pop from above frame_->CallRuntime(Runtime::kReThrow, 1); // Done. exit.Bind(); } } void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { ASSERT(!in_spilled_code()); Comment cmnt(masm_, "[ DebuggerStatement"); CodeForStatementPosition(node); #ifdef ENABLE_DEBUGGER_SUPPORT // Spill everything, even constants, to the frame. frame_->SpillAll(); frame_->CallRuntime(Runtime::kDebugBreak, 0); // Ignore the return value. #endif } void CodeGenerator::InstantiateBoilerplate(Handle<JSFunction> boilerplate) { // Call the runtime to instantiate the function boilerplate object. // The inevitable call will sync frame elements to memory anyway, so // we do it eagerly to allow us to push the arguments directly into // place. ASSERT(boilerplate->IsBoilerplate()); frame_->SyncRange(0, frame_->element_count() - 1); // Create a new closure. frame_->EmitPush(esi); frame_->EmitPush(Immediate(boilerplate)); Result result = frame_->CallRuntime(Runtime::kNewClosure, 2); frame_->Push(&result); } void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { Comment cmnt(masm_, "[ FunctionLiteral"); // Build the function boilerplate and instantiate it. Handle<JSFunction> boilerplate = BuildBoilerplate(node); // Check for stack-overflow exception. if (HasStackOverflow()) return; InstantiateBoilerplate(boilerplate); } void CodeGenerator::VisitFunctionBoilerplateLiteral( FunctionBoilerplateLiteral* node) { Comment cmnt(masm_, "[ FunctionBoilerplateLiteral"); InstantiateBoilerplate(node->boilerplate()); } void CodeGenerator::VisitConditional(Conditional* node) { Comment cmnt(masm_, "[ Conditional"); JumpTarget then; JumpTarget else_; JumpTarget exit; ControlDestination dest(&then, &else_, true); LoadCondition(node->condition(), NOT_INSIDE_TYPEOF, &dest, true); if (dest.false_was_fall_through()) { // The else target was bound, so we compile the else part first. Load(node->else_expression(), typeof_state()); if (then.is_linked()) { exit.Jump(); then.Bind(); Load(node->then_expression(), typeof_state()); } } else { // The then target was bound, so we compile the then part first. Load(node->then_expression(), typeof_state()); if (else_.is_linked()) { exit.Jump(); else_.Bind(); Load(node->else_expression(), typeof_state()); } } exit.Bind(); } void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { if (slot->type() == Slot::LOOKUP) { ASSERT(slot->var()->is_dynamic()); JumpTarget slow; JumpTarget done; Result value; // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { value = LoadFromGlobalSlotCheckExtensions(slot, typeof_state, &slow); // If there was no control flow to slow, we can exit early. if (!slow.is_linked()) { frame_->Push(&value); return; } done.Jump(&value); } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { Slot* potential_slot = slot->var()->local_if_not_shadowed()->slot(); // Only generate the fast case for locals that rewrite to slots. // This rules out argument loads. if (potential_slot != NULL) { // Allocate a fresh register to use as a temp in // ContextSlotOperandCheckExtensions and to hold the result // value. value = allocator_->Allocate(); ASSERT(value.is_valid()); __ mov(value.reg(), ContextSlotOperandCheckExtensions(potential_slot, value, &slow)); if (potential_slot->var()->mode() == Variable::CONST) { __ cmp(value.reg(), Factory::the_hole_value()); done.Branch(not_equal, &value); __ mov(value.reg(), Factory::undefined_value()); } // There is always control flow to slow from // ContextSlotOperandCheckExtensions so we have to jump around // it. done.Jump(&value); } } slow.Bind(); // A runtime call is inevitable. We eagerly sync frame elements // to memory so that we can push the arguments directly into place // on top of the frame. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(esi); frame_->EmitPush(Immediate(slot->var()->name())); if (typeof_state == INSIDE_TYPEOF) { value = frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); } else { value = frame_->CallRuntime(Runtime::kLoadContextSlot, 2); } done.Bind(&value); frame_->Push(&value); } else if (slot->var()->mode() == Variable::CONST) { // Const slots may contain 'the hole' value (the constant hasn't been // initialized yet) which needs to be converted into the 'undefined' // value. // // We currently spill the virtual frame because constants use the // potentially unsafe direct-frame access of SlotOperand. VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ Load const"); JumpTarget exit; __ mov(ecx, SlotOperand(slot, ecx)); __ cmp(ecx, Factory::the_hole_value()); exit.Branch(not_equal); __ mov(ecx, Factory::undefined_value()); exit.Bind(); frame_->EmitPush(ecx); } else if (slot->type() == Slot::PARAMETER) { frame_->PushParameterAt(slot->index()); } else if (slot->type() == Slot::LOCAL) { frame_->PushLocalAt(slot->index()); } else { // The other remaining slot types (LOOKUP and GLOBAL) cannot reach // here. // // The use of SlotOperand below is safe for an unspilled frame // because it will always be a context slot. ASSERT(slot->type() == Slot::CONTEXT); Result temp = allocator_->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), SlotOperand(slot, temp.reg())); frame_->Push(&temp); } } void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, TypeofState state) { LoadFromSlot(slot, state); // Bail out quickly if we're not using lazy arguments allocation. if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return; // ... or if the slot isn't a non-parameter arguments slot. if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return; // Pop the loaded value from the stack. Result value = frame_->Pop(); // If the loaded value is a constant, we know if the arguments // object has been lazily loaded yet. if (value.is_constant()) { if (value.handle()->IsTheHole()) { Result arguments = StoreArgumentsObject(false); frame_->Push(&arguments); } else { frame_->Push(&value); } return; } // The loaded value is in a register. If it is the sentinel that // indicates that we haven't loaded the arguments object yet, we // need to do it now. JumpTarget exit; __ cmp(Operand(value.reg()), Immediate(Factory::the_hole_value())); frame_->Push(&value); exit.Branch(not_equal); Result arguments = StoreArgumentsObject(false); frame_->SetElementAt(0, &arguments); exit.Bind(); } Result CodeGenerator::LoadFromGlobalSlotCheckExtensions( Slot* slot, TypeofState typeof_state, JumpTarget* slow) { // Check that no extension objects have been created by calls to // eval from the current scope to the global scope. Register context = esi; Result tmp = allocator_->Allocate(); ASSERT(tmp.is_valid()); // All non-reserved registers were available. Scope* s = scope(); while (s != NULL) { if (s->num_heap_slots() > 0) { if (s->calls_eval()) { // Check that extension is NULL. __ cmp(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal, not_taken); } // Load next context in chain. __ mov(tmp.reg(), ContextOperand(context, Context::CLOSURE_INDEX)); __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); context = tmp.reg(); } // If no outer scope calls eval, we do not need to check more // context extensions. If we have reached an eval scope, we check // all extensions from this point. if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; s = s->outer_scope(); } if (s != NULL && s->is_eval_scope()) { // Loop up the context chain. There is no frame effect so it is // safe to use raw labels here. Label next, fast; if (!context.is(tmp.reg())) { __ mov(tmp.reg(), context); } __ bind(&next); // Terminate at global context. __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset), Immediate(Factory::global_context_map())); __ j(equal, &fast); // Check that extension is NULL. __ cmp(ContextOperand(tmp.reg(), Context::EXTENSION_INDEX), Immediate(0)); slow->Branch(not_equal, not_taken); // Load next context in chain. __ mov(tmp.reg(), ContextOperand(tmp.reg(), Context::CLOSURE_INDEX)); __ mov(tmp.reg(), FieldOperand(tmp.reg(), JSFunction::kContextOffset)); __ jmp(&next); __ bind(&fast); } tmp.Unuse(); // All extension objects were empty and it is safe to use a global // load IC call. LoadGlobal(); frame_->Push(slot->var()->name()); RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) ? RelocInfo::CODE_TARGET : RelocInfo::CODE_TARGET_CONTEXT; Result answer = frame_->CallLoadIC(mode); // A test eax instruction following the call signals that the inobject // property case was inlined. Ensure that there is not a test eax // instruction here. __ nop(); // Discard the global object. The result is in answer. frame_->Drop(); return answer; } void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { if (slot->type() == Slot::LOOKUP) { ASSERT(slot->var()->is_dynamic()); // For now, just do a runtime call. Since the call is inevitable, // we eagerly sync the virtual frame so we can directly push the // arguments into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(esi); frame_->EmitPush(Immediate(slot->var()->name())); Result value; if (init_state == CONST_INIT) { // Same as the case for a normal store, but ignores attribute // (e.g. READ_ONLY) of context slot so that we can initialize const // properties (introduced via eval("const foo = (some expr);")). Also, // uses the current function context instead of the top context. // // Note that we must declare the foo upon entry of eval(), via a // context slot declaration, but we cannot initialize it at the same // time, because the const declaration may be at the end of the eval // code (sigh...) and the const variable may have been used before // (where its value is 'undefined'). Thus, we can only do the // initialization when we actually encounter the expression and when // the expression operands are defined and valid, and thus we need the // split into 2 operations: declaration of the context slot followed // by initialization. value = frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); } else { value = frame_->CallRuntime(Runtime::kStoreContextSlot, 3); } // Storing a variable must keep the (new) value on the expression // stack. This is necessary for compiling chained assignment // expressions. frame_->Push(&value); } else { ASSERT(!slot->var()->is_dynamic()); JumpTarget exit; if (init_state == CONST_INIT) { ASSERT(slot->var()->mode() == Variable::CONST); // Only the first const initialization must be executed (the slot // still contains 'the hole' value). When the assignment is executed, // the code is identical to a normal store (see below). // // We spill the frame in the code below because the direct-frame // access of SlotOperand is potentially unsafe with an unspilled // frame. VirtualFrame::SpilledScope spilled_scope; Comment cmnt(masm_, "[ Init const"); __ mov(ecx, SlotOperand(slot, ecx)); __ cmp(ecx, Factory::the_hole_value()); exit.Branch(not_equal); } // We must execute the store. Storing a variable must keep the (new) // value on the stack. This is necessary for compiling assignment // expressions. // // Note: We will reach here even with slot->var()->mode() == // Variable::CONST because of const declarations which will initialize // consts to 'the hole' value and by doing so, end up calling this code. if (slot->type() == Slot::PARAMETER) { frame_->StoreToParameterAt(slot->index()); } else if (slot->type() == Slot::LOCAL) { frame_->StoreToLocalAt(slot->index()); } else { // The other slot types (LOOKUP and GLOBAL) cannot reach here. // // The use of SlotOperand below is safe for an unspilled frame // because the slot is a context slot. ASSERT(slot->type() == Slot::CONTEXT); frame_->Dup(); Result value = frame_->Pop(); value.ToRegister(); Result start = allocator_->Allocate(); ASSERT(start.is_valid()); __ mov(SlotOperand(slot, start.reg()), value.reg()); // RecordWrite may destroy the value registers. // // TODO(204): Avoid actually spilling when the value is not // needed (probably the common case). frame_->Spill(value.reg()); int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; Result temp = allocator_->Allocate(); ASSERT(temp.is_valid()); __ RecordWrite(start.reg(), offset, value.reg(), temp.reg()); // The results start, value, and temp are unused by going out of // scope. } exit.Bind(); } } void CodeGenerator::VisitSlot(Slot* node) { Comment cmnt(masm_, "[ Slot"); LoadFromSlotCheckForArguments(node, typeof_state()); } void CodeGenerator::VisitVariableProxy(VariableProxy* node) { Comment cmnt(masm_, "[ VariableProxy"); Variable* var = node->var(); Expression* expr = var->rewrite(); if (expr != NULL) { Visit(expr); } else { ASSERT(var->is_global()); Reference ref(this, node); ref.GetValue(typeof_state()); } } void CodeGenerator::VisitLiteral(Literal* node) { Comment cmnt(masm_, "[ Literal"); frame_->Push(node->handle()); } void CodeGenerator::LoadUnsafeSmi(Register target, Handle<Object> value) { ASSERT(target.is_valid()); ASSERT(value->IsSmi()); int bits = reinterpret_cast<int>(*value); __ Set(target, Immediate(bits & 0x0000FFFF)); __ xor_(target, bits & 0xFFFF0000); } bool CodeGenerator::IsUnsafeSmi(Handle<Object> value) { if (!value->IsSmi()) return false; int int_value = Smi::cast(*value)->value(); return !is_intn(int_value, kMaxSmiInlinedBits); } // Materialize the regexp literal 'node' in the literals array // 'literals' of the function. Leave the regexp boilerplate in // 'boilerplate'. class DeferredRegExpLiteral: public DeferredCode { public: DeferredRegExpLiteral(Register boilerplate, Register literals, RegExpLiteral* node) : boilerplate_(boilerplate), literals_(literals), node_(node) { set_comment("[ DeferredRegExpLiteral"); } void Generate(); private: Register boilerplate_; Register literals_; RegExpLiteral* node_; }; void DeferredRegExpLiteral::Generate() { // Since the entry is undefined we call the runtime system to // compute the literal. // Literal array (0). __ push(literals_); // Literal index (1). __ push(Immediate(Smi::FromInt(node_->literal_index()))); // RegExp pattern (2). __ push(Immediate(node_->pattern())); // RegExp flags (3). __ push(Immediate(node_->flags())); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); if (!boilerplate_.is(eax)) __ mov(boilerplate_, eax); } void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { Comment cmnt(masm_, "[ RegExp Literal"); // Retrieve the literals array and check the allocated entry. Begin // with a writable copy of the function of this activation in a // register. frame_->PushFunction(); Result literals = frame_->Pop(); literals.ToRegister(); frame_->Spill(literals.reg()); // Load the literals array of the function. __ mov(literals.reg(), FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); // Load the literal at the ast saved index. Result boilerplate = allocator_->Allocate(); ASSERT(boilerplate.is_valid()); int literal_offset = FixedArray::kHeaderSize + node->literal_index() * kPointerSize; __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset)); // Check whether we need to materialize the RegExp object. If so, // jump to the deferred code passing the literals array. DeferredRegExpLiteral* deferred = new DeferredRegExpLiteral(boilerplate.reg(), literals.reg(), node); __ cmp(boilerplate.reg(), Factory::undefined_value()); deferred->Branch(equal); deferred->BindExit(); literals.Unuse(); // Push the boilerplate object. frame_->Push(&boilerplate); } // Materialize the object literal 'node' in the literals array // 'literals' of the function. Leave the object boilerplate in // 'boilerplate'. class DeferredObjectLiteral: public DeferredCode { public: DeferredObjectLiteral(Register boilerplate, Register literals, ObjectLiteral* node) : boilerplate_(boilerplate), literals_(literals), node_(node) { set_comment("[ DeferredObjectLiteral"); } void Generate(); private: Register boilerplate_; Register literals_; ObjectLiteral* node_; }; void DeferredObjectLiteral::Generate() { // Since the entry is undefined we call the runtime system to // compute the literal. // Literal array (0). __ push(literals_); // Literal index (1). __ push(Immediate(Smi::FromInt(node_->literal_index()))); // Constant properties (2). __ push(Immediate(node_->constant_properties())); __ CallRuntime(Runtime::kCreateObjectLiteralBoilerplate, 3); if (!boilerplate_.is(eax)) __ mov(boilerplate_, eax); } void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { Comment cmnt(masm_, "[ ObjectLiteral"); // Retrieve the literals array and check the allocated entry. Begin // with a writable copy of the function of this activation in a // register. frame_->PushFunction(); Result literals = frame_->Pop(); literals.ToRegister(); frame_->Spill(literals.reg()); // Load the literals array of the function. __ mov(literals.reg(), FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); // Load the literal at the ast saved index. Result boilerplate = allocator_->Allocate(); ASSERT(boilerplate.is_valid()); int literal_offset = FixedArray::kHeaderSize + node->literal_index() * kPointerSize; __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset)); // Check whether we need to materialize the object literal boilerplate. // If so, jump to the deferred code passing the literals array. DeferredObjectLiteral* deferred = new DeferredObjectLiteral(boilerplate.reg(), literals.reg(), node); __ cmp(boilerplate.reg(), Factory::undefined_value()); deferred->Branch(equal); deferred->BindExit(); literals.Unuse(); // Push the boilerplate object. frame_->Push(&boilerplate); // Clone the boilerplate object. Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate; if (node->depth() == 1) { clone_function_id = Runtime::kCloneShallowLiteralBoilerplate; } Result clone = frame_->CallRuntime(clone_function_id, 1); // Push the newly cloned literal object as the result. frame_->Push(&clone); for (int i = 0; i < node->properties()->length(); i++) { ObjectLiteral::Property* property = node->properties()->at(i); switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: break; case ObjectLiteral::Property::MATERIALIZED_LITERAL: if (CompileTimeValue::IsCompileTimeValue(property->value())) break; // else fall through. case ObjectLiteral::Property::COMPUTED: { Handle<Object> key(property->key()->handle()); if (key->IsSymbol()) { // Duplicate the object as the IC receiver. frame_->Dup(); Load(property->value()); frame_->Push(key); Result ignored = frame_->CallStoreIC(); // Drop the duplicated receiver and ignore the result. frame_->Drop(); break; } // Fall through } case ObjectLiteral::Property::PROTOTYPE: { // Duplicate the object as an argument to the runtime call. frame_->Dup(); Load(property->key()); Load(property->value()); Result ignored = frame_->CallRuntime(Runtime::kSetProperty, 3); // Ignore the result. break; } case ObjectLiteral::Property::SETTER: { // Duplicate the object as an argument to the runtime call. frame_->Dup(); Load(property->key()); frame_->Push(Smi::FromInt(1)); Load(property->value()); Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); // Ignore the result. break; } case ObjectLiteral::Property::GETTER: { // Duplicate the object as an argument to the runtime call. frame_->Dup(); Load(property->key()); frame_->Push(Smi::FromInt(0)); Load(property->value()); Result ignored = frame_->CallRuntime(Runtime::kDefineAccessor, 4); // Ignore the result. break; } default: UNREACHABLE(); } } } // Materialize the array literal 'node' in the literals array 'literals' // of the function. Leave the array boilerplate in 'boilerplate'. class DeferredArrayLiteral: public DeferredCode { public: DeferredArrayLiteral(Register boilerplate, Register literals, ArrayLiteral* node) : boilerplate_(boilerplate), literals_(literals), node_(node) { set_comment("[ DeferredArrayLiteral"); } void Generate(); private: Register boilerplate_; Register literals_; ArrayLiteral* node_; }; void DeferredArrayLiteral::Generate() { // Since the entry is undefined we call the runtime system to // compute the literal. // Literal array (0). __ push(literals_); // Literal index (1). __ push(Immediate(Smi::FromInt(node_->literal_index()))); // Constant properties (2). __ push(Immediate(node_->literals())); __ CallRuntime(Runtime::kCreateArrayLiteralBoilerplate, 3); if (!boilerplate_.is(eax)) __ mov(boilerplate_, eax); } void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { Comment cmnt(masm_, "[ ArrayLiteral"); // Retrieve the literals array and check the allocated entry. Begin // with a writable copy of the function of this activation in a // register. frame_->PushFunction(); Result literals = frame_->Pop(); literals.ToRegister(); frame_->Spill(literals.reg()); // Load the literals array of the function. __ mov(literals.reg(), FieldOperand(literals.reg(), JSFunction::kLiteralsOffset)); // Load the literal at the ast saved index. Result boilerplate = allocator_->Allocate(); ASSERT(boilerplate.is_valid()); int literal_offset = FixedArray::kHeaderSize + node->literal_index() * kPointerSize; __ mov(boilerplate.reg(), FieldOperand(literals.reg(), literal_offset)); // Check whether we need to materialize the object literal boilerplate. // If so, jump to the deferred code passing the literals array. DeferredArrayLiteral* deferred = new DeferredArrayLiteral(boilerplate.reg(), literals.reg(), node); __ cmp(boilerplate.reg(), Factory::undefined_value()); deferred->Branch(equal); deferred->BindExit(); literals.Unuse(); // Push the resulting array literal boilerplate on the stack. frame_->Push(&boilerplate); // Clone the boilerplate object. Runtime::FunctionId clone_function_id = Runtime::kCloneLiteralBoilerplate; if (node->depth() == 1) { clone_function_id = Runtime::kCloneShallowLiteralBoilerplate; } Result clone = frame_->CallRuntime(clone_function_id, 1); // Push the newly cloned literal object as the result. frame_->Push(&clone); // Generate code to set the elements in the array that are not // literals. for (int i = 0; i < node->values()->length(); i++) { Expression* value = node->values()->at(i); // If value is a literal the property value is already set in the // boilerplate object. if (value->AsLiteral() != NULL) continue; // If value is a materialized literal the property value is already set // in the boilerplate object if it is simple. if (CompileTimeValue::IsCompileTimeValue(value)) continue; // The property must be set by generated code. Load(value); // Get the property value off the stack. Result prop_value = frame_->Pop(); prop_value.ToRegister(); // Fetch the array literal while leaving a copy on the stack and // use it to get the elements array. frame_->Dup(); Result elements = frame_->Pop(); elements.ToRegister(); frame_->Spill(elements.reg()); // Get the elements array. __ mov(elements.reg(), FieldOperand(elements.reg(), JSObject::kElementsOffset)); // Write to the indexed properties array. int offset = i * kPointerSize + FixedArray::kHeaderSize; __ mov(FieldOperand(elements.reg(), offset), prop_value.reg()); // Update the write barrier for the array address. frame_->Spill(prop_value.reg()); // Overwritten by the write barrier. Result scratch = allocator_->Allocate(); ASSERT(scratch.is_valid()); __ RecordWrite(elements.reg(), offset, prop_value.reg(), scratch.reg()); } } void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { ASSERT(!in_spilled_code()); // Call runtime routine to allocate the catch extension object and // assign the exception value to the catch variable. Comment cmnt(masm_, "[ CatchExtensionObject"); Load(node->key()); Load(node->value()); Result result = frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); frame_->Push(&result); } void CodeGenerator::VisitAssignment(Assignment* node) { Comment cmnt(masm_, "[ Assignment"); { Reference target(this, node->target()); if (target.is_illegal()) { // Fool the virtual frame into thinking that we left the assignment's // value on the frame. frame_->Push(Smi::FromInt(0)); return; } Variable* var = node->target()->AsVariableProxy()->AsVariable(); if (node->starts_initialization_block()) { ASSERT(target.type() == Reference::NAMED || target.type() == Reference::KEYED); // Change to slow case in the beginning of an initialization // block to avoid the quadratic behavior of repeatedly adding // fast properties. // The receiver is the argument to the runtime call. It is the // first value pushed when the reference was loaded to the // frame. frame_->PushElementAt(target.size() - 1); Result ignored = frame_->CallRuntime(Runtime::kToSlowProperties, 1); } if (node->op() == Token::ASSIGN || node->op() == Token::INIT_VAR || node->op() == Token::INIT_CONST) { Load(node->value()); } else { Literal* literal = node->value()->AsLiteral(); bool overwrite_value = (node->value()->AsBinaryOperation() != NULL && node->value()->AsBinaryOperation()->ResultOverwriteAllowed()); Variable* right_var = node->value()->AsVariableProxy()->AsVariable(); // There are two cases where the target is not read in the right hand // side, that are easy to test for: the right hand side is a literal, // or the right hand side is a different variable. TakeValue invalidates // the target, with an implicit promise that it will be written to again // before it is read. if (literal != NULL || (right_var != NULL && right_var != var)) { target.TakeValue(NOT_INSIDE_TYPEOF); } else { target.GetValue(NOT_INSIDE_TYPEOF); } Load(node->value()); GenericBinaryOperation(node->binary_op(), node->type(), overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); } if (var != NULL && var->mode() == Variable::CONST && node->op() != Token::INIT_VAR && node->op() != Token::INIT_CONST) { // Assignment ignored - leave the value on the stack. } else { CodeForSourcePosition(node->position()); if (node->op() == Token::INIT_CONST) { // Dynamic constant initializations must use the function context // and initialize the actual constant declared. Dynamic variable // initializations are simply assignments and use SetValue. target.SetValue(CONST_INIT); } else { target.SetValue(NOT_CONST_INIT); } if (node->ends_initialization_block()) { ASSERT(target.type() == Reference::NAMED || target.type() == Reference::KEYED); // End of initialization block. Revert to fast case. The // argument to the runtime call is the receiver, which is the // first value pushed as part of the reference, which is below // the lhs value. frame_->PushElementAt(target.size()); Result ignored = frame_->CallRuntime(Runtime::kToFastProperties, 1); } } } } void CodeGenerator::VisitThrow(Throw* node) { Comment cmnt(masm_, "[ Throw"); Load(node->exception()); Result result = frame_->CallRuntime(Runtime::kThrow, 1); frame_->Push(&result); } void CodeGenerator::VisitProperty(Property* node) { Comment cmnt(masm_, "[ Property"); Reference property(this, node); property.GetValue(typeof_state()); } void CodeGenerator::VisitCall(Call* node) { Comment cmnt(masm_, "[ Call"); Expression* function = node->expression(); ZoneList<Expression*>* args = node->arguments(); // Check if the function is a variable or a property. Variable* var = function->AsVariableProxy()->AsVariable(); Property* property = function->AsProperty(); // ------------------------------------------------------------------------ // Fast-case: Use inline caching. // --- // According to ECMA-262, section 11.2.3, page 44, the function to call // must be resolved after the arguments have been evaluated. The IC code // automatically handles this by loading the arguments before the function // is resolved in cache misses (this also holds for megamorphic calls). // ------------------------------------------------------------------------ if (var != NULL && var->is_possibly_eval()) { // ---------------------------------- // JavaScript example: 'eval(arg)' // eval is not known to be shadowed // ---------------------------------- // In a call to eval, we first call %ResolvePossiblyDirectEval to // resolve the function we need to call and the receiver of the // call. Then we call the resolved function using the given // arguments. // Prepare the stack for the call to the resolved function. Load(function); // Allocate a frame slot for the receiver. frame_->Push(Factory::undefined_value()); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Prepare the stack for the call to ResolvePossiblyDirectEval. frame_->PushElementAt(arg_count + 1); if (arg_count > 0) { frame_->PushElementAt(arg_count); } else { frame_->Push(Factory::undefined_value()); } // Resolve the call. Result result = frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 2); // Touch up the stack with the right values for the function and the // receiver. Use a scratch register to avoid destroying the result. Result scratch = allocator_->Allocate(); ASSERT(scratch.is_valid()); __ mov(scratch.reg(), FieldOperand(result.reg(), FixedArray::kHeaderSize)); frame_->SetElementAt(arg_count + 1, &scratch); // We can reuse the result register now. frame_->Spill(result.reg()); __ mov(result.reg(), FieldOperand(result.reg(), FixedArray::kHeaderSize + kPointerSize)); frame_->SetElementAt(arg_count, &result); // Call the function. CodeForSourcePosition(node->position()); InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; CallFunctionStub call_function(arg_count, in_loop); result = frame_->CallStub(&call_function, arg_count + 1); // Restore the context and overwrite the function on the stack with // the result. frame_->RestoreContextRegister(); frame_->SetElementAt(0, &result); } else if (var != NULL && !var->is_this() && var->is_global()) { // ---------------------------------- // JavaScript example: 'foo(1, 2, 3)' // foo is global // ---------------------------------- // Push the name of the function and the receiver onto the stack. frame_->Push(var->name()); // Pass the global object as the receiver and let the IC stub // patch the stack to use the global proxy as 'this' in the // invoked function. LoadGlobal(); // Load the arguments. int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Call the IC initialization code. CodeForSourcePosition(node->position()); Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET_CONTEXT, arg_count, loop_nesting()); frame_->RestoreContextRegister(); // Replace the function on the stack with the result. frame_->SetElementAt(0, &result); } else if (var != NULL && var->slot() != NULL && var->slot()->type() == Slot::LOOKUP) { // ---------------------------------- // JavaScript example: 'with (obj) foo(1, 2, 3)' // foo is in obj // ---------------------------------- // Load the function from the context. Sync the frame so we can // push the arguments directly into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(esi); frame_->EmitPush(Immediate(var->name())); frame_->CallRuntime(Runtime::kLoadContextSlot, 2); // The runtime call returns a pair of values in eax and edx. The // looked-up function is in eax and the receiver is in edx. These // register references are not ref counted here. We spill them // eagerly since they are arguments to an inevitable call (and are // not sharable by the arguments). ASSERT(!allocator()->is_used(eax)); frame_->EmitPush(eax); // Load the receiver. ASSERT(!allocator()->is_used(edx)); frame_->EmitPush(edx); // Call the function. CallWithArguments(args, node->position()); } else if (property != NULL) { // Check if the key is a literal string. Literal* literal = property->key()->AsLiteral(); if (literal != NULL && literal->handle()->IsSymbol()) { // ------------------------------------------------------------------ // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' // ------------------------------------------------------------------ Handle<String> name = Handle<String>::cast(literal->handle()); if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION && name->IsEqualTo(CStrVector("apply")) && args->length() == 2 && args->at(1)->AsVariableProxy() != NULL && args->at(1)->AsVariableProxy()->IsArguments()) { // Use the optimized Function.prototype.apply that avoids // allocating lazily allocated arguments objects. CallApplyLazy(property, args->at(0), args->at(1)->AsVariableProxy(), node->position()); } else { // Push the name of the function and the receiver onto the stack. frame_->Push(name); Load(property->obj()); // Load the arguments. int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Call the IC initialization code. CodeForSourcePosition(node->position()); Result result = frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, loop_nesting()); frame_->RestoreContextRegister(); // Replace the function on the stack with the result. frame_->SetElementAt(0, &result); } } else { // ------------------------------------------- // JavaScript example: 'array[index](1, 2, 3)' // ------------------------------------------- // Load the function to call from the property through a reference. Reference ref(this, property); ref.GetValue(NOT_INSIDE_TYPEOF); // Pass receiver to called function. if (property->is_synthetic()) { // Use global object as receiver. LoadGlobalReceiver(); } else { // The reference's size is non-negative. frame_->PushElementAt(ref.size()); } // Call the function. CallWithArguments(args, node->position()); } } else { // ---------------------------------- // JavaScript example: 'foo(1, 2, 3)' // foo is not global // ---------------------------------- // Load the function. Load(function); // Pass the global proxy as the receiver. LoadGlobalReceiver(); // Call the function. CallWithArguments(args, node->position()); } } void CodeGenerator::VisitCallNew(CallNew* node) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. This is different from ordinary calls, where the // actual function to call is resolved after the arguments have been // evaluated. // Compute function to call and use the global object as the // receiver. There is no need to use the global proxy here because // it will always be replaced with a newly allocated object. Load(node->expression()); LoadGlobal(); // Push the arguments ("left-to-right") on the stack. ZoneList<Expression*>* args = node->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. CodeForSourcePosition(node->position()); Result result = frame_->CallConstructor(arg_count); // Replace the function on the stack with the result. frame_->SetElementAt(0, &result); } void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); __ test(value.reg(), Immediate(kSmiTagMask)); value.Unuse(); destination()->Split(zero); } void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { // Conditionally generate a log call. // Args: // 0 (literal string): The type of logging (corresponds to the flags). // This is used to determine whether or not to generate the log call. // 1 (string): Format string. Access the string at argument index 2 // with '%2s' (see Logger::LogRuntime for all the formats). // 2 (array): Arguments to the format string. ASSERT_EQ(args->length(), 3); #ifdef ENABLE_LOGGING_AND_PROFILING if (ShouldGenerateLog(args->at(0))) { Load(args->at(1)); Load(args->at(2)); frame_->CallRuntime(Runtime::kLog, 2); } #endif // Finally, we're expected to leave a value on the top of the stack. frame_->Push(Factory::undefined_value()); } void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); __ test(value.reg(), Immediate(kSmiTagMask | 0x80000000)); value.Unuse(); destination()->Split(zero); } // This generates code that performs a charCodeAt() call or returns // undefined in order to trigger the slow case, Runtime_StringCharCodeAt. // It can handle flat and sliced strings, 8 and 16 bit characters and // cons strings where the answer is found in the left hand branch of the // cons. The slow case will flatten the string, which will ensure that // the answer is in the left hand side the next time around. void CodeGenerator::GenerateFastCharCodeAt(ZoneList<Expression*>* args) { Comment(masm_, "[ GenerateFastCharCodeAt"); ASSERT(args->length() == 2); Label slow_case; Label end; Label not_a_flat_string; Label a_cons_string; Label try_again_with_new_string; Label ascii_string; Label got_char_code; Load(args->at(0)); Load(args->at(1)); Result index = frame_->Pop(); Result object = frame_->Pop(); // Get register ecx to use as shift amount later. Result shift_amount; if (object.is_register() && object.reg().is(ecx)) { Result fresh = allocator_->Allocate(); shift_amount = object; object = fresh; __ mov(object.reg(), ecx); } if (index.is_register() && index.reg().is(ecx)) { Result fresh = allocator_->Allocate(); shift_amount = index; index = fresh; __ mov(index.reg(), ecx); } // There could be references to ecx in the frame. Allocating will // spill them, otherwise spill explicitly. if (shift_amount.is_valid()) { frame_->Spill(ecx); } else { shift_amount = allocator()->Allocate(ecx); } ASSERT(shift_amount.is_register()); ASSERT(shift_amount.reg().is(ecx)); ASSERT(allocator_->count(ecx) == 1); // We will mutate the index register and possibly the object register. // The case where they are somehow the same register is handled // because we only mutate them in the case where the receiver is a // heap object and the index is not. object.ToRegister(); index.ToRegister(); frame_->Spill(object.reg()); frame_->Spill(index.reg()); // We need a single extra temporary register. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); // There is no virtual frame effect from here up to the final result // push. // If the receiver is a smi trigger the slow case. ASSERT(kSmiTag == 0); __ test(object.reg(), Immediate(kSmiTagMask)); __ j(zero, &slow_case); // If the index is negative or non-smi trigger the slow case. ASSERT(kSmiTag == 0); __ test(index.reg(), Immediate(kSmiTagMask | 0x80000000)); __ j(not_zero, &slow_case); // Untag the index. __ sar(index.reg(), kSmiTagSize); __ bind(&try_again_with_new_string); // Fetch the instance type of the receiver into ecx. __ mov(ecx, FieldOperand(object.reg(), HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the slow case. __ test(ecx, Immediate(kIsNotStringMask)); __ j(not_zero, &slow_case); // Here we make assumptions about the tag values and the shifts needed. // See the comment in objects.h. ASSERT(kLongStringTag == 0); ASSERT(kMediumStringTag + String::kLongLengthShift == String::kMediumLengthShift); ASSERT(kShortStringTag + String::kLongLengthShift == String::kShortLengthShift); __ and_(ecx, kStringSizeMask); __ add(Operand(ecx), Immediate(String::kLongLengthShift)); // Fetch the length field into the temporary register. __ mov(temp.reg(), FieldOperand(object.reg(), String::kLengthOffset)); __ shr(temp.reg()); // The shift amount in ecx is implicit operand. // Check for index out of range. __ cmp(index.reg(), Operand(temp.reg())); __ j(greater_equal, &slow_case); // Reload the instance type (into the temp register this time).. __ mov(temp.reg(), FieldOperand(object.reg(), HeapObject::kMapOffset)); __ movzx_b(temp.reg(), FieldOperand(temp.reg(), Map::kInstanceTypeOffset)); // We need special handling for non-flat strings. ASSERT(kSeqStringTag == 0); __ test(temp.reg(), Immediate(kStringRepresentationMask)); __ j(not_zero, ¬_a_flat_string); // Check for 1-byte or 2-byte string. __ test(temp.reg(), Immediate(kStringEncodingMask)); __ j(not_zero, &ascii_string); // 2-byte string. // Load the 2-byte character code into the temp register. __ movzx_w(temp.reg(), FieldOperand(object.reg(), index.reg(), times_2, SeqTwoByteString::kHeaderSize)); __ jmp(&got_char_code); // ASCII string. __ bind(&ascii_string); // Load the byte into the temp register. __ movzx_b(temp.reg(), FieldOperand(object.reg(), index.reg(), times_1, SeqAsciiString::kHeaderSize)); __ bind(&got_char_code); ASSERT(kSmiTag == 0); __ shl(temp.reg(), kSmiTagSize); __ jmp(&end); // Handle non-flat strings. __ bind(¬_a_flat_string); __ and_(temp.reg(), kStringRepresentationMask); __ cmp(temp.reg(), kConsStringTag); __ j(equal, &a_cons_string); __ cmp(temp.reg(), kSlicedStringTag); __ j(not_equal, &slow_case); // SlicedString. // Add the offset to the index and trigger the slow case on overflow. __ add(index.reg(), FieldOperand(object.reg(), SlicedString::kStartOffset)); __ j(overflow, &slow_case); // Getting the underlying string is done by running the cons string code. // ConsString. __ bind(&a_cons_string); // Get the first of the two strings. Both sliced and cons strings // store their source string at the same offset. ASSERT(SlicedString::kBufferOffset == ConsString::kFirstOffset); __ mov(object.reg(), FieldOperand(object.reg(), ConsString::kFirstOffset)); __ jmp(&try_again_with_new_string); __ bind(&slow_case); // Move the undefined value into the result register, which will // trigger the slow case. __ Set(temp.reg(), Immediate(Factory::undefined_value())); __ bind(&end); frame_->Push(&temp); } void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { ASSERT(args->length() == 1); Load(args->at(0)); Result value = frame_->Pop(); value.ToRegister(); ASSERT(value.is_valid()); __ test(value.reg(), Immediate(kSmiTagMask)); destination()->false_target()->Branch(equal); // It is a heap object - get map. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); // Check if the object is a JS array or not. __ CmpObjectType(value.reg(), JS_ARRAY_TYPE, temp.reg()); value.Unuse(); temp.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) { ASSERT(args->length() == 0); // Get the frame pointer for the calling frame. Result fp = allocator()->Allocate(); __ mov(fp.reg(), Operand(ebp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ cmp(Operand(fp.reg(), StandardFrameConstants::kContextOffset), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(not_equal, &check_frame_marker); __ mov(fp.reg(), Operand(fp.reg(), StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ cmp(Operand(fp.reg(), StandardFrameConstants::kMarkerOffset), Immediate(Smi::FromInt(StackFrame::CONSTRUCT))); fp.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { ASSERT(args->length() == 0); // ArgumentsAccessStub takes the parameter count as an input argument // in register eax. Create a constant result for it. Result count(Handle<Smi>(Smi::FromInt(scope_->num_parameters()))); // Call the shared stub to get to the arguments.length. ArgumentsAccessStub stub(ArgumentsAccessStub::READ_LENGTH); Result result = frame_->CallStub(&stub, &count); frame_->Push(&result); } void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) { ASSERT(args->length() == 1); JumpTarget leave, null, function, non_function_constructor; Load(args->at(0)); // Load the object. Result obj = frame_->Pop(); obj.ToRegister(); frame_->Spill(obj.reg()); // If the object is a smi, we return null. __ test(obj.reg(), Immediate(kSmiTagMask)); null.Branch(zero); // Check that the object is a JS object but take special care of JS // functions to make sure they have 'Function' as their class. { Result tmp = allocator()->Allocate(); __ mov(obj.reg(), FieldOperand(obj.reg(), HeapObject::kMapOffset)); __ movzx_b(tmp.reg(), FieldOperand(obj.reg(), Map::kInstanceTypeOffset)); __ cmp(tmp.reg(), FIRST_JS_OBJECT_TYPE); null.Branch(less); // As long as JS_FUNCTION_TYPE is the last instance type and it is // right after LAST_JS_OBJECT_TYPE, we can avoid checking for // LAST_JS_OBJECT_TYPE. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); __ cmp(tmp.reg(), JS_FUNCTION_TYPE); function.Branch(equal); } // Check if the constructor in the map is a function. { Result tmp = allocator()->Allocate(); __ mov(obj.reg(), FieldOperand(obj.reg(), Map::kConstructorOffset)); __ CmpObjectType(obj.reg(), JS_FUNCTION_TYPE, tmp.reg()); non_function_constructor.Branch(not_equal); } // The map register now contains the constructor function. Grab the // instance class name from there. __ mov(obj.reg(), FieldOperand(obj.reg(), JSFunction::kSharedFunctionInfoOffset)); __ mov(obj.reg(), FieldOperand(obj.reg(), SharedFunctionInfo::kInstanceClassNameOffset)); frame_->Push(&obj); leave.Jump(); // Functions have class 'Function'. function.Bind(); frame_->Push(Factory::function_class_symbol()); leave.Jump(); // Objects with a non-function constructor have class 'Object'. non_function_constructor.Bind(); frame_->Push(Factory::Object_symbol()); leave.Jump(); // Non-JS objects have class null. null.Bind(); frame_->Push(Factory::null_value()); // All done. leave.Bind(); } void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { ASSERT(args->length() == 1); JumpTarget leave; Load(args->at(0)); // Load the object. frame_->Dup(); Result object = frame_->Pop(); object.ToRegister(); ASSERT(object.is_valid()); // if (object->IsSmi()) return object. __ test(object.reg(), Immediate(kSmiTagMask)); leave.Branch(zero, taken); // It is a heap object - get map. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); // if (!object->IsJSValue()) return object. __ CmpObjectType(object.reg(), JS_VALUE_TYPE, temp.reg()); leave.Branch(not_equal, not_taken); __ mov(temp.reg(), FieldOperand(object.reg(), JSValue::kValueOffset)); object.Unuse(); frame_->SetElementAt(0, &temp); leave.Bind(); } void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { ASSERT(args->length() == 2); JumpTarget leave; Load(args->at(0)); // Load the object. Load(args->at(1)); // Load the value. Result value = frame_->Pop(); Result object = frame_->Pop(); value.ToRegister(); object.ToRegister(); // if (object->IsSmi()) return value. __ test(object.reg(), Immediate(kSmiTagMask)); leave.Branch(zero, &value, taken); // It is a heap object - get its map. Result scratch = allocator_->Allocate(); ASSERT(scratch.is_valid()); // if (!object->IsJSValue()) return value. __ CmpObjectType(object.reg(), JS_VALUE_TYPE, scratch.reg()); leave.Branch(not_equal, &value, not_taken); // Store the value. __ mov(FieldOperand(object.reg(), JSValue::kValueOffset), value.reg()); // Update the write barrier. Save the value as it will be // overwritten by the write barrier code and is needed afterward. Result duplicate_value = allocator_->Allocate(); ASSERT(duplicate_value.is_valid()); __ mov(duplicate_value.reg(), value.reg()); // The object register is also overwritten by the write barrier and // possibly aliased in the frame. frame_->Spill(object.reg()); __ RecordWrite(object.reg(), JSValue::kValueOffset, duplicate_value.reg(), scratch.reg()); object.Unuse(); scratch.Unuse(); duplicate_value.Unuse(); // Leave. leave.Bind(&value); frame_->Push(&value); } void CodeGenerator::GenerateArgumentsAccess(ZoneList<Expression*>* args) { ASSERT(args->length() == 1); // ArgumentsAccessStub expects the key in edx and the formal // parameter count in eax. Load(args->at(0)); Result key = frame_->Pop(); // Explicitly create a constant result. Result count(Handle<Smi>(Smi::FromInt(scope_->num_parameters()))); // Call the shared stub to get to arguments[key]. ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); Result result = frame_->CallStub(&stub, &key, &count); frame_->Push(&result); } void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) { ASSERT(args->length() == 2); // Load the two objects into registers and perform the comparison. Load(args->at(0)); Load(args->at(1)); Result right = frame_->Pop(); Result left = frame_->Pop(); right.ToRegister(); left.ToRegister(); __ cmp(right.reg(), Operand(left.reg())); right.Unuse(); left.Unuse(); destination()->Split(equal); } void CodeGenerator::GenerateGetFramePointer(ZoneList<Expression*>* args) { ASSERT(args->length() == 0); ASSERT(kSmiTag == 0); // EBP value is aligned, so it should look like Smi. Result ebp_as_smi = allocator_->Allocate(); ASSERT(ebp_as_smi.is_valid()); __ mov(ebp_as_smi.reg(), Operand(ebp)); frame_->Push(&ebp_as_smi); } void CodeGenerator::GenerateRandomPositiveSmi(ZoneList<Expression*>* args) { ASSERT(args->length() == 0); frame_->SpillAll(); // Make sure the frame is aligned like the OS expects. static const int kFrameAlignment = OS::ActivationFrameAlignment(); if (kFrameAlignment > 0) { ASSERT(IsPowerOf2(kFrameAlignment)); __ mov(edi, Operand(esp)); // Save in callee-saved register. __ and_(esp, -kFrameAlignment); } // Call V8::RandomPositiveSmi(). __ call(FUNCTION_ADDR(V8::RandomPositiveSmi), RelocInfo::RUNTIME_ENTRY); // Restore stack pointer from callee-saved register edi. if (kFrameAlignment > 0) { __ mov(esp, Operand(edi)); } Result result = allocator_->Allocate(eax); frame_->Push(&result); } void CodeGenerator::GenerateFastMathOp(MathOp op, ZoneList<Expression*>* args) { JumpTarget done; JumpTarget call_runtime; ASSERT(args->length() == 1); // Load number and duplicate it. Load(args->at(0)); frame_->Dup(); // Get the number into an unaliased register and load it onto the // floating point stack still leaving one copy on the frame. Result number = frame_->Pop(); number.ToRegister(); frame_->Spill(number.reg()); FloatingPointHelper::LoadFloatOperand(masm_, number.reg()); number.Unuse(); // Perform the operation on the number. switch (op) { case SIN: __ fsin(); break; case COS: __ fcos(); break; } // Go slow case if argument to operation is out of range. Result eax_reg = allocator_->Allocate(eax); ASSERT(eax_reg.is_valid()); __ fnstsw_ax(); __ sahf(); eax_reg.Unuse(); call_runtime.Branch(parity_even, not_taken); // Allocate heap number for result if possible. Result scratch1 = allocator()->Allocate(); Result scratch2 = allocator()->Allocate(); Result heap_number = allocator()->Allocate(); __ AllocateHeapNumber(heap_number.reg(), scratch1.reg(), scratch2.reg(), call_runtime.entry_label()); scratch1.Unuse(); scratch2.Unuse(); // Store the result in the allocated heap number. __ fstp_d(FieldOperand(heap_number.reg(), HeapNumber::kValueOffset)); // Replace the extra copy of the argument with the result. frame_->SetElementAt(0, &heap_number); done.Jump(); call_runtime.Bind(); // Free ST(0) which was not popped before calling into the runtime. __ ffree(0); Result answer; switch (op) { case SIN: answer = frame_->CallRuntime(Runtime::kMath_sin, 1); break; case COS: answer = frame_->CallRuntime(Runtime::kMath_cos, 1); break; } frame_->Push(&answer); done.Bind(); } void CodeGenerator::VisitCallRuntime(CallRuntime* node) { if (CheckForInlineRuntimeCall(node)) { return; } ZoneList<Expression*>* args = node->arguments(); Comment cmnt(masm_, "[ CallRuntime"); Runtime::Function* function = node->function(); if (function == NULL) { // Prepare stack for calling JS runtime function. frame_->Push(node->name()); // Push the builtins object found in the current global object. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), GlobalObject()); __ mov(temp.reg(), FieldOperand(temp.reg(), GlobalObject::kBuiltinsOffset)); frame_->Push(&temp); } // Push the arguments ("left-to-right"). int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { Load(args->at(i)); } if (function == NULL) { // Call the JS runtime function. Result answer = frame_->CallCallIC(RelocInfo::CODE_TARGET, arg_count, loop_nesting_); frame_->RestoreContextRegister(); frame_->SetElementAt(0, &answer); } else { // Call the C runtime function. Result answer = frame_->CallRuntime(function, arg_count); frame_->Push(&answer); } } void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { // Note that because of NOT and an optimization in comparison of a typeof // expression to a literal string, this function can fail to leave a value // on top of the frame or in the cc register. Comment cmnt(masm_, "[ UnaryOperation"); Token::Value op = node->op(); if (op == Token::NOT) { // Swap the true and false targets but keep the same actual label // as the fall through. destination()->Invert(); LoadCondition(node->expression(), NOT_INSIDE_TYPEOF, destination(), true); // Swap the labels back. destination()->Invert(); } else if (op == Token::DELETE) { Property* property = node->expression()->AsProperty(); if (property != NULL) { Load(property->obj()); Load(property->key()); Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2); frame_->Push(&answer); return; } Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); if (variable != NULL) { Slot* slot = variable->slot(); if (variable->is_global()) { LoadGlobal(); frame_->Push(variable->name()); Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2); frame_->Push(&answer); return; } else if (slot != NULL && slot->type() == Slot::LOOKUP) { // Call the runtime to look up the context holding the named // variable. Sync the virtual frame eagerly so we can push the // arguments directly into place. frame_->SyncRange(0, frame_->element_count() - 1); frame_->EmitPush(esi); frame_->EmitPush(Immediate(variable->name())); Result context = frame_->CallRuntime(Runtime::kLookupContext, 2); ASSERT(context.is_register()); frame_->EmitPush(context.reg()); context.Unuse(); frame_->EmitPush(Immediate(variable->name())); Result answer = frame_->InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION, 2); frame_->Push(&answer); return; } // Default: Result of deleting non-global, not dynamically // introduced variables is false. frame_->Push(Factory::false_value()); } else { // Default: Result of deleting expressions is true. Load(node->expression()); // may have side-effects frame_->SetElementAt(0, Factory::true_value()); } } else if (op == Token::TYPEOF) { // Special case for loading the typeof expression; see comment on // LoadTypeofExpression(). LoadTypeofExpression(node->expression()); Result answer = frame_->CallRuntime(Runtime::kTypeof, 1); frame_->Push(&answer); } else if (op == Token::VOID) { Expression* expression = node->expression(); if (expression && expression->AsLiteral() && ( expression->AsLiteral()->IsTrue() || expression->AsLiteral()->IsFalse() || expression->AsLiteral()->handle()->IsNumber() || expression->AsLiteral()->handle()->IsString() || expression->AsLiteral()->handle()->IsJSRegExp() || expression->AsLiteral()->IsNull())) { // Omit evaluating the value of the primitive literal. // It will be discarded anyway, and can have no side effect. frame_->Push(Factory::undefined_value()); } else { Load(node->expression()); frame_->SetElementAt(0, Factory::undefined_value()); } } else { Load(node->expression()); switch (op) { case Token::SUB: { bool overwrite = (node->expression()->AsBinaryOperation() != NULL && node->expression()->AsBinaryOperation()->ResultOverwriteAllowed()); UnarySubStub stub(overwrite); // TODO(1222589): remove dependency of TOS being cached inside stub Result operand = frame_->Pop(); Result answer = frame_->CallStub(&stub, &operand); frame_->Push(&answer); break; } case Token::BIT_NOT: { // Smi check. JumpTarget smi_label; JumpTarget continue_label; Result operand = frame_->Pop(); operand.ToRegister(); __ test(operand.reg(), Immediate(kSmiTagMask)); smi_label.Branch(zero, &operand, taken); frame_->Push(&operand); // undo popping of TOS Result answer = frame_->InvokeBuiltin(Builtins::BIT_NOT, CALL_FUNCTION, 1); continue_label.Jump(&answer); smi_label.Bind(&answer); answer.ToRegister(); frame_->Spill(answer.reg()); __ not_(answer.reg()); __ and_(answer.reg(), ~kSmiTagMask); // Remove inverted smi-tag. continue_label.Bind(&answer); frame_->Push(&answer); break; } case Token::ADD: { // Smi check. JumpTarget continue_label; Result operand = frame_->Pop(); operand.ToRegister(); __ test(operand.reg(), Immediate(kSmiTagMask)); continue_label.Branch(zero, &operand, taken); frame_->Push(&operand); Result answer = frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION, 1); continue_label.Bind(&answer); frame_->Push(&answer); break; } default: // NOT, DELETE, TYPEOF, and VOID are handled outside the // switch. UNREACHABLE(); } } } // The value in dst was optimistically incremented or decremented. The // result overflowed or was not smi tagged. Undo the operation, call // into the runtime to convert the argument to a number, and call the // specialized add or subtract stub. The result is left in dst. class DeferredPrefixCountOperation: public DeferredCode { public: DeferredPrefixCountOperation(Register dst, bool is_increment) : dst_(dst), is_increment_(is_increment) { set_comment("[ DeferredCountOperation"); } virtual void Generate(); private: Register dst_; bool is_increment_; }; void DeferredPrefixCountOperation::Generate() { // Undo the optimistic smi operation. if (is_increment_) { __ sub(Operand(dst_), Immediate(Smi::FromInt(1))); } else { __ add(Operand(dst_), Immediate(Smi::FromInt(1))); } __ push(dst_); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); __ push(eax); __ push(Immediate(Smi::FromInt(1))); if (is_increment_) { __ CallRuntime(Runtime::kNumberAdd, 2); } else { __ CallRuntime(Runtime::kNumberSub, 2); } if (!dst_.is(eax)) __ mov(dst_, eax); } // The value in dst was optimistically incremented or decremented. The // result overflowed or was not smi tagged. Undo the operation and call // into the runtime to convert the argument to a number. Update the // original value in old. Call the specialized add or subtract stub. // The result is left in dst. class DeferredPostfixCountOperation: public DeferredCode { public: DeferredPostfixCountOperation(Register dst, Register old, bool is_increment) : dst_(dst), old_(old), is_increment_(is_increment) { set_comment("[ DeferredCountOperation"); } virtual void Generate(); private: Register dst_; Register old_; bool is_increment_; }; void DeferredPostfixCountOperation::Generate() { // Undo the optimistic smi operation. if (is_increment_) { __ sub(Operand(dst_), Immediate(Smi::FromInt(1))); } else { __ add(Operand(dst_), Immediate(Smi::FromInt(1))); } __ push(dst_); __ InvokeBuiltin(Builtins::TO_NUMBER, CALL_FUNCTION); // Save the result of ToNumber to use as the old value. __ push(eax); // Call the runtime for the addition or subtraction. __ push(eax); __ push(Immediate(Smi::FromInt(1))); if (is_increment_) { __ CallRuntime(Runtime::kNumberAdd, 2); } else { __ CallRuntime(Runtime::kNumberSub, 2); } if (!dst_.is(eax)) __ mov(dst_, eax); __ pop(old_); } void CodeGenerator::VisitCountOperation(CountOperation* node) { Comment cmnt(masm_, "[ CountOperation"); bool is_postfix = node->is_postfix(); bool is_increment = node->op() == Token::INC; Variable* var = node->expression()->AsVariableProxy()->AsVariable(); bool is_const = (var != NULL && var->mode() == Variable::CONST); // Postfix operations need a stack slot under the reference to hold // the old value while the new value is being stored. This is so that // in the case that storing the new value requires a call, the old // value will be in the frame to be spilled. if (is_postfix) frame_->Push(Smi::FromInt(0)); { Reference target(this, node->expression()); if (target.is_illegal()) { // Spoof the virtual frame to have the expected height (one higher // than on entry). if (!is_postfix) frame_->Push(Smi::FromInt(0)); return; } target.TakeValue(NOT_INSIDE_TYPEOF); Result new_value = frame_->Pop(); new_value.ToRegister(); Result old_value; // Only allocated in the postfix case. if (is_postfix) { // Allocate a temporary to preserve the old value. old_value = allocator_->Allocate(); ASSERT(old_value.is_valid()); __ mov(old_value.reg(), new_value.reg()); } // Ensure the new value is writable. frame_->Spill(new_value.reg()); // In order to combine the overflow and the smi tag check, we need // to be able to allocate a byte register. We attempt to do so // without spilling. If we fail, we will generate separate overflow // and smi tag checks. // // We allocate and clear the temporary byte register before // performing the count operation since clearing the register using // xor will clear the overflow flag. Result tmp = allocator_->AllocateByteRegisterWithoutSpilling(); if (tmp.is_valid()) { __ Set(tmp.reg(), Immediate(0)); } DeferredCode* deferred = NULL; if (is_postfix) { deferred = new DeferredPostfixCountOperation(new_value.reg(), old_value.reg(), is_increment); } else { deferred = new DeferredPrefixCountOperation(new_value.reg(), is_increment); } if (is_increment) { __ add(Operand(new_value.reg()), Immediate(Smi::FromInt(1))); } else { __ sub(Operand(new_value.reg()), Immediate(Smi::FromInt(1))); } // If the count operation didn't overflow and the result is a valid // smi, we're done. Otherwise, we jump to the deferred slow-case // code. if (tmp.is_valid()) { // We combine the overflow and the smi tag check if we could // successfully allocate a temporary byte register. __ setcc(overflow, tmp.reg()); __ or_(Operand(tmp.reg()), new_value.reg()); __ test(tmp.reg(), Immediate(kSmiTagMask)); tmp.Unuse(); deferred->Branch(not_zero); } else { // Otherwise we test separately for overflow and smi tag. deferred->Branch(overflow); __ test(new_value.reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); } deferred->BindExit(); // Postfix: store the old value in the allocated slot under the // reference. if (is_postfix) frame_->SetElementAt(target.size(), &old_value); frame_->Push(&new_value); // Non-constant: update the reference. if (!is_const) target.SetValue(NOT_CONST_INIT); } // Postfix: drop the new value and use the old. if (is_postfix) frame_->Drop(); } void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { // Note that due to an optimization in comparison operations (typeof // compared to a string literal), we can evaluate a binary expression such // as AND or OR and not leave a value on the frame or in the cc register. Comment cmnt(masm_, "[ BinaryOperation"); Token::Value op = node->op(); // According to ECMA-262 section 11.11, page 58, the binary logical // operators must yield the result of one of the two expressions // before any ToBoolean() conversions. This means that the value // produced by a && or || operator is not necessarily a boolean. // NOTE: If the left hand side produces a materialized value (not // control flow), we force the right hand side to do the same. This // is necessary because we assume that if we get control flow on the // last path out of an expression we got it on all paths. if (op == Token::AND) { JumpTarget is_true; ControlDestination dest(&is_true, destination()->false_target(), true); LoadCondition(node->left(), NOT_INSIDE_TYPEOF, &dest, false); if (dest.false_was_fall_through()) { // The current false target was used as the fall-through. If // there are no dangling jumps to is_true then the left // subexpression was unconditionally false. Otherwise we have // paths where we do have to evaluate the right subexpression. if (is_true.is_linked()) { // We need to compile the right subexpression. If the jump to // the current false target was a forward jump then we have a // valid frame, we have just bound the false target, and we // have to jump around the code for the right subexpression. if (has_valid_frame()) { destination()->false_target()->Unuse(); destination()->false_target()->Jump(); } is_true.Bind(); // The left subexpression compiled to control flow, so the // right one is free to do so as well. LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false); } else { // We have actually just jumped to or bound the current false // target but the current control destination is not marked as // used. destination()->Use(false); } } else if (dest.is_used()) { // The left subexpression compiled to control flow (and is_true // was just bound), so the right is free to do so as well. LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false); } else { // We have a materialized value on the frame, so we exit with // one on all paths. There are possibly also jumps to is_true // from nested subexpressions. JumpTarget pop_and_continue; JumpTarget exit; // Avoid popping the result if it converts to 'false' using the // standard ToBoolean() conversion as described in ECMA-262, // section 9.2, page 30. // // Duplicate the TOS value. The duplicate will be popped by // ToBoolean. frame_->Dup(); ControlDestination dest(&pop_and_continue, &exit, true); ToBoolean(&dest); // Pop the result of evaluating the first part. frame_->Drop(); // Compile right side expression. is_true.Bind(); Load(node->right()); // Exit (always with a materialized value). exit.Bind(); } } else if (op == Token::OR) { JumpTarget is_false; ControlDestination dest(destination()->true_target(), &is_false, false); LoadCondition(node->left(), NOT_INSIDE_TYPEOF, &dest, false); if (dest.true_was_fall_through()) { // The current true target was used as the fall-through. If // there are no dangling jumps to is_false then the left // subexpression was unconditionally true. Otherwise we have // paths where we do have to evaluate the right subexpression. if (is_false.is_linked()) { // We need to compile the right subexpression. If the jump to // the current true target was a forward jump then we have a // valid frame, we have just bound the true target, and we // have to jump around the code for the right subexpression. if (has_valid_frame()) { destination()->true_target()->Unuse(); destination()->true_target()->Jump(); } is_false.Bind(); // The left subexpression compiled to control flow, so the // right one is free to do so as well. LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false); } else { // We have just jumped to or bound the current true target but // the current control destination is not marked as used. destination()->Use(true); } } else if (dest.is_used()) { // The left subexpression compiled to control flow (and is_false // was just bound), so the right is free to do so as well. LoadCondition(node->right(), NOT_INSIDE_TYPEOF, destination(), false); } else { // We have a materialized value on the frame, so we exit with // one on all paths. There are possibly also jumps to is_false // from nested subexpressions. JumpTarget pop_and_continue; JumpTarget exit; // Avoid popping the result if it converts to 'true' using the // standard ToBoolean() conversion as described in ECMA-262, // section 9.2, page 30. // // Duplicate the TOS value. The duplicate will be popped by // ToBoolean. frame_->Dup(); ControlDestination dest(&exit, &pop_and_continue, false); ToBoolean(&dest); // Pop the result of evaluating the first part. frame_->Drop(); // Compile right side expression. is_false.Bind(); Load(node->right()); // Exit (always with a materialized value). exit.Bind(); } } else { // NOTE: The code below assumes that the slow cases (calls to runtime) // never return a constant/immutable object. OverwriteMode overwrite_mode = NO_OVERWRITE; if (node->left()->AsBinaryOperation() != NULL && node->left()->AsBinaryOperation()->ResultOverwriteAllowed()) { overwrite_mode = OVERWRITE_LEFT; } else if (node->right()->AsBinaryOperation() != NULL && node->right()->AsBinaryOperation()->ResultOverwriteAllowed()) { overwrite_mode = OVERWRITE_RIGHT; } Load(node->left()); Load(node->right()); GenericBinaryOperation(node->op(), node->type(), overwrite_mode); } } void CodeGenerator::VisitThisFunction(ThisFunction* node) { frame_->PushFunction(); } void CodeGenerator::VisitCompareOperation(CompareOperation* node) { Comment cmnt(masm_, "[ CompareOperation"); // Get the expressions from the node. Expression* left = node->left(); Expression* right = node->right(); Token::Value op = node->op(); // To make typeof testing for natives implemented in JavaScript really // efficient, we generate special code for expressions of the form: // 'typeof <expression> == <string>'. UnaryOperation* operation = left->AsUnaryOperation(); if ((op == Token::EQ || op == Token::EQ_STRICT) && (operation != NULL && operation->op() == Token::TYPEOF) && (right->AsLiteral() != NULL && right->AsLiteral()->handle()->IsString())) { Handle<String> check(String::cast(*right->AsLiteral()->handle())); // Load the operand and move it to a register. LoadTypeofExpression(operation->expression()); Result answer = frame_->Pop(); answer.ToRegister(); if (check->Equals(Heap::number_symbol())) { __ test(answer.reg(), Immediate(kSmiTagMask)); destination()->true_target()->Branch(zero); frame_->Spill(answer.reg()); __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ cmp(answer.reg(), Factory::heap_number_map()); answer.Unuse(); destination()->Split(equal); } else if (check->Equals(Heap::string_symbol())) { __ test(answer.reg(), Immediate(kSmiTagMask)); destination()->false_target()->Branch(zero); // It can be an undetectable string object. Result temp = allocator()->Allocate(); ASSERT(temp.is_valid()); __ mov(temp.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ movzx_b(temp.reg(), FieldOperand(temp.reg(), Map::kBitFieldOffset)); __ test(temp.reg(), Immediate(1 << Map::kIsUndetectable)); destination()->false_target()->Branch(not_zero); __ mov(temp.