// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #include "src/accessors.h" #include "src/api.h" #include "src/base/bits.h" #include "src/base/once.h" #include "src/base/utils/random-number-generator.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/compilation-cache.h" #include "src/conversions.h" #include "src/cpu-profiler.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/global-handles.h" #include "src/heap/gc-idle-time-handler.h" #include "src/heap/incremental-marking.h" #include "src/heap/mark-compact.h" #include "src/heap/memory-reducer.h" #include "src/heap/objects-visiting-inl.h" #include "src/heap/objects-visiting.h" #include "src/heap/store-buffer.h" #include "src/heap-profiler.h" #include "src/runtime-profiler.h" #include "src/scopeinfo.h" #include "src/snapshot/natives.h" #include "src/snapshot/serialize.h" #include "src/snapshot/snapshot.h" #include "src/utils.h" #include "src/v8threads.h" #include "src/vm-state-inl.h" #if V8_TARGET_ARCH_PPC && !V8_INTERPRETED_REGEXP #include "src/regexp-macro-assembler.h" // NOLINT #include "src/ppc/regexp-macro-assembler-ppc.h" // NOLINT #endif #if V8_TARGET_ARCH_ARM && !V8_INTERPRETED_REGEXP #include "src/regexp-macro-assembler.h" // NOLINT #include "src/arm/regexp-macro-assembler-arm.h" // NOLINT #endif #if V8_TARGET_ARCH_MIPS && !V8_INTERPRETED_REGEXP #include "src/regexp-macro-assembler.h" // NOLINT #include "src/mips/regexp-macro-assembler-mips.h" // NOLINT #endif #if V8_TARGET_ARCH_MIPS64 && !V8_INTERPRETED_REGEXP #include "src/regexp-macro-assembler.h" #include "src/mips64/regexp-macro-assembler-mips64.h" #endif namespace v8 { namespace internal { struct Heap::StrongRootsList { Object** start; Object** end; StrongRootsList* next; }; Heap::Heap() : amount_of_external_allocated_memory_(0), amount_of_external_allocated_memory_at_last_global_gc_(0), isolate_(NULL), code_range_size_(0), // semispace_size_ should be a power of 2 and old_generation_size_ should // be a multiple of Page::kPageSize. reserved_semispace_size_(8 * (kPointerSize / 4) * MB), max_semi_space_size_(8 * (kPointerSize / 4) * MB), initial_semispace_size_(Page::kPageSize), target_semispace_size_(Page::kPageSize), max_old_generation_size_(700ul * (kPointerSize / 4) * MB), initial_old_generation_size_(max_old_generation_size_ / kInitalOldGenerationLimitFactor), old_generation_size_configured_(false), max_executable_size_(256ul * (kPointerSize / 4) * MB), // Variables set based on semispace_size_ and old_generation_size_ in // ConfigureHeap. // Will be 4 * reserved_semispace_size_ to ensure that young // generation can be aligned to its size. maximum_committed_(0), survived_since_last_expansion_(0), survived_last_scavenge_(0), sweep_generation_(0), always_allocate_scope_depth_(0), contexts_disposed_(0), global_ic_age_(0), scan_on_scavenge_pages_(0), new_space_(this), old_space_(NULL), code_space_(NULL), map_space_(NULL), lo_space_(NULL), gc_state_(NOT_IN_GC), gc_post_processing_depth_(0), allocations_count_(0), raw_allocations_hash_(0), dump_allocations_hash_countdown_(FLAG_dump_allocations_digest_at_alloc), ms_count_(0), gc_count_(0), remembered_unmapped_pages_index_(0), unflattened_strings_length_(0), #ifdef DEBUG allocation_timeout_(0), #endif // DEBUG old_generation_allocation_limit_(initial_old_generation_size_), old_gen_exhausted_(false), optimize_for_memory_usage_(false), inline_allocation_disabled_(false), store_buffer_rebuilder_(store_buffer()), hidden_string_(NULL), gc_safe_size_of_old_object_(NULL), total_regexp_code_generated_(0), tracer_(this), high_survival_rate_period_length_(0), promoted_objects_size_(0), promotion_ratio_(0), semi_space_copied_object_size_(0), previous_semi_space_copied_object_size_(0), semi_space_copied_rate_(0), nodes_died_in_new_space_(0), nodes_copied_in_new_space_(0), nodes_promoted_(0), maximum_size_scavenges_(0), max_gc_pause_(0.0), total_gc_time_ms_(0.0), max_alive_after_gc_(0), min_in_mutator_(kMaxInt), marking_time_(0.0), sweeping_time_(0.0), last_idle_notification_time_(0.0), last_gc_time_(0.0), mark_compact_collector_(this), store_buffer_(this), marking_(this), incremental_marking_(this), memory_reducer_(this), full_codegen_bytes_generated_(0), crankshaft_codegen_bytes_generated_(0), new_space_allocation_counter_(0), old_generation_allocation_counter_(0), old_generation_size_at_last_gc_(0), gcs_since_last_deopt_(0), allocation_sites_scratchpad_length_(0), ring_buffer_full_(false), ring_buffer_end_(0), promotion_queue_(this), configured_(false), external_string_table_(this), chunks_queued_for_free_(NULL), gc_callbacks_depth_(0), deserialization_complete_(false), concurrent_sweeping_enabled_(false), strong_roots_list_(NULL) { // Allow build-time customization of the max semispace size. Building // V8 with snapshots and a non-default max semispace size is much // easier if you can define it as part of the build environment. #if defined(V8_MAX_SEMISPACE_SIZE) max_semi_space_size_ = reserved_semispace_size_ = V8_MAX_SEMISPACE_SIZE; #endif // Ensure old_generation_size_ is a multiple of kPageSize. DCHECK((max_old_generation_size_ & (Page::kPageSize - 1)) == 0); memset(roots_, 0, sizeof(roots_[0]) * kRootListLength); set_native_contexts_list(NULL); set_allocation_sites_list(Smi::FromInt(0)); set_encountered_weak_collections(Smi::FromInt(0)); set_encountered_weak_cells(Smi::FromInt(0)); // Put a dummy entry in the remembered pages so we can find the list the // minidump even if there are no real unmapped pages. RememberUnmappedPage(NULL, false); ClearObjectStats(true); } intptr_t Heap::Capacity() { if (!HasBeenSetUp()) return 0; return new_space_.Capacity() + old_space_->Capacity() + code_space_->Capacity() + map_space_->Capacity(); } intptr_t Heap::CommittedOldGenerationMemory() { if (!HasBeenSetUp()) return 0; return old_space_->CommittedMemory() + code_space_->CommittedMemory() + map_space_->CommittedMemory() + lo_space_->Size(); } intptr_t Heap::CommittedMemory() { if (!HasBeenSetUp()) return 0; return new_space_.CommittedMemory() + CommittedOldGenerationMemory(); } size_t Heap::CommittedPhysicalMemory() { if (!HasBeenSetUp()) return 0; return new_space_.CommittedPhysicalMemory() + old_space_->CommittedPhysicalMemory() + code_space_->CommittedPhysicalMemory() + map_space_->CommittedPhysicalMemory() + lo_space_->CommittedPhysicalMemory(); } intptr_t Heap::CommittedMemoryExecutable() { if (!HasBeenSetUp()) return 0; return isolate()->memory_allocator()->SizeExecutable(); } void Heap::UpdateMaximumCommitted() { if (!HasBeenSetUp()) return; intptr_t current_committed_memory = CommittedMemory(); if (current_committed_memory > maximum_committed_) { maximum_committed_ = current_committed_memory; } } intptr_t Heap::Available() { if (!HasBeenSetUp()) return 0; intptr_t total = 0; AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { total += space->Available(); } return total; } bool Heap::HasBeenSetUp() { return old_space_ != NULL && code_space_ != NULL && map_space_ != NULL && lo_space_ != NULL; } int Heap::GcSafeSizeOfOldObject(HeapObject* object) { if (IntrusiveMarking::IsMarked(object)) { return IntrusiveMarking::SizeOfMarkedObject(object); } return object->SizeFromMap(object->map()); } GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space, const char** reason) { // Is global GC requested? if (space != NEW_SPACE) { isolate_->counters()->gc_compactor_caused_by_request()->Increment(); *reason = "GC in old space requested"; return MARK_COMPACTOR; } if (FLAG_gc_global || (FLAG_stress_compaction && (gc_count_ & 1) != 0)) { *reason = "GC in old space forced by flags"; return MARK_COMPACTOR; } // Is enough data promoted to justify a global GC? if (OldGenerationAllocationLimitReached()) { isolate_->counters()->gc_compactor_caused_by_promoted_data()->Increment(); *reason = "promotion limit reached"; return MARK_COMPACTOR; } // Have allocation in OLD and LO failed? if (old_gen_exhausted_) { isolate_->counters() ->gc_compactor_caused_by_oldspace_exhaustion() ->Increment(); *reason = "old generations exhausted"; return MARK_COMPACTOR; } // Is there enough space left in OLD to guarantee that a scavenge can // succeed? // // Note that MemoryAllocator->MaxAvailable() undercounts the memory available // for object promotion. It counts only the bytes that the memory // allocator has not yet allocated from the OS and assigned to any space, // and does not count available bytes already in the old space or code // space. Undercounting is safe---we may get an unrequested full GC when // a scavenge would have succeeded. if (isolate_->memory_allocator()->MaxAvailable() <= new_space_.Size()) { isolate_->counters() ->gc_compactor_caused_by_oldspace_exhaustion() ->Increment(); *reason = "scavenge might not succeed"; return MARK_COMPACTOR; } // Default *reason = NULL; return SCAVENGER; } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsBeforeGC() { // Heap::ReportHeapStatistics will also log NewSpace statistics when // compiled --log-gc is set. The following logic is used to avoid // double logging. #ifdef DEBUG if (FLAG_heap_stats || FLAG_log_gc) new_space_.CollectStatistics(); if (FLAG_heap_stats) { ReportHeapStatistics("Before GC"); } else if (FLAG_log_gc) { new_space_.ReportStatistics(); } if (FLAG_heap_stats || FLAG_log_gc) new_space_.ClearHistograms(); #else if (FLAG_log_gc) { new_space_.CollectStatistics(); new_space_.ReportStatistics(); new_space_.ClearHistograms(); } #endif // DEBUG } void Heap::PrintShortHeapStatistics() { if (!FLAG_trace_gc_verbose) return; PrintIsolate(isolate_, "Memory allocator, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB\n", isolate_->memory_allocator()->Size() / KB, isolate_->memory_allocator()->Available() / KB); PrintIsolate(isolate_, "New space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", new_space_.Size() / KB, new_space_.Available() / KB, new_space_.CommittedMemory() / KB); PrintIsolate(isolate_, "Old space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", old_space_->SizeOfObjects() / KB, old_space_->Available() / KB, old_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Code space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", code_space_->SizeOfObjects() / KB, code_space_->Available() / KB, code_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Map space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", map_space_->SizeOfObjects() / KB, map_space_->Available() / KB, map_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Large object space, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", lo_space_->SizeOfObjects() / KB, lo_space_->Available() / KB, lo_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "All spaces, used: %6" V8_PTR_PREFIX "d KB" ", available: %6" V8_PTR_PREFIX "d KB" ", committed: %6" V8_PTR_PREFIX "d KB\n", this->SizeOfObjects() / KB, this->Available() / KB, this->CommittedMemory() / KB); PrintIsolate( isolate_, "External memory reported: %6" V8_PTR_PREFIX "d KB\n", static_cast<intptr_t>(amount_of_external_allocated_memory_ / KB)); PrintIsolate(isolate_, "Total time spent in GC : %.1f ms\n", total_gc_time_ms_); } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsAfterGC() { // Similar to the before GC, we use some complicated logic to ensure that // NewSpace statistics are logged exactly once when --log-gc is turned on. #if defined(DEBUG) if (FLAG_heap_stats) { new_space_.CollectStatistics(); ReportHeapStatistics("After GC"); } else if (FLAG_log_gc) { new_space_.ReportStatistics(); } #else if (FLAG_log_gc) new_space_.ReportStatistics(); #endif // DEBUG for (int i = 0; i < static_cast<int>(v8::Isolate::kUseCounterFeatureCount); ++i) { int count = deferred_counters_[i]; deferred_counters_[i] = 0; while (count > 0) { count--; isolate()->CountUsage(static_cast<v8::Isolate::UseCounterFeature>(i)); } } } void Heap::IncrementDeferredCount(v8::Isolate::UseCounterFeature feature) { deferred_counters_[feature]++; } void Heap::GarbageCollectionPrologue() { { AllowHeapAllocation for_the_first_part_of_prologue; gc_count_++; unflattened_strings_length_ = 0; if (FLAG_flush_code) { mark_compact_collector()->EnableCodeFlushing(true); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } // Reset GC statistics. promoted_objects_size_ = 0; previous_semi_space_copied_object_size_ = semi_space_copied_object_size_; semi_space_copied_object_size_ = 0; nodes_died_in_new_space_ = 0; nodes_copied_in_new_space_ = 0; nodes_promoted_ = 0; UpdateMaximumCommitted(); #ifdef DEBUG DCHECK(!AllowHeapAllocation::IsAllowed() && gc_state_ == NOT_IN_GC); if (FLAG_gc_verbose) Print(); ReportStatisticsBeforeGC(); #endif // DEBUG store_buffer()->GCPrologue(); if (isolate()->concurrent_osr_enabled()) { isolate()->optimizing_compile_dispatcher()->AgeBufferedOsrJobs(); } if (new_space_.IsAtMaximumCapacity()) { maximum_size_scavenges_++; } else { maximum_size_scavenges_ = 0; } CheckNewSpaceExpansionCriteria(); UpdateNewSpaceAllocationCounter(); } intptr_t Heap::SizeOfObjects() { intptr_t total = 0; AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { total += space->SizeOfObjects(); } return total; } const char* Heap::GetSpaceName(int idx) { switch (idx) { case NEW_SPACE: return "new_space"; case OLD_SPACE: return "old_space"; case MAP_SPACE: return "map_space"; case CODE_SPACE: return "code_space"; case LO_SPACE: return "large_object_space"; default: UNREACHABLE(); } return nullptr; } void Heap::ClearAllICsByKind(Code::Kind kind) { // TODO(mvstanton): Do not iterate the heap. HeapObjectIterator it(code_space()); for (Object* object = it.Next(); object != NULL; object = it.Next()) { Code* code = Code::cast(object); Code::Kind current_kind = code->kind(); if (current_kind == Code::FUNCTION || current_kind == Code::OPTIMIZED_FUNCTION) { code->ClearInlineCaches(kind); } } } void Heap::RepairFreeListsAfterDeserialization() { PagedSpaces spaces(this); for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->RepairFreeListsAfterDeserialization(); } } bool Heap::ProcessPretenuringFeedback() { bool trigger_deoptimization = false; if (FLAG_allocation_site_pretenuring) { int tenure_decisions = 0; int dont_tenure_decisions = 0; int allocation_mementos_found = 0; int allocation_sites = 0; int active_allocation_sites = 0; // If the scratchpad overflowed, we have to iterate over the allocation // sites list. // TODO(hpayer): We iterate over the whole list of allocation sites when // we grew to the maximum semi-space size to deopt maybe tenured // allocation sites. We could hold the maybe tenured allocation sites // in a seperate data structure if this is a performance problem. bool deopt_maybe_tenured = DeoptMaybeTenuredAllocationSites(); bool use_scratchpad = allocation_sites_scratchpad_length_ < kAllocationSiteScratchpadSize && !deopt_maybe_tenured; int i = 0; Object* list_element = allocation_sites_list(); bool maximum_size_scavenge = MaximumSizeScavenge(); while (use_scratchpad ? i < allocation_sites_scratchpad_length_ : list_element->IsAllocationSite()) { AllocationSite* site = use_scratchpad ? AllocationSite::cast(allocation_sites_scratchpad()->get(i)) : AllocationSite::cast(list_element); allocation_mementos_found += site->memento_found_count(); if (site->memento_found_count() > 0) { active_allocation_sites++; if (site->DigestPretenuringFeedback(maximum_size_scavenge)) { trigger_deoptimization = true; } if (site->GetPretenureMode() == TENURED) { tenure_decisions++; } else { dont_tenure_decisions++; } allocation_sites++; } if (deopt_maybe_tenured && site->IsMaybeTenure()) { site->set_deopt_dependent_code(true); trigger_deoptimization = true; } if (use_scratchpad) { i++; } else { list_element = site->weak_next(); } } if (trigger_deoptimization) { isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); } FlushAllocationSitesScratchpad(); if (FLAG_trace_pretenuring_statistics && (allocation_mementos_found > 0 || tenure_decisions > 0 || dont_tenure_decisions > 0)) { PrintF( "GC: (mode, #visited allocation sites, #active allocation sites, " "#mementos, #tenure decisions, #donttenure decisions) " "(%s, %d, %d, %d, %d, %d)\n", use_scratchpad ? "use scratchpad" : "use list", allocation_sites, active_allocation_sites, allocation_mementos_found, tenure_decisions, dont_tenure_decisions); } } return trigger_deoptimization; } void Heap::DeoptMarkedAllocationSites() { // TODO(hpayer): If iterating over the allocation sites list becomes a // performance issue, use a cache heap data structure instead (similar to the // allocation sites scratchpad). Object* list_element = allocation_sites_list(); while (list_element->IsAllocationSite()) { AllocationSite* site = AllocationSite::cast(list_element); if (site->deopt_dependent_code()) { site->dependent_code()->MarkCodeForDeoptimization( isolate_, DependentCode::kAllocationSiteTenuringChangedGroup); site->set_deopt_dependent_code(false); } list_element = site->weak_next(); } Deoptimizer::DeoptimizeMarkedCode(isolate_); } void Heap::GarbageCollectionEpilogue() { store_buffer()->GCEpilogue(); // In release mode, we only zap the from space under heap verification. if (Heap::ShouldZapGarbage()) { ZapFromSpace(); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif AllowHeapAllocation for_the_rest_of_the_epilogue; #ifdef DEBUG if (FLAG_print_global_handles) isolate_->global_handles()->Print(); if (FLAG_print_handles) PrintHandles(); if (FLAG_gc_verbose) Print(); if (FLAG_code_stats) ReportCodeStatistics("After GC"); if (FLAG_check_handle_count) CheckHandleCount(); #endif if (FLAG_deopt_every_n_garbage_collections > 0) { // TODO(jkummerow/ulan/jarin): This is not safe! We can't assume that // the topmost optimized frame can be deoptimized safely, because it // might not have a lazy bailout point right after its current PC. if (++gcs_since_last_deopt_ == FLAG_deopt_every_n_garbage_collections) { Deoptimizer::DeoptimizeAll(isolate()); gcs_since_last_deopt_ = 0; } } UpdateMaximumCommitted(); isolate_->counters()->alive_after_last_gc()->Set( static_cast<int>(SizeOfObjects())); isolate_->counters()->string_table_capacity()->Set( string_table()->Capacity()); isolate_->counters()->number_of_symbols()->Set( string_table()->NumberOfElements()); if (full_codegen_bytes_generated_ + crankshaft_codegen_bytes_generated_ > 0) { isolate_->counters()->codegen_fraction_crankshaft()->AddSample( static_cast<int>((crankshaft_codegen_bytes_generated_ * 100.0) / (crankshaft_codegen_bytes_generated_ + full_codegen_bytes_generated_))); } if (CommittedMemory() > 0) { isolate_->counters()->external_fragmentation_total()->AddSample( static_cast<int>(100 - (SizeOfObjects() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_new_space()->AddSample(static_cast<int>( (new_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_old_space()->AddSample(static_cast<int>( (old_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_code_space()->AddSample( static_cast<int>((code_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_map_space()->AddSample(static_cast<int>( (map_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_lo_space()->AddSample(static_cast<int>( (lo_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_sample_total_committed()->AddSample( static_cast<int>(CommittedMemory() / KB)); isolate_->counters()->heap_sample_total_used()->AddSample( static_cast<int>(SizeOfObjects() / KB)); isolate_->counters()->heap_sample_map_space_committed()->AddSample( static_cast<int>(map_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_code_space_committed()->AddSample( static_cast<int>(code_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_maximum_committed()->AddSample( static_cast<int>(MaximumCommittedMemory() / KB)); } #define UPDATE_COUNTERS_FOR_SPACE(space) \ isolate_->counters()->space##_bytes_available()->Set( \ static_cast<int>(space()->Available())); \ isolate_->counters()->space##_bytes_committed()->Set( \ static_cast<int>(space()->CommittedMemory())); \ isolate_->counters()->space##_bytes_used()->Set( \ static_cast<int>(space()->SizeOfObjects())); #define UPDATE_FRAGMENTATION_FOR_SPACE(space) \ if (space()->CommittedMemory() > 0) { \ isolate_->counters()->external_fragmentation_##space()->AddSample( \ static_cast<int>(100 - \ (space()->SizeOfObjects() * 100.0) / \ space()->CommittedMemory())); \ } #define UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(space) \ UPDATE_COUNTERS_FOR_SPACE(space) \ UPDATE_FRAGMENTATION_FOR_SPACE(space) UPDATE_COUNTERS_FOR_SPACE(new_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(code_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(map_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(lo_space) #undef UPDATE_COUNTERS_FOR_SPACE #undef UPDATE_FRAGMENTATION_FOR_SPACE #undef UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE #ifdef DEBUG ReportStatisticsAfterGC(); #endif // DEBUG // Remember the last top pointer so that we can later find out // whether we allocated in new space since the last GC. new_space_top_after_last_gc_ = new_space()->top(); last_gc_time_ = MonotonicallyIncreasingTimeInMs(); ReduceNewSpaceSize(); } void Heap::PreprocessStackTraces() { if (!weak_stack_trace_list()->IsWeakFixedArray()) return; WeakFixedArray* array = WeakFixedArray::cast(weak_stack_trace_list()); int length = array->Length(); for (int i = 0; i < length; i++) { if (array->IsEmptySlot(i)) continue; FixedArray* elements = FixedArray::cast(array->Get(i)); for (int j = 1; j < elements->length(); j += 4) { Object* maybe_code = elements->get(j + 2); // If GC happens while adding a stack trace to the weak fixed array, // which has been copied into a larger backing store, we may run into // a stack trace that has already been preprocessed. Guard against this. if (!maybe_code->IsCode()) break; Code* code = Code::cast(maybe_code); int offset = Smi::cast(elements->get(j + 3))->value(); Address pc = code->address() + offset; int pos = code->SourcePosition(pc); elements->set(j + 2, Smi::FromInt(pos)); } } // We must not compact the weak fixed list here, as we may be in the middle // of writing to it, when the GC triggered. Instead, we reset the root value. set_weak_stack_trace_list(Smi::FromInt(0)); } void Heap::HandleGCRequest() { if (incremental_marking()->request_type() == IncrementalMarking::COMPLETE_MARKING) { CollectAllGarbage(Heap::kNoGCFlags, "GC interrupt", incremental_marking()->CallbackFlags()); return; } DCHECK(FLAG_overapproximate_weak_closure); if (!incremental_marking()->weak_closure_was_overapproximated()) { OverApproximateWeakClosure("GC interrupt"); } } void Heap::OverApproximateWeakClosure(const char* gc_reason) { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Overapproximate weak closure (%s).\n", gc_reason); } GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::MC_INCREMENTAL_WEAKCLOSURE); { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); VMState<EXTERNAL> state(isolate_); HandleScope handle_scope(isolate_); CallGCPrologueCallbacks(kGCTypeMarkSweepCompact, kNoGCCallbackFlags); } } incremental_marking()->MarkObjectGroups(); { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); VMState<EXTERNAL> state(isolate_); HandleScope handle_scope(isolate_); CallGCEpilogueCallbacks(kGCTypeMarkSweepCompact, kNoGCCallbackFlags); } } } void Heap::CollectAllGarbage(int flags, const char* gc_reason, const v8::GCCallbackFlags gc_callback_flags) { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. mark_compact_collector_.SetFlags(flags); CollectGarbage(OLD_SPACE, gc_reason, gc_callback_flags); mark_compact_collector_.SetFlags(kNoGCFlags); } void Heap::CollectAllAvailableGarbage(const char* gc_reason) { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. // Major GC would invoke weak handle callbacks on weakly reachable // handles, but won't collect weakly reachable objects until next // major GC. Therefore if we collect aggressively and weak handle callback // has been invoked, we rerun major GC to release objects which become // garbage. // Note: as weak callbacks can execute arbitrary code, we cannot // hope that eventually there will be no weak callbacks invocations. // Therefore stop recollecting after several attempts. if (isolate()->concurrent_recompilation_enabled()) { // The optimizing compiler may be unnecessarily holding on to memory. DisallowHeapAllocation no_recursive_gc; isolate()->optimizing_compile_dispatcher()->Flush(); } isolate()->ClearSerializerData(); mark_compact_collector()->SetFlags(kMakeHeapIterableMask | kReduceMemoryFootprintMask); isolate_->compilation_cache()->Clear(); const int kMaxNumberOfAttempts = 7; const int kMinNumberOfAttempts = 2; for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) { if (!CollectGarbage(MARK_COMPACTOR, gc_reason, NULL, v8::kGCCallbackFlagForced) && attempt + 1 >= kMinNumberOfAttempts) { break; } } mark_compact_collector()->SetFlags(kNoGCFlags); new_space_.Shrink(); UncommitFromSpace(); } void Heap::EnsureFillerObjectAtTop() { // There may be an allocation memento behind every object in new space. // If we evacuate a not full new space or if we are on the last page of // the new space, then there may be uninitialized memory behind the top // pointer of the new space page. We store a filler object there to // identify the unused space. Address from_top = new_space_.top(); // Check that from_top is inside its page (i.e., not at the end). Address space_end = new_space_.ToSpaceEnd(); if (from_top < space_end) { Page* page = Page::FromAddress(from_top); if (page->Contains(from_top)) { int remaining_in_page = static_cast<int>(page->area_end() - from_top); CreateFillerObjectAt(from_top, remaining_in_page); } } } bool Heap::CollectGarbage(GarbageCollector collector, const char* gc_reason, const char* collector_reason, const v8::GCCallbackFlags gc_callback_flags) { // The VM is in the GC state until exiting this function. VMState<GC> state(isolate_); #ifdef DEBUG // Reset the allocation timeout to the GC interval, but make sure to // allow at least a few allocations after a collection. The reason // for this is that we have a lot of allocation sequences and we // assume that a garbage collection will allow the subsequent // allocation attempts to go through. allocation_timeout_ = Max(6, FLAG_gc_interval); #endif EnsureFillerObjectAtTop(); if (collector == SCAVENGER && !incremental_marking()->IsStopped()) { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Scavenge during marking.