// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_BASE_PLATFORM_TIME_H_ #define V8_BASE_PLATFORM_TIME_H_ #include <stdint.h> #include <ctime> #include <iosfwd> #include <limits> #include "src/base/base-export.h" #include "src/base/bits.h" #include "src/base/macros.h" #include "src/base/safe_conversions.h" #if V8_OS_WIN #include "src/base/win32-headers.h" #endif // Forward declarations. extern "C" { struct _FILETIME; struct mach_timespec; struct timespec; struct timeval; } namespace v8 { namespace base { class Time; class TimeDelta; class TimeTicks; namespace time_internal { template<class TimeClass> class TimeBase; } class TimeConstants { public: static constexpr int64_t kHoursPerDay = 24; static constexpr int64_t kMillisecondsPerSecond = 1000; static constexpr int64_t kMillisecondsPerDay = kMillisecondsPerSecond * 60 * 60 * kHoursPerDay; static constexpr int64_t kMicrosecondsPerMillisecond = 1000; static constexpr int64_t kMicrosecondsPerSecond = kMicrosecondsPerMillisecond * kMillisecondsPerSecond; static constexpr int64_t kMicrosecondsPerMinute = kMicrosecondsPerSecond * 60; static constexpr int64_t kMicrosecondsPerHour = kMicrosecondsPerMinute * 60; static constexpr int64_t kMicrosecondsPerDay = kMicrosecondsPerHour * kHoursPerDay; static constexpr int64_t kMicrosecondsPerWeek = kMicrosecondsPerDay * 7; static constexpr int64_t kNanosecondsPerMicrosecond = 1000; static constexpr int64_t kNanosecondsPerSecond = kNanosecondsPerMicrosecond * kMicrosecondsPerSecond; }; // ----------------------------------------------------------------------------- // TimeDelta // // This class represents a duration of time, internally represented in // microseonds. class V8_BASE_EXPORT TimeDelta final { public: constexpr TimeDelta() : delta_(0) {} // Converts units of time to TimeDeltas. static constexpr TimeDelta FromDays(int days) { return TimeDelta(days * TimeConstants::kMicrosecondsPerDay); } static constexpr TimeDelta FromHours(int hours) { return TimeDelta(hours * TimeConstants::kMicrosecondsPerHour); } static constexpr TimeDelta FromMinutes(int minutes) { return TimeDelta(minutes * TimeConstants::kMicrosecondsPerMinute); } static constexpr TimeDelta FromSeconds(int64_t seconds) { return TimeDelta(seconds * TimeConstants::kMicrosecondsPerSecond); } static constexpr TimeDelta FromMilliseconds(int64_t milliseconds) { return TimeDelta(milliseconds * TimeConstants::kMicrosecondsPerMillisecond); } static constexpr TimeDelta FromMicroseconds(int64_t microseconds) { return TimeDelta(microseconds); } static constexpr TimeDelta FromNanoseconds(int64_t nanoseconds) { return TimeDelta(nanoseconds / TimeConstants::kNanosecondsPerMicrosecond); } static TimeDelta FromMillisecondsD(double milliseconds) { return FromDouble(milliseconds * TimeConstants::kMicrosecondsPerMillisecond); } // Returns the maximum time delta, which should be greater than any reasonable // time delta we might compare it to. Adding or subtracting the maximum time // delta to a time or another time delta has an undefined result. static constexpr TimeDelta Max(); // Returns the minimum time delta, which should be less than than any // reasonable time delta we might compare it to. Adding or subtracting the // minimum time delta to a time or another time delta has an undefined result. static constexpr TimeDelta Min(); // Returns true if the time delta is zero. constexpr bool IsZero() const { return delta_ == 0; } // Returns true if the time delta is the maximum/minimum time delta. constexpr bool IsMax() const { return delta_ == std::numeric_limits<int64_t>::max(); } constexpr bool IsMin() const { return delta_ == std::numeric_limits<int64_t>::min(); } // Returns the time delta in some unit. The F versions return a floating // point value, the "regular" versions return a rounded-down value. // // InMillisecondsRoundedUp() instead returns an integer that is rounded up // to the next full millisecond. int InDays() const; int InHours() const; int InMinutes() const; double InSecondsF() const; int64_t InSeconds() const; double InMillisecondsF() const; int64_t InMilliseconds() const; int64_t