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ movzx_b(temp.reg(), FieldOperand(temp.reg(), Map::kInstanceTypeOffset)); __ cmp(temp.reg(), FIRST_NONSTRING_TYPE); temp.Unuse(); answer.Unuse(); destination()->Split(less); } else if (check->Equals(Heap::boolean_symbol())) { __ cmp(answer.reg(), Factory::true_value()); destination()->true_target()->Branch(equal); __ cmp(answer.reg(), Factory::false_value()); answer.Unuse(); destination()->Split(equal); } else if (check->Equals(Heap::undefined_symbol())) { __ cmp(answer.reg(), Factory::undefined_value()); destination()->true_target()->Branch(equal); __ test(answer.reg(), Immediate(kSmiTagMask)); destination()->false_target()->Branch(zero); // It can be an undetectable object. frame_->Spill(answer.reg()); __ mov(answer.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ movzx_b(answer.reg(), FieldOperand(answer.reg(), Map::kBitFieldOffset)); __ test(answer.reg(), Immediate(1 << Map::kIsUndetectable)); answer.Unuse(); destination()->Split(not_zero); } else if (check->Equals(Heap::function_symbol())) { __ test(answer.reg(), Immediate(kSmiTagMask)); destination()->false_target()->Branch(zero); frame_->Spill(answer.reg()); __ CmpObjectType(answer.reg(), JS_FUNCTION_TYPE, answer.reg()); answer.Unuse(); destination()->Split(equal); } else if (check->Equals(Heap::object_symbol())) { __ test(answer.reg(), Immediate(kSmiTagMask)); destination()->false_target()->Branch(zero); __ cmp(answer.reg(), Factory::null_value()); destination()->true_target()->Branch(equal); // It can be an undetectable object. Result map = allocator()->Allocate(); ASSERT(map.is_valid()); __ mov(map.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kBitFieldOffset)); __ test(map.reg(), Immediate(1 << Map::kIsUndetectable)); destination()->false_target()->Branch(not_zero); __ mov(map.reg(), FieldOperand(answer.reg(), HeapObject::kMapOffset)); __ movzx_b(map.reg(), FieldOperand(map.reg(), Map::kInstanceTypeOffset)); __ cmp(map.reg(), FIRST_JS_OBJECT_TYPE); destination()->false_target()->Branch(less); __ cmp(map.reg(), LAST_JS_OBJECT_TYPE); answer.Unuse(); map.Unuse(); destination()->Split(less_equal); } else { // Uncommon case: typeof testing against a string literal that is // never returned from the typeof operator. answer.Unuse(); destination()->Goto(false); } return; } Condition cc = no_condition; bool strict = false; switch (op) { case Token::EQ_STRICT: strict = true; // Fall through case Token::EQ: cc = equal; break; case Token::LT: cc = less; break; case Token::GT: cc = greater; break; case Token::LTE: cc = less_equal; break; case Token::GTE: cc = greater_equal; break; case Token::IN: { Load(left); Load(right); Result answer = frame_->InvokeBuiltin(Builtins::IN, CALL_FUNCTION, 2); frame_->Push(&answer); // push the result return; } case Token::INSTANCEOF: { Load(left); Load(right); InstanceofStub stub; Result answer = frame_->CallStub(&stub, 2); answer.ToRegister(); __ test(answer.reg(), Operand(answer.reg())); answer.Unuse(); destination()->Split(zero); return; } default: UNREACHABLE(); } Load(left); Load(right); Comparison(cc, strict, destination()); } #ifdef DEBUG bool CodeGenerator::HasValidEntryRegisters() { return (allocator()->count(eax) == (frame()->is_used(eax) ? 1 : 0)) && (allocator()->count(ebx) == (frame()->is_used(ebx) ? 1 : 0)) && (allocator()->count(ecx) == (frame()->is_used(ecx) ? 1 : 0)) && (allocator()->count(edx) == (frame()->is_used(edx) ? 1 : 0)) && (allocator()->count(edi) == (frame()->is_used(edi) ? 1 : 0)); } #endif // Emit a LoadIC call to get the value from receiver and leave it in // dst. The receiver register is restored after the call. class DeferredReferenceGetNamedValue: public DeferredCode { public: DeferredReferenceGetNamedValue(Register dst, Register receiver, Handle<String> name) : dst_(dst), receiver_(receiver), name_(name) { set_comment("[ DeferredReferenceGetNamedValue"); } virtual void Generate(); Label* patch_site() { return &patch_site_; } private: Label patch_site_; Register dst_; Register receiver_; Handle<String> name_; }; void DeferredReferenceGetNamedValue::Generate() { __ push(receiver_); __ Set(ecx, Immediate(name_)); Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize)); __ call(ic, RelocInfo::CODE_TARGET); // The call must be followed by a test eax instruction to indicate // that the inobject property case was inlined. // // Store the delta to the map check instruction here in the test // instruction. Use masm_-> instead of the __ macro since the // latter can't return a value. int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); // Here we use masm_-> instead of the __ macro because this is the // instruction that gets patched and coverage code gets in the way. masm_->test(eax, Immediate(-delta_to_patch_site)); __ IncrementCounter(&Counters::named_load_inline_miss, 1); if (!dst_.is(eax)) __ mov(dst_, eax); __ pop(receiver_); } class DeferredReferenceGetKeyedValue: public DeferredCode { public: explicit DeferredReferenceGetKeyedValue(Register dst, Register receiver, Register key, bool is_global) : dst_(dst), receiver_(receiver), key_(key), is_global_(is_global) { set_comment("[ DeferredReferenceGetKeyedValue"); } virtual void Generate(); Label* patch_site() { return &patch_site_; } private: Label patch_site_; Register dst_; Register receiver_; Register key_; bool is_global_; }; void DeferredReferenceGetKeyedValue::Generate() { __ push(receiver_); // First IC argument. __ push(key_); // Second IC argument. // Calculate the delta from the IC call instruction to the map check // cmp instruction in the inlined version. This delta is stored in // a test(eax, delta) instruction after the call so that we can find // it in the IC initialization code and patch the cmp instruction. // This means that we cannot allow test instructions after calls to // KeyedLoadIC stubs in other places. Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); RelocInfo::Mode mode = is_global_ ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET; __ call(ic, mode); // The delta from the start of the map-compare instruction to the // test instruction. We use masm_-> directly here instead of the __ // macro because the macro sometimes uses macro expansion to turn // into something that can't return a value. This is encountered // when doing generated code coverage tests. int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); // Here we use masm_-> instead of the __ macro because this is the // instruction that gets patched and coverage code gets in the way. masm_->test(eax, Immediate(-delta_to_patch_site)); __ IncrementCounter(&Counters::keyed_load_inline_miss, 1); if (!dst_.is(eax)) __ mov(dst_, eax); __ pop(key_); __ pop(receiver_); } class DeferredReferenceSetKeyedValue: public DeferredCode { public: DeferredReferenceSetKeyedValue(Register value, Register key, Register receiver) : value_(value), key_(key), receiver_(receiver) { set_comment("[ DeferredReferenceSetKeyedValue"); } virtual void Generate(); Label* patch_site() { return &patch_site_; } private: Register value_; Register key_; Register receiver_; Label patch_site_; }; void DeferredReferenceSetKeyedValue::Generate() { __ IncrementCounter(&Counters::keyed_store_inline_miss, 1); // Push receiver and key arguments on the stack. __ push(receiver_); __ push(key_); // Move value argument to eax as expected by the IC stub. if (!value_.is(eax)) __ mov(eax, value_); // Call the IC stub. Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize)); __ call(ic, RelocInfo::CODE_TARGET); // The delta from the start of the map-compare instruction to the // test instruction. We use masm_-> directly here instead of the // __ macro because the macro sometimes uses macro expansion to turn // into something that can't return a value. This is encountered // when doing generated code coverage tests. int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(patch_site()); // Here we use masm_-> instead of the __ macro because this is the // instruction that gets patched and coverage code gets in the way. masm_->test(eax, Immediate(-delta_to_patch_site)); // Restore value (returned from store IC), key and receiver // registers. if (!value_.is(eax)) __ mov(value_, eax); __ pop(key_); __ pop(receiver_); } #undef __ #define __ ACCESS_MASM(masm) Handle<String> Reference::GetName() { ASSERT(type_ == NAMED); Property* property = expression_->AsProperty(); if (property == NULL) { // Global variable reference treated as a named property reference. VariableProxy* proxy = expression_->AsVariableProxy(); ASSERT(proxy->AsVariable() != NULL); ASSERT(proxy->AsVariable()->is_global()); return proxy->name(); } else { Literal* raw_name = property->key()->AsLiteral(); ASSERT(raw_name != NULL); return Handle<String>(String::cast(*raw_name->handle())); } } void Reference::GetValue(TypeofState typeof_state) { ASSERT(!cgen_->in_spilled_code()); ASSERT(cgen_->HasValidEntryRegisters()); ASSERT(!is_illegal()); MacroAssembler* masm = cgen_->masm(); // Record the source position for the property load. Property* property = expression_->AsProperty(); if (property != NULL) { cgen_->CodeForSourcePosition(property->position()); } switch (type_) { case SLOT: { Comment cmnt(masm, "[ Load from Slot"); Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); ASSERT(slot != NULL); cgen_->LoadFromSlotCheckForArguments(slot, typeof_state); break; } case NAMED: { // TODO(1241834): Make sure that it is safe to ignore the // distinction between expressions in a typeof and not in a // typeof. If there is a chance that reference errors can be // thrown below, we must distinguish between the two kinds of // loads (typeof expression loads must not throw a reference // error). Variable* var = expression_->AsVariableProxy()->AsVariable(); bool is_global = var != NULL; ASSERT(!is_global || var->is_global()); // Do not inline the inobject property case for loads from the global // object. Also do not inline for unoptimized code. This saves time // in the code generator. Unoptimized code is toplevel code or code // that is not in a loop. if (is_global || cgen_->scope()->is_global_scope() || cgen_->loop_nesting() == 0) { Comment cmnt(masm, "[ Load from named Property"); cgen_->frame()->Push(GetName()); RelocInfo::Mode mode = is_global ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET; Result answer = cgen_->frame()->CallLoadIC(mode); // A test eax instruction following the call signals that the // inobject property case was inlined. Ensure that there is not // a test eax instruction here. __ nop(); cgen_->frame()->Push(&answer); } else { // Inline the inobject property case. Comment cmnt(masm, "[ Inlined named property load"); Result receiver = cgen_->frame()->Pop(); receiver.ToRegister(); Result value = cgen_->allocator()->Allocate(); ASSERT(value.is_valid()); DeferredReferenceGetNamedValue* deferred = new DeferredReferenceGetNamedValue(value.reg(), receiver.reg(), GetName()); // Check that the receiver is a heap object. __ test(receiver.reg(), Immediate(kSmiTagMask)); deferred->Branch(zero); __ bind(deferred->patch_site()); // This is the map check instruction that will be patched (so we can't // use the double underscore macro that may insert instructions). // Initially use an invalid map to force a failure. masm->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), Immediate(Factory::null_value())); // This branch is always a forwards branch so it's always a fixed // size which allows the assert below to succeed and patching to work. deferred->Branch(not_equal); // The delta from the patch label to the load offset must be // statically known. ASSERT(masm->SizeOfCodeGeneratedSince(deferred->patch_site()) == LoadIC::kOffsetToLoadInstruction); // The initial (invalid) offset has to be large enough to force // a 32-bit instruction encoding to allow patching with an // arbitrary offset. Use kMaxInt (minus kHeapObjectTag). int offset = kMaxInt; masm->mov(value.reg(), FieldOperand(receiver.reg(), offset)); __ IncrementCounter(&Counters::named_load_inline, 1); deferred->BindExit(); cgen_->frame()->Push(&receiver); cgen_->frame()->Push(&value); } break; } case KEYED: { // TODO(1241834): Make sure that this it is safe to ignore the // distinction between expressions in a typeof and not in a typeof. Comment cmnt(masm, "[ Load from keyed Property"); Variable* var = expression_->AsVariableProxy()->AsVariable(); bool is_global = var != NULL; ASSERT(!is_global || var->is_global()); // Inline array load code if inside of a loop. We do not know // the receiver map yet, so we initially generate the code with // a check against an invalid map. In the inline cache code, we // patch the map check if appropriate. if (cgen_->loop_nesting() > 0) { Comment cmnt(masm, "[ Inlined load from keyed Property"); Result key = cgen_->frame()->Pop(); Result receiver = cgen_->frame()->Pop(); key.ToRegister(); receiver.ToRegister(); // Use a fresh temporary to load the elements without destroying // the receiver which is needed for the deferred slow case. Result elements = cgen_->allocator()->Allocate(); ASSERT(elements.is_valid()); // Use a fresh temporary for the index and later the loaded // value. Result index = cgen_->allocator()->Allocate(); ASSERT(index.is_valid()); DeferredReferenceGetKeyedValue* deferred = new DeferredReferenceGetKeyedValue(index.reg(), receiver.reg(), key.reg(), is_global); // Check that the receiver is not a smi (only needed if this // is not a load from the global context) and that it has the // expected map. if (!is_global) { __ test(receiver.reg(), Immediate(kSmiTagMask)); deferred->Branch(zero); } // Initially, use an invalid map. The map is patched in the IC // initialization code. __ bind(deferred->patch_site()); // Use masm-> here instead of the double underscore macro since extra // coverage code can interfere with the patching. masm->cmp(FieldOperand(receiver.reg(), HeapObject::kMapOffset), Immediate(Factory::null_value())); deferred->Branch(not_equal); // Check that the key is a smi. __ test(key.reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); // Get the elements array from the receiver and check that it // is not a dictionary. __ mov(elements.reg(), FieldOperand(receiver.reg(), JSObject::kElementsOffset)); __ cmp(FieldOperand(elements.reg(), HeapObject::kMapOffset), Immediate(Factory::fixed_array_map())); deferred->Branch(not_equal); // Shift the key to get the actual index value and check that // it is within bounds. __ mov(index.reg(), key.reg()); __ sar(index.reg(), kSmiTagSize); __ cmp(index.reg(), FieldOperand(elements.reg(), FixedArray::kLengthOffset)); deferred->Branch(above_equal); // Load and check that the result is not the hole. We could // reuse the index or elements register for the value. // // TODO(206): Consider whether it makes sense to try some // heuristic about which register to reuse. For example, if // one is eax, the we can reuse that one because the value // coming from the deferred code will be in eax. Result value = index; __ mov(value.reg(), Operand(elements.reg(), index.reg(), times_4, FixedArray::kHeaderSize - kHeapObjectTag)); elements.Unuse(); index.Unuse(); __ cmp(Operand(value.reg()), Immediate(Factory::the_hole_value())); deferred->Branch(equal); __ IncrementCounter(&Counters::keyed_load_inline, 1); deferred->BindExit(); // Restore the receiver and key to the frame and push the // result on top of it. cgen_->frame()->Push(&receiver); cgen_->frame()->Push(&key); cgen_->frame()->Push(&value); } else { Comment cmnt(masm, "[ Load from keyed Property"); RelocInfo::Mode mode = is_global ? RelocInfo::CODE_TARGET_CONTEXT : RelocInfo::CODE_TARGET; Result answer = cgen_->frame()->CallKeyedLoadIC(mode); // Make sure that we do not have a test instruction after the // call. A test instruction after the call is used to // indicate that we have generated an inline version of the // keyed load. The explicit nop instruction is here because // the push that follows might be peep-hole optimized away. __ nop(); cgen_->frame()->Push(&answer); } break; } default: UNREACHABLE(); } } void Reference::TakeValue(TypeofState typeof_state) { // For non-constant frame-allocated slots, we invalidate the value in the // slot. For all others, we fall back on GetValue. ASSERT(!cgen_->in_spilled_code()); ASSERT(!is_illegal()); if (type_ != SLOT) { GetValue(typeof_state); return; } Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); ASSERT(slot != NULL); if (slot->type() == Slot::LOOKUP || slot->type() == Slot::CONTEXT || slot->var()->mode() == Variable::CONST || slot->is_arguments()) { GetValue(typeof_state); return; } // Only non-constant, frame-allocated parameters and locals can // reach here. Be careful not to use the optimizations for arguments // object access since it may not have been initialized yet. ASSERT(!slot->is_arguments()); if (slot->type() == Slot::PARAMETER) { cgen_->frame()->TakeParameterAt(slot->index()); } else { ASSERT(slot->type() == Slot::LOCAL); cgen_->frame()->TakeLocalAt(slot->index()); } } void Reference::SetValue(InitState init_state) { ASSERT(cgen_->HasValidEntryRegisters()); ASSERT(!is_illegal()); MacroAssembler* masm = cgen_->masm(); switch (type_) { case SLOT: { Comment cmnt(masm, "[ Store to Slot"); Slot* slot = expression_->AsVariableProxy()->AsVariable()->slot(); ASSERT(slot != NULL); cgen_->StoreToSlot(slot, init_state); break; } case NAMED: { Comment cmnt(masm, "[ Store to named Property"); cgen_->frame()->Push(GetName()); Result answer = cgen_->frame()->CallStoreIC(); cgen_->frame()->Push(&answer); break; } case KEYED: { Comment cmnt(masm, "[ Store to keyed Property"); // Generate inlined version of the keyed store if the code is in // a loop and the key is likely to be a smi. Property* property = expression()->AsProperty(); ASSERT(property != NULL); SmiAnalysis* key_smi_analysis = property->key()->type(); if (cgen_->loop_nesting() > 0 && key_smi_analysis->IsLikelySmi()) { Comment cmnt(masm, "[ Inlined store to keyed Property"); // Get the receiver, key and value into registers. Result value = cgen_->frame()->Pop(); Result key = cgen_->frame()->Pop(); Result receiver = cgen_->frame()->Pop(); Result tmp = cgen_->allocator_->Allocate(); ASSERT(tmp.is_valid()); // Determine whether the value is a constant before putting it // in a register. bool value_is_constant = value.is_constant(); // Make sure that value, key and receiver are in registers. value.ToRegister(); key.ToRegister(); receiver.ToRegister(); DeferredReferenceSetKeyedValue* deferred = new DeferredReferenceSetKeyedValue(value.reg(), key.reg(), receiver.reg()); // Check that the value is a smi if it is not a constant. We // can skip the write barrier for smis and constants. if (!value_is_constant) { __ test(value.reg(), Immediate(kSmiTagMask)); deferred->Branch(not_zero); } // Check that the key is a non-negative smi. __ test(key.reg(), Immediate(kSmiTagMask | 0x80000000)); deferred->Branch(not_zero); // Check that the receiver is not a smi. __ test(receiver.reg(), Immediate(kSmiTagMask)); deferred->Branch(zero); // Check that the receiver is a JSArray. __ mov(tmp.reg(), FieldOperand(receiver.reg(), HeapObject::kMapOffset)); __ movzx_b(tmp.reg(), FieldOperand(tmp.reg(), Map::kInstanceTypeOffset)); __ cmp(tmp.reg(), JS_ARRAY_TYPE); deferred->Branch(not_equal); // Check that the key is within bounds. Both the key and the // length of the JSArray are smis. __ cmp(key.reg(), FieldOperand(receiver.reg(), JSArray::kLengthOffset)); deferred->Branch(greater_equal); // Get the elements array from the receiver and check that it // is not a dictionary. __ mov(tmp.reg(), FieldOperand(receiver.reg(), JSObject::kElementsOffset)); // Bind the deferred code patch site to be able to locate the // fixed array map comparison. When debugging, we patch this // comparison to always fail so that we will hit the IC call // in the deferred code which will allow the debugger to // break for fast case stores. __ bind(deferred->patch_site()); __ cmp(FieldOperand(tmp.reg(), HeapObject::kMapOffset), Immediate(Factory::fixed_array_map())); deferred->Branch(not_equal); // Store the value. __ mov(Operand(tmp.reg(), key.reg(), times_2, FixedArray::kHeaderSize - kHeapObjectTag), value.reg()); __ IncrementCounter(&Counters::keyed_store_inline, 1); deferred->BindExit(); cgen_->frame()->Push(&receiver); cgen_->frame()->Push(&key); cgen_->frame()->Push(&value); } else { Result answer = cgen_->frame()->CallKeyedStoreIC(); // Make sure that we do not have a test instruction after the // call. A test instruction after the call is used to // indicate that we have generated an inline version of the // keyed store. __ nop(); cgen_->frame()->Push(&answer); } break; } default: UNREACHABLE(); } } // NOTE: The stub does not handle the inlined cases (Smis, Booleans, undefined). void ToBooleanStub::Generate(MacroAssembler* masm) { Label false_result, true_result, not_string; __ mov(eax, Operand(esp, 1 * kPointerSize)); // 'null' => false. __ cmp(eax, Factory::null_value()); __ j(equal, &false_result); // Get the map and type of the heap object. __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(edx, Map::kInstanceTypeOffset)); // Undetectable => false. __ movzx_b(ebx, FieldOperand(edx, Map::kBitFieldOffset)); __ and_(ebx, 1 << Map::kIsUndetectable); __ j(not_zero, &false_result); // JavaScript object => true. __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(above_equal, &true_result); // String value => false iff empty. __ cmp(ecx, FIRST_NONSTRING_TYPE); __ j(above_equal, ¬_string); __ and_(ecx, kStringSizeMask); __ cmp(ecx, kShortStringTag); __ j(not_equal, &true_result); // Empty string is always short. __ mov(edx, FieldOperand(eax, String::kLengthOffset)); __ shr(edx, String::kShortLengthShift); __ j(zero, &false_result); __ jmp(&true_result); __ bind(¬_string); // HeapNumber => false iff +0, -0, or NaN. __ cmp(edx, Factory::heap_number_map()); __ j(not_equal, &true_result); __ fldz(); __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ FCmp(); __ j(zero, &false_result); // Fall through to |true_result|. // Return 1/0 for true/false in eax. __ bind(&true_result); __ mov(eax, 1); __ ret(1 * kPointerSize); __ bind(&false_result); __ mov(eax, 0); __ ret(1 * kPointerSize); } void GenericBinaryOpStub::GenerateCall( MacroAssembler* masm, Register left, Register right) { if (!ArgsInRegistersSupported()) { // Pass arguments on the stack. __ push(left); __ push(right); } else { // The calling convention with registers is left in edx and right in eax. Register left_arg = edx; Register right_arg = eax; if (!(left.is(left_arg) && right.is(right_arg))) { if (left.is(right_arg) && right.is(left_arg)) { if (IsOperationCommutative()) { SetArgsReversed(); } else { __ xchg(left, right); } } else if (left.is(left_arg)) { __ mov(right_arg, right); } else if (left.is(right_arg)) { if (IsOperationCommutative()) { __ mov(left_arg, right); SetArgsReversed(); } else { // Order of moves important to avoid destroying left argument. __ mov(left_arg, left); __ mov(right_arg, right); } } else if (right.is(left_arg)) { if (IsOperationCommutative()) { __ mov(right_arg, left); SetArgsReversed(); } else { // Order of moves important to avoid destroying right argument. __ mov(right_arg, right); __ mov(left_arg, left); } } else if (right.is(right_arg)) { __ mov(left_arg, left); } else { // Order of moves is not important. __ mov(left_arg, left); __ mov(right_arg, right); } } // Update flags to indicate that arguments are in registers. SetArgsInRegisters(); __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); } // Call the stub. __ CallStub(this); } void GenericBinaryOpStub::GenerateCall( MacroAssembler* masm, Register left, Smi* right) { if (!ArgsInRegistersSupported()) { // Pass arguments on the stack. __ push(left); __ push(Immediate(right)); } else { // The calling convention with registers is left in edx and right in eax. Register left_arg = edx; Register right_arg = eax; if (left.is(left_arg)) { __ mov(right_arg, Immediate(right)); } else if (left.is(right_arg) && IsOperationCommutative()) { __ mov(left_arg, Immediate(right)); SetArgsReversed(); } else { __ mov(left_arg, left); __ mov(right_arg, Immediate(right)); } // Update flags to indicate that arguments are in registers. SetArgsInRegisters(); __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); } // Call the stub. __ CallStub(this); } void GenericBinaryOpStub::GenerateCall( MacroAssembler* masm, Smi* left, Register right) { if (!ArgsInRegistersSupported()) { // Pass arguments on the stack. __ push(Immediate(left)); __ push(right); } else { // The calling convention with registers is left in edx and right in eax. Register left_arg = edx; Register right_arg = eax; if (right.is(right_arg)) { __ mov(left_arg, Immediate(left)); } else if (right.is(left_arg) && IsOperationCommutative()) { __ mov(right_arg, Immediate(left)); SetArgsReversed(); } else { __ mov(left_arg, Immediate(left)); __ mov(right_arg, right); } // Update flags to indicate that arguments are in registers. SetArgsInRegisters(); __ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1); } // Call the stub. __ CallStub(this); } void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) { // Perform fast-case smi code for the operation (eax <op> ebx) and // leave result in register eax. // Prepare the smi check of both operands by or'ing them together // before checking against the smi mask. __ mov(ecx, Operand(ebx)); __ or_(ecx, Operand(eax)); switch (op_) { case Token::ADD: __ add(eax, Operand(ebx)); // add optimistically __ j(overflow, slow, not_taken); break; case Token::SUB: __ sub(eax, Operand(ebx)); // subtract optimistically __ j(overflow, slow, not_taken); break; case Token::DIV: case Token::MOD: // Sign extend eax into edx:eax. __ cdq(); // Check for 0 divisor. __ test(ebx, Operand(ebx)); __ j(zero, slow, not_taken); break; default: // Fall-through to smi check. break; } // Perform the actual smi check. ASSERT(kSmiTag == 0); // adjust zero check if not the case __ test(ecx, Immediate(kSmiTagMask)); __ j(not_zero, slow, not_taken); switch (op_) { case Token::ADD: case Token::SUB: // Do nothing here. break; case Token::MUL: // If the smi tag is 0 we can just leave the tag on one operand. ASSERT(kSmiTag == 0); // adjust code below if not the case // Remove tag from one of the operands (but keep sign). __ sar(eax, kSmiTagSize); // Do multiplication. __ imul(eax, Operand(ebx)); // multiplication of smis; result in eax // Go slow on overflows. __ j(overflow, slow, not_taken); // Check for negative zero result. __ NegativeZeroTest(eax, ecx, slow); // use ecx = x | y break; case Token::DIV: // Divide edx:eax by ebx. __ idiv(ebx); // Check for the corner case of dividing the most negative smi // by -1. We cannot use the overflow flag, since it is not set // by idiv instruction. ASSERT(kSmiTag == 0 && kSmiTagSize == 1); __ cmp(eax, 0x40000000); __ j(equal, slow); // Check for negative zero result. __ NegativeZeroTest(eax, ecx, slow); // use ecx = x | y // Check that the remainder is zero. __ test(edx, Operand(edx)); __ j(not_zero, slow); // Tag the result and store it in register eax. ASSERT(kSmiTagSize == times_2); // adjust code if not the case __ lea(eax, Operand(eax, eax, times_1, kSmiTag)); break; case Token::MOD: // Divide edx:eax by ebx. __ idiv(ebx); // Check for negative zero result. __ NegativeZeroTest(edx, ecx, slow); // use ecx = x | y // Move remainder to register eax. __ mov(eax, Operand(edx)); break; case Token::BIT_OR: __ or_(eax, Operand(ebx)); break; case Token::BIT_AND: __ and_(eax, Operand(ebx)); break; case Token::BIT_XOR: __ xor_(eax, Operand(ebx)); break; case Token::SHL: case Token::SHR: case Token::SAR: // Move the second operand into register ecx. __ mov(ecx, Operand(ebx)); // Remove tags from operands (but keep sign). __ sar(eax, kSmiTagSize); __ sar(ecx, kSmiTagSize); // Perform the operation. switch (op_) { case Token::SAR: __ sar(eax); // No checks of result necessary break; case Token::SHR: __ shr(eax); // Check that the *unsigned* result fits in a smi. // Neither of the two high-order bits can be set: // - 0x80000000: high bit would be lost when smi tagging. // - 0x40000000: this number would convert to negative when // Smi tagging these two cases can only happen with shifts // by 0 or 1 when handed a valid smi. __ test(eax, Immediate(0xc0000000)); __ j(not_zero, slow, not_taken); break; case Token::SHL: __ shl(eax); // Check that the *signed* result fits in a smi. __ cmp(eax, 0xc0000000); __ j(sign, slow, not_taken); break; default: UNREACHABLE(); } // Tag the result and store it in register eax. ASSERT(kSmiTagSize == times_2); // adjust code if not the case __ lea(eax, Operand(eax, eax, times_1, kSmiTag)); break; default: UNREACHABLE(); break; } } void GenericBinaryOpStub::Generate(MacroAssembler* masm) { Label call_runtime; __ IncrementCounter(&Counters::generic_binary_stub_calls, 1); // Generate fast case smi code if requested. This flag is set when the fast // case smi code is not generated by the caller. Generating it here will speed // up common operations. if (HasSmiCodeInStub()) { Label slow; __ mov(ebx, Operand(esp, 1 * kPointerSize)); __ mov(eax, Operand(esp, 2 * kPointerSize)); GenerateSmiCode(masm, &slow); GenerateReturn(masm); // Too bad. The fast case smi code didn't succeed. __ bind(&slow); } // Make sure the arguments are in edx and eax. GenerateLoadArguments(masm); // Floating point case. switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: { // eax: y // edx: x if (CpuFeatures::IsSupported(CpuFeatures::SSE2)) { CpuFeatures::Scope use_sse2(CpuFeatures::SSE2); FloatingPointHelper::LoadSse2Operands(masm, &call_runtime); switch (op_) { case Token::ADD: __ addsd(xmm0, xmm1); break; case Token::SUB: __ subsd(xmm0, xmm1); break; case Token::MUL: __ mulsd(xmm0, xmm1); break; case Token::DIV: __ divsd(xmm0, xmm1); break; default: UNREACHABLE(); } // Allocate a heap number, if needed. Label skip_allocation; switch (mode_) { case OVERWRITE_LEFT: __ mov(eax, Operand(edx)); // Fall through! case OVERWRITE_RIGHT: // If the argument in eax is already an object, we skip the // allocation of a heap number. __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &skip_allocation, not_taken); // Fall through! case NO_OVERWRITE: { // Allocate a heap number for the result. Keep eax and edx intact // for the possible runtime call. __ AllocateHeapNumber(ebx, ecx, no_reg, &call_runtime); // Now eax can be overwritten losing one of the arguments as we are // now done and will not need it any more. __ mov(eax, ebx); __ bind(&skip_allocation); break; } default: UNREACHABLE(); } __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); GenerateReturn(masm); } else { // SSE2 not available, use FPU. FloatingPointHelper::CheckFloatOperands(masm, &call_runtime, ebx); // Allocate a heap number, if needed. Label skip_allocation; switch (mode_) { case OVERWRITE_LEFT: __ mov(eax, Operand(edx)); // Fall through! case OVERWRITE_RIGHT: // If the argument in eax is already an object, we skip the // allocation of a heap number. __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &skip_allocation, not_taken); // Fall through! case NO_OVERWRITE: // Allocate a heap number for the result. Keep eax and edx intact // for the possible runtime call. __ AllocateHeapNumber(ebx, ecx, no_reg, &call_runtime); // Now eax can be overwritten losing one of the arguments as we are // now done and will not need it any more. __ mov(eax, ebx); __ bind(&skip_allocation); break; default: UNREACHABLE(); } FloatingPointHelper::LoadFloatOperands(masm, ecx); switch (op_) { case Token::ADD: __ faddp(1); break; case Token::SUB: __ fsubp(1); break; case Token::MUL: __ fmulp(1); break; case Token::DIV: __ fdivp(1); break; default: UNREACHABLE(); } __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); GenerateReturn(masm); } } case Token::MOD: { // For MOD we go directly to runtime in the non-smi case. break; } case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SAR: case Token::SHL: case Token::SHR: { FloatingPointHelper::CheckFloatOperands(masm, &call_runtime, ebx); FloatingPointHelper::LoadFloatOperands(masm, ecx); Label skip_allocation, non_smi_result, operand_conversion_failure; // Reserve space for converted numbers. __ sub(Operand(esp), Immediate(2 * kPointerSize)); if (use_sse3_) { // Truncate the operands to 32-bit integers and check for // exceptions in doing so. CpuFeatures::Scope scope(CpuFeatures::SSE3); __ fisttp_s(Operand(esp, 0 * kPointerSize)); __ fisttp_s(Operand(esp, 1 * kPointerSize)); __ fnstsw_ax(); __ test(eax, Immediate(1)); __ j(not_zero, &operand_conversion_failure); } else { // Check if right operand is int32. __ fist_s(Operand(esp, 0 * kPointerSize)); __ fild_s(Operand(esp, 0 * kPointerSize)); __ FCmp(); __ j(not_zero, &operand_conversion_failure); __ j(parity_even, &operand_conversion_failure); // Check if left operand is int32. __ fist_s(Operand(esp, 1 * kPointerSize)); __ fild_s(Operand(esp, 1 * kPointerSize)); __ FCmp(); __ j(not_zero, &operand_conversion_failure); __ j(parity_even, &operand_conversion_failure); } // Get int32 operands and perform bitop. __ pop(ecx); __ pop(eax); switch (op_) { case Token::BIT_OR: __ or_(eax, Operand(ecx)); break; case Token::BIT_AND: __ and_(eax, Operand(ecx)); break; case Token::BIT_XOR: __ xor_(eax, Operand(ecx)); break; case Token::SAR: __ sar(eax); break; case Token::SHL: __ shl(eax); break; case Token::SHR: __ shr(eax); break; default: UNREACHABLE(); } if (op_ == Token::SHR) { // Check if result is non-negative and fits in a smi. __ test(eax, Immediate(0xc0000000)); __ j(not_zero, &non_smi_result); } else { // Check if result fits in a smi. __ cmp(eax, 0xc0000000); __ j(negative, &non_smi_result); } // Tag smi result and return. ASSERT(kSmiTagSize == times_2); // adjust code if not the case __ lea(eax, Operand(eax, eax, times_1, kSmiTag)); GenerateReturn(masm); // All ops except SHR return a signed int32 that we load in a HeapNumber. if (op_ != Token::SHR) { __ bind(&non_smi_result); // Allocate a heap number if needed. __ mov(ebx, Operand(eax)); // ebx: result switch (mode_) { case OVERWRITE_LEFT: case OVERWRITE_RIGHT: // If the operand was an object, we skip the // allocation of a heap number. __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? 