\n"); } } if (collector == MARK_COMPACTOR && !mark_compact_collector()->finalize_incremental_marking() && !mark_compact_collector()->abort_incremental_marking() && !incremental_marking()->IsStopped() && !incremental_marking()->should_hurry() && FLAG_incremental_marking_steps) { // Make progress in incremental marking. const intptr_t kStepSizeWhenDelayedByScavenge = 1 * MB; incremental_marking()->Step(kStepSizeWhenDelayedByScavenge, IncrementalMarking::NO_GC_VIA_STACK_GUARD); if (!incremental_marking()->IsComplete() && !mark_compact_collector_.marking_deque_.IsEmpty() && !FLAG_gc_global) { if (FLAG_trace_incremental_marking) { PrintF("[IncrementalMarking] Delaying MarkSweep.\n"); } collector = SCAVENGER; collector_reason = "incremental marking delaying mark-sweep"; } } bool next_gc_likely_to_collect_more = false; intptr_t committed_memory_before = 0; if (collector == MARK_COMPACTOR) { committed_memory_before = CommittedOldGenerationMemory(); } { tracer()->Start(collector, gc_reason, collector_reason); DCHECK(AllowHeapAllocation::IsAllowed()); DisallowHeapAllocation no_allocation_during_gc; GarbageCollectionPrologue(); { HistogramTimerScope histogram_timer_scope( (collector == SCAVENGER) ? isolate_->counters()->gc_scavenger() : isolate_->counters()->gc_compactor()); next_gc_likely_to_collect_more = PerformGarbageCollection(collector, gc_callback_flags); } GarbageCollectionEpilogue(); if (collector == MARK_COMPACTOR && FLAG_track_detached_contexts) { isolate()->CheckDetachedContextsAfterGC(); } if (collector == MARK_COMPACTOR) { intptr_t committed_memory_after = CommittedOldGenerationMemory(); intptr_t used_memory_after = PromotedSpaceSizeOfObjects(); MemoryReducer::Event event; event.type = MemoryReducer::kMarkCompact; event.time_ms = MonotonicallyIncreasingTimeInMs(); // Trigger one more GC if // - this GC decreased committed memory, // - there is high fragmentation, // - there are live detached contexts. event.next_gc_likely_to_collect_more = (committed_memory_before - committed_memory_after) > MB || HasHighFragmentation(used_memory_after, committed_memory_after) || (detached_contexts()->length() > 0); if (deserialization_complete_) { memory_reducer_.NotifyMarkCompact(event); } } tracer()->Stop(collector); } if (collector == MARK_COMPACTOR && (gc_callback_flags & kGCCallbackFlagForced) != 0) { isolate()->CountUsage(v8::Isolate::kForcedGC); } // Start incremental marking for the next cycle. The heap snapshot // generator needs incremental marking to stay off after it aborted. if (!mark_compact_collector()->abort_incremental_marking() && incremental_marking()->IsStopped() && incremental_marking()->ShouldActivateEvenWithoutIdleNotification()) { incremental_marking()->Start(kNoGCFlags, kNoGCCallbackFlags, "GC epilogue"); } return next_gc_likely_to_collect_more; } int Heap::NotifyContextDisposed(bool dependant_context) { if (!dependant_context) { tracer()->ResetSurvivalEvents(); old_generation_size_configured_ = false; } if (isolate()->concurrent_recompilation_enabled()) { // Flush the queued recompilation tasks. isolate()->optimizing_compile_dispatcher()->Flush(); } AgeInlineCaches(); set_retained_maps(ArrayList::cast(empty_fixed_array())); tracer()->AddContextDisposalTime(base::OS::TimeCurrentMillis()); MemoryReducer::Event event; event.type = MemoryReducer::kContextDisposed; event.time_ms = MonotonicallyIncreasingTimeInMs(); memory_reducer_.NotifyContextDisposed(event); return ++contexts_disposed_; } void Heap::StartIncrementalMarking(int gc_flags, const GCCallbackFlags gc_callback_flags, const char* reason) { DCHECK(incremental_marking()->IsStopped()); incremental_marking()->Start(gc_flags, gc_callback_flags, reason); } void Heap::StartIdleIncrementalMarking() { gc_idle_time_handler_.ResetNoProgressCounter(); StartIncrementalMarking(kReduceMemoryFootprintMask, kNoGCCallbackFlags, "idle"); } void Heap::MoveElements(FixedArray* array, int dst_index, int src_index, int len) { if (len == 0) return; DCHECK(array->map() != fixed_cow_array_map()); Object** dst_objects = array->data_start() + dst_index; MemMove(dst_objects, array->data_start() + src_index, len * kPointerSize); if (!InNewSpace(array)) { for (int i = 0; i < len; i++) { // TODO(hpayer): check store buffer for entries if (InNewSpace(dst_objects[i])) { RecordWrite(array->address(), array->OffsetOfElementAt(dst_index + i)); } } } incremental_marking()->RecordWrites(array); } #ifdef VERIFY_HEAP // Helper class for verifying the string table. class StringTableVerifier : public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) { // Visit all HeapObject pointers in [start, end). for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) { // Check that the string is actually internalized. CHECK((*p)->IsTheHole() || (*p)->IsUndefined() || (*p)->IsInternalizedString()); } } } }; static void VerifyStringTable(Heap* heap) { StringTableVerifier verifier; heap->string_table()->IterateElements(&verifier); } #endif // VERIFY_HEAP bool Heap::ReserveSpace(Reservation* reservations) { bool gc_performed = true; int counter = 0; static const int kThreshold = 20; while (gc_performed && counter++ < kThreshold) { gc_performed = false; for (int space = NEW_SPACE; space < Serializer::kNumberOfSpaces; space++) { Reservation* reservation = &reservations[space]; DCHECK_LE(1, reservation->length()); if (reservation->at(0).size == 0) continue; bool perform_gc = false; if (space == LO_SPACE) { DCHECK_EQ(1, reservation->length()); perform_gc = !lo_space()->CanAllocateSize(reservation->at(0).size); } else { for (auto& chunk : *reservation) { AllocationResult allocation; int size = chunk.size; DCHECK_LE(size, MemoryAllocator::PageAreaSize( static_cast<AllocationSpace>(space))); if (space == NEW_SPACE) { allocation = new_space()->AllocateRawUnaligned(size); } else { allocation = paged_space(space)->AllocateRawUnaligned(size); } HeapObject* free_space; if (allocation.To(&free_space)) { // Mark with a free list node, in case we have a GC before // deserializing. Address free_space_address = free_space->address(); CreateFillerObjectAt(free_space_address, size); DCHECK(space < Serializer::kNumberOfPreallocatedSpaces); chunk.start = free_space_address; chunk.end = free_space_address + size; } else { perform_gc = true; break; } } } if (perform_gc) { if (space == NEW_SPACE) { CollectGarbage(NEW_SPACE, "failed to reserve space in the new space"); } else { if (counter > 1) { CollectAllGarbage( kReduceMemoryFootprintMask | kAbortIncrementalMarkingMask, "failed to reserve space in paged or large " "object space, trying to reduce memory footprint"); } else { CollectAllGarbage( kAbortIncrementalMarkingMask, "failed to reserve space in paged or large object space"); } } gc_performed = true; break; // Abort for-loop over spaces and retry. } } } return !gc_performed; } void Heap::EnsureFromSpaceIsCommitted() { if (new_space_.CommitFromSpaceIfNeeded()) return; // Committing memory to from space failed. // Memory is exhausted and we will die. V8::FatalProcessOutOfMemory("Committing semi space failed."); } void Heap::ClearNormalizedMapCaches() { if (isolate_->bootstrapper()->IsActive() && !incremental_marking()->IsMarking()) { return; } Object* context = native_contexts_list(); while (!context->IsUndefined()) { // GC can happen when the context is not fully initialized, // so the cache can be undefined. Object* cache = Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX); if (!cache->IsUndefined()) { NormalizedMapCache::cast(cache)->Clear(); } context = Context::cast(context)->get(Context::NEXT_CONTEXT_LINK); } } void Heap::UpdateSurvivalStatistics(int start_new_space_size) { if (start_new_space_size == 0) return; promotion_ratio_ = (static_cast<double>(promoted_objects_size_) / static_cast<double>(start_new_space_size) * 100); if (previous_semi_space_copied_object_size_ > 0) { promotion_rate_ = (static_cast<double>(promoted_objects_size_) / static_cast<double>(previous_semi_space_copied_object_size_) * 100); } else { promotion_rate_ = 0; } semi_space_copied_rate_ = (static_cast<double>(semi_space_copied_object_size_) / static_cast<double>(start_new_space_size) * 100); double survival_rate = promotion_ratio_ + semi_space_copied_rate_; tracer()->AddSurvivalRatio(survival_rate); if (survival_rate > kYoungSurvivalRateHighThreshold) { high_survival_rate_period_length_++; } else { high_survival_rate_period_length_ = 0; } } bool Heap::PerformGarbageCollection( GarbageCollector collector, const v8::GCCallbackFlags gc_callback_flags) { int freed_global_handles = 0; if (collector != SCAVENGER) { PROFILE(isolate_, CodeMovingGCEvent()); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyStringTable(this); } #endif GCType gc_type = collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge; { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); VMState<EXTERNAL> state(isolate_); HandleScope handle_scope(isolate_); CallGCPrologueCallbacks(gc_type, kNoGCCallbackFlags); } } EnsureFromSpaceIsCommitted(); int start_new_space_size = Heap::new_space()->SizeAsInt(); if (IsHighSurvivalRate()) { // We speed up the incremental marker if it is running so that it // does not fall behind the rate of promotion, which would cause a // constantly growing old space. incremental_marking()->NotifyOfHighPromotionRate(); } if (collector == MARK_COMPACTOR) { UpdateOldGenerationAllocationCounter(); // Perform mark-sweep with optional compaction. MarkCompact(); sweep_generation_++; old_gen_exhausted_ = false; old_generation_size_configured_ = true; // This should be updated before PostGarbageCollectionProcessing, which can // cause another GC. Take into account the objects promoted during GC. old_generation_allocation_counter_ += static_cast<size_t>(promoted_objects_size_); old_generation_size_at_last_gc_ = PromotedSpaceSizeOfObjects(); } else { Scavenge(); } ProcessPretenuringFeedback(); UpdateSurvivalStatistics(start_new_space_size); ConfigureInitialOldGenerationSize(); isolate_->counters()->objs_since_last_young()->Set(0); if (collector != SCAVENGER) { // Callbacks that fire after this point might trigger nested GCs and // restart incremental marking, the assertion can't be moved down. DCHECK(incremental_marking()->IsStopped()); // We finished a marking cycle. We can uncommit the marking deque until // we start marking again. mark_compact_collector_.marking_deque()->Uninitialize(); mark_compact_collector_.EnsureMarkingDequeIsCommitted( MarkCompactCollector::kMinMarkingDequeSize); } gc_post_processing_depth_++; { AllowHeapAllocation allow_allocation; GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); freed_global_handles = isolate_->global_handles()->PostGarbageCollectionProcessing( collector, gc_callback_flags); } gc_post_processing_depth_--; isolate_->eternal_handles()->PostGarbageCollectionProcessing(this); // Update relocatables. Relocatable::PostGarbageCollectionProcessing(isolate_); double gc_speed = tracer()->CombinedMarkCompactSpeedInBytesPerMillisecond(); double mutator_speed = static_cast<double>( tracer() ->CurrentOldGenerationAllocationThroughputInBytesPerMillisecond()); intptr_t old_gen_size = PromotedSpaceSizeOfObjects(); if (collector == MARK_COMPACTOR) { // Register the amount of external allocated memory. amount_of_external_allocated_memory_at_last_global_gc_ = amount_of_external_allocated_memory_; SetOldGenerationAllocationLimit(old_gen_size, gc_speed, mutator_speed); } else if (HasLowYoungGenerationAllocationRate() && old_generation_size_configured_) { DampenOldGenerationAllocationLimit(old_gen_size, gc_speed, mutator_speed); } { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; GCTracer::Scope scope(tracer(), GCTracer::Scope::EXTERNAL); VMState<EXTERNAL> state(isolate_); HandleScope handle_scope(isolate_); CallGCEpilogueCallbacks(gc_type, gc_callback_flags); } } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyStringTable(this); } #endif return freed_global_handles > 0; } void Heap::CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags) { for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) { if (gc_type & gc_prologue_callbacks_[i].gc_type) { if (!gc_prologue_callbacks_[i].pass_isolate_) { v8::GCPrologueCallback callback = reinterpret_cast<v8::GCPrologueCallback>( gc_prologue_callbacks_[i].callback); callback(gc_type, flags); } else { v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this->isolate()); gc_prologue_callbacks_[i].callback(isolate, gc_type, flags); } } } } void Heap::CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags gc_callback_flags) { for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) { if (gc_type & gc_epilogue_callbacks_[i].gc_type) { if (!gc_epilogue_callbacks_[i].pass_isolate_) { v8::GCPrologueCallback callback = reinterpret_cast<v8::GCPrologueCallback>( gc_epilogue_callbacks_[i].callback); callback(gc_type, gc_callback_flags); } else { v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this->isolate()); gc_epilogue_callbacks_[i].callback(isolate, gc_type, gc_callback_flags); } } } } void Heap::MarkCompact() { gc_state_ = MARK_COMPACT; LOG(isolate_, ResourceEvent("markcompact", "begin")); uint64_t size_of_objects_before_gc = SizeOfObjects(); mark_compact_collector_.Prepare(); ms_count_++; MarkCompactPrologue(); mark_compact_collector_.CollectGarbage(); LOG(isolate_, ResourceEvent("markcompact", "end")); MarkCompactEpilogue(); if (FLAG_allocation_site_pretenuring) { EvaluateOldSpaceLocalPretenuring(size_of_objects_before_gc); } } void Heap::MarkCompactEpilogue() { gc_state_ = NOT_IN_GC; isolate_->counters()->objs_since_last_full()->Set(0); incremental_marking()->Epilogue(); PreprocessStackTraces(); } void Heap::MarkCompactPrologue() { // At any old GC clear the keyed lookup cache to enable collection of unused // maps. isolate_->keyed_lookup_cache()->Clear(); isolate_->context_slot_cache()->Clear(); isolate_->descriptor_lookup_cache()->Clear(); RegExpResultsCache::Clear(string_split_cache()); RegExpResultsCache::Clear(regexp_multiple_cache()); isolate_->compilation_cache()->MarkCompactPrologue(); CompletelyClearInstanceofCache(); FlushNumberStringCache(); if (FLAG_cleanup_code_caches_at_gc) { polymorphic_code_cache()->set_cache(undefined_value()); } ClearNormalizedMapCaches(); } // Helper class for copying HeapObjects class ScavengeVisitor : public ObjectVisitor { public: explicit ScavengeVisitor(Heap* heap) : heap_(heap) {} void VisitPointer(Object** p) { ScavengePointer(p); } void VisitPointers(Object** start, Object** end) { // Copy all HeapObject pointers in [start, end) for (Object** p = start; p < end; p++) ScavengePointer(p); } private: void ScavengePointer(Object** p) { Object* object = *p; if (!heap_->InNewSpace(object)) return; Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p), reinterpret_cast<HeapObject*>(object)); } Heap* heap_; }; #ifdef VERIFY_HEAP // Visitor class to verify pointers in code or data space do not point into // new space. class VerifyNonPointerSpacePointersVisitor : public ObjectVisitor { public: explicit VerifyNonPointerSpacePointersVisitor(Heap* heap) : heap_(heap) {} void VisitPointers(Object** start, Object** end) { for (Object** current = start; current < end; current++) { if ((*current)->IsHeapObject()) { CHECK(!heap_->InNewSpace(HeapObject::cast(*current))); } } } private: Heap* heap_; }; static void VerifyNonPointerSpacePointers(Heap* heap) { // Verify that there are no pointers to new space in spaces where we // do not expect them. VerifyNonPointerSpacePointersVisitor v(heap); HeapObjectIterator code_it(heap->code_space()); for (HeapObject* object = code_it.Next(); object != NULL; object = code_it.Next()) object->Iterate(&v); } #endif // VERIFY_HEAP void Heap::CheckNewSpaceExpansionCriteria() { if (FLAG_experimental_new_space_growth_heuristic) { if (new_space_.TotalCapacity() < new_space_.MaximumCapacity() && survived_last_scavenge_ * 100 / new_space_.TotalCapacity() >= 10) { // Grow the size of new space if there is room to grow, and more than 10% // have survived the last scavenge. new_space_.Grow(); survived_since_last_expansion_ = 0; } } else if (new_space_.TotalCapacity() < new_space_.MaximumCapacity() && survived_since_last_expansion_ > new_space_.TotalCapacity()) { // Grow the size of new space if there is room to grow, and enough data // has survived scavenge since the last expansion. new_space_.Grow(); survived_since_last_expansion_ = 0; } } static bool IsUnscavengedHeapObject(Heap* heap, Object** p) { return heap->InNewSpace(*p) && !HeapObject::cast(*p)->map_word().IsForwardingAddress(); } void Heap::ScavengeStoreBufferCallback(Heap* heap, MemoryChunk* page, StoreBufferEvent event) { heap->store_buffer_rebuilder_.Callback(page, event); } void StoreBufferRebuilder::Callback(MemoryChunk* page, StoreBufferEvent event) { if (event == kStoreBufferStartScanningPagesEvent) { start_of_current_page_ = NULL; current_page_ = NULL; } else if (event == kStoreBufferScanningPageEvent) { if (current_page_ != NULL) { // If this page already overflowed the store buffer during this iteration. if (current_page_->scan_on_scavenge()) { // Then we should wipe out the entries that have been added for it. store_buffer_->SetTop(start_of_current_page_); } else if (store_buffer_->Top() - start_of_current_page_ >= (store_buffer_->Limit() - store_buffer_->Top()) >> 2) { // Did we find too many pointers in the previous page? The heuristic is // that no page can take more then 1/5 the remaining slots in the store // buffer. current_page_->set_scan_on_scavenge(true); store_buffer_->SetTop(start_of_current_page_); } else { // In this case the page we scanned took a reasonable number of slots in // the store buffer. It has now been rehabilitated and is no longer // marked scan_on_scavenge. DCHECK(!current_page_->scan_on_scavenge()); } } start_of_current_page_ = store_buffer_->Top(); current_page_ = page; } else if (event == kStoreBufferFullEvent) { // The current page overflowed the store buffer again. Wipe out its entries // in the store buffer and mark it scan-on-scavenge again. This may happen // several times while scanning. if (current_page_ == NULL) { // Store Buffer overflowed while scanning promoted objects. These are not // in any particular page, though they are likely to be clustered by the // allocation routines. store_buffer_->EnsureSpace(StoreBuffer::kStoreBufferSize / 2); } else { // Store Buffer overflowed while scanning a particular old space page for // pointers to new space. DCHECK(current_page_ == page); DCHECK(page != NULL); current_page_->set_scan_on_scavenge(true); DCHECK(start_of_current_page_ != store_buffer_->Top()); store_buffer_->SetTop(start_of_current_page_); } } else { UNREACHABLE(); } } void PromotionQueue::Initialize() { // The last to-space page may be used for promotion queue. On promotion // conflict, we use the emergency stack. DCHECK((Page::kPageSize - MemoryChunk::kBodyOffset) % (2 * kPointerSize) == 0); front_ = rear_ = reinterpret_cast<intptr_t*>(heap_->new_space()->ToSpaceEnd()); limit_ = reinterpret_cast<intptr_t*>( Page::FromAllocationTop(reinterpret_cast<Address>(rear_))->area_start()); emergency_stack_ = NULL; } void PromotionQueue::RelocateQueueHead() { DCHECK(emergency_stack_ == NULL); Page* p = Page::FromAllocationTop(reinterpret_cast<Address>(rear_)); intptr_t* head_start = rear_; intptr_t* head_end = Min(front_, reinterpret_cast<intptr_t*>(p->area_end())); int entries_count = static_cast<int>(head_end - head_start) / kEntrySizeInWords; emergency_stack_ = new List<Entry>(2 * entries_count); while (head_start != head_end) { int size = static_cast<int>(*(head_start++)); HeapObject* obj = reinterpret_cast<HeapObject*>(*(head_start++)); // New space allocation in SemiSpaceCopyObject marked the region // overlapping with promotion queue as uninitialized. MSAN_MEMORY_IS_INITIALIZED(&size, sizeof(size)); MSAN_MEMORY_IS_INITIALIZED(&obj, sizeof(obj)); emergency_stack_->Add(Entry(obj, size)); } rear_ = head_end; } class ScavengeWeakObjectRetainer : public WeakObjectRetainer { public: explicit ScavengeWeakObjectRetainer(Heap* heap) : heap_(heap) {} virtual Object* RetainAs(Object* object) { if (!heap_->InFromSpace(object)) { return object; } MapWord map_word = HeapObject::cast(object)->map_word(); if (map_word.IsForwardingAddress()) { return map_word.ToForwardingAddress(); } return NULL; } private: Heap* heap_; }; void Heap::Scavenge() { GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE); RelocationLock relocation_lock(this); // There are soft limits in the allocation code, designed to trigger a mark // sweep collection by failing allocations. There is no sense in trying to // trigger one during scavenge: scavenges allocation should always succeed. AlwaysAllocateScope scope(isolate()); #ifdef VERIFY_HEAP if (FLAG_verify_heap) VerifyNonPointerSpacePointers(this); #endif gc_state_ = SCAVENGE; // Implements Cheney's copying algorithm LOG(isolate_, ResourceEvent("scavenge", "begin")); // Clear descriptor cache. isolate_->descriptor_lookup_cache()->Clear(); // Used for updating survived_since_last_expansion_ at function end. intptr_t survived_watermark = PromotedSpaceSizeOfObjects(); SelectScavengingVisitorsTable(); PrepareArrayBufferDiscoveryInNewSpace(); // Flip the semispaces. After flipping, to space is empty, from space has // live objects. new_space_.Flip(); new_space_.ResetAllocationInfo(); // We need to sweep newly copied objects which can be either in the // to space or promoted to the old generation. For to-space // objects, we treat the bottom of the to space as a queue. Newly // copied and unswept objects lie between a 'front' mark and the // allocation pointer. // // Promoted objects can go into various old-generation spaces, and // can be allocated internally in the spaces (from the free list). // We treat the top of the to space as a queue of addresses of // promoted objects. The addresses of newly promoted and unswept // objects lie between a 'front' mark and a 'rear' mark that is // updated as a side effect of promoting an object. // // There is guaranteed to be enough room at the top of the to space // for the addresses of promoted objects: every object promoted // frees up its size in bytes from the top of the new space, and // objects are at least one pointer in size. Address new_space_front = new_space_.ToSpaceStart(); promotion_queue_.Initialize(); ScavengeVisitor scavenge_visitor(this); { // Copy roots. GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::SCAVENGER_ROOTS); IterateRoots(&scavenge_visitor, VISIT_ALL_IN_SCAVENGE); } { // Copy objects reachable from the old generation. GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::SCAVENGER_OLD_TO_NEW_POINTERS); StoreBufferRebuildScope scope(this, store_buffer(), &ScavengeStoreBufferCallback); store_buffer()->IteratePointersToNewSpace(&ScavengeObject); } { GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::SCAVENGER_WEAK); // Copy objects reachable from the encountered weak collections list. scavenge_visitor.VisitPointer(&encountered_weak_collections_); // Copy objects reachable from the encountered weak cells. scavenge_visitor.VisitPointer(&encountered_weak_cells_); } { // Copy objects reachable from the code flushing candidates list. GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::SCAVENGER_CODE_FLUSH_CANDIDATES); MarkCompactCollector* collector = mark_compact_collector(); if (collector->is_code_flushing_enabled()) { collector->code_flusher()->IteratePointersToFromSpace(&scavenge_visitor); } } { GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::SCAVENGER_SEMISPACE); new_space_front = DoScavenge(&scavenge_visitor, new_space_front); } { GCTracer::Scope gc_scope(tracer(), GCTracer::Scope::SCAVENGER_OBJECT_GROUPS); while (isolate()->global_handles()->IterateObjectGroups( &scavenge_visitor, &IsUnscavengedHeapObject)) { new_space_front = DoScavenge(&scavenge_visitor, new_space_front); } isolate()->global_handles()->RemoveObjectGroups(); isolate()->global_handles()->RemoveImplicitRefGroups(); } isolate()->global_handles()->IdentifyNewSpaceWeakIndependentHandles( &IsUnscavengedHeapObject); isolate()->global_handles()->IterateNewSpaceWeakIndependentRoots( &scavenge_visitor); new_space_front = DoScavenge(&scavenge_visitor, new_space_front); UpdateNewSpaceReferencesInExternalStringTable( &UpdateNewSpaceReferenceInExternalStringTableEntry); promotion_queue_.Destroy(); incremental_marking()->UpdateMarkingDequeAfterScavenge(); ScavengeWeakObjectRetainer weak_object_retainer(this); ProcessYoungWeakReferences(&weak_object_retainer); DCHECK(new_space_front == new_space_.top()); // Set age mark. new_space_.set_age_mark(new_space_.top()); new_space_.LowerInlineAllocationLimit( new_space_.inline_allocation_limit_step()); FreeDeadArrayBuffers(true); // Update how much has survived scavenge. IncrementYoungSurvivorsCounter(static_cast<int>( (PromotedSpaceSizeOfObjects() - survived_watermark) + new_space_.Size())); LOG(isolate_, ResourceEvent("scavenge", "end")); gc_state_ = NOT_IN_GC; } String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap, Object** p) { MapWord first_word = HeapObject::cast(*p)->map_word(); if (!first_word.IsForwardingAddress()) { // Unreachable external string can be finalized. heap->FinalizeExternalString(String::cast(*p)); return NULL; } // String is still reachable. return String::cast(first_word.ToForwardingAddress()); } void Heap::UpdateNewSpaceReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { #ifdef VERIFY_HEAP if (FLAG_verify_heap) { external_string_table_.Verify(); } #endif if (external_string_table_.new_space_strings_.is_empty()) return; Object** start = &external_string_table_.new_space_strings_[0]; Object** end = start + external_string_table_.new_space_strings_.length(); Object** last = start; for (Object** p = start; p < end; ++p) { DCHECK(InFromSpace(*p)); String* target = updater_func(this, p); if (target == NULL) continue; DCHECK(target->IsExternalString()); if (InNewSpace(target)) { // String is still in new space. Update the table entry. *last = target; ++last; } else { // String got promoted. Move it to the old string list. external_string_table_.AddOldString(target); } } DCHECK(last <= end); external_string_table_.ShrinkNewStrings(static_cast<int>(last - start)); } void Heap::UpdateReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { // Update old space string references. if (external_string_table_.old_space_strings_.length() > 0) { Object** start = &external_string_table_.old_space_strings_[0]; Object** end = start + external_string_table_.old_space_strings_.length(); for (Object** p = start; p < end; ++p) *p = updater_func(this, p); } UpdateNewSpaceReferencesInExternalStringTable(updater_func); } void Heap::ProcessAllWeakReferences(WeakObjectRetainer* retainer) { ProcessNativeContexts(retainer); ProcessAllocationSites(retainer); } void Heap::ProcessYoungWeakReferences(WeakObjectRetainer* retainer) { ProcessNativeContexts(retainer); } void Heap::ProcessNativeContexts(WeakObjectRetainer* retainer) { Object* head = VisitWeakList<Context>(this, native_contexts_list(), retainer); // Update the head of the list of contexts. set_native_contexts_list(head); } void Heap::RegisterNewArrayBufferHelper(std::map<void*, size_t>& live_buffers, void* data, size_t length) { live_buffers[data] = length; } void Heap::UnregisterArrayBufferHelper( std::map<void*, size_t>& live_buffers, std::map<void*, size_t>& not_yet_discovered_buffers, void* data) { DCHECK(live_buffers.count(data) > 0); live_buffers.erase(data); not_yet_discovered_buffers.erase(data); } void Heap::RegisterLiveArrayBufferHelper( std::map<void*, size_t>& not_yet_discovered_buffers, void* data) { not_yet_discovered_buffers.erase(data); } size_t Heap::FreeDeadArrayBuffersHelper( Isolate* isolate, std::map<void*, size_t>& live_buffers, std::map<void*, size_t>& not_yet_discovered_buffers) { size_t freed_memory = 0; for (auto buffer = not_yet_discovered_buffers.begin(); buffer != not_yet_discovered_buffers.end(); ++buffer) { isolate->array_buffer_allocator()->Free(buffer->first, buffer->second); freed_memory += buffer->second; live_buffers.erase(buffer->first); } not_yet_discovered_buffers = live_buffers; return freed_memory; } void Heap::TearDownArrayBuffersHelper( Isolate* isolate, std::map<void*, size_t>& live_buffers, std::map<void*, size_t>& not_yet_discovered_buffers) { for (auto buffer = live_buffers.begin(); buffer != live_buffers.end(); ++buffer) { isolate->array_buffer_allocator()->Free(buffer->first, buffer->second); } live_buffers.clear(); not_yet_discovered_buffers.clear(); } void Heap::RegisterNewArrayBuffer(bool in_new_space, void* data, size_t length) { if (!data) return; RegisterNewArrayBufferHelper(live_array_buffers_, data, length); if (in_new_space) { RegisterNewArrayBufferHelper(live_array_buffers_for_scavenge_, data, length); } reinterpret_cast<v8::Isolate*>(isolate_) ->AdjustAmountOfExternalAllocatedMemory(length); } void Heap::UnregisterArrayBuffer(bool in_new_space, void* data) { if (!data) return; UnregisterArrayBufferHelper(live_array_buffers_, not_yet_discovered_array_buffers_, data); if (in_new_space) { UnregisterArrayBufferHelper(live_array_buffers_for_scavenge_, not_yet_discovered_array_buffers_for_scavenge_, data); } } void Heap::RegisterLiveArrayBuffer(bool from_scavenge, void* data) { // ArrayBuffer might be in the middle of being constructed. if (data == undefined_value()) return; RegisterLiveArrayBufferHelper( from_scavenge ? not_yet_discovered_array_buffers_for_scavenge_ : not_yet_discovered_array_buffers_, data); } void Heap::FreeDeadArrayBuffers(bool from_scavenge) { if (from_scavenge) { for (auto& buffer : not_yet_discovered_array_buffers_for_scavenge_) { not_yet_discovered_array_buffers_.erase(buffer.first); live_array_buffers_.erase(buffer.first); } } else { for (auto& buffer : not_yet_discovered_array_buffers_) { // Scavenge can't happend during evacuation, so we only need to update // live_array_buffers_for_scavenge_. // not_yet_discovered_array_buffers_for_scanvenge_ will be reset before // the next scavenge run in PrepareArrayBufferDiscoveryInNewSpace. live_array_buffers_for_scavenge_.erase(buffer.first); } } size_t freed_memory = FreeDeadArrayBuffersHelper( isolate_, from_scavenge ? live_array_buffers_for_scavenge_ : live_array_buffers_, from_scavenge ? not_yet_discovered_array_buffers_for_scavenge_ : not_yet_discovered_array_buffers_); if (freed_memory) { reinterpret_cast<v8::Isolate*>(isolate_) ->AdjustAmountOfExternalAllocatedMemory( -static_cast<int64_t>(freed_memory)); } } void Heap::TearDownArrayBuffers() { TearDownArrayBuffersHelper(isolate_, live_array_buffers_, not_yet_discovered_array_buffers_); } void Heap::PrepareArrayBufferDiscoveryInNewSpace() { not_yet_discovered_array_buffers_for_scavenge_ = live_array_buffers_for_scavenge_; } void Heap::PromoteArrayBuffer(Object* obj) { JSArrayBuffer* buffer = JSArrayBuffer::cast(obj); if (buffer->is_external()) return; void* data = buffer->backing_store(); if (!data) return; // ArrayBuffer might be in the middle of being constructed. if (data == undefined_value()) return; DCHECK(live_array_buffers_for_scavenge_.count(data) > 0); DCHECK(live_array_buffers_.count(data) > 0); live_array_buffers_for_scavenge_.erase(data); not_yet_discovered_array_buffers_for_scavenge_.erase(data); } void Heap::ProcessAllocationSites(WeakObjectRetainer* retainer) { Object* allocation_site_obj = VisitWeakList<AllocationSite>(this, allocation_sites_list(), retainer); set_allocation_sites_list(allocation_site_obj); } void Heap::ResetAllAllocationSitesDependentCode(PretenureFlag flag) { DisallowHeapAllocation no_allocation_scope; Object* cur = allocation_sites_list(); bool marked = false; while (cur->IsAllocationSite()) { AllocationSite* casted = AllocationSite::cast(cur); if (casted->GetPretenureMode() == flag) { casted->ResetPretenureDecision(); casted->set_deopt_dependent_code(true); marked = true; } cur = casted->weak_next(); } if (marked) isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); } void Heap::EvaluateOldSpaceLocalPretenuring( uint64_t size_of_objects_before_gc) { uint64_t size_of_objects_after_gc = SizeOfObjects(); double old_generation_survival_rate = (static_cast<double>(size_of_objects_after_gc) * 100) / static_cast<double>(size_of_objects_before_gc); if (old_generation_survival_rate < kOldSurvivalRateLowThreshold) { // Too many objects died in the old generation, pretenuring of wrong // allocation sites may be the cause for that. We have to deopt all // dependent code registered in the allocation sites to re-evaluate // our pretenuring decisions. ResetAllAllocationSitesDependentCode(TENURED); if (FLAG_trace_pretenuring) { PrintF( "Deopt all allocation sites dependent code due to low survival " "rate in the old generation %f\n", old_generation_survival_rate); } } } void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) { DisallowHeapAllocation no_allocation; // All external strings are listed in the external string table. class ExternalStringTableVisitorAdapter : public ObjectVisitor { public: explicit ExternalStringTableVisitorAdapter( v8::ExternalResourceVisitor* visitor) : visitor_(visitor) {} virtual void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { DCHECK((*p)->IsExternalString()); visitor_->VisitExternalString( Utils::ToLocal(Handle<String>(String::cast(*p)))); } } private: v8::ExternalResourceVisitor* visitor_; } external_string_table_visitor(visitor); external_string_table_.Iterate(&external_string_table_visitor); } class NewSpaceScavenger : public StaticNewSpaceVisitor<NewSpaceScavenger> { public: static inline void VisitPointer(Heap* heap, Object** p) { Object* object = *p; if (!heap->InNewSpace(object)) return; Heap::ScavengeObject(reinterpret_cast<HeapObject**>(p), reinterpret_cast<HeapObject*>(object)); } }; Address Heap::DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front) { do { SemiSpace::AssertValidRange(new_space_front, new_space_.top()); // The addresses new_space_front and new_space_.top() define a // queue of unprocessed copied objects. Process them until the // queue is empty. while (new_space_front != new_space_.top()) { if (!NewSpacePage::IsAtEnd(new_space_front)) { HeapObject* object = HeapObject::FromAddress(new_space_front); new_space_front += NewSpaceScavenger::IterateBody(object->map(), object); } else { new_space_front = NewSpacePage::FromLimit(new_space_front)->next_page()->area_start(); } } // Promote and process all the to-be-promoted objects. { StoreBufferRebuildScope scope(this, store_buffer(), &ScavengeStoreBufferCallback); while (!promotion_queue()->is_empty()) { HeapObject* target; int size; promotion_queue()->remove(&target, &size); // Promoted object might be already partially visited // during old space pointer iteration. Thus we search specifically // for pointers to from semispace instead of looking for pointers // to new space. DCHECK(!target->IsMap()); Address obj_address = target->address(); // We are not collecting slots on new space objects during mutation // thus we have to scan for pointers to evacuation candidates when we // promote objects. But we should not record any slots in non-black // objects. Grey object's slots would be rescanned. // White object might not survive until the end of collection // it would be a violation of the invariant to record it's slots. bool record_slots = false; if (incremental_marking()->IsCompacting()) { MarkBit mark_bit = Marking::MarkBitFrom(target); record_slots = Marking::IsBlack(mark_bit); } #if V8_DOUBLE_FIELDS_UNBOXING LayoutDescriptorHelper helper(target->map()); bool has_only_tagged_fields = helper.all_fields_tagged(); if (!has_only_tagged_fields) { for (int offset = 0; offset < size;) { int end_of_region_offset; if (helper.IsTagged(offset, size, &end_of_region_offset)) { IterateAndMarkPointersToFromSpace( target, obj_address + offset, obj_address + end_of_region_offset, record_slots, &ScavengeObject); } offset = end_of_region_offset; } } else { #endif IterateAndMarkPointersToFromSpace(target, obj_address, obj_address + size, record_slots, &ScavengeObject); #if V8_DOUBLE_FIELDS_UNBOXING } #endif } } // Take another spin if there are now unswept objects in new space // (there are currently no more unswept promoted objects). } while (new_space_front != new_space_.top()); return new_space_front; } STATIC_ASSERT((FixedDoubleArray::kHeaderSize & kDoubleAlignmentMask) == 0); // NOLINT STATIC_ASSERT((FixedTypedArrayBase::kDataOffset & kDoubleAlignmentMask) == 0); // NOLINT #ifdef V8_HOST_ARCH_32_BIT STATIC_ASSERT((HeapNumber::kValueOffset & kDoubleAlignmentMask) != 0); // NOLINT #endif int Heap::GetMaximumFillToAlign(AllocationAlignment alignment) { switch (alignment) { case kWordAligned: return 0; case kDoubleAligned: case kDoubleUnaligned: return kDoubleSize - kPointerSize; case kSimd128Unaligned: return kSimd128Size - kPointerSize; default: UNREACHABLE(); } return 0; } int Heap::GetFillToAlign(Address address, AllocationAlignment alignment) { intptr_t offset = OffsetFrom(address); if (alignment == kDoubleAligned && (offset & kDoubleAlignmentMask) != 0) return kPointerSize; if (alignment == kDoubleUnaligned && (offset & kDoubleAlignmentMask) == 0) return kDoubleSize - kPointerSize; // No fill if double is always aligned. if (alignment == kSimd128Unaligned) { return (kSimd128Size - (static_cast<int>(offset) + kPointerSize)) & kSimd128AlignmentMask; } return 0; } HeapObject* Heap::PrecedeWithFiller(HeapObject* object, int filler_size) { CreateFillerObjectAt(object->address(), filler_size); return HeapObject::FromAddress(object->address() + filler_size); } HeapObject* Heap::AlignWithFiller(HeapObject* object, int object_size, int allocation_size, AllocationAlignment alignment) { int filler_size = allocation_size - object_size; DCHECK(filler_size > 0); int pre_filler = GetFillToAlign(object->address(), alignment); if (pre_filler) { object = PrecedeWithFiller(object, pre_filler); filler_size -= pre_filler; } if (filler_size) CreateFillerObjectAt(object->address() + object_size, filler_size); return object; } HeapObject* Heap::DoubleAlignForDeserialization(HeapObject* object, int size) { return AlignWithFiller(object, size - kPointerSize, size, kDoubleAligned); } enum LoggingAndProfiling { LOGGING_AND_PROFILING_ENABLED, LOGGING_AND_PROFILING_DISABLED }; enum MarksHandling { TRANSFER_MARKS, IGNORE_MARKS }; template <MarksHandling marks_handling, LoggingAndProfiling logging_and_profiling_mode> class ScavengingVisitor : public StaticVisitorBase { public: static void Initialize() { table_.Register(kVisitSeqOneByteString, &EvacuateSeqOneByteString); table_.Register(kVisitSeqTwoByteString, &EvacuateSeqTwoByteString); table_.Register(kVisitShortcutCandidate, &EvacuateShortcutCandidate); table_.Register(kVisitByteArray, &EvacuateByteArray); table_.Register(kVisitFixedArray, &EvacuateFixedArray); table_.Register(kVisitFixedDoubleArray, &EvacuateFixedDoubleArray); table_.Register(kVisitFixedTypedArray, &EvacuateFixedTypedArray); table_.Register(kVisitFixedFloat64Array, &EvacuateFixedFloat64Array); table_.Register(kVisitJSArrayBuffer, &EvacuateJSArrayBuffer); table_.Register( kVisitNativeContext, &ObjectEvacuationStrategy<POINTER_OBJECT>::template VisitSpecialized< Context::kSize>); table_.Register( kVisitConsString, &ObjectEvacuationStrategy<POINTER_OBJECT>::template VisitSpecialized< ConsString::kSize>); table_.Register( kVisitSlicedString, &ObjectEvacuationStrategy<POINTER_OBJECT>::template VisitSpecialized< SlicedString::kSize>); table_.Register( kVisitSymbol, &ObjectEvacuationStrategy<POINTER_OBJECT>::template VisitSpecialized< Symbol::kSize>); table_.Register( kVisitSharedFunctionInfo, &ObjectEvacuationStrategy<POINTER_OBJECT>::template VisitSpecialized< SharedFunctionInfo::kSize>); table_.Register(kVisitJSWeakCollection, &ObjectEvacuationStrategy<POINTER_OBJECT>::Visit); table_.Register(kVisitJSTypedArray, &ObjectEvacuationStrategy<POINTER_OBJECT>::Visit); table_.Register(kVisitJSDataView, &ObjectEvacuationStrategy<POINTER_OBJECT>::Visit); table_.Register(kVisitJSRegExp, &ObjectEvacuationStrategy<POINTER_OBJECT>::Visit); if (marks_handling == IGNORE_MARKS) { table_.Register( kVisitJSFunction, &ObjectEvacuationStrategy<POINTER_OBJECT>::template VisitSpecialized< JSFunction::kSize>); } else { table_.Register(kVisitJSFunction, &EvacuateJSFunction); } table_.RegisterSpecializations<ObjectEvacuationStrategy<DATA_OBJECT>, kVisitDataObject, kVisitDataObjectGeneric>(); table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>, kVisitJSObject, kVisitJSObjectGeneric>(); table_.RegisterSpecializations<ObjectEvacuationStrategy<POINTER_OBJECT>, kVisitStruct, kVisitStructGeneric>(); } static VisitorDispatchTable<ScavengingCallback>* GetTable() { return &table_; } private: enum ObjectContents { DATA_OBJECT, POINTER_OBJECT }; static void RecordCopiedObject(Heap* heap, HeapObject* obj) { bool should_record = false; #ifdef DEBUG should_record = FLAG_heap_stats; #endif should_record = should_record || FLAG_log_gc; if (should_record) { if (heap->new_space()->Contains(obj)) { heap->new_space()->RecordAllocation(obj); } else { heap->new_space()->RecordPromotion(obj); } } } // Helper function used by CopyObject to copy a source object to an // allocated target object and update the forwarding pointer in the source // object. Returns the target object. INLINE(static void MigrateObject(Heap* heap, HeapObject* source, HeapObject* target, int size)) { // If we migrate into to-space, then the to-space top pointer should be // right after the target object. Incorporate double alignment // over-allocation. DCHECK(!heap->InToSpace(target) || target->address() + size == heap->new_space()->top() || target->address() + size + kPointerSize == heap->new_space()->top()); // Make sure that we do not overwrite the promotion queue which is at // the end of to-space. DCHECK(!heap->InToSpace(target) || heap->promotion_queue()->IsBelowPromotionQueue( heap->new_space()->top())); // Copy the content of source to target. heap->CopyBlock(target->address(), source->address(), size); // Set the forwarding address. source->set_map_word(MapWord::FromForwardingAddress(target)); if (logging_and_profiling_mode == LOGGING_AND_PROFILING_ENABLED) { // Update NewSpace stats if necessary. RecordCopiedObject(heap, target); heap->OnMoveEvent(target, source, size); } if (marks_handling == TRANSFER_MARKS) { if (Marking::TransferColor(source, target)) { MemoryChunk::IncrementLiveBytesFromGC(target, size); } } } template <AllocationAlignment alignment> static inline bool SemiSpaceCopyObject(Map* map, HeapObject** slot, HeapObject* object, int object_size) { Heap* heap = map->GetHeap(); DCHECK(heap->AllowedToBeMigrated(object, NEW_SPACE)); AllocationResult allocation = heap->new_space()->AllocateRaw(object_size, alignment); HeapObject* target = NULL; // Initialization to please compiler. if (allocation.To(&target)) { // Order is important here: Set the promotion limit before storing a // filler for double alignment or migrating the object. Otherwise we // may end up overwriting promotion queue entries when we migrate the // object. heap->promotion_queue()->SetNewLimit(heap->new_space()->top()); MigrateObject(heap, object, target, object_size); // Update slot to new target. *slot = target; heap->IncrementSemiSpaceCopiedObjectSize(object_size); return true; } return false; } template <ObjectContents object_contents, AllocationAlignment alignment> static inline bool PromoteObject(Map* map, HeapObject** slot, HeapObject* object, int object_size) { Heap* heap = map->GetHeap(); AllocationResult allocation = heap->old_space()->AllocateRaw(object_size, alignment); HeapObject* target = NULL; // Initialization to please compiler. if (allocation.To(&target)) { MigrateObject(heap, object, target, object_size); // Update slot to new target. *slot = target; if (object_contents == POINTER_OBJECT) { if (map->instance_type() == JS_FUNCTION_TYPE) { heap->promotion_queue()->insert(target, JSFunction::kNonWeakFieldsEndOffset); } else { heap->promotion_queue()->insert(target, object_size); } } heap->IncrementPromotedObjectsSize(object_size); return true; } return false; } template <ObjectContents object_contents, AllocationAlignment alignment> static inline void EvacuateObject(Map* map, HeapObject** slot, HeapObject* object, int object_size) { SLOW_DCHECK(object_size <= Page::kMaxRegularHeapObjectSize); SLOW_DCHECK(object->Size() == object_size); Heap* heap = map->GetHeap(); if (!heap->ShouldBePromoted(object->address(), object_size)) { // A semi-space copy may fail due to fragmentation. In that case, we // try to promote the object. if (SemiSpaceCopyObject<alignment>(map, slot, object, object_size)) { return; } } if (PromoteObject<object_contents, alignment>(map, slot, object, object_size)) { return; } // If promotion failed, we try to copy the object to the other semi-space if (SemiSpaceCopyObject<alignment>(map, slot, object, object_size)) return; UNREACHABLE(); } static inline void EvacuateJSFunction(Map* map, HeapObject** slot, HeapObject* object) { ObjectEvacuationStrategy<POINTER_OBJECT>::template VisitSpecialized< JSFunction::kSize>(map, slot, object); MapWord map_word = object->map_word(); DCHECK(map_word.IsForwardingAddress()); HeapObject* target = map_word.ToForwardingAddress(); MarkBit mark_bit = Marking::MarkBitFrom(target); if (Marking::IsBlack(mark_bit)) { // This object is black and it might not be rescanned by marker. // We should explicitly record code entry slot for compaction because // promotion queue processing (IterateAndMarkPointersToFromSpace) will // miss it as it is not HeapObject-tagged. Address code_entry_slot = target->address() + JSFunction::kCodeEntryOffset; Code* code = Code::cast(Code::GetObjectFromEntryAddress(code_entry_slot)); map->GetHeap()->mark_compact_collector()->RecordCodeEntrySlot( target, code_entry_slot, code); } } static inline void EvacuateFixedArray(Map* map, HeapObject** slot, HeapObject* object) { int object_size = FixedArray::BodyDescriptor::SizeOf(map, object); EvacuateObject<POINTER_OBJECT, kWordAligned>(map, slot, object, object_size); } static inline void EvacuateFixedDoubleArray(Map* map, HeapObject** slot, HeapObject* object) { int length = reinterpret_cast<FixedDoubleArray*>(object)->length(); int object_size = FixedDoubleArray::SizeFor(length); EvacuateObject<DATA_OBJECT, kDoubleAligned>(map, slot, object, object_size); } static inline void EvacuateFixedTypedArray(Map* map, HeapObject** slot, HeapObject* object) { int object_size = reinterpret_cast<FixedTypedArrayBase*>(object)->size(); EvacuateObject<DATA_OBJECT, kWordAligned>(map, slot, object, object_size); MapWord map_word = object->map_word(); DCHECK(map_word.IsForwardingAddress()); FixedTypedArrayBase* target = reinterpret_cast<FixedTypedArrayBase*>(map_word.ToForwardingAddress()); if (target->base_pointer() != Smi::FromInt(0)) target->set_base_pointer(target, SKIP_WRITE_BARRIER); } static inline void EvacuateFixedFloat64Array(Map* map, HeapObject** slot, HeapObject* object) { int object_size = reinterpret_cast<FixedFloat64Array*>(object)->size(); EvacuateObject<DATA_OBJECT, kDoubleAligned>(map, slot, object, object_size); MapWord map_word = object->map_word(); DCHECK(map_word.IsForwardingAddress()); FixedTypedArrayBase* target = reinterpret_cast<FixedTypedArrayBase*>(map_word.ToForwardingAddress()); if (target->base_pointer() != Smi::FromInt(0)) target->set_base_pointer(target, SKIP_WRITE_BARRIER); } static inline void EvacuateJSArrayBuffer(Map* map, HeapObject** slot, HeapObject* object) { ObjectEvacuationStrategy<POINTER_OBJECT>::Visit(map, slot, object); Heap* heap = map->GetHeap(); MapWord map_word = object->map_word(); DCHECK(map_word.IsForwardingAddress()); HeapObject* target = map_word.ToForwardingAddress(); if (!heap->InNewSpace(target)) heap->PromoteArrayBuffer(target); } static inline void EvacuateByteArray(Map* map, HeapObject** slot, HeapObject* object) { int object_size = reinterpret_cast<ByteArray*>(object)->ByteArraySize(); EvacuateObject<DATA_OBJECT, kWordAligned>(map, slot, object, object_size); } static inline void EvacuateSeqOneByteString(Map* map, HeapObject** slot, HeapObject* object) { int object_size = SeqOneByteString::cast(object) ->SeqOneByteStringSize(map->instance_type()); EvacuateObject<DATA_OBJECT, kWordAligned>(map, slot, object, object_size); } static inline void EvacuateSeqTwoByteString(Map* map, HeapObject** slot, HeapObject* object) { int object_size = SeqTwoByteString::cast(object) ->SeqTwoByteStringSize(map->instance_type()); EvacuateObject<DATA_OBJECT, kWordAligned>(map, slot, object, object_size); } static inline void EvacuateShortcutCandidate(Map* map, HeapObject** slot, HeapObject* object) { DCHECK(IsShortcutCandidate(map->instance_type())); Heap* heap = map->GetHeap(); if (marks_handling == IGNORE_MARKS && ConsString::cast(object)->unchecked_second() == heap->empty_string()) { HeapObject* first = HeapObject::cast(ConsString::cast(object)->unchecked_first()); *slot = first; if (!heap->InNewSpace(first)) { object->set_map_word(MapWord::FromForwardingAddress(first)); return; } MapWord first_word = first->map_word(); if (first_word.IsForwardingAddress()) { HeapObject* target = first_word.ToForwardingAddress(); *slot = target; object->set_map_word(MapWord::FromForwardingAddress(target)); return; } heap->DoScavengeObject(first->map(), slot, first); object->set_map_word(MapWord::FromForwardingAddress(*slot)); return; } int object_size = ConsString::kSize; EvacuateObject<POINTER_OBJECT, kWordAligned>(map, slot, object, object_size); } template <ObjectContents object_contents> class ObjectEvacuationStrategy { public: template <int object_size> static inline void VisitSpecialized(Map* map, HeapObject** slot, HeapObject* object) { EvacuateObject<object_contents, kWordAligned>(map, slot, object, object_size); } static inline void Visit(Map* map, HeapObject** slot, HeapObject* object) { int object_size = map->instance_size(); EvacuateObject<object_contents, kWordAligned>(map, slot, object, object_size); } }; static VisitorDispatchTable<ScavengingCallback> table_; }; template <MarksHandling marks_handling, LoggingAndProfiling logging_and_profiling_mode> VisitorDispatchTable<ScavengingCallback> ScavengingVisitor<marks_handling, logging_and_profiling_mode>::table_; static void InitializeScavengingVisitorsTables() { ScavengingVisitor<TRANSFER_MARKS, LOGGING_AND_PROFILING_DISABLED>::Initialize(); ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_DISABLED>::Initialize(); ScavengingVisitor<TRANSFER_MARKS, LOGGING_AND_PROFILING_ENABLED>::Initialize(); ScavengingVisitor<IGNORE_MARKS, LOGGING_AND_PROFILING_ENABLED>::Initialize(); } void Heap::SelectScavengingVisitorsTable() { bool logging_and_profiling = FLAG_verify_predictable || isolate()->logger()->is_logging() || isolate()->cpu_profiler()->is_profiling() || (isolate()->heap_profiler() != NULL && isolate()->heap_profiler()->is_tracking_object_moves()); if (!incremental_marking()->IsMarking()) { if (!logging_and_profiling) { scavenging_visitors_table_.CopyFrom(ScavengingVisitor< IGNORE_MARKS, LOGGING_AND_PROFILING_DISABLED>::GetTable()); } else { scavenging_visitors_table_.CopyFrom(ScavengingVisitor< IGNORE_MARKS, LOGGING_AND_PROFILING_ENABLED>::GetTable()); } } else { if (!logging_and_profiling) { scavenging_visitors_table_.CopyFrom(ScavengingVisitor< TRANSFER_MARKS, LOGGING_AND_PROFILING_DISABLED>::GetTable()); } else { scavenging_visitors_table_.CopyFrom(ScavengingVisitor< TRANSFER_MARKS, LOGGING_AND_PROFILING_ENABLED>::GetTable()); } if (incremental_marking()->IsCompacting()) { // When compacting forbid short-circuiting of cons-strings. // Scavenging code relies on the fact that new space object // can't be evacuated into evacuation candidate but // short-circuiting violates this assumption. scavenging_visitors_table_.Register( StaticVisitorBase::kVisitShortcutCandidate, scavenging_visitors_table_.GetVisitorById( StaticVisitorBase::kVisitConsString)); } } } void Heap::ScavengeObjectSlow(HeapObject** p, HeapObject* object) { SLOW_DCHECK(object->GetIsolate()->heap()->InFromSpace(object)); MapWord first_word = object->map_word(); SLOW_DCHECK(!first_word.IsForwardingAddress()); Map* map = first_word.ToMap(); map->GetHeap()->DoScavengeObject(map, p, object); } void Heap::ConfigureInitialOldGenerationSize() { if (!old_generation_size_configured_ && tracer()->SurvivalEventsRecorded()) { old_generation_allocation_limit_ = Max(kMinimumOldGenerationAllocationLimit, static_cast<intptr_t>( static_cast<double>(old_generation_allocation_limit_) * (tracer()->AverageSurvivalRatio() / 100))); } } AllocationResult Heap::AllocatePartialMap(InstanceType instance_type, int instance_size) { Object* result = nullptr; AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE); if (!allocation.To(&result)) return allocation; // Map::cast cannot be used due to uninitialized map field. reinterpret_cast<Map*>(result)->set_map(raw_unchecked_meta_map()); reinterpret_cast<Map*>(result)->set_instance_type(instance_type); reinterpret_cast<Map*>(result)->set_instance_size(instance_size); // Initialize to only containing tagged fields. reinterpret_cast<Map*>(result)->set_visitor_id( StaticVisitorBase::GetVisitorId(instance_type, instance_size, false)); if (FLAG_unbox_double_fields) { reinterpret_cast<Map*>(result) ->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } reinterpret_cast<Map*>(result)->clear_unused(); reinterpret_cast<Map*>(result)->set_inobject_properties(0); reinterpret_cast<Map*>(result)->set_unused_property_fields(0); reinterpret_cast<Map*>(result)->set_bit_field(0); reinterpret_cast<Map*>(result)->set_bit_field2(0); int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | Map::OwnsDescriptors::encode(true) | Map::Counter::encode(Map::kRetainingCounterStart); reinterpret_cast<Map*>(result)->set_bit_field3(bit_field3); reinterpret_cast<Map*>(result)->set_weak_cell_cache(Smi::FromInt(0)); return result; } AllocationResult Heap::AllocateMap(InstanceType instance_type, int instance_size, ElementsKind elements_kind) { HeapObject* result; AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE, MAP_SPACE); if (!allocation.To(&result)) return allocation; result->set_map_no_write_barrier(meta_map()); Map* map = Map::cast(result); map->set_instance_type(instance_type); map->set_prototype(null_value(), SKIP_WRITE_BARRIER); map->set_constructor_or_backpointer(null_value(), SKIP_WRITE_BARRIER); map->set_instance_size(instance_size); map->clear_unused(); map->set_inobject_properties(0); map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER); map->set_dependent_code(DependentCode::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); map->set_weak_cell_cache(Smi::FromInt(0)); map->set_raw_transitions(Smi::FromInt(0)); map->set_unused_property_fields(0); map->set_instance_descriptors(empty_descriptor_array()); if (FLAG_unbox_double_fields) { map->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } // Must be called only after |instance_type|, |instance_size| and // |layout_descriptor| are set. map->set_visitor_id(StaticVisitorBase::GetVisitorId(map)); map->set_bit_field(0); map->set_bit_field2(1 << Map::kIsExtensible); int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | Map::OwnsDescriptors::encode(true) | Map::Counter::encode(Map::kRetainingCounterStart); map->set_bit_field3(bit_field3); map->set_elements_kind(elements_kind); return map; } AllocationResult Heap::AllocateFillerObject(int size, bool double_align, AllocationSpace space) { HeapObject* obj; { AllocationAlignment align = double_align ? kDoubleAligned : kWordAligned; AllocationResult allocation = AllocateRaw(size, space, space, align); if (!allocation.To(&obj)) return allocation; } #ifdef DEBUG MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); DCHECK(chunk->owner()->identity() == space); #endif CreateFillerObjectAt(obj->address(), size); return obj; } const Heap::StringTypeTable Heap::string_type_table[] = { #define STRING_TYPE_ELEMENT(type, size, name, camel_name) \ { type, size, k##camel_name##MapRootIndex } \ , STRING_TYPE_LIST(STRING_TYPE_ELEMENT) #undef STRING_TYPE_ELEMENT }; const Heap::ConstantStringTable Heap::constant_string_table[] = { {"", kempty_stringRootIndex}, #define CONSTANT_STRING_ELEMENT(name, contents) \ { contents, k##name##RootIndex } \ , INTERNALIZED_STRING_LIST(CONSTANT_STRING_ELEMENT) #undef CONSTANT_STRING_ELEMENT }; const Heap::StructTable Heap::struct_table[] = { #define STRUCT_TABLE_ELEMENT(NAME, Name, name) \ { NAME##_TYPE, Name::kSize, k##Name##MapRootIndex } \ , STRUCT_LIST(STRUCT_TABLE_ELEMENT) #undef STRUCT_TABLE_ELEMENT }; bool Heap::CreateInitialMaps() { HeapObject* obj; { AllocationResult allocation = AllocatePartialMap(MAP_TYPE, Map::kSize); if (!allocation.To(&obj)) return false; } // Map::cast cannot be used due to uninitialized map field. Map* new_meta_map = reinterpret_cast<Map*>(obj); set_meta_map(new_meta_map); new_meta_map->set_map(new_meta_map); { // Partial map allocation #define ALLOCATE_PARTIAL_MAP(instance_type, size, field_name) \ { \ Map* map; \ if (!AllocatePartialMap((instance_type), (size)).To(&map)) return false; \ set_##field_name##_map(map); \ } ALLOCATE_PARTIAL_MAP(FIXED_ARRAY_TYPE, kVariableSizeSentinel, fixed_array); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, undefined); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, null); #undef ALLOCATE_PARTIAL_MAP } // Allocate the empty array. { AllocationResult allocation = AllocateEmptyFixedArray(); if (!allocation.To(&obj)) return false; } set_empty_fixed_array(FixedArray::cast(obj)); { AllocationResult allocation = Allocate(null_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_null_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kNull); { AllocationResult allocation = Allocate(undefined_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_undefined_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kUndefined); DCHECK(!InNewSpace(undefined_value())); // Set preliminary exception sentinel value before actually initializing it. set_exception(null_value()); // Allocate the empty descriptor array. { AllocationResult allocation = AllocateEmptyFixedArray(); if (!allocation.To(&obj)) return false; } set_empty_descriptor_array(DescriptorArray::cast(obj)); // Fix the instance_descriptors for the existing maps. meta_map()->set_code_cache(empty_fixed_array()); meta_map()->set_dependent_code(DependentCode::cast(empty_fixed_array())); meta_map()->set_raw_transitions(Smi::FromInt(0)); meta_map()->set_instance_descriptors(empty_descriptor_array()); if (FLAG_unbox_double_fields) { meta_map()->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } fixed_array_map()->set_code_cache(empty_fixed_array()); fixed_array_map()->set_dependent_code( DependentCode::cast(empty_fixed_array())); fixed_array_map()->set_raw_transitions(Smi::FromInt(0)); fixed_array_map()->set_instance_descriptors(empty_descriptor_array()); if (FLAG_unbox_double_fields) { fixed_array_map()->set_layout_descriptor( LayoutDescriptor::FastPointerLayout()); } undefined_map()->set_code_cache(empty_fixed_array()); undefined_map()->set_dependent_code(DependentCode::cast(empty_fixed_array())); undefined_map()->set_raw_transitions(Smi::FromInt(0)); undefined_map()->set_instance_descriptors(empty_descriptor_array()); if (FLAG_unbox_double_fields) { undefined_map()->set_layout_descriptor( LayoutDescriptor::FastPointerLayout()); } null_map()->set_code_cache(empty_fixed_array()); null_map()->set_dependent_code(DependentCode::cast(empty_fixed_array())); null_map()->set_raw_transitions(Smi::FromInt(0)); null_map()->set_instance_descriptors(empty_descriptor_array()); if (FLAG_unbox_double_fields) { null_map()->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } // Fix prototype object for existing maps. meta_map()->set_prototype(null_value()); meta_map()->set_constructor_or_backpointer(null_value()); fixed_array_map()->set_prototype(null_value()); fixed_array_map()->set_constructor_or_backpointer(null_value()); undefined_map()->set_prototype(null_value()); undefined_map()->set_constructor_or_backpointer(null_value()); null_map()->set_prototype(null_value()); null_map()->set_constructor_or_backpointer(null_value()); { // Map allocation #define ALLOCATE_MAP(instance_type, size, field_name) \ { \ Map* map; \ if (!AllocateMap((instance_type), size).To(&map)) return false; \ set_##field_name##_map(map); \ } #define ALLOCATE_VARSIZE_MAP(instance_type, field_name) \ ALLOCATE_MAP(instance_type, kVariableSizeSentinel, field_name) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, fixed_cow_array) DCHECK(fixed_array_map() != fixed_cow_array_map()); ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, scope_info) ALLOCATE_MAP(HEAP_NUMBER_TYPE, HeapNumber::kSize, heap_number) ALLOCATE_MAP(MUTABLE_HEAP_NUMBER_TYPE, HeapNumber::kSize, mutable_heap_number) ALLOCATE_MAP(FLOAT32X4_TYPE, Float32x4::kSize, float32x4) ALLOCATE_MAP(INT32X4_TYPE, Int32x4::kSize, int32x4) ALLOCATE_MAP(BOOL32X4_TYPE, Bool32x4::kSize, bool32x4) ALLOCATE_MAP(INT16X8_TYPE, Int16x8::kSize, int16x8) ALLOCATE_MAP(BOOL16X8_TYPE, Bool16x8::kSize, bool16x8) ALLOCATE_MAP(INT8X16_TYPE, Int8x16::kSize, int8x16) ALLOCATE_MAP(BOOL8X16_TYPE, Bool8x16::kSize, bool8x16) ALLOCATE_MAP(SYMBOL_TYPE, Symbol::kSize, symbol) ALLOCATE_MAP(FOREIGN_TYPE, Foreign::kSize, foreign) ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, the_hole); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, boolean); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, uninitialized); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, arguments_marker); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, no_interceptor_result_sentinel); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, exception); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, termination_exception); for (unsigned i = 0; i < arraysize(string_type_table); i++) { const StringTypeTable& entry = string_type_table[i]; { AllocationResult allocation = AllocateMap(entry.type, entry.size); if (!allocation.To(&obj)) return false; } // Mark cons string maps as unstable, because their objects can change // maps during GC. Map* map = Map::cast(obj); if (StringShape(entry.type).IsCons()) map->mark_unstable(); roots_[entry.index] = map; } { // Create a separate external one byte string map for native sources. AllocationResult allocation = AllocateMap(EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kSize); if (!allocation.To(&obj)) return false; set_native_source_string_map(Map::cast(obj)); } ALLOCATE_VARSIZE_MAP(FIXED_DOUBLE_ARRAY_TYPE, fixed_double_array) ALLOCATE_VARSIZE_MAP(BYTE_ARRAY_TYPE, byte_array) ALLOCATE_VARSIZE_MAP(BYTECODE_ARRAY_TYPE, bytecode_array) ALLOCATE_VARSIZE_MAP(FREE_SPACE_TYPE, free_space) #define ALLOCATE_FIXED_TYPED_ARRAY_MAP(Type, type, TYPE, ctype, size) \ ALLOCATE_VARSIZE_MAP(FIXED_##TYPE##_ARRAY_TYPE, fixed_##type##_array) TYPED_ARRAYS(ALLOCATE_FIXED_TYPED_ARRAY_MAP) #undef ALLOCATE_FIXED_TYPED_ARRAY_MAP ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, sloppy_arguments_elements) ALLOCATE_VARSIZE_MAP(CODE_TYPE, code) ALLOCATE_MAP(CELL_TYPE, Cell::kSize, cell) ALLOCATE_MAP(PROPERTY_CELL_TYPE, PropertyCell::kSize, global_property_cell) ALLOCATE_MAP(WEAK_CELL_TYPE, WeakCell::kSize, weak_cell) ALLOCATE_MAP(FILLER_TYPE, kPointerSize, one_pointer_filler) ALLOCATE_MAP(FILLER_TYPE, 2 * kPointerSize, two_pointer_filler) for (unsigned i = 0; i < arraysize(struct_table); i++) { const StructTable& entry = struct_table[i]; Map* map; if (!AllocateMap(entry.type, entry.size).To(&map)) return false; roots_[entry.index] = map; } ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, hash_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, ordered_hash_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, function_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, catch_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, with_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, block_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, script_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, script_context_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, native_context) native_context_map()->set_dictionary_map(true); native_context_map()->set_visitor_id( StaticVisitorBase::kVisitNativeContext); ALLOCATE_MAP(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kAlignedSize, shared_function_info) ALLOCATE_MAP(JS_MESSAGE_OBJECT_TYPE, JSMessageObject::kSize, message_object) ALLOCATE_MAP(JS_OBJECT_TYPE, JSObject::kHeaderSize + kPointerSize, external) external_map()->set_is_extensible(false); #undef ALLOCATE_VARSIZE_MAP #undef ALLOCATE_MAP } { // Empty arrays { ByteArray* byte_array; if (!AllocateByteArray(0, TENURED).To(&byte_array)) return false; set_empty_byte_array(byte_array); BytecodeArray* bytecode_array; AllocationResult allocation = AllocateBytecodeArray(0, nullptr, kPointerSize); if (!allocation.To(&bytecode_array)) { return false; } set_empty_bytecode_array(bytecode_array); } #define ALLOCATE_EMPTY_FIXED_TYPED_ARRAY(Type, type, TYPE, ctype, size) \ { \ FixedTypedArrayBase* obj; \ if (!AllocateEmptyFixedTypedArray(kExternal##Type##Array).To(&obj)) \ return false; \ set_empty_fixed_##type##_array(obj); \ } TYPED_ARRAYS(ALLOCATE_EMPTY_FIXED_TYPED_ARRAY) #undef ALLOCATE_EMPTY_FIXED_TYPED_ARRAY } DCHECK(!InNewSpace(empty_fixed_array())); return true; } AllocationResult Heap::AllocateHeapNumber(double value, MutableMode mode, PretenureFlag pretenure) { // Statically ensure that it is safe to allocate heap numbers in paged // spaces. int size = HeapNumber::kSize; STATIC_ASSERT(HeapNumber::kSize <= Page::kMaxRegularHeapObjectSize); AllocationSpace space = SelectSpace(size, pretenure); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, space, OLD_SPACE, kDoubleUnaligned); if (!allocation.To(&result)) return allocation; } Map* map = mode == MUTABLE ? mutable_heap_number_map() : heap_number_map(); HeapObject::cast(result)->set_map_no_write_barrier(map); HeapNumber::cast(result)->set_value(value); return result; } #define SIMD_ALLOCATE_DEFINITION(type, type_name, lane_count, lane_type) \ AllocationResult Heap::Allocate##type(lane_type lanes[lane_count], \ PretenureFlag pretenure) { \ int size = type::kSize; \ STATIC_ASSERT(type::kSize <= Page::kMaxRegularHeapObjectSize); \ \ AllocationSpace space = SelectSpace(size, pretenure); \ \ HeapObject* result; \ { \ AllocationResult allocation = \ AllocateRaw(size, space, OLD_SPACE, kSimd128Unaligned); \ if (!allocation.To(&result)) return allocation; \ } \ \ result->set_map_no_write_barrier(type_name##_map()); \ type* instance = type::cast(result); \ for (int i = 0; i < lane_count; i++) { \ instance->set_lane(i, lanes[i]); \ } \ return result; \ } SIMD128_TYPES(SIMD_ALLOCATE_DEFINITION) AllocationResult Heap::AllocateCell(Object* value) { int size = Cell::kSize; STATIC_ASSERT(Cell::kSize <= Page::kMaxRegularHeapObjectSize); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(cell_map()); Cell::cast(result)->set_value(value); return result; } AllocationResult Heap::AllocatePropertyCell() { int size = PropertyCell::kSize; STATIC_ASSERT(PropertyCell::kSize <= Page::kMaxRegularHeapObjectSize); HeapObject* result; AllocationResult allocation = AllocateRaw(size, OLD_SPACE, OLD_SPACE); if (!allocation.To(&result)) return allocation; result->set_map_no_write_barrier(global_property_cell_map()); PropertyCell* cell = PropertyCell::cast(result); cell->set_dependent_code(DependentCode::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); cell->set_property_details(PropertyDetails(Smi::FromInt(0))); cell->set_value(the_hole_value()); return result; } AllocationResult Heap::AllocateWeakCell(HeapObject* value) { int size = WeakCell::kSize; STATIC_ASSERT(WeakCell::kSize <= Page::kMaxRegularHeapObjectSize); HeapObject* result = NULL; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(weak_cell_map()); WeakCell::cast(result)->initialize(value); WeakCell::cast(result)->clear_next(this); return result; } void Heap::CreateApiObjects() { HandleScope scope(isolate()); Factory* factory = isolate()->factory(); Handle<Map> new_neander_map = factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize); // Don't use Smi-only elements optimizations for objects with the neander // map. There are too many cases where element values are set directly with a // bottleneck to trap the Smi-only -> fast elements transition, and there // appears to be no benefit for optimize this case. new_neander_map->set_elements_kind(TERMINAL_FAST_ELEMENTS_KIND); set_neander_map(*new_neander_map); Handle<JSObject> listeners = factory->NewNeanderObject(); Handle<FixedArray> elements = factory->NewFixedArray(2); elements->set(0, Smi::FromInt(0)); listeners->set_elements(*elements); set_message_listeners(*listeners); } void Heap::CreateJSEntryStub() { JSEntryStub stub(isolate(), StackFrame::ENTRY); set_js_entry_code(*stub.GetCode()); } void Heap::CreateJSConstructEntryStub() { JSEntryStub stub(isolate(), StackFrame::ENTRY_CONSTRUCT); set_js_construct_entry_code(*stub.GetCode()); } void Heap::CreateFixedStubs() { // Here we create roots for fixed stubs. They are needed at GC // for cooking and uncooking (check out frames.cc). // The eliminates the need for doing dictionary lookup in the // stub cache for these stubs. HandleScope scope(isolate()); // Create stubs that should be there, so we don't unexpectedly have to // create them if we need them during the creation of another stub. // Stub creation mixes raw pointers and handles in an unsafe manner so // we cannot create stubs while we are creating stubs. CodeStub::GenerateStubsAheadOfTime(isolate()); // MacroAssembler::Abort calls (usually enabled with --debug-code) depend on // CEntryStub, so we need to call GenerateStubsAheadOfTime before JSEntryStub // is created. // gcc-4.4 has problem generating correct code of following snippet: // { JSEntryStub stub; // js_entry_code_ = *stub.GetCode(); // } // { JSConstructEntryStub stub; // js_construct_entry_code_ = *stub.GetCode(); // } // To workaround the problem, make separate functions without inlining. Heap::CreateJSEntryStub(); Heap::CreateJSConstructEntryStub(); } void Heap::CreateInitialObjects() { HandleScope scope(isolate()); Factory* factory = isolate()->factory(); // The -0 value must be set before NewNumber works. set_minus_zero_value(*factory->NewHeapNumber(-0.0, IMMUTABLE, TENURED)); DCHECK(std::signbit(minus_zero_value()->Number()) != 0); set_nan_value(*factory->NewHeapNumber( std::numeric_limits<double>::quiet_NaN(), IMMUTABLE, TENURED)); set_infinity_value(*factory->NewHeapNumber(V8_INFINITY, IMMUTABLE, TENURED)); set_minus_infinity_value( *factory->NewHeapNumber(-V8_INFINITY, IMMUTABLE, TENURED)); // The hole has not been created yet, but we want to put something // predictable in the gaps in the string table, so lets make that Smi zero. set_the_hole_value(reinterpret_cast<Oddball*>(Smi::FromInt(0))); // Allocate initial string table. set_string_table(*StringTable::New(isolate(), kInitialStringTableSize)); // Finish initializing oddballs after creating the string table. Oddball::Initialize(isolate(), factory->undefined_value(), "undefined", factory->nan_value(), Oddball::kUndefined); // Initialize the null_value. Oddball::Initialize(isolate(), factory->null_value(), "null", handle(Smi::FromInt(0), isolate()), Oddball::kNull); set_true_value(*factory->NewOddball(factory->boolean_map(), "true", handle(Smi::FromInt(1), isolate()), Oddball::kTrue)); set_false_value(*factory->NewOddball(factory->boolean_map(), "false", handle(Smi::FromInt(0), isolate()), Oddball::kFalse)); set_the_hole_value(*factory->NewOddball(factory->the_hole_map(), "hole", handle(Smi::FromInt(-1), isolate()), Oddball::kTheHole)); set_uninitialized_value(*factory->NewOddball( factory->uninitialized_map(), "uninitialized", handle(Smi::FromInt(-1), isolate()), Oddball::kUninitialized)); set_arguments_marker(*factory->NewOddball( factory->arguments_marker_map(), "arguments_marker", handle(Smi::FromInt(-4), isolate()), Oddball::kArgumentMarker)); set_no_interceptor_result_sentinel(*factory->NewOddball( factory->no_interceptor_result_sentinel_map(), "no_interceptor_result_sentinel", handle(Smi::FromInt(-2), isolate()), Oddball::kOther)); set_termination_exception(*factory->NewOddball( factory->termination_exception_map(), "termination_exception", handle(Smi::FromInt(-3), isolate()), Oddball::kOther)); set_exception(*factory->NewOddball(factory->exception_map(), "exception", handle(Smi::FromInt(-5), isolate()), Oddball::kException)); for (unsigned i = 0; i < arraysize(constant_string_table); i++) { Handle<String> str = factory->InternalizeUtf8String(constant_string_table[i].contents); roots_[constant_string_table[i].index] = *str; } // Allocate the hidden string which is used to identify the hidden properties // in JSObjects. The hash code has a special value so that it will not match // the empty string when searching for the property. It cannot be part of the // loop above because it needs to be allocated manually with the special // hash code in place. The hash code for the hidden_string is zero to ensure // that it will always be at the first entry in property descriptors. hidden_string_ = *factory->NewOneByteInternalizedString( OneByteVector("", 0), String::kEmptyStringHash); // Create the code_stubs dictionary. The initial size is set to avoid // expanding the dictionary during bootstrapping. set_code_stubs(*UnseededNumberDictionary::New(isolate(), 128)); // Create the non_monomorphic_cache used in stub-cache.cc. The initial size // is set to avoid expanding the dictionary during bootstrapping. set_non_monomorphic_cache(*UnseededNumberDictionary::New(isolate(), 64)); set_polymorphic_code_cache(PolymorphicCodeCache::cast( *factory->NewStruct(POLYMORPHIC_CODE_CACHE_TYPE))); set_instanceof_cache_function(Smi::FromInt(0)); set_instanceof_cache_map(Smi::FromInt(0)); set_instanceof_cache_answer(Smi::FromInt(0)); { HandleScope scope(isolate()); #define SYMBOL_INIT(name) \ { \ Handle<String> name##d = factory->NewStringFromStaticChars(#name); \ Handle<Object> symbol(isolate()->factory()->NewPrivateSymbol(name##d)); \ roots_[k##name##RootIndex] = *symbol; \ } PRIVATE_SYMBOL_LIST(SYMBOL_INIT) #undef SYMBOL_INIT } { HandleScope scope(isolate()); #define SYMBOL_INIT(name, varname, description) \ Handle<Symbol> name = factory->NewSymbol(); \ Handle<String> name##d = factory->NewStringFromStaticChars(#description); \ name->set_name(*name##d); \ roots_[k##name##RootIndex] = *name; PUBLIC_SYMBOL_LIST(SYMBOL_INIT) #undef SYMBOL_INIT } CreateFixedStubs(); // Allocate the dictionary of intrinsic function names. Handle<NameDictionary> intrinsic_names = NameDictionary::New(isolate(), Runtime::kNumFunctions, TENURED); Runtime::InitializeIntrinsicFunctionNames(isolate(), intrinsic_names); set_intrinsic_function_names(*intrinsic_names); set_number_string_cache( *factory->NewFixedArray(kInitialNumberStringCacheSize * 2, TENURED)); // Allocate cache for single character one byte strings. set_single_character_string_cache( *factory->NewFixedArray(String::kMaxOneByteCharCode + 1, TENURED)); // Allocate cache for string split and regexp-multiple. set_string_split_cache(*factory->NewFixedArray( RegExpResultsCache::kRegExpResultsCacheSize, TENURED)); set_regexp_multiple_cache(*factory->NewFixedArray( RegExpResultsCache::kRegExpResultsCacheSize, TENURED)); // Allocate cache for external strings pointing to native source code. set_natives_source_cache( *factory->NewFixedArray(Natives::GetBuiltinsCount())); set_experimental_natives_source_cache( *factory->NewFixedArray(ExperimentalNatives::GetBuiltinsCount())); set_extra_natives_source_cache( *factory->NewFixedArray(ExtraNatives::GetBuiltinsCount())); set_code_stub_natives_source_cache( *factory->NewFixedArray(CodeStubNatives::GetBuiltinsCount())); set_undefined_cell(*factory->NewCell(factory->undefined_value())); // The symbol registry is initialized lazily. set_symbol_registry(Smi::FromInt(0)); // Allocate object to hold object observation state. set_observation_state(*factory->NewJSObjectFromMap( factory->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize))); // Microtask queue uses the empty fixed array as a sentinel for "empty". // Number of queued microtasks stored in Isolate::pending_microtask_count(). set_microtask_queue(empty_fixed_array()); { Code::Kind kinds[] = {Code::LOAD_IC, Code::KEYED_LOAD_IC, Code::STORE_IC, Code::KEYED_STORE_IC}; FeedbackVectorSpec spec(0, 4, kinds); Handle<TypeFeedbackVector> dummy_vector = factory->NewTypeFeedbackVector(&spec); for (int i = 0; i < 4; i++) { dummy_vector->Set(FeedbackVectorICSlot(0), *TypeFeedbackVector::MegamorphicSentinel(isolate()), SKIP_WRITE_BARRIER); } set_dummy_vector(*dummy_vector); } set_detached_contexts(empty_fixed_array()); set_retained_maps(ArrayList::cast(empty_fixed_array())); set_weak_object_to_code_table( *WeakHashTable::New(isolate(), 16, USE_DEFAULT_MINIMUM_CAPACITY, TENURED)); Handle<SeededNumberDictionary> slow_element_dictionary = SeededNumberDictionary::New(isolate(), 0, TENURED); slow_element_dictionary->set_requires_slow_elements(); set_empty_slow_element_dictionary(*slow_element_dictionary); set_materialized_objects(*factory->NewFixedArray(0, TENURED)); // Handling of script id generation is in Factory::NewScript. set_last_script_id(Smi::FromInt(v8::UnboundScript::kNoScriptId)); Handle<PropertyCell> cell = factory->NewPropertyCell(); cell->set_value(Smi::FromInt(Isolate::kArrayProtectorValid)); set_array_protector(*cell); cell = factory->NewPropertyCell(); cell->set_value(the_hole_value()); set_empty_property_cell(*cell); set_weak_stack_trace_list(Smi::FromInt(0)); // Will be filled in by Interpreter::Initialize(). set_interpreter_table(empty_fixed_array()); set_allocation_sites_scratchpad( *factory->NewFixedArray(kAllocationSiteScratchpadSize, TENURED)); InitializeAllocationSitesScratchpad(); // Initialize keyed lookup cache. isolate_->keyed_lookup_cache()->Clear(); // Initialize context slot cache. isolate_->context_slot_cache()->Clear(); // Initialize descriptor cache. isolate_->descriptor_lookup_cache()->Clear(); // Initialize compilation cache. isolate_->compilation_cache()->Clear(); } void Heap::AddPrivateGlobalSymbols(Handle<Object> private_intern_table) { #define ADD_SYMBOL_TO_PRIVATE_INTERN_TABLE(name_arg) \ { \ Handle<Symbol> symbol(Symbol::cast(roots_[k##name_arg##RootIndex])); \ Handle<String> name_arg##d(String::cast(symbol->name())); \ JSObject::AddProperty(Handle<JSObject>::cast(private_intern_table), \ name_arg##d, symbol, NONE); \ } PRIVATE_SYMBOL_LIST(ADD_SYMBOL_TO_PRIVATE_INTERN_TABLE) #undef ADD_SYMBOL_TO_PRIVATE_INTERN_TABLE } bool Heap::RootCanBeWrittenAfterInitialization(Heap::RootListIndex root_index) { switch (root_index) { case kStoreBufferTopRootIndex: case kNumberStringCacheRootIndex: case kInstanceofCacheFunctionRootIndex: case kInstanceofCacheMapRootIndex: case kInstanceofCacheAnswerRootIndex: case kCodeStubsRootIndex: case kNonMonomorphicCacheRootIndex: case kPolymorphicCodeCacheRootIndex: case kEmptyScriptRootIndex: case kSymbolRegistryRootIndex: case kMaterializedObjectsRootIndex: case kAllocationSitesScratchpadRootIndex: case kMicrotaskQueueRootIndex: case kDetachedContextsRootIndex: case kWeakObjectToCodeTableRootIndex: case kRetainedMapsRootIndex: case kWeakStackTraceListRootIndex: case kInterpreterTableRootIndex: // Smi values #define SMI_ENTRY(type, name, Name) case k##Name##RootIndex: SMI_ROOT_LIST(SMI_ENTRY) #undef SMI_ENTRY // String table case kStringTableRootIndex: return true; default: return false; } } bool Heap::RootCanBeTreatedAsConstant(RootListIndex root_index) { return !RootCanBeWrittenAfterInitialization(root_index) && !InNewSpace(roots_array_start()[root_index]); } Object* RegExpResultsCache::Lookup(Heap* heap, String* key_string, Object* key_pattern, ResultsCacheType type) { FixedArray* cache; if (!key_string->IsInternalizedString()) return Smi::FromInt(0); if (type == STRING_SPLIT_SUBSTRINGS) { DCHECK(key_pattern->IsString()); if (!key_pattern->IsInternalizedString()) return Smi::FromInt(0); cache = heap->string_split_cache(); } else { DCHECK(type == REGEXP_MULTIPLE_INDICES); DCHECK(key_pattern->IsFixedArray()); cache = heap->regexp_multiple_cache(); } uint32_t hash = key_string->Hash(); uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) & ~(kArrayEntriesPerCacheEntry - 1)); if (cache->get(index + kStringOffset) == key_string && cache->get(index + kPatternOffset) == key_pattern) { return cache->get(index + kArrayOffset); } index = ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1)); if (cache->get(index + kStringOffset) == key_string && cache->get(index + kPatternOffset) == key_pattern) { return cache->get(index + kArrayOffset); } return Smi::FromInt(0); } void RegExpResultsCache::Enter(Isolate* isolate, Handle<String> key_string, Handle<Object> key_pattern, Handle<FixedArray> value_array, ResultsCacheType type) { Factory* factory = isolate->factory(); Handle<FixedArray> cache; if (!key_string->IsInternalizedString()) return; if (type == STRING_SPLIT_SUBSTRINGS) { DCHECK(key_pattern->IsString()); if (!key_pattern->IsInternalizedString()) return; cache = factory->string_split_cache(); } else { DCHECK(type == REGEXP_MULTIPLE_INDICES); DCHECK(key_pattern->IsFixedArray()); cache = factory->regexp_multiple_cache(); } uint32_t hash = key_string->Hash(); uint32_t index = ((hash & (kRegExpResultsCacheSize - 1)) & ~(kArrayEntriesPerCacheEntry - 1)); if (cache->get(index + kStringOffset) == Smi::FromInt(0)) { cache->set(index + kStringOffset, *key_string); cache->set(index + kPatternOffset, *key_pattern); cache->set(index + kArrayOffset, *value_array); } else { uint32_t index2 = ((index + kArrayEntriesPerCacheEntry) & (kRegExpResultsCacheSize - 1)); if (cache->get(index2 + kStringOffset) == Smi::FromInt(0)) { cache->set(index2 + kStringOffset, *key_string); cache->set(index2 + kPatternOffset, *key_pattern); cache->set(index2 + kArrayOffset, *value_array); } else { cache->set(index2 + kStringOffset, Smi::FromInt(0)); cache->set(index2 + kPatternOffset, Smi::FromInt(0)); cache->set(index2 + kArrayOffset, Smi::FromInt(0)); cache->set(index + kStringOffset, *key_string); cache->set(index + kPatternOffset, *key_pattern); cache->set(index + kArrayOffset, *value_array); } } // If the array is a reasonably short list of substrings, convert it into a // list of internalized strings. if (type == STRING_SPLIT_SUBSTRINGS && value_array->length() < 100) { for (int i = 0; i < value_array->length(); i++) { Handle<String> str(String::cast(value_array->get(i)), isolate); Handle<String> internalized_str = factory->InternalizeString(str); value_array->set(i, *internalized_str); } } // Convert backing store to a copy-on-write array. value_array->set_map_no_write_barrier(*factory->fixed_cow_array_map()); } void RegExpResultsCache::Clear(FixedArray* cache) { for (int i = 0; i < kRegExpResultsCacheSize; i++) { cache->set(i, Smi::FromInt(0)); } } int Heap::FullSizeNumberStringCacheLength() { // Compute the size of the number string cache based on the max newspace size. // The number string cache has a minimum size based on twice the initial cache // size to ensure that it is bigger after being made 'full size'. int number_string_cache_size = max_semi_space_size_ / 512; number_string_cache_size = Max(kInitialNumberStringCacheSize * 2, Min(0x4000, number_string_cache_size)); // There is a string and a number per entry so the length is twice the number // of entries. return number_string_cache_size * 2; } void Heap::FlushNumberStringCache() { // Flush the number to string cache. int len = number_string_cache()->length(); for (int i = 0; i < len; i++) { number_string_cache()->set_undefined(i); } } void Heap::FlushAllocationSitesScratchpad() { for (int i = 0; i < allocation_sites_scratchpad_length_; i++) { allocation_sites_scratchpad()->set_undefined(i); } allocation_sites_scratchpad_length_ = 0; } void Heap::InitializeAllocationSitesScratchpad() { DCHECK(allocation_sites_scratchpad()->length() == kAllocationSiteScratchpadSize); for (int i = 0; i < kAllocationSiteScratchpadSize; i++) { allocation_sites_scratchpad()->set_undefined(i); } } void Heap::AddAllocationSiteToScratchpad(AllocationSite* site, ScratchpadSlotMode mode) { if (allocation_sites_scratchpad_length_ < kAllocationSiteScratchpadSize) { // We cannot use the normal write-barrier because slots need to be // recorded with non-incremental marking as well. We have to explicitly // record the slot to take evacuation candidates into account. allocation_sites_scratchpad()->set(allocation_sites_scratchpad_length_, site, SKIP_WRITE_BARRIER); Object** slot = allocation_sites_scratchpad()->RawFieldOfElementAt( allocation_sites_scratchpad_length_); if (mode == RECORD_SCRATCHPAD_SLOT) { // We need to allow slots buffer overflow here since the evacuation // candidates are not part of the global list of old space pages and // releasing an evacuation candidate due to a slots buffer overflow // results in lost pages. mark_compact_collector()->RecordSlot(allocation_sites_scratchpad(), slot, *slot, SlotsBuffer::IGNORE_OVERFLOW); } allocation_sites_scratchpad_length_++; } } Map* Heap::MapForFixedTypedArray(ExternalArrayType array_type) { return Map::cast(roots_[RootIndexForFixedTypedArray(array_type)]); } Heap::RootListIndex Heap::RootIndexForFixedTypedArray( ExternalArrayType array_type) { switch (array_type) { #define ARRAY_TYPE_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \ case kExternal##Type##Array: \ return kFixed##Type##ArrayMapRootIndex; TYPED_ARRAYS(ARRAY_TYPE_TO_ROOT_INDEX) #undef ARRAY_TYPE_TO_ROOT_INDEX default: UNREACHABLE(); return kUndefinedValueRootIndex; } } Heap::RootListIndex Heap::RootIndexForEmptyFixedTypedArray( ElementsKind elementsKind) { switch (elementsKind) { #define ELEMENT_KIND_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: \ return kEmptyFixed##Type##ArrayRootIndex; TYPED_ARRAYS(ELEMENT_KIND_TO_ROOT_INDEX) #undef ELEMENT_KIND_TO_ROOT_INDEX default: UNREACHABLE(); return kUndefinedValueRootIndex; } } FixedTypedArrayBase* Heap::EmptyFixedTypedArrayForMap(Map* map) { return FixedTypedArrayBase::cast( roots_[RootIndexForEmptyFixedTypedArray(map->elements_kind())]); } AllocationResult Heap::AllocateForeign(Address address, PretenureFlag pretenure) { // Statically ensure that it is safe to allocate foreigns in paged spaces. STATIC_ASSERT(Foreign::kSize <= Page::kMaxRegularHeapObjectSize); AllocationSpace space = (pretenure == TENURED) ? OLD_SPACE : NEW_SPACE; Foreign* result; AllocationResult allocation = Allocate(foreign_map(), space); if (!allocation.To(&result)) return allocation; result->set_foreign_address(address); return result; } AllocationResult Heap::AllocateByteArray(int length, PretenureFlag pretenure) { if (length < 0 || length > ByteArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); } int size = ByteArray::SizeFor(length); AllocationSpace space = SelectSpace(size, pretenure); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, space, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(byte_array_map()); ByteArray::cast(result)->set_length(length); return result; } AllocationResult Heap::AllocateBytecodeArray(int length, const byte* const raw_bytecodes, int frame_size) { if (length < 0 || length > BytecodeArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); } int size = BytecodeArray::SizeFor(length); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(bytecode_array_map()); BytecodeArray* instance = BytecodeArray::cast(result); instance->set_length(length); instance->set_frame_size(frame_size); CopyBytes(instance->GetFirstBytecodeAddress(), raw_bytecodes, length); return result; } void Heap::CreateFillerObjectAt(Address addr, int size) { if (size == 0) return; HeapObject* filler = HeapObject::FromAddress(addr); if (size == kPointerSize) { filler->set_map_no_write_barrier(raw_unchecked_one_pointer_filler_map()); } else if (size == 2 * kPointerSize) { filler->set_map_no_write_barrier(raw_unchecked_two_pointer_filler_map()); } else { filler->set_map_no_write_barrier(raw_unchecked_free_space_map()); FreeSpace::cast(filler)->nobarrier_set_size(size); } // At this point, we may be deserializing the heap from a snapshot, and // none of the maps have been created yet and are NULL. DCHECK((filler->map() == NULL && !deserialization_complete_) || filler->map()->IsMap()); } bool Heap::CanMoveObjectStart(HeapObject* object) { Address address = object->address(); if (lo_space()->Contains(object)) return false; Page* page = Page::FromAddress(address); // We can move the object start if: // (1) the object is not in old space, // (2) the page of the object was already swept, // (3) the page was already concurrently swept. This case is an optimization // for concurrent sweeping. The WasSwept predicate for concurrently swept // pages is set after sweeping all pages. return !InOldSpace(address) || page->WasSwept() || page->SweepingCompleted(); } void Heap::AdjustLiveBytes(HeapObject* object, int by, InvocationMode mode) { if (incremental_marking()->IsMarking() && Marking::IsBlack(Marking::MarkBitFrom(object->address()))) { if (mode == SEQUENTIAL_TO_SWEEPER) { MemoryChunk::IncrementLiveBytesFromGC(object, by); } else { MemoryChunk::IncrementLiveBytesFromMutator(object, by); } } } FixedArrayBase* Heap::LeftTrimFixedArray(FixedArrayBase* object, int elements_to_trim) { DCHECK(!object->IsFixedTypedArrayBase()); const int element_size = object->IsFixedArray() ? kPointerSize : kDoubleSize; const int bytes_to_trim = elements_to_trim * element_size; Map* map = object->map(); // For now this trick is only applied to objects in new and paged space. // In large object space the object's start must coincide with chunk // and thus the trick is just not applicable. DCHECK(!lo_space()->Contains(object)); DCHECK(object->map() != fixed_cow_array_map()); STATIC_ASSERT(FixedArrayBase::kMapOffset == 0); STATIC_ASSERT(FixedArrayBase::kLengthOffset == kPointerSize); STATIC_ASSERT(FixedArrayBase::kHeaderSize == 2 * kPointerSize); const int len = object->length(); DCHECK(elements_to_trim <= len); // Calculate location of new array start. Address new_start = object->address() + bytes_to_trim; // Technically in new space this write might be omitted (except for // debug mode which iterates through the heap), but to play safer // we still do it. CreateFillerObjectAt(object->address(), bytes_to_trim); // Initialize header of the trimmed array. Since left trimming is only // performed on pages which are not concurrently swept creating a filler // object does not require synchronization. DCHECK(CanMoveObjectStart(object)); Object** former_start = HeapObject::RawField(object, 0); int new_start_index = elements_to_trim * (element_size / kPointerSize); former_start[new_start_index] = map; former_start[new_start_index + 1] = Smi::FromInt(len - elements_to_trim); FixedArrayBase* new_object = FixedArrayBase::cast(HeapObject::FromAddress(new_start)); // Maintain consistency of live bytes during incremental marking marking()->TransferMark(object->address(), new_start); AdjustLiveBytes(new_object, -bytes_to_trim, Heap::CONCURRENT_TO_SWEEPER); // Notify the heap profiler of change in object layout. OnMoveEvent(new_object, object, new_object->Size()); return new_object; } // Force instantiation of templatized method. template void Heap::RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>( FixedArrayBase*, int); template void Heap::RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>( FixedArrayBase*, int); template<Heap::InvocationMode mode> void Heap::RightTrimFixedArray(FixedArrayBase* object, int elements_to_trim) { const int len = object->length(); DCHECK(elements_to_trim < len); int bytes_to_trim; if (object->IsFixedTypedArrayBase()) { InstanceType type = object->map()->instance_type(); bytes_to_trim = FixedTypedArrayBase::TypedArraySize(type, len) - FixedTypedArrayBase::TypedArraySize(type, len - elements_to_trim); } else { const int element_size = object->IsFixedArray() ? kPointerSize : kDoubleSize; bytes_to_trim = elements_to_trim * element_size; } // For now this trick is only applied to objects in new and paged space. DCHECK(object->map() != fixed_cow_array_map()); if (bytes_to_trim == 0) { // No need to create filler and update live bytes counters, just initialize // header of the trimmed array. object->synchronized_set_length(len - elements_to_trim); return; } // Calculate location of new array end. Address new_end = object->address() + object->Size() - bytes_to_trim; // Technically in new space this write might be omitted (except for // debug mode which iterates through the heap), but to play safer // we still do it. // We do not create a filler for objects in large object space. // TODO(hpayer): We should shrink the large object page if the size // of the object changed significantly. if (!lo_space()->Contains(object)) { CreateFillerObjectAt(new_end, bytes_to_trim); } // Initialize header of the trimmed array. We are storing the new length // using release store after creating a filler for the left-over space to // avoid races with the sweeper thread. object->synchronized_set_length(len - elements_to_trim); // Maintain consistency of live bytes during incremental marking AdjustLiveBytes(object, -bytes_to_trim, mode); // Notify the heap profiler of change in object layout. The array may not be // moved during GC, and size has to be adjusted nevertheless. HeapProfiler* profiler = isolate()->heap_profiler(); if (profiler->is_tracking_allocations()) { profiler->UpdateObjectSizeEvent(object->address(), object->Size()); } } AllocationResult Heap::AllocateFixedTypedArrayWithExternalPointer( int length, ExternalArrayType array_type, void* external_pointer, PretenureFlag pretenure) { int size = FixedTypedArrayBase::kHeaderSize; AllocationSpace space = SelectSpace(size, pretenure); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, space, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(MapForFixedTypedArray(array_type)); FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(result); elements->set_base_pointer(Smi::FromInt(0), SKIP_WRITE_BARRIER); elements->set_external_pointer(external_pointer, SKIP_WRITE_BARRIER); elements->set_length(length); return elements; } static void ForFixedTypedArray(ExternalArrayType array_type, int* element_size, ElementsKind* element_kind) { switch (array_type) { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case kExternal##Type##Array: \ *element_size = size; \ *element_kind = TYPE##_ELEMENTS; \ return; TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE default: *element_size = 0; // Bogus *element_kind = UINT8_ELEMENTS; // Bogus UNREACHABLE(); } } AllocationResult Heap::AllocateFixedTypedArray(int length, ExternalArrayType array_type, bool initialize, PretenureFlag pretenure) { int element_size; ElementsKind elements_kind; ForFixedTypedArray(array_type, &element_size, &elements_kind); int size = OBJECT_POINTER_ALIGN(length * element_size + FixedTypedArrayBase::kDataOffset); AllocationSpace space = SelectSpace(size, pretenure); HeapObject* object; AllocationResult allocation = AllocateRaw( size, space, OLD_SPACE, array_type == kExternalFloat64Array ? kDoubleAligned : kWordAligned); if (!allocation.To(&object)) return allocation; object->set_map_no_write_barrier(MapForFixedTypedArray(array_type)); FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(object); elements->set_base_pointer(elements, SKIP_WRITE_BARRIER); elements->set_external_pointer( ExternalReference::fixed_typed_array_base_data_offset().address(), SKIP_WRITE_BARRIER); elements->set_length(length); if (initialize) memset(elements->DataPtr(), 0, elements->DataSize()); return elements; } AllocationResult Heap::AllocateCode(int object_size, bool immovable) { DCHECK(IsAligned(static_cast<intptr_t>(object_size), kCodeAlignment)); AllocationResult allocation = AllocateRaw(object_size, CODE_SPACE, CODE_SPACE); HeapObject* result; if (!allocation.To(&result)) return allocation; if (immovable) { Address address = result->address(); // Code objects which should stay at a fixed address are allocated either // in the first page of code space (objects on the first page of each space // are never moved) or in large object space. if (!code_space_->FirstPage()->Contains(address) && MemoryChunk::FromAddress(address)->owner()->identity() != LO_SPACE) { // Discard the first code allocation, which was on a page where it could // be moved. CreateFillerObjectAt(result->address(), object_size); allocation = lo_space_->AllocateRaw(object_size, EXECUTABLE); if (!allocation.To(&result)) return allocation; OnAllocationEvent(result, object_size); } } result->set_map_no_write_barrier(code_map()); Code* code = Code::cast(result); DCHECK(IsAligned(bit_cast<intptr_t>(code->address()), kCodeAlignment)); DCHECK(isolate_->code_range() == NULL || !isolate_->code_range()->valid() || isolate_->code_range()->contains(code->address()) || object_size <= code_space()->AreaSize()); code->set_gc_metadata(Smi::FromInt(0)); code->set_ic_age(global_ic_age_); return code; } AllocationResult Heap::CopyCode(Code* code) { AllocationResult allocation; HeapObject* result = NULL; // Allocate an object the same size as the code object. int obj_size = code->Size(); allocation = AllocateRaw(obj_size, CODE_SPACE, CODE_SPACE); if (!allocation.To(&result)) return allocation; // Copy code object. Address old_addr = code->address(); Address new_addr = result->address(); CopyBlock(new_addr, old_addr, obj_size); Code* new_code = Code::cast(result); // Relocate the copy. DCHECK(IsAligned(bit_cast<intptr_t>(new_code->address()), kCodeAlignment)); DCHECK(isolate_->code_range() == NULL || !isolate_->code_range()->valid() || isolate_->code_range()->contains(code->address()) || obj_size <= code_space()->AreaSize()); new_code->Relocate(new_addr - old_addr); return new_code; } AllocationResult Heap::CopyCode(Code* code, Vector<byte> reloc_info) { // Allocate ByteArray before the Code object, so that we do not risk // leaving uninitialized Code object (and breaking the heap). ByteArray* reloc_info_array; { AllocationResult allocation = AllocateByteArray(reloc_info.length(), TENURED); if (!allocation.To(&reloc_info_array)) return allocation; } int new_body_size = RoundUp(code->instruction_size(), kObjectAlignment); int new_obj_size = Code::SizeFor(new_body_size); Address old_addr = code->address(); size_t relocation_offset = static_cast<size_t>(code->instruction_end() - old_addr); HeapObject* result; AllocationResult allocation = AllocateRaw(new_obj_size, CODE_SPACE, CODE_SPACE); if (!allocation.To(&result)) return allocation; // Copy code object. Address new_addr = result->address(); // Copy header and instructions. CopyBytes(new_addr, old_addr, relocation_offset); Code* new_code = Code::cast(result); new_code->set_relocation_info(reloc_info_array); // Copy patched rinfo. CopyBytes(new_code->relocation_start(), reloc_info.start(), static_cast<size_t>(reloc_info.length())); // Relocate the copy. DCHECK(IsAligned(bit_cast<intptr_t>(new_code->address()), kCodeAlignment)); DCHECK(isolate_->code_range() == NULL || !isolate_->code_range()->valid() || isolate_->code_range()->contains(code->address()) || new_obj_size <= code_space()->AreaSize()); new_code->Relocate(new_addr - old_addr); #ifdef VERIFY_HEAP if (FLAG_verify_heap) code->ObjectVerify(); #endif return new_code; } void Heap::InitializeAllocationMemento(AllocationMemento* memento, AllocationSite* allocation_site) { memento->set_map_no_write_barrier(allocation_memento_map()); DCHECK(allocation_site->map() == allocation_site_map()); memento->set_allocation_site(allocation_site, SKIP_WRITE_BARRIER); if (FLAG_allocation_site_pretenuring) { allocation_site->IncrementMementoCreateCount(); } } AllocationResult Heap::Allocate(Map* map, AllocationSpace space, AllocationSite* allocation_site) { DCHECK(gc_state_ == NOT_IN_GC); DCHECK(map->instance_type() != MAP_TYPE); // If allocation failures are disallowed, we may allocate in a different // space when new space is full and