InMillisecondsRoundedUp() const; int64_t InMicroseconds() const; int64_t InNanoseconds() const; // Converts to/from Mach time specs. static TimeDelta FromMachTimespec(struct mach_timespec ts); struct mach_timespec ToMachTimespec() const; // Converts to/from POSIX time specs. static TimeDelta FromTimespec(struct timespec ts); struct timespec ToTimespec() const; // Computations with other deltas. TimeDelta operator+(const TimeDelta& other) const { return TimeDelta(delta_ + other.delta_); } TimeDelta operator-(const TimeDelta& other) const { return TimeDelta(delta_ - other.delta_); } TimeDelta& operator+=(const TimeDelta& other) { delta_ += other.delta_; return *this; } TimeDelta& operator-=(const TimeDelta& other) { delta_ -= other.delta_; return *this; } constexpr TimeDelta operator-() const { return TimeDelta(-delta_); } double TimesOf(const TimeDelta& other) const { return static_cast<double>(delta_) / static_cast<double>(other.delta_); } double PercentOf(const TimeDelta& other) const { return TimesOf(other) * 100.0; } // Computations with ints, note that we only allow multiplicative operations // with ints, and additive operations with other deltas. TimeDelta operator*(int64_t a) const { return TimeDelta(delta_ * a); } TimeDelta operator/(int64_t a) const { return TimeDelta(delta_ / a); } TimeDelta& operator*=(int64_t a) { delta_ *= a; return *this; } TimeDelta& operator/=(int64_t a) { delta_ /= a; return *this; } int64_t operator/(const TimeDelta& other) const { return delta_ / other.delta_; } // Comparison operators. constexpr bool operator==(const TimeDelta& other) const { return delta_ == other.delta_; } constexpr bool operator!=(const TimeDelta& other) const { return delta_ != other.delta_; } constexpr bool operator<(const TimeDelta& other) const { return delta_ < other.delta_; } constexpr bool operator<=(const TimeDelta& other) const { return delta_ <= other.delta_; } constexpr bool operator>(const TimeDelta& other) const { return delta_ > other.delta_; } constexpr bool operator>=(const TimeDelta& other) const { return delta_ >= other.delta_; } private: // TODO(v8:10620): constexpr requires constexpr saturated_cast. static inline TimeDelta FromDouble(double value); template<class TimeClass> friend class time_internal::TimeBase; // Constructs a delta given the duration in microseconds. This is private // to avoid confusion by callers with an integer constructor. Use // FromSeconds, FromMilliseconds, etc. instead. explicit constexpr TimeDelta(int64_t delta) : delta_(delta) {} // Delta in microseconds. int64_t delta_; }; // static TimeDelta TimeDelta::FromDouble(double value) { return TimeDelta(saturated_cast<int64_t>(value)); } // static constexpr TimeDelta TimeDelta::Max() { return TimeDelta(std::numeric_limits<int64_t>::max()); } // static constexpr TimeDelta TimeDelta::Min() { return TimeDelta(std::numeric_limits<int64_t>::min()); } namespace time_internal { // TimeBase-------------------------------------------------------------------- // Provides value storage and comparison/math operations common to all time // classes. Each subclass provides for strong type-checking to ensure // semantically meaningful comparison/math of time values from the same clock // source or timeline. template <class TimeClass> class TimeBase : public TimeConstants { public: #if V8_OS_WIN // To avoid overflow in QPC to Microseconds calculations, since we multiply // by kMicrosecondsPerSecond, then the QPC value should not exceed // (2^63 - 1) / 1E6. If it exceeds that threshold, we divide then multiply. static constexpr int64_t kQPCOverflowThreshold = INT64_C(0x8637BD05AF7); #endif // Returns true if this object has not been initialized. // // Warning: Be careful when writing code that performs math on time values, // since it's possible to produce a valid "zero" result that should not be // interpreted as a "null" value. constexpr bool IsNull() const { return us_ == 0; } // Returns the maximum/minimum times, which should be greater/less than any // reasonable time with which we might compare it. static TimeClass Max() { return