// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_ #define V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_ #include "src/base/strings.h" #include "src/codegen/arm64/assembler-arm64.h" #include "src/codegen/macro-assembler.h" #include "src/regexp/regexp-macro-assembler.h" namespace v8 { namespace internal { class V8_EXPORT_PRIVATE RegExpMacroAssemblerARM64 : public NativeRegExpMacroAssembler { public: RegExpMacroAssemblerARM64(Isolate* isolate, Zone* zone, Mode mode, int registers_to_save); ~RegExpMacroAssemblerARM64() override; void AbortedCodeGeneration() override; int stack_limit_slack() override; void AdvanceCurrentPosition(int by) override; void AdvanceRegister(int reg, int by) override; void Backtrack() override; void Bind(Label* label) override; void CheckAtStart(int cp_offset, Label* on_at_start) override; void CheckCharacter(unsigned c, Label* on_equal) override; void CheckCharacterAfterAnd(unsigned c, unsigned mask, Label* on_equal) override; void CheckCharacterGT(base::uc16 limit, Label* on_greater) override; void CheckCharacterLT(base::uc16 limit, Label* on_less) override; void CheckCharacters(base::Vector<const base::uc16> str, int cp_offset, Label* on_failure, bool check_end_of_string); // A "greedy loop" is a loop that is both greedy and with a simple // body. It has a particularly simple implementation. void CheckGreedyLoop(Label* on_tos_equals_current_position) override; void CheckNotAtStart(int cp_offset, Label* on_not_at_start) override; void CheckNotBackReference(int start_reg, bool read_backward, Label* on_no_match) override; void CheckNotBackReferenceIgnoreCase(int start_reg, bool read_backward, bool unicode, Label* on_no_match) override; void CheckNotCharacter(unsigned c, Label* on_not_equal) override; void CheckNotCharacterAfterAnd(unsigned c, unsigned mask, Label* on_not_equal) override; void CheckNotCharacterAfterMinusAnd(base::uc16 c, base::uc16 minus, base::uc16 mask, Label* on_not_equal) override; void CheckCharacterInRange(base::uc16 from, base::uc16 to, Label* on_in_range) override; void CheckCharacterNotInRange(base::uc16 from, base::uc16 to, Label* on_not_in_range) override; bool CheckCharacterInRangeArray(const ZoneList<CharacterRange>* ranges, Label* on_in_range) override; bool CheckCharacterNotInRangeArray(const ZoneList<CharacterRange>* ranges, Label* on_not_in_range) override; void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set) override; // Checks whether the given offset from the current position is before // the end of the string. void CheckPosition(int cp_offset, Label* on_outside_input) override; bool CheckSpecialCharacterClass(StandardCharacterSet type, Label* on_no_match) override; void BindJumpTarget(Label* label = nullptr) override; void Fail() override; Handle<HeapObject> GetCode(Handle<String> source) override; void GoTo(Label* label) override; void IfRegisterGE(int reg, int comparand, Label* if_ge) override; void IfRegisterLT(int reg, int comparand, Label* if_lt) override; void IfRegisterEqPos(int reg, Label* if_eq) override; IrregexpImplementation Implementation() override; void LoadCurrentCharacterUnchecked(int cp_offset, int character_count) override; void PopCurrentPosition() override; void PopRegister(int register_index) override; void PushBacktrack(Label* label) override; void PushCurrentPosition() override; void PushRegister(int register_index, StackCheckFlag check_stack_limit) override; void ReadCurrentPositionFromRegister(int reg) override; void ReadStackPointerFromRegister(int reg) override; void SetCurrentPositionFromEnd(int by) override; void SetRegister(int register_index, int to) override; bool Succeed() override; void WriteCurrentPositionToRegister(int reg, int cp_offset) override; void ClearRegisters(int reg_from, int reg_to) override; void WriteStackPointerToRegister(int reg) override; // Called from RegExp if the stack-guard is triggered. // If the code object is relocated, the return address is fixed before // returning. // {raw_code} is an Address because this is called via ExternalReference. static int CheckStackGuardState(Address* return_address, Address raw_code, Address re_frame, int start_offset, const byte** input_start, const byte** input_end); private: // Above the frame pointer - Stored registers and stack passed parameters. static const int kFramePointer = 0; static const int kReturnAddress = kFramePointer + kSystemPointerSize; // Callee-saved registers (x19-x28). static const int kNumCalleeSavedRegisters = 10; static const int kCalleeSavedRegisters = kReturnAddress + kSystemPointerSize; // Below the frame pointer. // Register parameters stored by setup code. static const int kIsolate = -kSystemPointerSize; static const int kDirectCall = kIsolate - kSystemPointerSize; static const int kOutputSize = kDirectCall - kSystemPointerSize; static const int kInput = kOutputSize - kSystemPointerSize; // When adding local variables remember to push space for them in // the frame in GetCode. static const int kSuccessCounter = kInput - kSystemPointerSize; static const int kBacktrackCount = kSuccessCounter - kSystemPointerSize; // Stores the initial value of the regexp stack pointer in a // position-independent representation (in case the regexp stack grows and // thus moves). static const int kRegExpStackBasePointer = kBacktrackCount - kSystemPointerSize; // A padding slot to preserve alignment. static const int kStackLocalPadding = kRegExpStackBasePointer - kSystemPointerSize; static constexpr int kNumberOfStackLocals = 4; // First position register address on the stack. Following positions are // below it. A position is a 32 bit value. static const int kFirstRegisterOnStack = kStackLocalPadding - kWRegSize; // A capture is a 64 bit value holding two position. static const int kFirstCaptureOnStack = kStackLocalPadding - kXRegSize; // Initial size of code buffer. static const int kRegExpCodeSize = 1024; // Registers x0 to x7 are