the object is not a large object. AllocationSpace retry_space = (space != NEW_SPACE) ? space : OLD_SPACE; int size = map->instance_size(); if (allocation_site != NULL) { size += AllocationMemento::kSize; } HeapObject* result; AllocationResult allocation = AllocateRaw(size, space, retry_space); if (!allocation.To(&result)) return allocation; // No need for write barrier since object is white and map is in old space. result->set_map_no_write_barrier(map); if (allocation_site != NULL) { AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>( reinterpret_cast<Address>(result) + map->instance_size()); InitializeAllocationMemento(alloc_memento, allocation_site); } return result; } void Heap::InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties, Map* map) { obj->set_properties(properties); obj->initialize_elements(); // TODO(1240798): Initialize the object's body using valid initial values // according to the object's initial map. For example, if the map's // instance type is JS_ARRAY_TYPE, the length field should be initialized // to a number (e.g. Smi::FromInt(0)) and the elements initialized to a // fixed array (e.g. Heap::empty_fixed_array()). Currently, the object // verification code has to cope with (temporarily) invalid objects. See // for example, JSArray::JSArrayVerify). Object* filler; // We cannot always fill with one_pointer_filler_map because objects // created from API functions expect their internal fields to be initialized // with undefined_value. // Pre-allocated fields need to be initialized with undefined_value as well // so that object accesses before the constructor completes (e.g. in the // debugger) will not cause a crash. Object* constructor = map->GetConstructor(); if (constructor->IsJSFunction() && JSFunction::cast(constructor)->IsInobjectSlackTrackingInProgress()) { // We might want to shrink the object later. DCHECK(obj->GetInternalFieldCount() == 0); filler = Heap::one_pointer_filler_map(); } else { filler = Heap::undefined_value(); } obj->InitializeBody(map, Heap::undefined_value(), filler); } AllocationResult Heap::AllocateJSObjectFromMap( Map* map, PretenureFlag pretenure, AllocationSite* allocation_site) { // JSFunctions should be allocated using AllocateFunction to be // properly initialized. DCHECK(map->instance_type() != JS_FUNCTION_TYPE); // Both types of global objects should be allocated using // AllocateGlobalObject to be properly initialized. DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE); DCHECK(map->instance_type() != JS_BUILTINS_OBJECT_TYPE); // Allocate the backing storage for the properties. FixedArray* properties = empty_fixed_array(); // Allocate the JSObject. int size = map->instance_size(); AllocationSpace space = SelectSpace(size, pretenure); JSObject* js_obj; AllocationResult allocation = Allocate(map, space, allocation_site); if (!allocation.To(&js_obj)) return allocation; // Initialize the JSObject. InitializeJSObjectFromMap(js_obj, properties, map); DCHECK(js_obj->HasFastElements() || js_obj->HasFixedTypedArrayElements()); return js_obj; } AllocationResult Heap::AllocateJSObject(JSFunction* constructor, PretenureFlag pretenure, AllocationSite* allocation_site) { DCHECK(constructor->has_initial_map()); // Allocate the object based on the constructors initial map. AllocationResult allocation = AllocateJSObjectFromMap( constructor->initial_map(), pretenure, allocation_site); #ifdef DEBUG // Make sure result is NOT a global object if valid. HeapObject* obj; DCHECK(!allocation.To(&obj) || !obj->IsGlobalObject()); #endif return allocation; } AllocationResult Heap::CopyJSObject(JSObject* source, AllocationSite* site) { // Make the clone. Map* map = source->map(); // We can only clone normal objects or arrays. Copying anything else // will break invariants. CHECK(map->instance_type() == JS_OBJECT_TYPE || map->instance_type() == JS_ARRAY_TYPE); int object_size = map->instance_size(); HeapObject* clone; DCHECK(site == NULL || AllocationSite::CanTrack(map->instance_type())); WriteBarrierMode wb_mode = UPDATE_WRITE_BARRIER; // If we're forced to always allocate, we use the general allocation // functions which may leave us with an object in old space. if (always_allocate()) { { AllocationResult allocation = AllocateRaw(object_size, NEW_SPACE, OLD_SPACE); if (!allocation.To(&clone)) return allocation; } Address clone_address = clone->address(); CopyBlock(clone_address, source->address(), object_size); // Update write barrier for all tagged fields that lie beyond the header. const int start_offset = JSObject::kHeaderSize; const int end_offset = object_size; #if V8_DOUBLE_FIELDS_UNBOXING LayoutDescriptorHelper helper(map); bool has_only_tagged_fields = helper.all_fields_tagged(); if (!has_only_tagged_fields) { for (int offset = start_offset; offset < end_offset;) { int end_of_region_offset; if (helper.IsTagged(offset, end_offset, &end_of_region_offset)) { RecordWrites(clone_address, offset, (end_of_region_offset - offset) / kPointerSize); } offset = end_of_region_offset; } } else { #endif // Object has only tagged fields. RecordWrites(clone_address, start_offset, (end_offset - start_offset) / kPointerSize); #if V8_DOUBLE_FIELDS_UNBOXING } #endif } else { wb_mode = SKIP_WRITE_BARRIER; { int adjusted_object_size = site != NULL ? object_size + AllocationMemento::kSize : object_size; AllocationResult allocation = AllocateRaw(adjusted_object_size, NEW_SPACE, NEW_SPACE); if (!allocation.To(&clone)) return allocation; } SLOW_DCHECK(InNewSpace(clone)); // Since we know the clone is allocated in new space, we can copy // the contents without worrying about updating the write barrier. CopyBlock(clone->address(), source->address(), object_size); if (site != NULL) { AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>( reinterpret_cast<Address>(clone) + object_size); InitializeAllocationMemento(alloc_memento, site); } } SLOW_DCHECK(JSObject::cast(clone)->GetElementsKind() == source->GetElementsKind()); FixedArrayBase* elements = FixedArrayBase::cast(source->elements()); FixedArray* properties = FixedArray::cast(source->properties()); // Update elements if necessary. if (elements->length() > 0) { FixedArrayBase* elem; { AllocationResult allocation; if (elements->map() == fixed_cow_array_map()) { allocation = FixedArray::cast(elements); } else if (source->HasFastDoubleElements()) { allocation = CopyFixedDoubleArray(FixedDoubleArray::cast(elements)); } else { allocation = CopyFixedArray(FixedArray::cast(elements)); } if (!allocation.To(&elem)) return allocation; } JSObject::cast(clone)->set_elements(elem, wb_mode); } // Update properties if necessary. if (properties->length() > 0) { FixedArray* prop; { AllocationResult allocation = CopyFixedArray(properties); if (!allocation.To(&prop)) return allocation; } JSObject::cast(clone)->set_properties(prop, wb_mode); } // Return the new clone. return clone; } static inline void WriteOneByteData(Vector<const char> vector, uint8_t* chars, int len) { // Only works for one byte strings. DCHECK(vector.length() == len); MemCopy(chars, vector.start(), len); } static inline void WriteTwoByteData(Vector<const char> vector, uint16_t* chars, int len) { const uint8_t* stream = reinterpret_cast<const uint8_t*>(vector.start()); size_t stream_length = vector.length(); while (stream_length != 0) { size_t consumed = 0; uint32_t c = unibrow::Utf8::ValueOf(stream, stream_length, &consumed); DCHECK(c != unibrow::Utf8::kBadChar); DCHECK(consumed <= stream_length); stream_length -= consumed; stream += consumed; if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) { len -= 2; if (len < 0) break; *chars++ = unibrow::Utf16::LeadSurrogate(c); *chars++ = unibrow::Utf16::TrailSurrogate(c); } else { len -= 1; if (len < 0) break; *chars++ = c; } } DCHECK(stream_length == 0); DCHECK(len == 0); } static inline void WriteOneByteData(String* s, uint8_t* chars, int len) { DCHECK(s->length() == len); String::WriteToFlat(s, chars, 0, len); } static inline void WriteTwoByteData(String* s, uint16_t* chars, int len) { DCHECK(s->length() == len); String::WriteToFlat(s, chars, 0, len); } template <bool is_one_byte, typename T> AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field) { DCHECK(chars >= 0); // Compute map and object size. int size; Map* map; DCHECK_LE(0, chars); DCHECK_GE(String::kMaxLength, chars); if (is_one_byte) { map = one_byte_internalized_string_map(); size = SeqOneByteString::SizeFor(chars); } else { map = internalized_string_map(); size = SeqTwoByteString::SizeFor(chars); } AllocationSpace space = SelectSpace(size, TENURED); // Allocate string. HeapObject* result; { AllocationResult allocation = AllocateRaw(size, space, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(map); // Set length and hash fields of the allocated string. String* answer = String::cast(result); answer->set_length(chars); answer->set_hash_field(hash_field); DCHECK_EQ(size, answer->Size()); if (is_one_byte) { WriteOneByteData(t, SeqOneByteString::cast(answer)->GetChars(), chars); } else { WriteTwoByteData(t, SeqTwoByteString::cast(answer)->GetChars(), chars); } return answer; } // Need explicit instantiations. template AllocationResult Heap::AllocateInternalizedStringImpl<true>(String*, int, uint32_t); template AllocationResult Heap::AllocateInternalizedStringImpl<false>(String*, int, uint32_t); template AllocationResult Heap::AllocateInternalizedStringImpl<false>( Vector<const char>, int, uint32_t); AllocationResult Heap::AllocateRawOneByteString(int length, PretenureFlag pretenure) { DCHECK_LE(0, length); DCHECK_GE(String::kMaxLength, length); int size = SeqOneByteString::SizeFor(length); DCHECK(size <= SeqOneByteString::kMaxSize); AllocationSpace space = SelectSpace(size, pretenure); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, space, OLD_SPACE); if (!allocation.To(&result)) return allocation; } // Partially initialize the object. result->set_map_no_write_barrier(one_byte_string_map()); String::cast(result)->set_length(length); String::cast(result)->set_hash_field(String::kEmptyHashField); DCHECK_EQ(size, HeapObject::cast(result)->Size()); return result; } AllocationResult Heap::AllocateRawTwoByteString(int length, PretenureFlag pretenure) { DCHECK_LE(0, length); DCHECK_GE(String::kMaxLength, length); int size = SeqTwoByteString::SizeFor(length); DCHECK(size <= SeqTwoByteString::kMaxSize); AllocationSpace space = SelectSpace(size, pretenure); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, space, OLD_SPACE); if (!allocation.To(&result)) return allocation; } // Partially initialize the object. result->set_map_no_write_barrier(string_map()); String::cast(result)->set_length(length); String::cast(result)->set_hash_field(String::kEmptyHashField); DCHECK_EQ(size, HeapObject::cast(result)->Size()); return result; } AllocationResult Heap::AllocateEmptyFixedArray() { int size = FixedArray::SizeFor(0); HeapObject* result; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE, OLD_SPACE); if (!allocation.To(&result)) return allocation; } // Initialize the object. result->set_map_no_write_barrier(fixed_array_map()); FixedArray::cast(result)->set_length(0); return result; } AllocationResult Heap::CopyAndTenureFixedCOWArray(FixedArray* src) { if (!InNewSpace(src)) { return src; } int len = src->length(); HeapObject* obj; { AllocationResult allocation = AllocateRawFixedArray(len, TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_no_write_barrier(fixed_array_map()); FixedArray* result = FixedArray::cast(obj); result->set_length(len); // Copy the content. DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); // TODO(mvstanton): The map is set twice because of protection against calling // set() on a COW FixedArray. Issue v8:3221 created to track this, and // we might then be able to remove this whole method. HeapObject::cast(obj)->set_map_no_write_barrier(fixed_cow_array_map()); return result; } AllocationResult Heap::AllocateEmptyFixedTypedArray( ExternalArrayType array_type) { return AllocateFixedTypedArray(0, array_type, false, TENURED); } AllocationResult Heap::CopyFixedArrayAndGrow(FixedArray* src, int grow_by, PretenureFlag pretenure) { int old_len = src->length(); int new_len = old_len + grow_by; DCHECK(new_len >= old_len); HeapObject* obj; { AllocationResult allocation = AllocateRawFixedArray(new_len, pretenure); if (!allocation.To(&obj)) return allocation; } obj->set_map_no_write_barrier(fixed_array_map()); FixedArray* result = FixedArray::cast(obj); result->set_length(new_len); // Copy the content. DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < old_len; i++) result->set(i, src->get(i), mode); MemsetPointer(result->data_start() + old_len, undefined_value(), grow_by); return result; } AllocationResult Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) { int len = src->length(); HeapObject* obj; { AllocationResult allocation = AllocateRawFixedArray(len, NOT_TENURED); if (!allocation.To(&obj)) return allocation; } if (InNewSpace(obj)) { obj->set_map_no_write_barrier(map); CopyBlock(obj->address() + kPointerSize, src->address() + kPointerSize, FixedArray::SizeFor(len) - kPointerSize); return obj; } obj->set_map_no_write_barrier(map); FixedArray* result = FixedArray::cast(obj); result->set_length(len); // Copy the content. DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); return result; } AllocationResult Heap::CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map) { int len = src->length(); HeapObject* obj; { AllocationResult allocation = AllocateRawFixedDoubleArray(len, NOT_TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_no_write_barrier(map); CopyBlock(obj->address() + FixedDoubleArray::kLengthOffset, src->address() + FixedDoubleArray::kLengthOffset, FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset); return obj; } AllocationResult Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) { if (length < 0 || length > FixedArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); } int size = FixedArray::SizeFor(length); AllocationSpace space = SelectSpace(size, pretenure); return AllocateRaw(size, space, OLD_SPACE); } AllocationResult Heap::AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure, Object* filler) { DCHECK(length >= 0); DCHECK(empty_fixed_array()->IsFixedArray()); if (length == 0) return empty_fixed_array(); DCHECK(!InNewSpace(filler)); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRawFixedArray(length, pretenure); if (!allocation.To(&result)) return allocation; } result->set_map_no_write_barrier(fixed_array_map()); FixedArray* array = FixedArray::cast(result); array->set_length(length); MemsetPointer(array->data_start(), filler, length); return array; } AllocationResult Heap::AllocateFixedArray(int length, PretenureFlag pretenure) { return AllocateFixedArrayWithFiller(length, pretenure, undefined_value()); } AllocationResult Heap::AllocateUninitializedFixedArray(int length) { if (length == 0) return empty_fixed_array(); HeapObject* obj; { AllocationResult allocation = AllocateRawFixedArray(length, NOT_TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_no_write_barrier(fixed_array_map()); FixedArray::cast(obj)->set_length(length); return obj; } AllocationResult Heap::AllocateUninitializedFixedDoubleArray( int length, PretenureFlag pretenure) { if (length == 0) return empty_fixed_array(); HeapObject* elements; AllocationResult allocation = AllocateRawFixedDoubleArray(length, pretenure); if (!allocation.To(&elements)) return allocation; elements->set_map_no_write_barrier(fixed_double_array_map()); FixedDoubleArray::cast(elements)->set_length(length); return elements; } AllocationResult Heap::AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure) { if (length < 0 || length > FixedDoubleArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", kDoubleAligned); } int size = FixedDoubleArray::SizeFor(length); AllocationSpace space = SelectSpace(size, pretenure); HeapObject* object; { AllocationResult allocation = AllocateRaw(size, space, OLD_SPACE, kDoubleAligned); if (!allocation.To(&object)) return allocation; } return object; } AllocationResult Heap::AllocateSymbol() { // Statically ensure that it is safe to allocate symbols in paged spaces. STATIC_ASSERT(Symbol::kSize <= Page::kMaxRegularHeapObjectSize); HeapObject* result = NULL; AllocationResult allocation = AllocateRaw(Symbol::kSize, OLD_SPACE, OLD_SPACE); if (!allocation.To(&result)) return allocation; result->set_map_no_write_barrier(symbol_map()); // Generate a random hash value. int hash; int attempts = 0; do { hash = isolate()->random_number_generator()->NextInt() & Name::kHashBitMask; attempts++; } while (hash == 0 && attempts < 30); if (hash == 0) hash = 1; // never return 0 Symbol::cast(result) ->set_hash_field(Name::kIsNotArrayIndexMask | (hash << Name::kHashShift)); Symbol::cast(result)->set_name(undefined_value()); Symbol::cast(result)->set_flags(Smi::FromInt(0)); DCHECK(!Symbol::cast(result)->is_private()); return result; } AllocationResult Heap::AllocateStruct(InstanceType type) { Map* map; switch (type) { #define MAKE_CASE(NAME, Name, name) \ case NAME##_TYPE: \ map = name##_map(); \ break; STRUCT_LIST(MAKE_CASE) #undef MAKE_CASE default: UNREACHABLE(); return exception(); } int size = map->instance_size(); AllocationSpace space = SelectSpace(size, TENURED); Struct* result; { AllocationResult allocation = Allocate(map, space); if (!allocation.To(&result)) return allocation; } result->InitializeBody(size); return result; } bool Heap::IsHeapIterable() { // TODO(hpayer): This function is not correct. Allocation folding in old // space breaks the iterability. return new_space_top_after_last_gc_ == new_space()->top(); } void Heap::MakeHeapIterable() { DCHECK(AllowHeapAllocation::IsAllowed()); if (!IsHeapIterable()) { CollectAllGarbage(kMakeHeapIterableMask, "Heap::MakeHeapIterable"); } if (mark_compact_collector()->sweeping_in_progress()) { mark_compact_collector()->EnsureSweepingCompleted(); } DCHECK(IsHeapIterable()); } static double ComputeMutatorUtilization(double mutator_speed, double gc_speed) { const double kMinMutatorUtilization = 0.0; if (mutator_speed == 0 || gc_speed == 0) return kMinMutatorUtilization; // Derivation: // mutator_utilization = mutator_time / (mutator_time + gc_time) // mutator_time = 1 / mutator_speed // gc_time = 1 / gc_speed // mutator_utilization = (1 / mutator_speed) / // (1 / mutator_speed + 1 / gc_speed) // mutator_utilization = gc_speed / (mutator_speed + gc_speed) return gc_speed / (mutator_speed + gc_speed); } double Heap::YoungGenerationMutatorUtilization() { double mutator_speed = static_cast<double>( tracer()->NewSpaceAllocationThroughputInBytesPerMillisecond()); double gc_speed = static_cast<double>( tracer()->ScavengeSpeedInBytesPerMillisecond(kForSurvivedObjects)); double result = ComputeMutatorUtilization(mutator_speed, gc_speed); if (FLAG_trace_mutator_utilization) { PrintIsolate(isolate(), "Young generation mutator utilization = %.3f (" "mutator_speed=%.f, gc_speed=%.f)\n", result, mutator_speed, gc_speed); } return result; } double Heap::OldGenerationMutatorUtilization() { double mutator_speed = static_cast<double>( tracer()->OldGenerationAllocationThroughputInBytesPerMillisecond()); double gc_speed = static_cast<double>( tracer()->CombinedMarkCompactSpeedInBytesPerMillisecond()); double result = ComputeMutatorUtilization(mutator_speed, gc_speed); if (FLAG_trace_mutator_utilization) { PrintIsolate(isolate(), "Old generation mutator utilization = %.3f (" "mutator_speed=%.f, gc_speed=%.f)\n", result, mutator_speed, gc_speed); } return result; } bool Heap::HasLowYoungGenerationAllocationRate() { const double high_mutator_utilization = 0.993; return YoungGenerationMutatorUtilization() > high_mutator_utilization; } bool Heap::HasLowOldGenerationAllocationRate() { const double high_mutator_utilization = 0.993; return OldGenerationMutatorUtilization() > high_mutator_utilization; } bool Heap::HasLowAllocationRate() { return HasLowYoungGenerationAllocationRate() && HasLowOldGenerationAllocationRate(); } bool Heap::HasHighFragmentation() { intptr_t used = PromotedSpaceSizeOfObjects(); intptr_t committed = CommittedOldGenerationMemory(); return HasHighFragmentation(used, committed); } bool Heap::HasHighFragmentation(intptr_t used, intptr_t committed) { const intptr_t kSlack = 16 * MB; // Fragmentation is high if committed > 2 * used + kSlack. // Rewrite the exression to avoid overflow. return committed - used > used + kSlack; } void Heap::ReduceNewSpaceSize() { // TODO(ulan): Unify this constant with the similar constant in // GCIdleTimeHandler once the change is merged to 4.5. static const size_t kLowAllocationThroughput = 1000; size_t allocation_throughput = tracer()->CurrentAllocationThroughputInBytesPerMillisecond(); if (FLAG_predictable || allocation_throughput == 0) return; if (allocation_throughput < kLowAllocationThroughput) { new_space_.Shrink(); UncommitFromSpace(); } } bool Heap::TryFinalizeIdleIncrementalMarking( double idle_time_in_ms, size_t size_of_objects, size_t final_incremental_mark_compact_speed_in_bytes_per_ms) { if (FLAG_overapproximate_weak_closure && (incremental_marking()->IsReadyToOverApproximateWeakClosure() || (!incremental_marking()->weak_closure_was_overapproximated() && mark_compact_collector_.marking_deque()->IsEmpty() && gc_idle_time_handler_.ShouldDoOverApproximateWeakClosure( static_cast<size_t>(idle_time_in_ms))))) { OverApproximateWeakClosure( "Idle notification: overapproximate weak closure"); return true; } else if (incremental_marking()->IsComplete() || (mark_compact_collector_.marking_deque()->IsEmpty() && gc_idle_time_handler_.ShouldDoFinalIncrementalMarkCompact( static_cast<size_t>(idle_time_in_ms), size_of_objects, final_incremental_mark_compact_speed_in_bytes_per_ms))) { CollectAllGarbage(kNoGCFlags, "idle notification: finalize incremental"); return true; } return false; } GCIdleTimeHandler::HeapState Heap::ComputeHeapState() { GCIdleTimeHandler::HeapState heap_state; heap_state.contexts_disposed = contexts_disposed_; heap_state.contexts_disposal_rate = tracer()->ContextDisposalRateInMilliseconds(); heap_state.size_of_objects = static_cast<size_t>(SizeOfObjects()); heap_state.incremental_marking_stopped = incremental_marking()->IsStopped(); heap_state.sweeping_in_progress = mark_compact_collector()->sweeping_in_progress(); heap_state.sweeping_completed = mark_compact_collector()->IsSweepingCompleted(); heap_state.mark_compact_speed_in_bytes_per_ms = static_cast<size_t>(tracer()->MarkCompactSpeedInBytesPerMillisecond()); heap_state.incremental_marking_speed_in_bytes_per_ms = static_cast<size_t>( tracer()->IncrementalMarkingSpeedInBytesPerMillisecond()); heap_state.final_incremental_mark_compact_speed_in_bytes_per_ms = static_cast<size_t>( tracer()->FinalIncrementalMarkCompactSpeedInBytesPerMillisecond()); heap_state.scavenge_speed_in_bytes_per_ms = static_cast<size_t>(tracer()->ScavengeSpeedInBytesPerMillisecond()); heap_state.used_new_space_size = new_space_.Size(); heap_state.new_space_capacity = new_space_.Capacity(); heap_state.new_space_allocation_throughput_in_bytes_per_ms = tracer()->NewSpaceAllocationThroughputInBytesPerMillisecond(); return heap_state; } double Heap::AdvanceIncrementalMarking( intptr_t step_size_in_bytes, double deadline_in_ms, IncrementalMarking::StepActions step_actions) { DCHECK(!incremental_marking()->IsStopped()); if (step_size_in_bytes == 0) { step_size_in_bytes = GCIdleTimeHandler::EstimateMarkingStepSize( static_cast<size_t>(GCIdleTimeHandler::kIncrementalMarkingStepTimeInMs), static_cast<size_t>( tracer()->FinalIncrementalMarkCompactSpeedInBytesPerMillisecond())); } double remaining_time_in_ms = 0.0; do { incremental_marking()->Step( step_size_in_bytes, step_actions.completion_action, step_actions.force_marking, step_actions.force_completion); remaining_time_in_ms = deadline_in_ms - MonotonicallyIncreasingTimeInMs(); } while (remaining_time_in_ms >= 2.0 * GCIdleTimeHandler::kIncrementalMarkingStepTimeInMs && !incremental_marking()->IsComplete() && !mark_compact_collector_.marking_deque()->IsEmpty()); return remaining_time_in_ms; } bool Heap::PerformIdleTimeAction(GCIdleTimeAction action, GCIdleTimeHandler::HeapState heap_state, double deadline_in_ms) { bool result = false; switch (action.type) { case DONE: result = true; break; case DO_INCREMENTAL_MARKING: { const double remaining_idle_time_in_ms = AdvanceIncrementalMarking(action.parameter, deadline_in_ms, IncrementalMarking::IdleStepActions()); if (remaining_idle_time_in_ms > 0.0) { action.additional_work = TryFinalizeIdleIncrementalMarking( remaining_idle_time_in_ms, heap_state.size_of_objects, heap_state.final_incremental_mark_compact_speed_in_bytes_per_ms); } break; } case DO_FULL_GC: { DCHECK(contexts_disposed_ > 0); HistogramTimerScope scope(isolate_->counters()->gc_context()); CollectAllGarbage(kNoGCFlags, "idle notification: contexts disposed"); break; } case DO_SCAVENGE: CollectGarbage(NEW_SPACE, "idle notification: scavenge"); break; case DO_FINALIZE_SWEEPING: mark_compact_collector()->EnsureSweepingCompleted(); break; case DO_NOTHING: break; } return result; } void Heap::IdleNotificationEpilogue(GCIdleTimeAction action, GCIdleTimeHandler::HeapState heap_state, double start_ms, double deadline_in_ms) { double idle_time_in_ms = deadline_in_ms - start_ms; double current_time = MonotonicallyIncreasingTimeInMs(); last_idle_notification_time_ = current_time; double deadline_difference = deadline_in_ms - current_time; contexts_disposed_ = 0; isolate()->counters()->gc_idle_time_allotted_in_ms()->AddSample( static_cast<int>(idle_time_in_ms)); if (deadline_in_ms - start_ms > GCIdleTimeHandler::kMaxFrameRenderingIdleTime) { int committed_memory = static_cast<int>(CommittedMemory() / KB); int used_memory = static_cast<int>(heap_state.size_of_objects / KB); isolate()->counters()->aggregated_memory_heap_committed()->AddSample( start_ms, committed_memory); isolate()->counters()->aggregated_memory_heap_used()->AddSample( start_ms, used_memory); } if (deadline_difference >= 0) { if (action.type != DONE && action.type != DO_NOTHING) { isolate()->counters()->gc_idle_time_limit_undershot()->AddSample( static_cast<int>(deadline_difference)); } } else { isolate()->counters()->gc_idle_time_limit_overshot()->AddSample( static_cast<int>(-deadline_difference)); } if ((FLAG_trace_idle_notification && action.type > DO_NOTHING) || FLAG_trace_idle_notification_verbose) { PrintIsolate(isolate_, "%8.0f ms: ", isolate()->time_millis_since_init()); PrintF( "Idle notification: requested idle time %.2f ms, used idle time %.2f " "ms, deadline usage %.2f ms [", idle_time_in_ms, idle_time_in_ms - deadline_difference, deadline_difference); action.Print(); PrintF("]"); if (FLAG_trace_idle_notification_verbose) { PrintF("["); heap_state.Print(); PrintF("]"); } PrintF("\n"); } } void Heap::CheckAndNotifyBackgroundIdleNotification(double idle_time_in_ms, double now_ms) { if (idle_time_in_ms >= GCIdleTimeHandler::kMinBackgroundIdleTime) { MemoryReducer::Event event; event.type = MemoryReducer::kBackgroundIdleNotification; event.time_ms = now_ms; event.can_start_incremental_gc = incremental_marking()->IsStopped() && incremental_marking()->CanBeActivated(); memory_reducer_.NotifyBackgroundIdleNotification(event); optimize_for_memory_usage_ = true; } else { optimize_for_memory_usage_ = false; } } double Heap::MonotonicallyIncreasingTimeInMs() { return V8::GetCurrentPlatform()->MonotonicallyIncreasingTime() * static_cast<double>(base::Time::kMillisecondsPerSecond); } bool Heap::IdleNotification(int idle_time_in_ms) { return IdleNotification( V8::GetCurrentPlatform()->MonotonicallyIncreasingTime() + (static_cast<double>(idle_time_in_ms) / static_cast<double>(base::Time::kMillisecondsPerSecond))); } bool Heap::IdleNotification(double deadline_in_seconds) { CHECK(HasBeenSetUp()); double deadline_in_ms = deadline_in_seconds * static_cast<double>(base::Time::kMillisecondsPerSecond); HistogramTimerScope idle_notification_scope( isolate_->counters()->gc_idle_notification()); double start_ms = MonotonicallyIncreasingTimeInMs(); double idle_time_in_ms = deadline_in_ms - start_ms; CheckAndNotifyBackgroundIdleNotification(idle_time_in_ms, start_ms); tracer()->SampleAllocation(start_ms, NewSpaceAllocationCounter(), OldGenerationAllocationCounter()); GCIdleTimeHandler::HeapState heap_state = ComputeHeapState(); GCIdleTimeAction action = gc_idle_time_handler_.Compute(idle_time_in_ms, heap_state); bool result = PerformIdleTimeAction(action, heap_state, deadline_in_ms); IdleNotificationEpilogue(action, heap_state, start_ms, deadline_in_ms); return result; } bool Heap::RecentIdleNotificationHappened() { return (last_idle_notification_time_ + GCIdleTimeHandler::kMaxScheduledIdleTime) > MonotonicallyIncreasingTimeInMs(); } #ifdef DEBUG void Heap::Print() { if (!HasBeenSetUp()) return; isolate()->PrintStack(stdout); AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { space->Print(); } } void Heap::ReportCodeStatistics(const char* title) { PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title); PagedSpace::ResetCodeStatistics(isolate()); // We do not look for code in new space, map space, or old space. If code // somehow ends up in those spaces, we would miss it here. code_space_->CollectCodeStatistics(); lo_space_->CollectCodeStatistics(); PagedSpace::ReportCodeStatistics(isolate()); } // This function expects that NewSpace's allocated objects histogram is // populated (via a call to CollectStatistics or else as a side effect of a // just-completed scavenge collection). void Heap::ReportHeapStatistics(const char* title) { USE(title); PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n", title, gc_count_); PrintF("old_generation_allocation_limit_ %" V8_PTR_PREFIX "d\n", old_generation_allocation_limit_); PrintF("\n"); PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles(isolate_)); isolate_->global_handles()->PrintStats(); PrintF("\n"); PrintF("Heap statistics : "); isolate_->memory_allocator()->ReportStatistics(); PrintF("To space : "); new_space_.ReportStatistics(); PrintF("Old space : "); old_space_->ReportStatistics(); PrintF("Code space : "); code_space_->ReportStatistics(); PrintF("Map space : "); map_space_->ReportStatistics(); PrintF("Large object space : "); lo_space_->ReportStatistics(); PrintF(">>>>>> ========================================= >>>>>>\n"); } #endif // DEBUG bool Heap::Contains(HeapObject* value) { return Contains(value->address()); } bool Heap::Contains(Address addr) { if (isolate_->memory_allocator()->IsOutsideAllocatedSpace(addr)) return false; return HasBeenSetUp() && (new_space_.ToSpaceContains(addr) || old_space_->Contains(addr) || code_space_->Contains(addr) || map_space_->Contains(addr) || lo_space_->SlowContains(addr)); } bool Heap::InSpace(HeapObject* value, AllocationSpace space) { return InSpace(value->address(), space); } bool Heap::InSpace(Address addr, AllocationSpace space) { if (isolate_->memory_allocator()->IsOutsideAllocatedSpace(addr)) return false; if (!HasBeenSetUp()) return false; switch (space) { case NEW_SPACE: return new_space_.ToSpaceContains(addr); case OLD_SPACE: return old_space_->Contains(addr); case CODE_SPACE: return code_space_->Contains(addr); case MAP_SPACE: return map_space_->Contains(addr); case LO_SPACE: return lo_space_->SlowContains(addr); } UNREACHABLE(); return false; } bool Heap::IsValidAllocationSpace(AllocationSpace space) { switch (space) { case NEW_SPACE: case OLD_SPACE: case CODE_SPACE: case MAP_SPACE: case LO_SPACE: return true; default: return false; } } bool Heap::RootIsImmortalImmovable(int root_index) { switch (root_index) { #define CASE(name) \ case Heap::k##name##RootIndex: \ return true; IMMORTAL_IMMOVABLE_ROOT_LIST(CASE); #undef CASE default: return false; } } #ifdef VERIFY_HEAP void Heap::Verify() { CHECK(HasBeenSetUp()); HandleScope scope(isolate()); store_buffer()->Verify(); if (mark_compact_collector()->sweeping_in_progress()) { // We have to wait here for the sweeper threads to have an iterable heap. mark_compact_collector()->EnsureSweepingCompleted(); } VerifyPointersVisitor visitor; IterateRoots(&visitor, VISIT_ONLY_STRONG); VerifySmisVisitor smis_visitor; IterateSmiRoots(&smis_visitor); new_space_.Verify(); old_space_->Verify(&visitor); map_space_->Verify(&visitor); VerifyPointersVisitor no_dirty_regions_visitor; code_space_->Verify(&no_dirty_regions_visitor); lo_space_->Verify(); mark_compact_collector_.VerifyWeakEmbeddedObjectsInCode(); if (FLAG_omit_map_checks_for_leaf_maps) { mark_compact_collector_.VerifyOmittedMapChecks(); } } #endif void Heap::ZapFromSpace() { if (!new_space_.IsFromSpaceCommitted()) return; NewSpacePageIterator it(new_space_.FromSpaceStart(), new_space_.FromSpaceEnd()); while (it.has_next()) { NewSpacePage* page = it.next(); for (Address cursor = page->area_start(), limit = page->area_end(); cursor < limit; cursor += kPointerSize) { Memory::Address_at(cursor) = kFromSpaceZapValue; } } } void Heap::IterateAndMarkPointersToFromSpace(HeapObject* object, Address start, Address end, bool record_slots, ObjectSlotCallback callback) { Address slot_address = start; while (slot_address < end) { Object** slot = reinterpret_cast<Object**>(slot_address); Object* target = *slot; // If the store buffer becomes overfull we mark pages as being exempt from // the store buffer. These pages are scanned to find pointers that point // to the new space. In that case we may hit newly promoted objects and // fix the pointers before the promotion queue gets to them. Thus the 'if'. if (target->IsHeapObject()) { if (Heap::InFromSpace(target)) { callback(reinterpret_cast<HeapObject**>(slot), HeapObject::cast(target)); Object* new_target = *slot; if (InNewSpace(new_target)) { SLOW_DCHECK(Heap::InToSpace(new_target)); SLOW_DCHECK(new_target->IsHeapObject()); store_buffer_.EnterDirectlyIntoStoreBuffer( reinterpret_cast<Address>(slot)); } SLOW_DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate(new_target)); } else if (record_slots && MarkCompactCollector::IsOnEvacuationCandidate(target)) { mark_compact_collector()->RecordSlot(object, slot, target); } } slot_address += kPointerSize; } } void Heap::IterateRoots(ObjectVisitor* v, VisitMode mode) { IterateStrongRoots(v, mode); IterateWeakRoots(v, mode); } void Heap::IterateWeakRoots(ObjectVisitor* v, VisitMode mode) { v->VisitPointer(reinterpret_cast<Object**>(&roots_[kStringTableRootIndex])); v->Synchronize(VisitorSynchronization::kStringTable); if (mode != VISIT_ALL_IN_SCAVENGE && mode != VISIT_ALL_IN_SWEEP_NEWSPACE) { // Scavenge collections have special processing for this. external_string_table_.Iterate(v); } v->Synchronize(VisitorSynchronization::kExternalStringsTable); } void Heap::IterateSmiRoots(ObjectVisitor* v) { // Acquire execution access since we are going to read stack limit values. ExecutionAccess access(isolate()); v->VisitPointers(&roots_[kSmiRootsStart], &roots_[kRootListLength]); v->Synchronize(VisitorSynchronization::kSmiRootList); } void Heap::IterateStrongRoots(ObjectVisitor* v, VisitMode mode) { v->VisitPointers(&roots_[0], &roots_[kStrongRootListLength]); v->Synchronize(VisitorSynchronization::kStrongRootList); v->VisitPointer(bit_cast<Object**>(&hidden_string_)); v->Synchronize(VisitorSynchronization::kInternalizedString); isolate_->bootstrapper()->Iterate(v); v->Synchronize(VisitorSynchronization::kBootstrapper); isolate_->Iterate(v); v->Synchronize(VisitorSynchronization::kTop); Relocatable::Iterate(isolate_, v); v->Synchronize(VisitorSynchronization::kRelocatable); if (isolate_->deoptimizer_data() != NULL) { isolate_->deoptimizer_data()->Iterate(v); } v->Synchronize(VisitorSynchronization::kDebug); isolate_->compilation_cache()->Iterate(v); v->Synchronize(VisitorSynchronization::kCompilationCache); // Iterate over local handles in handle scopes. isolate_->handle_scope_implementer()->Iterate(v); isolate_->IterateDeferredHandles(v); v->Synchronize(VisitorSynchronization::kHandleScope); // Iterate over the builtin code objects and code stubs in the // heap. Note that it is not necessary to iterate over code objects // on scavenge collections. if (mode != VISIT_ALL_IN_SCAVENGE) { isolate_->builtins()->IterateBuiltins(v); } v->Synchronize(VisitorSynchronization::kBuiltins); // Iterate over global handles. switch (mode) { case VISIT_ONLY_STRONG: isolate_->global_handles()->IterateStrongRoots(v); break; case VISIT_ALL_IN_SCAVENGE: isolate_->global_handles()->IterateNewSpaceStrongAndDependentRoots(v); break; case VISIT_ALL_IN_SWEEP_NEWSPACE: case VISIT_ALL: isolate_->global_handles()->IterateAllRoots(v); break; } v->Synchronize(VisitorSynchronization::kGlobalHandles); // Iterate over eternal handles. if (mode == VISIT_ALL_IN_SCAVENGE) { isolate_->eternal_handles()->IterateNewSpaceRoots(v); } else { isolate_->eternal_handles()->IterateAllRoots(v); } v->Synchronize(VisitorSynchronization::kEternalHandles); // Iterate over pointers being held by inactive threads. isolate_->thread_manager()->Iterate(v); v->Synchronize(VisitorSynchronization::kThreadManager); // Iterate over other strong roots (currently only identity maps). for (StrongRootsList* list = strong_roots_list_; list; list = list->next) { v->VisitPointers(list->start, list->end); } v->Synchronize(VisitorSynchronization::kStrongRoots); // Iterate over the pointers the Serialization/Deserialization code is // holding. // During garbage collection this keeps the partial snapshot cache alive. // During deserialization of the startup snapshot this creates the partial // snapshot cache and deserializes the objects it refers to. During // serialization this does nothing, since the partial snapshot cache is // empty. However the next thing we do is create the partial snapshot, // filling up the partial snapshot cache with objects it needs as we go. SerializerDeserializer::Iterate(isolate_, v); // We don't do a v->Synchronize call here, because in debug mode that will // output a flag to the snapshot. However at this point the serializer and // deserializer are deliberately a little unsynchronized (see above) so the // checking of the sync flag in the snapshot would fail. } // TODO(1236194): Since the heap size is configurable on the command line // and through the API, we should gracefully handle the case that the heap // size is not big enough to fit all the initial objects. bool Heap::ConfigureHeap(int max_semi_space_size, int max_old_space_size, int max_executable_size, size_t code_range_size) { if (HasBeenSetUp()) return false; // Overwrite default configuration. if (max_semi_space_size > 0) { max_semi_space_size_ = max_semi_space_size * MB; } if (max_old_space_size > 0) { max_old_generation_size_ = static_cast<intptr_t>(max_old_space_size) * MB; } if (max_executable_size > 0) { max_executable_size_ = static_cast<intptr_t>(max_executable_size) * MB; } // If max space size flags are specified overwrite the configuration. if (FLAG_max_semi_space_size > 0) { max_semi_space_size_ = FLAG_max_semi_space_size * MB; } if (FLAG_max_old_space_size > 0) { max_old_generation_size_ = static_cast<intptr_t>(FLAG_max_old_space_size) * MB; } if (FLAG_max_executable_size > 0) { max_executable_size_ = static_cast<intptr_t>(FLAG_max_executable_size) * MB; } if (Page::kPageSize > MB) { max_semi_space_size_ = ROUND_UP(max_semi_space_size_, Page::kPageSize); max_old_generation_size_ = ROUND_UP(max_old_generation_size_, Page::kPageSize); max_executable_size_ = ROUND_UP(max_executable_size_, Page::kPageSize); } if (FLAG_stress_compaction) { // This will cause more frequent GCs when stressing. max_semi_space_size_ = Page::kPageSize; } if (isolate()->snapshot_available()) { // If we are using a snapshot we always reserve the default amount // of memory for each semispace because code in the snapshot has // write-barrier code that relies on the size and alignment of new // space. We therefore cannot use a larger max semispace size // than the default reserved semispace size. if (max_semi_space_size_ > reserved_semispace_size_) { max_semi_space_size_ = reserved_semispace_size_; if (FLAG_trace_gc) { PrintIsolate(isolate_, "Max semi-space size cannot be more than %d kbytes\n", reserved_semispace_size_ >> 10); } } } else { // If we are not using snapshots we reserve space for the actual // max semispace size. reserved_semispace_size_ = max_semi_space_size_; } // The new space size must be a power of two to support single-bit testing // for containment. max_semi_space_size_ = base::bits::RoundUpToPowerOfTwo32(max_semi_space_size_); reserved_semispace_size_ = base::bits::RoundUpToPowerOfTwo32(reserved_semispace_size_); if (FLAG_min_semi_space_size > 0) { int initial_semispace_size = FLAG_min_semi_space_size * MB; if (initial_semispace_size > max_semi_space_size_) { initial_semispace_size_ = max_semi_space_size_; if (FLAG_trace_gc) { PrintIsolate(isolate_, "Min semi-space size cannot be more than the maximum " "semi-space size of %d MB\n", max_semi_space_size_ / MB); } } else { initial_semispace_size_ = ROUND_UP(initial_semispace_size, Page::kPageSize); } } initial_semispace_size_ = Min(initial_semispace_size_, max_semi_space_size_); if (FLAG_target_semi_space_size > 0) { int target_semispace_size = FLAG_target_semi_space_size * MB; if (target_semispace_size < initial_semispace_size_) { target_semispace_size_ = initial_semispace_size_; if (FLAG_trace_gc) { PrintIsolate(isolate_, "Target semi-space size cannot be less than the minimum " "semi-space size of %d MB\n", initial_semispace_size_ / MB); } } else if (target_semispace_size > max_semi_space_size_) { target_semispace_size_ = max_semi_space_size_; if (FLAG_trace_gc) { PrintIsolate(isolate_, "Target semi-space size cannot be less than the maximum " "semi-space size of %d MB\n", max_semi_space_size_ / MB); } } else { target_semispace_size_ = ROUND_UP(target_semispace_size, Page::kPageSize); } } target_semispace_size_ = Max(initial_semispace_size_, target_semispace_size_); if (FLAG_semi_space_growth_factor < 2) { FLAG_semi_space_growth_factor = 2; } // The old generation is paged and needs at least one page for each space. int paged_space_count = LAST_PAGED_SPACE - FIRST_PAGED_SPACE + 1; max_old_generation_size_ = Max(static_cast<intptr_t>(paged_space_count * Page::kPageSize), max_old_generation_size_); // The max executable size must be less than or equal to the max old // generation size. if (max_executable_size_ > max_old_generation_size_) { max_executable_size_ = max_old_generation_size_; } if (FLAG_initial_old_space_size > 0) { initial_old_generation_size_ = FLAG_initial_old_space_size * MB; } else { initial_old_generation_size_ = max_old_generation_size_ / kInitalOldGenerationLimitFactor; } old_generation_allocation_limit_ = initial_old_generation_size_; // We rely on being able to allocate new arrays in paged spaces. DCHECK(Page::kMaxRegularHeapObjectSize >= (JSArray::kSize + FixedArray::SizeFor(JSObject::kInitialMaxFastElementArray) + AllocationMemento::kSize)); code_range_size_ = code_range_size * MB; configured_ = true; return true; } void Heap::AddToRingBuffer(const char* string) { size_t first_part = Min(strlen(string), kTraceRingBufferSize - ring_buffer_end_); memcpy(trace_ring_buffer_ + ring_buffer_end_, string, first_part); ring_buffer_end_ += first_part; if (first_part < strlen(string)) { ring_buffer_full_ = true; size_t second_part = strlen(string) - first_part; memcpy(trace_ring_buffer_, string + first_part, second_part); ring_buffer_end_ = second_part; } } void Heap::GetFromRingBuffer(char* buffer) { size_t copied = 0; if (ring_buffer_full_) { copied = kTraceRingBufferSize - ring_buffer_end_; memcpy(buffer, trace_ring_buffer_ + ring_buffer_end_, copied); } memcpy(buffer + copied, trace_ring_buffer_, ring_buffer_end_); } bool Heap::ConfigureHeapDefault() { return ConfigureHeap(0, 0, 0, 0); } void Heap::RecordStats(HeapStats* stats, bool take_snapshot) { *stats->start_marker = HeapStats::kStartMarker; *stats->end_marker = HeapStats::kEndMarker; *stats->new_space_size = new_space_.SizeAsInt(); *stats->new_space_capacity = static_cast<int>(new_space_.Capacity()); *stats->old_space_size = old_space_->SizeOfObjects(); *stats->old_space_capacity = old_space_->Capacity(); *stats->code_space_size = code_space_->SizeOfObjects(); *stats->code_space_capacity = code_space_->Capacity(); *stats->map_space_size = map_space_->SizeOfObjects(); *stats->map_space_capacity = map_space_->Capacity(); *stats->lo_space_size = lo_space_->Size(); isolate_->global_handles()->RecordStats(stats); *stats->memory_allocator_size = isolate()->memory_allocator()->Size(); *stats->memory_allocator_capacity = isolate()->memory_allocator()->Size() + isolate()->memory_allocator()->Available(); *stats->os_error = base::OS::GetLastError(); isolate()->memory_allocator()->Available(); if (take_snapshot) { HeapIterator iterator(this); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { InstanceType type = obj->map()->instance_type(); DCHECK(0 <= type && type <= LAST_TYPE); stats->objects_per_type[type]++; stats->size_per_type[type] += obj->Size(); } } if (stats->last_few_messages != NULL) GetFromRingBuffer(stats->last_few_messages); if (stats->js_stacktrace != NULL) { FixedStringAllocator fixed(stats->js_stacktrace, kStacktraceBufferSize - 1); StringStream accumulator(&fixed); isolate()->PrintStack(&accumulator, Isolate::kPrintStackVerbose); } } intptr_t Heap::PromotedSpaceSizeOfObjects() { return old_space_->SizeOfObjects() + code_space_->SizeOfObjects() + map_space_->SizeOfObjects() + lo_space_->SizeOfObjects(); } int64_t Heap::PromotedExternalMemorySize() { if (amount_of_external_allocated_memory_ <= amount_of_external_allocated_memory_at_last_global_gc_) return 0; return amount_of_external_allocated_memory_ - amount_of_external_allocated_memory_at_last_global_gc_; } const double Heap::kMinHeapGrowingFactor = 1.1; const double Heap::kMaxHeapGrowingFactor = 4.0; const double Heap::kMaxHeapGrowingFactorMemoryConstrained = 2.0; const double Heap::kMaxHeapGrowingFactorIdle = 1.5; const double Heap::kTargetMutatorUtilization = 0.97; // Given GC speed in bytes per ms, the allocation throughput in bytes per ms // (mutator speed), this function returns the heap growing factor that will // achieve the kTargetMutatorUtilisation if the GC speed and the mutator speed // remain the same until the next GC. // // For a fixed time-frame T = TM + TG, the mutator utilization is the ratio // TM / (TM + TG), where TM is the time spent in the mutator and TG is the // time spent in the garbage collector. // // Let MU be kTargetMutatorUtilisation, the desired mutator utilization for the // time-frame from the end of the current GC to the end of the next GC. Based // on the MU we can compute the heap growing factor F as // // F = R * (1 - MU) / (R * (1 - MU) - MU), where R = gc_speed / mutator_speed. // // This formula can be derived as follows. // // F = Limit / Live by definition, where the Limit is the allocation limit, // and the Live is size of live objects. // Let’s assume that we already know the Limit. Then: // TG = Limit / gc_speed // TM = (TM + TG) * MU, by definition of MU. // TM = TG * MU / (1 - MU) // TM = Limit * MU / (gc_speed * (1 - MU)) // On the other hand, if the allocation throughput remains constant: // Limit = Live + TM * allocation_throughput = Live + TM * mutator_speed // Solving it for TM, we get // TM = (Limit - Live) / mutator_speed // Combining the two equation for TM: // (Limit - Live) / mutator_speed = Limit * MU / (gc_speed * (1 - MU)) // (Limit - Live) = Limit * MU * mutator_speed / (gc_speed * (1 - MU)) // substitute R = gc_speed / mutator_speed // (Limit - Live) = Limit * MU / (R * (1 - MU)) // substitute F = Limit / Live // F - 1 = F * MU / (R * (1 - MU)) // F - F * MU / (R * (1 - MU)) = 1 // F * (1 - MU / (R * (1 - MU))) = 1 // F * (R * (1 - MU) - MU) / (R * (1 - MU)) = 1 // F = R * (1 - MU) / (R * (1 - MU) - MU) double Heap::HeapGrowingFactor(double gc_speed, double mutator_speed) { if (gc_speed == 0 || mutator_speed == 0) return kMaxHeapGrowingFactor; const double speed_ratio = gc_speed / mutator_speed; const double mu = kTargetMutatorUtilization; const double a = speed_ratio * (1 - mu); const double b = speed_ratio * (1 - mu) - mu; // The factor is a / b, but we need to check for small b first. double factor = (a < b * kMaxHeapGrowingFactor) ? a / b : kMaxHeapGrowingFactor; factor = Min(factor, kMaxHeapGrowingFactor); factor = Max(factor, kMinHeapGrowingFactor); return factor; } intptr_t Heap::CalculateOldGenerationAllocationLimit(double factor, intptr_t old_gen_size) { CHECK(factor > 1.0); CHECK(old_gen_size > 0); intptr_t limit = static_cast<intptr_t>(old_gen_size * factor); limit = Max(limit, old_gen_size + kMinimumOldGenerationAllocationLimit); limit += new_space_.Capacity(); intptr_t halfway_to_the_max = (old_gen_size + max_old_generation_size_) / 2; return Min(limit, halfway_to_the_max); } void Heap::SetOldGenerationAllocationLimit(intptr_t old_gen_size, double gc_speed, double mutator_speed) { const double kConservativeHeapGrowingFactor = 1.3; double factor = HeapGrowingFactor(gc_speed, mutator_speed); if (FLAG_trace_gc_verbose) { PrintIsolate(isolate_, "Heap growing factor %.1f based on mu=%.3f, speed_ratio=%.f " "(gc=%.f, mutator=%.f)\n", factor, kTargetMutatorUtilization, gc_speed / mutator_speed, gc_speed, mutator_speed); } // We set the old generation growing factor to 2 to grow the heap slower on // memory-constrained devices. if (max_old_generation_size_ <= kMaxOldSpaceSizeMediumMemoryDevice || FLAG_optimize_for_size) { factor = Min(factor, kMaxHeapGrowingFactorMemoryConstrained); } if (memory_reducer_.ShouldGrowHeapSlowly() || optimize_for_memory_usage_) { factor = Min(factor, kConservativeHeapGrowingFactor); } if (FLAG_stress_compaction || mark_compact_collector()->reduce_memory_footprint_) { factor = kMinHeapGrowingFactor; } old_generation_allocation_limit_ = CalculateOldGenerationAllocationLimit(factor, old_gen_size); if (FLAG_trace_gc_verbose) { PrintIsolate(isolate_, "Grow: old size: %" V8_PTR_PREFIX "d KB, new limit: %" V8_PTR_PREFIX "d KB (%.1f)\n", old_gen_size / KB, old_generation_allocation_limit_ / KB, factor); } } void Heap::DampenOldGenerationAllocationLimit(intptr_t old_gen_size, double gc_speed, double mutator_speed) { double factor = HeapGrowingFactor(gc_speed, mutator_speed); intptr_t limit = CalculateOldGenerationAllocationLimit(factor, old_gen_size); if (limit < old_generation_allocation_limit_) { if (FLAG_trace_gc_verbose) { PrintIsolate(isolate_, "Dampen: old size: %" V8_PTR_PREFIX "d KB, old limit: %" V8_PTR_PREFIX "d KB, " "new