TimeClass(std::numeric_limits<int64_t>::max()); } static TimeClass Min() { return TimeClass(std::numeric_limits<int64_t>::min()); } // Returns true if this object represents the maximum/minimum time. constexpr bool IsMax() const { return us_ == std::numeric_limits<int64_t>::max(); } constexpr bool IsMin() const { return us_ == std::numeric_limits<int64_t>::min(); } // For serializing only. Use FromInternalValue() to reconstitute. Please don't // use this and do arithmetic on it, as it is more error prone than using the // provided operators. int64_t ToInternalValue() const { return us_; } // The amount of time since the origin (or "zero") point. This is a syntactic // convenience to aid in code readability, mainly for debugging/testing use // cases. // // Warning: While the Time subclass has a fixed origin point, the origin for // the other subclasses can vary each time the application is restarted. constexpr TimeDelta since_origin() const { return TimeDelta::FromMicroseconds(us_); } TimeClass& operator=(TimeClass other) { us_ = other.us_; return *(static_cast<TimeClass*>(this)); } // Compute the difference between two times. TimeDelta operator-(TimeClass other) const { return TimeDelta::FromMicroseconds(us_ - other.us_); } // Return a new time modified by some delta. TimeClass operator+(TimeDelta delta) const { return TimeClass(bits::SignedSaturatedAdd64(delta.delta_, us_)); } TimeClass operator-(TimeDelta delta) const { return TimeClass(-bits::SignedSaturatedSub64(delta.delta_, us_)); } // Modify by some time delta. TimeClass& operator+=(TimeDelta delta) { return static_cast<TimeClass&>(*this = (*this + delta)); } TimeClass& operator-=(TimeDelta delta) { return static_cast<TimeClass&>(*this = (*this - delta)); } // Comparison operators bool operator==(TimeClass other) const { return us_ == other.us_; } bool operator!=(TimeClass other) const { return us_ != other.us_; } bool operator<(TimeClass other) const { return us_ < other.us_; } bool operator<=(TimeClass other) const { return us_ <= other.us_; } bool operator>(TimeClass other) const { return us_ > other.us_; } bool operator>=(TimeClass other) const { return us_ >= other.us_; } // Converts an integer value representing TimeClass to a class. This is used // when deserializing a |TimeClass| structure, using a value known to be // compatible. It is not provided as a constructor because the integer type // may be unclear from the perspective of a caller. static TimeClass FromInternalValue(int64_t us) { return TimeClass(us); } protected: explicit constexpr TimeBase(int64_t us) : us_(us) {} // Time value in a microsecond timebase. int64_t us_; }; } // namespace time_internal // ----------------------------------------------------------------------------- // Time // // This class represents an absolute point in time, internally represented as // microseconds (s/1,000,000) since 00:00:00 UTC, January 1, 1970. class V8_BASE_EXPORT Time final : public time_internal::TimeBase<Time> { public: // Contains the nullptr time. Use Time::Now() to get the current time. constexpr Time() : TimeBase(0) {} // Returns the current time. Watch out, the system might adjust its clock // in which case time will actually go backwards. We don't guarantee that // times are increasing, or that two calls to Now() won't be the same. static Time Now(); // Returns the current time. Same as Now() except that this function always // uses system time so that there are no discrepancies between the returned // time and system time even on virtual environments including our test bot. // For timing sensitive unittests, this function should be used. static Time NowFromSystemTime(); // Returns the time for epoch in Unix-like system (Jan 1, 1970). static Time UnixEpoch() { return Time(0); } // Converts to/from POSIX time specs. static Time FromTimespec(struct timespec ts); struct timespec ToTimespec() const; // Converts to/from POSIX time values. static Time FromTimeval(struct timeval tv); struct timeval ToTimeval() const; // Converts to/from Windows file times. static Time FromFiletime(struct _FILETIME ft); struct _FILETIME ToFiletime() const; // Converts