used to store the first captures, they need to be // retained over calls to C++ code. void PushCachedRegisters(); void PopCachedRegisters(); // When initializing registers to a non-position value we can unroll // the loop. Set the limit of registers to unroll. static const int kNumRegistersToUnroll = 16; // We are using x0 to x7 as a register cache. Each hardware register must // contain one capture, that is two 32 bit registers. We can cache at most // 16 registers. static const int kNumCachedRegisters = 16; // Check whether preemption has been requested. void CheckPreemption(); // Check whether we are exceeding the stack limit on the backtrack stack. void CheckStackLimit(); void CallCheckStackGuardState(Register scratch); void CallIsCharacterInRangeArray(const ZoneList<CharacterRange>* ranges); // Location of a 32 bit position register. MemOperand register_location(int register_index); // Location of a 64 bit capture, combining two position registers. MemOperand capture_location(int register_index, Register scratch); // Register holding the current input position as negative offset from // the end of the string. static constexpr Register current_input_offset() { return w21; } // The register containing the current character after LoadCurrentCharacter. static constexpr Register current_character() { return w22; } // Register holding address of the end of the input string. static constexpr Register input_end() { return x25; } // Register holding address of the start of the input string. static constexpr Register input_start() { return x26; } // Register holding the offset from the start of the string where we should // start matching. static constexpr Register start_offset() { return w27; } // Pointer to the output array's first element. static constexpr Register output_array() { return x28; } // Register holding the frame address. Local variables, parameters and // regexp registers are addressed relative to this. static constexpr Register frame_pointer() { return fp; } // The register containing the backtrack stack top. Provides a meaningful // name to the register. static constexpr Register backtrack_stackpointer() { return x23; } // Register holding pointer to the current code object. static constexpr Register code_pointer() { return x20; } // Register holding the value used for clearing capture registers. static constexpr Register string_start_minus_one() { return w24; } // The top 32 bit of this register is used to store this value // twice. This is used for clearing more than one register at a time. static constexpr Register twice_non_position_value() { return x24; } // Byte size of chars in the string to match (decided by the Mode argument) int char_size() const { return static_cast<int>(mode_); } // Equivalent to a conditional branch to the label, unless the label // is nullptr, in which case it is a conditional Backtrack. void BranchOrBacktrack(Condition condition, Label* to); // Compares reg against immmediate before calling BranchOrBacktrack. // It makes use of the Cbz and Cbnz instructions. void CompareAndBranchOrBacktrack(Register reg, int immediate, Condition condition, Label* to); inline void CallIf(Label* to, Condition condition); // Save and restore the link register on the stack in a way that // is GC-safe. inline void SaveLinkRegister(); inline void RestoreLinkRegister(); // Pushes the value of a register on the backtrack stack. Decrements the // stack pointer by a word size and stores the register's value there. inline void Push(Register source); // Pops a value from the backtrack stack. Reads the word at the stack pointer // and increments it by a word size. inline void Pop(Register target); // This state indicates where the register actually is. enum RegisterState { STACKED, // Resides in memory. CACHED_LSW, // Least Significant Word of a 64 bit hardware register. CACHED_MSW // Most Significant Word of a 64 bit hardware register. }; RegisterState GetRegisterState(int register_index) { DCHECK_LE(0, register_index); if (register_index >= kNumCachedRegisters) { return STACKED; } else { if ((register_index % 2) == 0) { return CACHED_LSW; } else { return CACHED_MSW; } } } // Store helper that takes the state of the register into account. inline void StoreRegister(int register_index, Register source); // Returns a hardware W register that holds the value of the capture // register. // // This function will try to use an existing cache register (w0-w7) for the // result. Otherwise, it will load the value into maybe_result. // // If the returned register is anything other than maybe_result, calling code // must not write to it. inline Register GetRegister(int register_index, Register maybe_result); // Returns the harware register (x0-x7) holding the value of the capture // register. // This assumes that the state of the register is not STACKED. inline Register GetCachedRegister(int register_index); void LoadRegExpStackPointerFromMemory(Register dst); void StoreRegExpStackPointerToMemory(Register src, Register scratch); void PushRegExpBasePointer(Register stack_pointer, Register scratch); void PopRegExpBasePointer(Register stack_pointer_out, Register scratch); Isolate* isolate() const { return masm_->isolate(); } const std::unique_ptr<MacroAssembler> masm_; const NoRootArrayScope no_root_array_scope_; // Which mode to generate code for (LATIN1 or UC16). const Mode mode_; // One greater than maximal register index actually used. int num_registers_; // Number of registers to output at the end (the saved registers // are always 0..num_saved_registers_-1) const int num_saved_registers_; // Labels used internally. Label entry_label_; Label start_label_; Label success_label_; Label backtrack_label_; Label exit_label_; Label check_preempt_label_; Label stack_overflow_label_; Label fallback_label_; }; } // namespace internal } // namespace v8 #endif // V8_REGEXP_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_