1 * kPointerSize : 2 * kPointerSize)); __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &skip_allocation, not_taken); // Fall through! case NO_OVERWRITE: __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); __ bind(&skip_allocation); break; default: UNREACHABLE(); } // Store the result in the HeapNumber and return. __ mov(Operand(esp, 1 * kPointerSize), ebx); __ fild_s(Operand(esp, 1 * kPointerSize)); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); GenerateReturn(masm); } // Clear the FPU exception flag and reset the stack before calling // the runtime system. __ bind(&operand_conversion_failure); __ add(Operand(esp), Immediate(2 * kPointerSize)); if (use_sse3_) { // If we've used the SSE3 instructions for truncating the // floating point values to integers and it failed, we have a // pending #IA exception. Clear it. __ fnclex(); } else { // The non-SSE3 variant does early bailout if the right // operand isn't a 32-bit integer, so we may have a single // value on the FPU stack we need to get rid of. __ ffree(0); } // SHR should return uint32 - go to runtime for non-smi/negative result. if (op_ == Token::SHR) { __ bind(&non_smi_result); } __ mov(eax, Operand(esp, 1 * kPointerSize)); __ mov(edx, Operand(esp, 2 * kPointerSize)); break; } default: UNREACHABLE(); break; } // If all else fails, use the runtime system to get the correct // result. If arguments was passed in registers now place them on the // stack in the correct order below the return address. __ bind(&call_runtime); if (HasArgumentsInRegisters()) { __ pop(ecx); if (HasArgumentsReversed()) { __ push(eax); __ push(edx); } else { __ push(edx); __ push(eax); } __ push(ecx); } switch (op_) { case Token::ADD: { // Test for string arguments before calling runtime. Label not_strings, both_strings, not_string1, string1; Result answer; __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument. __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument. __ test(eax, Immediate(kSmiTagMask)); __ j(zero, ¬_string1); __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, eax); __ j(above_equal, ¬_string1); // First argument is a a string, test second. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &string1); __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, edx); __ j(above_equal, &string1); // First and second argument are strings. __ TailCallRuntime(ExternalReference(Runtime::kStringAdd), 2, 1); // Only first argument is a string. __ bind(&string1); __ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION); // First argument was not a string, test second. __ bind(¬_string1); __ test(edx, Immediate(kSmiTagMask)); __ j(zero, ¬_strings); __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, edx); __ j(above_equal, ¬_strings); // Only second argument is a string. __ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION); __ bind(¬_strings); // Neither argument is a string. __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); break; } case Token::SUB: __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); break; case Token::MUL: __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); break; case Token::DIV: __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); break; case Token::MOD: __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); break; case Token::BIT_OR: __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); break; case Token::BIT_AND: __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); break; case Token::BIT_XOR: __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); break; case Token::SAR: __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); break; case Token::SHL: __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); break; case Token::SHR: __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) { // If arguments are not passed in registers read them from the stack. if (!HasArgumentsInRegisters()) { __ mov(eax, Operand(esp, 1 * kPointerSize)); __ mov(edx, Operand(esp, 2 * kPointerSize)); } } void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) { // If arguments are not passed in registers remove them from the stack before // returning. if (!HasArgumentsInRegisters()) { __ ret(2 * kPointerSize); // Remove both operands } else { __ ret(0); } } void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm, Register number) { Label load_smi, done; __ test(number, Immediate(kSmiTagMask)); __ j(zero, &load_smi, not_taken); __ fld_d(FieldOperand(number, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&load_smi); __ sar(number, kSmiTagSize); __ push(number); __ fild_s(Operand(esp, 0)); __ pop(number); __ bind(&done); } void FloatingPointHelper::LoadSse2Operands(MacroAssembler* masm, Label* not_numbers) { Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done; // Load operand in edx into xmm0, or branch to not_numbers. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &load_smi_edx, not_taken); // Argument in edx is a smi. __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Factory::heap_number_map()); __ j(not_equal, not_numbers); // Argument in edx is not a number. __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); __ bind(&load_eax); // Load operand in eax into xmm1, or branch to not_numbers. __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &load_smi_eax, not_taken); // Argument in eax is a smi. __ cmp(FieldOperand(eax, HeapObject::kMapOffset), Factory::heap_number_map()); __ j(equal, &load_float_eax); __ jmp(not_numbers); // Argument in eax is not a number. __ bind(&load_smi_edx); __ sar(edx, 1); // Untag smi before converting to float. __ cvtsi2sd(xmm0, Operand(edx)); __ shl(edx, 1); // Retag smi for heap number overwriting test. __ jmp(&load_eax); __ bind(&load_smi_eax); __ sar(eax, 1); // Untag smi before converting to float. __ cvtsi2sd(xmm1, Operand(eax)); __ shl(eax, 1); // Retag smi for heap number overwriting test. __ jmp(&done); __ bind(&load_float_eax); __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); __ bind(&done); } void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm, Register scratch) { Label load_smi_1, load_smi_2, done_load_1, done; __ mov(scratch, Operand(esp, 2 * kPointerSize)); __ test(scratch, Immediate(kSmiTagMask)); __ j(zero, &load_smi_1, not_taken); __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); __ bind(&done_load_1); __ mov(scratch, Operand(esp, 1 * kPointerSize)); __ test(scratch, Immediate(kSmiTagMask)); __ j(zero, &load_smi_2, not_taken); __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); __ jmp(&done); __ bind(&load_smi_1); __ sar(scratch, kSmiTagSize); __ push(scratch); __ fild_s(Operand(esp, 0)); __ pop(scratch); __ jmp(&done_load_1); __ bind(&load_smi_2); __ sar(scratch, kSmiTagSize); __ push(scratch); __ fild_s(Operand(esp, 0)); __ pop(scratch); __ bind(&done); } void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm, Label* non_float, Register scratch) { Label test_other, done; // Test if both operands are floats or smi -> scratch=k_is_float; // Otherwise scratch = k_not_float. __ test(edx, Immediate(kSmiTagMask)); __ j(zero, &test_other, not_taken); // argument in edx is OK __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset)); __ cmp(scratch, Factory::heap_number_map()); __ j(not_equal, non_float); // argument in edx is not a number -> NaN __ bind(&test_other); __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &done); // argument in eax is OK __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset)); __ cmp(scratch, Factory::heap_number_map()); __ j(not_equal, non_float); // argument in eax is not a number -> NaN // Fall-through: Both operands are numbers. __ bind(&done); } void UnarySubStub::Generate(MacroAssembler* masm) { Label undo; Label slow; Label done; Label try_float; // Check whether the value is a smi. __ test(eax, Immediate(kSmiTagMask)); __ j(not_zero, &try_float, not_taken); // Enter runtime system if the value of the expression is zero // to make sure that we switch between 0 and -0. __ test(eax, Operand(eax)); __ j(zero, &slow, not_taken); // The value of the expression is a smi that is not zero. Try // optimistic subtraction '0 - value'. __ mov(edx, Operand(eax)); __ Set(eax, Immediate(0)); __ sub(eax, Operand(edx)); __ j(overflow, &undo, not_taken); // If result is a smi we are done. __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &done, taken); // Restore eax and enter runtime system. __ bind(&undo); __ mov(eax, Operand(edx)); // Enter runtime system. __ bind(&slow); __ pop(ecx); // pop return address __ push(eax); __ push(ecx); // push return address __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); // Try floating point case. __ bind(&try_float); __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); __ cmp(edx, Factory::heap_number_map()); __ j(not_equal, &slow); if (overwrite_) { __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); __ xor_(edx, HeapNumber::kSignMask); // Flip sign. __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), edx); } else { __ mov(edx, Operand(eax)); // edx: operand __ AllocateHeapNumber(eax, ebx, ecx, &undo); // eax: allocated 'empty' number __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset)); __ xor_(ecx, HeapNumber::kSignMask); // Flip sign. __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ecx); __ mov(ecx, FieldOperand(edx, HeapNumber::kMantissaOffset)); __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx); } __ bind(&done); __ StubReturn(1); } void ArgumentsAccessStub::GenerateReadLength(MacroAssembler* masm) { // Check if the calling frame is an arguments adaptor frame. Label adaptor; __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adaptor); // Nothing to do: The formal number of parameters has already been // passed in register eax by calling function. Just return it. __ ret(0); // Arguments adaptor case: Read the arguments length from the // adaptor frame and return it. __ bind(&adaptor); __ mov(eax, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ ret(0); } void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { // The key is in edx and the parameter count is in eax. // The displacement is used for skipping the frame pointer on the // stack. It is the offset of the last parameter (if any) relative // to the frame pointer. static const int kDisplacement = 1 * kPointerSize; // Check that the key is a smi. Label slow; __ test(edx, Immediate(kSmiTagMask)); __ j(not_zero, &slow, not_taken); // Check if the calling frame is an arguments adaptor frame. Label adaptor; __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset)); __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adaptor); // Check index against formal parameters count limit passed in // through register eax. Use unsigned comparison to get negative // check for free. __ cmp(edx, Operand(eax)); __ j(above_equal, &slow, not_taken); // Read the argument from the stack and return it. ASSERT(kSmiTagSize == 1 && kSmiTag == 0); // shifting code depends on this __ lea(ebx, Operand(ebp, eax, times_2, 0)); __ neg(edx); __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); __ ret(0); // Arguments adaptor case: Check index against actual arguments // limit found in the arguments adaptor frame. Use unsigned // comparison to get negative check for free. __ bind(&adaptor); __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ cmp(edx, Operand(ecx)); __ j(above_equal, &slow, not_taken); // Read the argument from the stack and return it. ASSERT(kSmiTagSize == 1 && kSmiTag == 0); // shifting code depends on this __ lea(ebx, Operand(ebx, ecx, times_2, 0)); __ neg(edx); __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); __ ret(0); // Slow-case: Handle non-smi or out-of-bounds access to arguments // by calling the runtime system. __ bind(&slow); __ pop(ebx); // Return address. __ push(edx); __ push(ebx); __ TailCallRuntime(ExternalReference(Runtime::kGetArgumentsProperty), 1, 1); } void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) { // The displacement is used for skipping the return address and the // frame pointer on the stack. It is the offset of the last // parameter (if any) relative to the frame pointer. static const int kDisplacement = 2 * kPointerSize; // Check if the calling frame is an arguments adaptor frame. Label runtime; __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); __ cmp(Operand(ecx), Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(not_equal, &runtime); // Patch the arguments.length and the parameters pointer. __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ mov(Operand(esp, 1 * kPointerSize), ecx); __ lea(edx, Operand(edx, ecx, times_2, kDisplacement)); __ mov(Operand(esp, 2 * kPointerSize), edx); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ TailCallRuntime(ExternalReference(Runtime::kNewArgumentsFast), 3, 1); } void CompareStub::Generate(MacroAssembler* masm) { Label call_builtin, done; // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. if (cc_ == equal) { // Both strict and non-strict. Label slow; // Fallthrough label. // Equality is almost reflexive (everything but NaN), so start by testing // for "identity and not NaN". { Label not_identical; __ cmp(eax, Operand(edx)); __ j(not_equal, ¬_identical); // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), // so we do the second best thing - test it ourselves. Label return_equal; Label heap_number; // If it's not a heap number, then return equal. __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Immediate(Factory::heap_number_map())); __ j(equal, &heap_number); __ bind(&return_equal); __ Set(eax, Immediate(0)); __ ret(0); __ bind(&heap_number); // It is a heap number, so return non-equal if it's NaN and equal if it's // not NaN. // The representation of NaN values has all exponent bits (52..62) set, // and not all mantissa bits (0..51) clear. // We only accept QNaNs, which have bit 51 set. // Read top bits of double representation (second word of value). // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e., // all bits in the mask are set. We only need to check the word // that contains the exponent and high bit of the mantissa. ASSERT_NE(0, (kQuietNaNHighBitsMask << 1) & 0x80000000u); __ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset)); __ xor_(eax, Operand(eax)); // Shift value and mask so kQuietNaNHighBitsMask applies to topmost bits. __ add(edx, Operand(edx)); __ cmp(edx, kQuietNaNHighBitsMask << 1); __ setcc(above_equal, eax); __ ret(0); __ bind(¬_identical); } // If we're doing a strict equality comparison, we don't have to do // type conversion, so we generate code to do fast comparison for objects // and oddballs. Non-smi numbers and strings still go through the usual // slow-case code. if (strict_) { // If either is a Smi (we know that not both are), then they can only // be equal if the other is a HeapNumber. If so, use the slow case. { Label not_smis; ASSERT_EQ(0, kSmiTag); ASSERT_EQ(0, Smi::FromInt(0)); __ mov(ecx, Immediate(kSmiTagMask)); __ and_(ecx, Operand(eax)); __ test(ecx, Operand(edx)); __ j(not_zero, ¬_smis); // One operand is a smi. // Check whether the non-smi is a heap number. ASSERT_EQ(1, kSmiTagMask); // ecx still holds eax & kSmiTag, which is either zero or one. __ sub(Operand(ecx), Immediate(0x01)); __ mov(ebx, edx); __ xor_(ebx, Operand(eax)); __ and_(ebx, Operand(ecx)); // ebx holds either 0 or eax ^ edx. __ xor_(ebx, Operand(eax)); // if eax was smi, ebx is now edx, else eax. // Check if the non-smi operand is a heap number. __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), Immediate(Factory::heap_number_map())); // If heap number, handle it in the slow case. __ j(equal, &slow); // Return non-equal (ebx is not zero) __ mov(eax, ebx); __ ret(0); __ bind(¬_smis); } // If either operand is a JSObject or an oddball value, then they are not // equal since their pointers are different // There is no test for undetectability in strict equality. // Get the type of the first operand. __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); // If the first object is a JS object, we have done pointer comparison. ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); Label first_non_object; __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(less, &first_non_object); // Return non-zero (eax is not zero) Label return_not_equal; ASSERT(kHeapObjectTag != 0); __ bind(&return_not_equal); __ ret(0); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ cmp(ecx, ODDBALL_TYPE); __ j(equal, &return_not_equal); __ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(greater_equal, &return_not_equal); // Check for oddballs: true, false, null, undefined. __ cmp(ecx, ODDBALL_TYPE); __ j(equal, &return_not_equal); // Fall through to the general case. } __ bind(&slow); } // Push arguments below the return address. __ pop(ecx); __ push(eax); __ push(edx); __ push(ecx); // Inlined floating point compare. // Call builtin if operands are not floating point or smi. Label check_for_symbols; Label unordered; if (CpuFeatures::IsSupported(CpuFeatures::SSE2)) { CpuFeatures::Scope use_sse2(CpuFeatures::SSE2); CpuFeatures::Scope use_cmov(CpuFeatures::CMOV); FloatingPointHelper::LoadSse2Operands(masm, &check_for_symbols); __ comisd(xmm0, xmm1); // Jump to builtin for NaN. __ j(parity_even, &unordered, not_taken); __ mov(eax, 0); // equal __ mov(ecx, Immediate(Smi::FromInt(1))); __ cmov(above, eax, Operand(ecx)); __ mov(ecx, Immediate(Smi::FromInt(-1))); __ cmov(below, eax, Operand(ecx)); __ ret(2 * kPointerSize); } else { FloatingPointHelper::CheckFloatOperands(masm, &check_for_symbols, ebx); FloatingPointHelper::LoadFloatOperands(masm, ecx); __ FCmp(); // Jump to builtin for NaN. __ j(parity_even, &unordered, not_taken); Label below_lbl, above_lbl; // Return a result of -1, 0, or 1, to indicate result of comparison. __ j(below, &below_lbl, not_taken); __ j(above, &above_lbl, not_taken); __ xor_(eax, Operand(eax)); // equal // Both arguments were pushed in case a runtime call was needed. __ ret(2 * kPointerSize); __ bind(&below_lbl); __ mov(eax, Immediate(Smi::FromInt(-1))); __ ret(2 * kPointerSize); __ bind(&above_lbl); __ mov(eax, Immediate(Smi::FromInt(1))); __ ret(2 * kPointerSize); // eax, edx were pushed } // If one of the numbers was NaN, then the result is always false. // The cc is never not-equal. __ bind(&unordered); ASSERT(cc_ != not_equal); if (cc_ == less || cc_ == less_equal) { __ mov(eax, Immediate(Smi::FromInt(1))); } else { __ mov(eax, Immediate(Smi::FromInt(-1))); } __ ret(2 * kPointerSize); // eax, edx were pushed // Fast negative check for symbol-to-symbol equality. __ bind(&check_for_symbols); if (cc_ == equal) { BranchIfNonSymbol(masm, &call_builtin, eax, ecx); BranchIfNonSymbol(masm, &call_builtin, edx, ecx); // We've already checked for object identity, so if both operands // are symbols they aren't equal. Register eax already holds a // non-zero value, which indicates not equal, so just return. __ ret(2 * kPointerSize); } __ bind(&call_builtin); // must swap argument order __ pop(ecx); __ pop(edx); __ pop(eax); __ push(edx); __ push(eax); // Figure out which native to call and setup the arguments. Builtins::JavaScript builtin; if (cc_ == equal) { builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; } else { builtin = Builtins::COMPARE; int ncr; // NaN compare result if (cc_ == less || cc_ == less_equal) { ncr = GREATER; } else { ASSERT(cc_ == greater || cc_ == greater_equal); // remaining cases ncr = LESS; } __ push(Immediate(Smi::FromInt(ncr))); } // Restore return address on the stack. __ push(ecx); // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ InvokeBuiltin(builtin, JUMP_FUNCTION); } void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, Label* label, Register object, Register scratch) { __ test(object, Immediate(kSmiTagMask)); __ j(zero, label); __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset)); __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); __ and_(scratch, kIsSymbolMask | kIsNotStringMask); __ cmp(scratch, kSymbolTag | kStringTag); __ j(not_equal, label); } void StackCheckStub::Generate(MacroAssembler* masm) { // Because builtins always remove the receiver from the stack, we // have to fake one to avoid underflowing the stack. The receiver // must be inserted below the return address on the stack so we // temporarily store that in a register. __ pop(eax); __ push(Immediate(Smi::FromInt(0))); __ push(eax); // Do tail-call to runtime routine. __ TailCallRuntime(ExternalReference(Runtime::kStackGuard), 1, 1); } void CallFunctionStub::Generate(MacroAssembler* masm) { Label slow; // Get the function to call from the stack. // +2 ~ receiver, return address __ mov(edi, Operand(esp, (argc_ + 2) * kPointerSize)); // Check that the function really is a JavaScript function. __ test(edi, Immediate(kSmiTagMask)); __ j(zero, &slow, not_taken); // Goto slow case if we do not have a function. __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &slow, not_taken); // Fast-case: Just invoke the function. ParameterCount actual(argc_); __ InvokeFunction(edi, actual, JUMP_FUNCTION); // Slow-case: Non-function called. __ bind(&slow); __ Set(eax, Immediate(argc_)); __ Set(ebx, Immediate(0)); __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION); Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); __ jmp(adaptor, RelocInfo::CODE_TARGET); } int CEntryStub::MinorKey() { ASSERT(result_size_ <= 2); // Result returned in eax, or eax+edx if result_size_ is 2. return 0; } void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) { // eax holds the exception. // Adjust this code if not the case. ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); // Drop the sp to the top of the handler. ExternalReference handler_address(Top::k_handler_address); __ mov(esp, Operand::StaticVariable(handler_address)); // Restore next handler and frame pointer, discard handler state. ASSERT(StackHandlerConstants::kNextOffset == 0); __ pop(Operand::StaticVariable(handler_address)); ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); __ pop(ebp); __ pop(edx); // Remove state. // Before returning we restore the context from the frame pointer if // not NULL. The frame pointer is NULL in the exception handler of // a JS entry frame. __ xor_(esi, Operand(esi)); // Tentatively set context pointer to NULL. Label skip; __ cmp(ebp, 0); __ j(equal, &skip, not_taken); __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); __ bind(&skip); ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); __ ret(0); } void CEntryStub::GenerateCore(MacroAssembler* masm, Label* throw_normal_exception, Label* throw_termination_exception, Label* throw_out_of_memory_exception, StackFrame::Type frame_type, bool do_gc, bool always_allocate_scope) { // eax: result parameter for PerformGC, if any // ebx: pointer to C function (C callee-saved) // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // edi: number of arguments including receiver (C callee-saved) // esi: pointer to the first argument (C callee-saved) if (do_gc) { __ mov(Operand(esp, 0 * kPointerSize), eax); // Result. __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY); } ExternalReference scope_depth = ExternalReference::heap_always_allocate_scope_depth(); if (always_allocate_scope) { __ inc(Operand::StaticVariable(scope_depth)); } // Call C function. __ mov(Operand(esp, 0 * kPointerSize), edi); // argc. __ mov(Operand(esp, 1 * kPointerSize), esi); // argv. __ call(Operand(ebx)); // Result is in eax or edx:eax - do not destroy these registers! if (always_allocate_scope) { __ dec(Operand::StaticVariable(scope_depth)); } // Make sure we're not trying to return 'the hole' from the runtime // call as this may lead to crashes in the IC code later. if (FLAG_debug_code) { Label okay; __ cmp(eax, Factory::the_hole_value()); __ j(not_equal, &okay); __ int3(); __ bind(&okay); } // Check for failure result. Label failure_returned; ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); __ lea(ecx, Operand(eax, 1)); // Lower 2 bits of ecx are 0 iff eax has failure tag. __ test(ecx, Immediate(kFailureTagMask)); __ j(zero, &failure_returned, not_taken); // Exit the JavaScript to C++ exit frame. __ LeaveExitFrame(frame_type); __ ret(0); // Handling of failure. __ bind(&failure_returned); Label retry; // If the returned exception is RETRY_AFTER_GC continue at retry label ASSERT(Failure::RETRY_AFTER_GC == 0); __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); __ j(zero, &retry, taken); // Special handling of out of memory exceptions. __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); __ j(equal, throw_out_of_memory_exception); // Retrieve the pending exception and clear the variable. ExternalReference pending_exception_address(Top::k_pending_exception_address); __ mov(eax, Operand::StaticVariable(pending_exception_address)); __ mov(edx, Operand::StaticVariable(ExternalReference::the_hole_value_location())); __ mov(Operand::StaticVariable(pending_exception_address), edx); // Special handling of termination exceptions which are uncatchable // by javascript code. __ cmp(eax, Factory::termination_exception()); __ j(equal, throw_termination_exception); // Handle normal exception. __ jmp(throw_normal_exception); // Retry. __ bind(&retry); } void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm, UncatchableExceptionType type) { // Adjust this code if not the case. ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); // Drop sp to the top stack handler. ExternalReference handler_address(Top::k_handler_address); __ mov(esp, Operand::StaticVariable(handler_address)); // Unwind the handlers until the ENTRY handler is found. Label loop, done; __ bind(&loop); // Load the type of the current stack handler. const int kStateOffset = StackHandlerConstants::kStateOffset; __ cmp(Operand(esp, kStateOffset), Immediate(StackHandler::ENTRY)); __ j(equal, &done); // Fetch the next handler in the list. const int kNextOffset = StackHandlerConstants::kNextOffset; __ mov(esp, Operand(esp, kNextOffset)); __ jmp(&loop); __ bind(&done); // Set the top handler address to next handler past the current ENTRY handler. ASSERT(StackHandlerConstants::kNextOffset == 0); __ pop(Operand::StaticVariable(handler_address)); if (type == OUT_OF_MEMORY) { // Set external caught exception to false. ExternalReference external_caught(Top::k_external_caught_exception_address); __ mov(eax, false); __ mov(Operand::StaticVariable(external_caught), eax); // Set pending exception and eax to out of memory exception. ExternalReference pending_exception(Top::k_pending_exception_address); __ mov(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); __ mov(Operand::StaticVariable(pending_exception), eax); } // Clear the context pointer. __ xor_(esi, Operand(esi)); // Restore fp from handler and discard handler state. ASSERT(StackHandlerConstants::kFPOffset == 1 * kPointerSize); __ pop(ebp); __ pop(edx); // State. ASSERT(StackHandlerConstants::kPCOffset == 3 * kPointerSize); __ ret(0); } void CEntryStub::GenerateBody(MacroAssembler* masm, bool is_debug_break) { // eax: number of arguments including receiver // ebx: pointer to C function (C callee-saved) // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // esi: current context (C callee-saved) // edi: JS function of the caller (C callee-saved) // NOTE: Invocations of builtins may return failure objects instead // of a proper result. The builtin entry handles this by performing // a garbage collection and retrying the builtin (twice). StackFrame::Type frame_type = is_debug_break ? StackFrame::EXIT_DEBUG : StackFrame::EXIT; // Enter the exit frame that transitions from JavaScript to C++. __ EnterExitFrame(frame_type); // eax: result parameter for PerformGC, if any (setup below) // ebx: pointer to builtin function (C callee-saved) // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // edi: number of arguments including receiver (C callee-saved) // esi: argv pointer (C callee-saved) Label throw_normal_exception; Label throw_termination_exception; Label throw_out_of_memory_exception; // Call into the runtime system. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, frame_type, false, false); // Do space-specific GC and retry runtime call. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, frame_type, true, false); // Do full GC and retry runtime call one final time. Failure* failure = Failure::InternalError(); __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure))); GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, frame_type, true, true); __ bind(&throw_out_of_memory_exception); GenerateThrowUncatchable(masm, OUT_OF_MEMORY); __ bind(&throw_termination_exception); GenerateThrowUncatchable(masm, TERMINATION); __ bind(&throw_normal_exception); GenerateThrowTOS(masm); } void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { Label invoke, exit; #ifdef ENABLE_LOGGING_AND_PROFILING Label not_outermost_js, not_outermost_js_2; #endif // Setup frame. __ push(ebp); __ mov(ebp, Operand(esp)); // Push marker in two places. int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; __ push(Immediate(Smi::FromInt(marker))); // context slot __ push(Immediate(Smi::FromInt(marker))); // function slot // Save callee-saved registers (C calling conventions). __ push(edi); __ push(esi); __ push(ebx); // Save copies of the top frame descriptor on the stack. ExternalReference c_entry_fp(Top::k_c_entry_fp_address); __ push(Operand::StaticVariable(c_entry_fp)); #ifdef ENABLE_LOGGING_AND_PROFILING // If this is the outermost JS call, set js_entry_sp value. ExternalReference js_entry_sp(Top::k_js_entry_sp_address); __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0)); __ j(not_equal, ¬_outermost_js); __ mov(Operand::StaticVariable(js_entry_sp), ebp); __ bind(¬_outermost_js); #endif // Call a faked try-block that does the invoke. __ call(&invoke); // Caught exception: Store result (exception) in the pending // exception field in the JSEnv and return a failure sentinel. ExternalReference pending_exception(Top::k_pending_exception_address); __ mov(Operand::StaticVariable(pending_exception), eax); __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception())); __ jmp(&exit); // Invoke: Link this frame into the handler chain. __ bind(&invoke); __ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER); // Clear any pending exceptions. __ mov(edx, Operand::StaticVariable(ExternalReference::the_hole_value_location())); __ mov(Operand::StaticVariable(pending_exception), edx); // Fake a receiver (NULL). __ push(Immediate(0)); // receiver // Invoke the function by calling through JS entry trampoline // builtin and pop the faked function when we return. Notice that we // cannot store a reference to the trampoline code directly in this // stub, because the builtin stubs may not have been generated yet. if (is_construct) { ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline); __ mov(edx, Immediate(construct_entry)); } else { ExternalReference entry(Builtins::JSEntryTrampoline); __ mov(edx, Immediate(entry)); } __ mov(edx, Operand(edx, 0)); // deref address __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); __ call(Operand(edx)); // Unlink this frame from the handler chain. __ pop(Operand::StaticVariable(ExternalReference(Top::k_handler_address))); // Pop next_sp. __ add(Operand(esp), Immediate(StackHandlerConstants::kSize - kPointerSize)); #ifdef ENABLE_LOGGING_AND_PROFILING // If current EBP value is the same as js_entry_sp value, it means that // the current function is the outermost. __ cmp(ebp, Operand::StaticVariable(js_entry_sp)); __ j(not_equal, ¬_outermost_js_2); __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0)); __ bind(¬_outermost_js_2); #endif // Restore the top frame descriptor from the stack. __ bind(&exit); __ pop(Operand::StaticVariable(ExternalReference(Top::k_c_entry_fp_address))); // Restore callee-saved registers (C calling conventions). __ pop(ebx); __ pop(esi); __ pop(edi); __ add(Operand(esp), Immediate(2 * kPointerSize)); // remove markers // Restore frame pointer and return. __ pop(ebp); __ ret(0); } void InstanceofStub::Generate(MacroAssembler* masm) { // Get the object - go slow case if it's a smi. Label slow; __ mov(eax, Operand(esp, 2 * kPointerSize)); // 2 ~ return address, function __ test(eax, Immediate(kSmiTagMask)); __ j(zero, &slow, not_taken); // Check that the left hand is a JS object. __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); // eax - object map __ movzx_b(ecx, FieldOperand(eax, Map::kInstanceTypeOffset)); // ecx - type __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(less, &slow, not_taken); __ cmp(ecx, LAST_JS_OBJECT_TYPE); __ j(greater, &slow, not_taken); // Get the prototype of the function. __ mov(edx, Operand(esp, 1 * kPointerSize)); // 1 ~ return address __ TryGetFunctionPrototype(edx, ebx, ecx, &slow); // Check that the function prototype is a JS object. __ test(ebx, Immediate(kSmiTagMask)); __ j(zero, &slow, not_taken); __ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ cmp(ecx, FIRST_JS_OBJECT_TYPE); __ j(less, &slow, not_taken); __ cmp(ecx, LAST_JS_OBJECT_TYPE); __ j(greater, &slow, not_taken); // Register mapping: eax is object map and ebx is function prototype. __ mov(ecx, FieldOperand(eax, Map::kPrototypeOffset)); // Loop through the prototype chain looking for the function prototype. Label loop, is_instance, is_not_instance; __ bind(&loop); __ cmp(ecx, Operand(ebx)); __ j(equal, &is_instance); __ cmp(Operand(ecx), Immediate(Factory::null_value())); __ j(equal, &is_not_instance); __ mov(ecx, FieldOperand(ecx, HeapObject::kMapOffset)); __ mov(ecx, FieldOperand(ecx, Map::kPrototypeOffset)); __ jmp(&loop); __ bind(&is_instance); __ Set(eax, Immediate(0)); __ ret(2 * kPointerSize); __ bind(&is_not_instance); __ Set(eax, Immediate(Smi::FromInt(1))); __ ret(2 * kPointerSize); // Slow-case: Go through the JavaScript implementation. __ bind(&slow); __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); } int CompareStub::MinorKey() { // Encode the two parameters in a unique 16 bit value. ASSERT(static_cast<unsigned>(cc_) < (1 << 15)); return (static_cast<unsigned>(cc_) << 1) | (strict_ ? 1 : 0); } #undef __ } } // namespace v8::internal