to/from the Javascript convention for times, a number of // milliseconds since the epoch: static Time FromJsTime(double ms_since_epoch); double ToJsTime() const; private: friend class time_internal::TimeBase<Time>; explicit constexpr Time(int64_t us) : TimeBase(us) {} }; V8_BASE_EXPORT std::ostream& operator<<(std::ostream&, const Time&); inline Time operator+(const TimeDelta& delta, const Time& time) { return time + delta; } // ----------------------------------------------------------------------------- // TimeTicks // // This class represents an abstract time that is most of the time incrementing // for use in measuring time durations. It is internally represented in // microseconds. It can not be converted to a human-readable time, but is // guaranteed not to decrease (if the user changes the computer clock, // Time::Now() may actually decrease or jump). But note that TimeTicks may // "stand still", for example if the computer suspended. class V8_BASE_EXPORT TimeTicks final : public time_internal::TimeBase<TimeTicks> { public: constexpr TimeTicks() : TimeBase(0) {} // Platform-dependent tick count representing "right now." When // IsHighResolution() returns false, the resolution of the clock could be as // coarse as ~15.6ms. Otherwise, the resolution should be no worse than one // microsecond. // This method never returns a null TimeTicks. static TimeTicks Now(); // This is equivalent to Now() but DCHECKs that IsHighResolution(). Useful for // test frameworks that rely on high resolution clocks (in practice all // platforms but low-end Windows devices have high resolution clocks). static TimeTicks HighResolutionNow(); // Returns true if the high-resolution clock is working on this system. static bool IsHighResolution(); private: friend class time_internal::TimeBase<TimeTicks>; // Please use Now() to create a new object. This is for internal use // and testing. Ticks are in microseconds. explicit constexpr TimeTicks(int64_t ticks) : TimeBase(ticks) {} }; inline TimeTicks operator+(const TimeDelta& delta, const TimeTicks& ticks) { return ticks + delta; } // ThreadTicks ---------------------------------------------------------------- // Represents a clock, specific to a particular thread, than runs only while the // thread is running. class V8_BASE_EXPORT ThreadTicks final : public time_internal::TimeBase<ThreadTicks> { public: constexpr ThreadTicks() : TimeBase(0) {} // Returns true if ThreadTicks::Now() is supported on this system. static bool IsSupported(); // Waits until the initialization is completed. Needs to be guarded with a // call to IsSupported(). static void WaitUntilInitialized() { #if V8_OS_WIN WaitUntilInitializedWin(); #endif } // Returns thread-specific CPU-time on systems that support this feature. // Needs to be guarded with a call to IsSupported(). Use this timer // to (approximately) measure how much time the calling thread spent doing // actual work vs. being de-scheduled. May return bogus results if the thread // migrates to another CPU between two calls. Returns an empty ThreadTicks // object until the initialization is completed. If a clock reading is // absolutely needed, call WaitUntilInitialized() before this method. static ThreadTicks Now(); #if V8_OS_WIN // Similar to Now() above except this returns thread-specific CPU time for an // arbitrary thread. All comments for Now() method above apply apply to this // method as well. static ThreadTicks GetForThread(const HANDLE& thread_handle); #endif private: template <class TimeClass> friend class time_internal::TimeBase; // Please use Now() or GetForThread() to create a new object. This is for // internal use and testing. Ticks are in microseconds. explicit constexpr ThreadTicks(int64_t ticks) : TimeBase(ticks) {} #if V8_OS_WIN // Returns the frequency of the TSC in ticks per second, or 0 if it hasn't // been measured yet. Needs to be guarded with a call to IsSupported(). static double TSCTicksPerSecond(); static bool IsSupportedWin(); static void WaitUntilInitializedWin(); #endif }; } // namespace base } // namespace v8 #endif // V8_BASE_PLATFORM_TIME_H_