limit: %" V8_PTR_PREFIX "d KB (%.1f)\n", old_gen_size / KB, old_generation_allocation_limit_ / KB, limit / KB, factor); } old_generation_allocation_limit_ = limit; } } void Heap::EnableInlineAllocation() { if (!inline_allocation_disabled_) return; inline_allocation_disabled_ = false; // Update inline allocation limit for new space. new_space()->UpdateInlineAllocationLimit(0); } void Heap::DisableInlineAllocation() { if (inline_allocation_disabled_) return; inline_allocation_disabled_ = true; // Update inline allocation limit for new space. new_space()->UpdateInlineAllocationLimit(0); // Update inline allocation limit for old spaces. PagedSpaces spaces(this); for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->EmptyAllocationInfo(); } } V8_DECLARE_ONCE(initialize_gc_once); static void InitializeGCOnce() { InitializeScavengingVisitorsTables(); NewSpaceScavenger::Initialize(); MarkCompactCollector::Initialize(); } bool Heap::SetUp() { #ifdef DEBUG allocation_timeout_ = FLAG_gc_interval; #endif // Initialize heap spaces and initial maps and objects. Whenever something // goes wrong, just return false. The caller should check the results and // call Heap::TearDown() to release allocated memory. // // If the heap is not yet configured (e.g. through the API), configure it. // Configuration is based on the flags new-space-size (really the semispace // size) and old-space-size if set or the initial values of semispace_size_ // and old_generation_size_ otherwise. if (!configured_) { if (!ConfigureHeapDefault()) return false; } concurrent_sweeping_enabled_ = FLAG_concurrent_sweeping; base::CallOnce(&initialize_gc_once, &InitializeGCOnce); MarkMapPointersAsEncoded(false); // Set up memory allocator. if (!isolate_->memory_allocator()->SetUp(MaxReserved(), MaxExecutableSize())) return false; // Set up new space. if (!new_space_.SetUp(reserved_semispace_size_, max_semi_space_size_)) { return false; } new_space_top_after_last_gc_ = new_space()->top(); // Initialize old space. old_space_ = new OldSpace(this, max_old_generation_size_, OLD_SPACE, NOT_EXECUTABLE); if (old_space_ == NULL) return false; if (!old_space_->SetUp()) return false; if (!isolate_->code_range()->SetUp(code_range_size_)) return false; // Initialize the code space, set its maximum capacity to the old // generation size. It needs executable memory. code_space_ = new OldSpace(this, max_old_generation_size_, CODE_SPACE, EXECUTABLE); if (code_space_ == NULL) return false; if (!code_space_->SetUp()) return false; // Initialize map space. map_space_ = new MapSpace(this, max_old_generation_size_, MAP_SPACE); if (map_space_ == NULL) return false; if (!map_space_->SetUp()) return false; // The large object code space may contain code or data. We set the memory // to be non-executable here for safety, but this means we need to enable it // explicitly when allocating large code objects. lo_space_ = new LargeObjectSpace(this, max_old_generation_size_, LO_SPACE); if (lo_space_ == NULL) return false; if (!lo_space_->SetUp()) return false; // Set up the seed that is used to randomize the string hash function. DCHECK(hash_seed() == 0); if (FLAG_randomize_hashes) { if (FLAG_hash_seed == 0) { int rnd = isolate()->random_number_generator()->NextInt(); set_hash_seed(Smi::FromInt(rnd & Name::kHashBitMask)); } else { set_hash_seed(Smi::FromInt(FLAG_hash_seed)); } } for (int i = 0; i < static_cast<int>(v8::Isolate::kUseCounterFeatureCount); i++) { deferred_counters_[i] = 0; } LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity())); LOG(isolate_, IntPtrTEvent("heap-available", Available())); store_buffer()->SetUp(); mark_compact_collector()->SetUp(); return true; } bool Heap::CreateHeapObjects() { // Create initial maps. if (!CreateInitialMaps()) return false; CreateApiObjects(); // Create initial objects CreateInitialObjects(); CHECK_EQ(0u, gc_count_); set_native_contexts_list(undefined_value()); set_allocation_sites_list(undefined_value()); return true; } void Heap::SetStackLimits() { DCHECK(isolate_ != NULL); DCHECK(isolate_ == isolate()); // On 64 bit machines, pointers are generally out of range of Smis. We write // something that looks like an out of range Smi to the GC. // Set up the special root array entries containing the stack limits. // These are actually addresses, but the tag makes the GC ignore it. roots_[kStackLimitRootIndex] = reinterpret_cast<Object*>( (isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag); roots_[kRealStackLimitRootIndex] = reinterpret_cast<Object*>( (isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag); } void Heap::NotifyDeserializationComplete() { deserialization_complete_ = true; #ifdef DEBUG // All pages right after bootstrapping must be marked as never-evacuate. PagedSpaces spaces(this); for (PagedSpace* s = spaces.next(); s != NULL; s = spaces.next()) { PageIterator it(s); while (it.has_next()) CHECK(it.next()->NeverEvacuate()); } #endif // DEBUG } void Heap::TearDown() { #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif UpdateMaximumCommitted(); if (FLAG_print_cumulative_gc_stat) { PrintF("\n"); PrintF("gc_count=%d ", gc_count_); PrintF("mark_sweep_count=%d ", ms_count_); PrintF("max_gc_pause=%.1f ", get_max_gc_pause()); PrintF("total_gc_time=%.1f ", total_gc_time_ms_); PrintF("min_in_mutator=%.1f ", get_min_in_mutator()); PrintF("max_alive_after_gc=%" V8_PTR_PREFIX "d ", get_max_alive_after_gc()); PrintF("total_marking_time=%.1f ", tracer_.cumulative_marking_duration()); PrintF("total_sweeping_time=%.1f ", tracer_.cumulative_sweeping_duration()); PrintF("\n\n"); } if (FLAG_print_max_heap_committed) { PrintF("\n"); PrintF("maximum_committed_by_heap=%" V8_PTR_PREFIX "d ", MaximumCommittedMemory()); PrintF("maximum_committed_by_new_space=%" V8_PTR_PREFIX "d ", new_space_.MaximumCommittedMemory()); PrintF("maximum_committed_by_old_space=%" V8_PTR_PREFIX "d ", old_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_code_space=%" V8_PTR_PREFIX "d ", code_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_map_space=%" V8_PTR_PREFIX "d ", map_space_->MaximumCommittedMemory()); PrintF("maximum_committed_by_lo_space=%" V8_PTR_PREFIX "d ", lo_space_->MaximumCommittedMemory()); PrintF("\n\n"); } if (FLAG_verify_predictable) { PrintAlloctionsHash(); } memory_reducer_.TearDown(); TearDownArrayBuffers(); isolate_->global_handles()->TearDown(); external_string_table_.TearDown(); mark_compact_collector()->TearDown(); new_space_.TearDown(); if (old_space_ != NULL) { old_space_->TearDown(); delete old_space_; old_space_ = NULL; } if (code_space_ != NULL) { code_space_->TearDown(); delete code_space_; code_space_ = NULL; } if (map_space_ != NULL) { map_space_->TearDown(); delete map_space_; map_space_ = NULL; } if (lo_space_ != NULL) { lo_space_->TearDown(); delete lo_space_; lo_space_ = NULL; } store_buffer()->TearDown(); isolate_->memory_allocator()->TearDown(); StrongRootsList* next = NULL; for (StrongRootsList* list = strong_roots_list_; list; list = next) { next = list->next; delete list; } strong_roots_list_ = NULL; } void Heap::AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback, GCType gc_type, bool pass_isolate) { DCHECK(callback != NULL); GCPrologueCallbackPair pair(callback, gc_type, pass_isolate); DCHECK(!gc_prologue_callbacks_.Contains(pair)); return gc_prologue_callbacks_.Add(pair); } void Heap::RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback) { DCHECK(callback != NULL); for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) { if (gc_prologue_callbacks_[i].callback == callback) { gc_prologue_callbacks_.Remove(i); return; } } UNREACHABLE(); } void Heap::AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback, GCType gc_type, bool pass_isolate) { DCHECK(callback != NULL); GCEpilogueCallbackPair pair(callback, gc_type, pass_isolate); DCHECK(!gc_epilogue_callbacks_.Contains(pair)); return gc_epilogue_callbacks_.Add(pair); } void Heap::RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback) { DCHECK(callback != NULL); for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) { if (gc_epilogue_callbacks_[i].callback == callback) { gc_epilogue_callbacks_.Remove(i); return; } } UNREACHABLE(); } // TODO(ishell): Find a better place for this. void Heap::AddWeakObjectToCodeDependency(Handle<HeapObject> obj, Handle<DependentCode> dep) { DCHECK(!InNewSpace(*obj)); DCHECK(!InNewSpace(*dep)); Handle<WeakHashTable> table(weak_object_to_code_table(), isolate()); table = WeakHashTable::Put(table, obj, dep); if (*table != weak_object_to_code_table()) set_weak_object_to_code_table(*table); DCHECK_EQ(*dep, LookupWeakObjectToCodeDependency(obj)); } DependentCode* Heap::LookupWeakObjectToCodeDependency(Handle<HeapObject> obj) { Object* dep = weak_object_to_code_table()->Lookup(obj); if (dep->IsDependentCode()) return DependentCode::cast(dep); return DependentCode::cast(empty_fixed_array()); } void Heap::AddRetainedMap(Handle<Map> map) { if (FLAG_retain_maps_for_n_gc == 0) return; Handle<WeakCell> cell = Map::WeakCellForMap(map); Handle<ArrayList> array(retained_maps(), isolate()); array = ArrayList::Add( array, cell, handle(Smi::FromInt(FLAG_retain_maps_for_n_gc), isolate()), ArrayList::kReloadLengthAfterAllocation); if (*array != retained_maps()) { set_retained_maps(*array); } } void Heap::FatalProcessOutOfMemory(const char* location, bool take_snapshot) { v8::internal::V8::FatalProcessOutOfMemory(location, take_snapshot); } #ifdef DEBUG class PrintHandleVisitor : public ObjectVisitor { public: void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) PrintF(" handle %p to %p\n", reinterpret_cast<void*>(p), reinterpret_cast<void*>(*p)); } }; void Heap::PrintHandles() { PrintF("Handles:\n"); PrintHandleVisitor v; isolate_->handle_scope_implementer()->Iterate(&v); } #endif class CheckHandleCountVisitor : public ObjectVisitor { public: CheckHandleCountVisitor() : handle_count_(0) {} ~CheckHandleCountVisitor() { CHECK(handle_count_ < HandleScope::kCheckHandleThreshold); } void VisitPointers(Object** start, Object** end) { handle_count_ += end - start; } private: ptrdiff_t handle_count_; }; void Heap::CheckHandleCount() { CheckHandleCountVisitor v; isolate_->handle_scope_implementer()->Iterate(&v); } Space* AllSpaces::next() { switch (counter_++) { case NEW_SPACE: return heap_->new_space(); case OLD_SPACE: return heap_->old_space(); case CODE_SPACE: return heap_->code_space(); case MAP_SPACE: return heap_->map_space(); case LO_SPACE: return heap_->lo_space(); default: return NULL; } } PagedSpace* PagedSpaces::next() { switch (counter_++) { case OLD_SPACE: return heap_->old_space(); case CODE_SPACE: return heap_->code_space(); case MAP_SPACE: return heap_->map_space(); default: return NULL; } } OldSpace* OldSpaces::next() { switch (counter_++) { case OLD_SPACE: return heap_->old_space(); case CODE_SPACE: return heap_->code_space(); default: return NULL; } } SpaceIterator::SpaceIterator(Heap* heap) : heap_(heap), current_space_(FIRST_SPACE), iterator_(NULL), size_func_(NULL) {} SpaceIterator::SpaceIterator(Heap* heap, HeapObjectCallback size_func) : heap_(heap), current_space_(FIRST_SPACE), iterator_(NULL), size_func_(size_func) {} SpaceIterator::~SpaceIterator() { // Delete active iterator if any. delete iterator_; } bool SpaceIterator::has_next() { // Iterate until no more spaces. return current_space_ != LAST_SPACE; } ObjectIterator* SpaceIterator::next() { if (iterator_ != NULL) { delete iterator_; iterator_ = NULL; // Move to the next space current_space_++; if (current_space_ > LAST_SPACE) { return NULL; } } // Return iterator for the new current space. return CreateIterator(); } // Create an iterator for the space to iterate. ObjectIterator* SpaceIterator::CreateIterator() { DCHECK(iterator_ == NULL); switch (current_space_) { case NEW_SPACE: iterator_ = new SemiSpaceIterator(heap_->new_space(), size_func_); break; case OLD_SPACE: iterator_ = new HeapObjectIterator(heap_->old_space(), size_func_); break; case CODE_SPACE: iterator_ = new HeapObjectIterator(heap_->code_space(), size_func_); break; case MAP_SPACE: iterator_ = new HeapObjectIterator(heap_->map_space(), size_func_); break; case LO_SPACE: iterator_ = new LargeObjectIterator(heap_->lo_space(), size_func_); break; } // Return the newly allocated iterator; DCHECK(iterator_ != NULL); return iterator_; } class HeapObjectsFilter { public: virtual ~HeapObjectsFilter() {} virtual bool SkipObject(HeapObject* object) = 0; }; class UnreachableObjectsFilter : public HeapObjectsFilter { public: explicit UnreachableObjectsFilter(Heap* heap) : heap_(heap) { MarkReachableObjects(); } ~UnreachableObjectsFilter() { heap_->mark_compact_collector()->ClearMarkbits(); } bool SkipObject(HeapObject* object) { if (object->IsFiller()) return true; MarkBit mark_bit = Marking::MarkBitFrom(object); return Marking::IsWhite(mark_bit); } private: class MarkingVisitor : public ObjectVisitor { public: MarkingVisitor() : marking_stack_(10) {} void VisitPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { if (!(*p)->IsHeapObject()) continue; HeapObject* obj = HeapObject::cast(*p); MarkBit mark_bit = Marking::MarkBitFrom(obj); if (Marking::IsWhite(mark_bit)) { Marking::WhiteToBlack(mark_bit); marking_stack_.Add(obj); } } } void TransitiveClosure() { while (!marking_stack_.is_empty()) { HeapObject* obj = marking_stack_.RemoveLast(); obj->Iterate(this); } } private: List<HeapObject*> marking_stack_; }; void MarkReachableObjects() { MarkingVisitor visitor; heap_->IterateRoots(&visitor, VISIT_ALL); visitor.TransitiveClosure(); } Heap* heap_; DisallowHeapAllocation no_allocation_; }; HeapIterator::HeapIterator(Heap* heap) : make_heap_iterable_helper_(heap), no_heap_allocation_(), heap_(heap), filtering_(HeapIterator::kNoFiltering), filter_(NULL) { Init(); } HeapIterator::HeapIterator(Heap* heap, HeapIterator::HeapObjectsFiltering filtering) : make_heap_iterable_helper_(heap), no_heap_allocation_(), heap_(heap), filtering_(filtering), filter_(NULL) { Init(); } HeapIterator::~HeapIterator() { Shutdown(); } void HeapIterator::Init() { // Start the iteration. space_iterator_ = new SpaceIterator(heap_); switch (filtering_) { case kFilterUnreachable: filter_ = new UnreachableObjectsFilter(heap_); break; default: break; } object_iterator_ = space_iterator_->next(); } void HeapIterator::Shutdown() { #ifdef DEBUG // Assert that in filtering mode we have iterated through all // objects. Otherwise, heap will be left in an inconsistent state. if (filtering_ != kNoFiltering) { DCHECK(object_iterator_ == NULL); } #endif // Make sure the last iterator is deallocated. delete space_iterator_; space_iterator_ = NULL; object_iterator_ = NULL; delete filter_; filter_ = NULL; } HeapObject* HeapIterator::next() { if (filter_ == NULL) return NextObject(); HeapObject* obj = NextObject(); while (obj != NULL && filter_->SkipObject(obj)) obj = NextObject(); return obj; } HeapObject* HeapIterator::NextObject() { // No iterator means we are done. if (object_iterator_ == NULL) return NULL; if (HeapObject* obj = object_iterator_->next_object()) { // If the current iterator has more objects we are fine. return obj; } else { // Go though the spaces looking for one that has objects. while (space_iterator_->has_next()) { object_iterator_ = space_iterator_->next(); if (HeapObject* obj = object_iterator_->next_object()) { return obj; } } } // Done with the last space. object_iterator_ = NULL; return NULL; } void HeapIterator::reset() { // Restart the iterator. Shutdown(); Init(); } #ifdef DEBUG Object* const PathTracer::kAnyGlobalObject = NULL; class PathTracer::MarkVisitor : public ObjectVisitor { public: explicit MarkVisitor(PathTracer* tracer) : tracer_(tracer) {} void VisitPointers(Object** start, Object** end) { // Scan all HeapObject pointers in [start, end) for (Object** p = start; !tracer_->found() && (p < end); p++) { if ((*p)->IsHeapObject()) tracer_->MarkRecursively(p, this); } } private: PathTracer* tracer_; }; class PathTracer::UnmarkVisitor : public ObjectVisitor { public: explicit UnmarkVisitor(PathTracer* tracer) : tracer_(tracer) {} void VisitPointers(Object** start, Object** end) { // Scan all HeapObject pointers in [start, end) for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) tracer_->UnmarkRecursively(p, this); } } private: PathTracer* tracer_; }; void PathTracer::VisitPointers(Object** start, Object** end) { bool done = ((what_to_find_ == FIND_FIRST) && found_target_); // Visit all HeapObject pointers in [start, end) for (Object** p = start; !done && (p < end); p++) { if ((*p)->IsHeapObject()) { TracePathFrom(p); done = ((what_to_find_ == FIND_FIRST) && found_target_); } } } void PathTracer::Reset() { found_target_ = false; object_stack_.Clear(); } void PathTracer::TracePathFrom(Object** root) { DCHECK((search_target_ == kAnyGlobalObject) || search_target_->IsHeapObject()); found_target_in_trace_ = false; Reset(); MarkVisitor mark_visitor(this); MarkRecursively(root, &mark_visitor); UnmarkVisitor unmark_visitor(this); UnmarkRecursively(root, &unmark_visitor); ProcessResults(); } static bool SafeIsNativeContext(HeapObject* obj) { return obj->map() == obj->GetHeap()->raw_unchecked_native_context_map(); } void PathTracer::MarkRecursively(Object** p, MarkVisitor* mark_visitor) { if (!(*p)->IsHeapObject()) return; HeapObject* obj = HeapObject::cast(*p); MapWord map_word = obj->map_word(); if (!map_word.ToMap()->IsHeapObject()) return; // visited before if (found_target_in_trace_) return; // stop if target found object_stack_.Add(obj); if (((search_target_ == kAnyGlobalObject) && obj->IsJSGlobalObject()) || (obj == search_target_)) { found_target_in_trace_ = true; found_target_ = true; return; } bool is_native_context = SafeIsNativeContext(obj); // not visited yet Map* map = Map::cast(map_word.ToMap()); MapWord marked_map_word = MapWord::FromRawValue(obj->map_word().ToRawValue() + kMarkTag); obj->set_map_word(marked_map_word); // Scan the object body. if (is_native_context && (visit_mode_ == VISIT_ONLY_STRONG)) { // This is specialized to scan Context's properly. Object** start = reinterpret_cast<Object**>(obj->address() + Context::kHeaderSize); Object** end = reinterpret_cast<Object**>(obj->address() + Context::kHeaderSize + Context::FIRST_WEAK_SLOT * kPointerSize); mark_visitor->VisitPointers(start, end); } else { obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), mark_visitor); } // Scan the map after the body because the body is a lot more interesting // when doing leak detection. MarkRecursively(reinterpret_cast<Object**>(&map), mark_visitor); if (!found_target_in_trace_) { // don't pop if found the target object_stack_.RemoveLast(); } } void PathTracer::UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor) { if (!(*p)->IsHeapObject()) return; HeapObject* obj = HeapObject::cast(*p); MapWord map_word = obj->map_word(); if (map_word.ToMap()->IsHeapObject()) return; // unmarked already MapWord unmarked_map_word = MapWord::FromRawValue(map_word.ToRawValue() - kMarkTag); obj->set_map_word(unmarked_map_word); Map* map = Map::cast(unmarked_map_word.ToMap()); UnmarkRecursively(reinterpret_cast<Object**>(&map), unmark_visitor); obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), unmark_visitor); } void PathTracer::ProcessResults() { if (found_target_) { OFStream os(stdout); os << "=====================================\n" << "==== Path to object ====\n" << "=====================================\n\n"; DCHECK(!object_stack_.is_empty()); for (int i = 0; i < object_stack_.length(); i++) { if (i > 0) os << "\n |\n |\n V\n\n"; object_stack_[i]->Print(os); } os << "=====================================\n"; } } // Triggers a depth-first traversal of reachable objects from one // given root object and finds a path to a specific heap object and // prints it. void Heap::TracePathToObjectFrom(Object* target, Object* root) { PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL); tracer.VisitPointer(&root); } // Triggers a depth-first traversal of reachable objects from roots // and finds a path to a specific heap object and prints it. void Heap::TracePathToObject(Object* target) { PathTracer tracer(target, PathTracer::FIND_ALL, VISIT_ALL); IterateRoots(&tracer, VISIT_ONLY_STRONG); } // Triggers a depth-first traversal of reachable objects from roots // and finds a path to any global object and prints it. Useful for // determining the source for leaks of global objects. void Heap::TracePathToGlobal() { PathTracer tracer(PathTracer::kAnyGlobalObject, PathTracer::FIND_ALL, VISIT_ALL); IterateRoots(&tracer, VISIT_ONLY_STRONG); } #endif void Heap::UpdateCumulativeGCStatistics(double duration, double spent_in_mutator, double marking_time) { if (FLAG_print_cumulative_gc_stat) { total_gc_time_ms_ += duration; max_gc_pause_ = Max(max_gc_pause_, duration); max_alive_after_gc_ = Max(max_alive_after_gc_, SizeOfObjects()); min_in_mutator_ = Min(min_in_mutator_, spent_in_mutator); } else if (FLAG_trace_gc_verbose) { total_gc_time_ms_ += duration; } marking_time_ += marking_time; } int KeyedLookupCache::Hash(Handle<Map> map, Handle<Name> name) { DisallowHeapAllocation no_gc; // Uses only lower 32 bits if pointers are larger. uintptr_t addr_hash = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(*map)) >> kMapHashShift; return static_cast<uint32_t>((addr_hash ^ name->Hash()) & kCapacityMask); } int KeyedLookupCache::Lookup(Handle<Map> map, Handle<Name> name) { DisallowHeapAllocation no_gc; int index = (Hash(map, name) & kHashMask); for (int i = 0; i < kEntriesPerBucket; i++) { Key& key = keys_[index + i]; if ((key.map == *map) && key.name->Equals(*name)) { return field_offsets_[index + i]; } } return kNotFound; } void KeyedLookupCache::Update(Handle<Map> map, Handle<Name> name, int field_offset) { DisallowHeapAllocation no_gc; if (!name->IsUniqueName()) { if (!StringTable::InternalizeStringIfExists( name->GetIsolate(), Handle<String>::cast(name)).ToHandle(&name)) { return; } } // This cache is cleared only between mark compact passes, so we expect the // cache to only contain old space names. DCHECK(!map->GetIsolate()->heap()->InNewSpace(*name)); int index = (Hash(map, name) & kHashMask); // After a GC there will be free slots, so we use them in order (this may // help to get the most frequently used one in position 0). for (int i = 0; i < kEntriesPerBucket; i++) { Key& key = keys_[index]; Object* free_entry_indicator = NULL; if (key.map == free_entry_indicator) { key.map = *map; key.name = *name; field_offsets_[index + i] = field_offset; return; } } // No free entry found in this bucket, so we move them all down one and // put the new entry at position zero. for (int i = kEntriesPerBucket - 1; i > 0; i--) { Key& key = keys_[index + i]; Key& key2 = keys_[index + i - 1]; key = key2; field_offsets_[index + i] = field_offsets_[index + i - 1]; } // Write the new first entry. Key& key = keys_[index]; key.map = *map; key.name = *name; field_offsets_[index] = field_offset; } void KeyedLookupCache::Clear() { for (int index = 0; index < kLength; index++) keys_[index].map = NULL; } void DescriptorLookupCache::Clear() { for (int index = 0; index < kLength; index++) keys_[index].source = NULL; } void ExternalStringTable::CleanUp() { int last = 0; for (int i = 0; i < new_space_strings_.length(); ++i) { if (new_space_strings_[i] == heap_->the_hole_value()) { continue; } DCHECK(new_space_strings_[i]->IsExternalString()); if (heap_->InNewSpace(new_space_strings_[i])) { new_space_strings_[last++] = new_space_strings_[i]; } else { old_space_strings_.Add(new_space_strings_[i]); } } new_space_strings_.Rewind(last); new_space_strings_.Trim(); last = 0; for (int i = 0; i < old_space_strings_.length(); ++i) { if (old_space_strings_[i] == heap_->the_hole_value()) { continue; } DCHECK(old_space_strings_[i]->IsExternalString()); DCHECK(!heap_->InNewSpace(old_space_strings_[i])); old_space_strings_[last++] = old_space_strings_[i]; } old_space_strings_.Rewind(last); old_space_strings_.Trim(); #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } void ExternalStringTable::TearDown() { for (int i = 0; i < new_space_strings_.length(); ++i) { heap_->FinalizeExternalString(ExternalString::cast(new_space_strings_[i])); } new_space_strings_.Free(); for (int i = 0; i < old_space_strings_.length(); ++i) { heap_->FinalizeExternalString(ExternalString::cast(old_space_strings_[i])); } old_space_strings_.Free(); } void Heap::QueueMemoryChunkForFree(MemoryChunk* chunk) { chunk->set_next_chunk(chunks_queued_for_free_); chunks_queued_for_free_ = chunk; } void Heap::FreeQueuedChunks() { if (chunks_queued_for_free_ == NULL) return; MemoryChunk* next; MemoryChunk* chunk; for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) { next = chunk->next_chunk(); chunk->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED); if (chunk->owner()->identity() == LO_SPACE) { // StoreBuffer::Filter relies on MemoryChunk::FromAnyPointerAddress. // If FromAnyPointerAddress encounters a slot that belongs to a large // chunk queued for deletion it will fail to find the chunk because // it try to perform a search in the list of pages owned by of the large // object space and queued chunks were detached from that list. // To work around this we split large chunk into normal kPageSize aligned // pieces and initialize size, owner and flags field of every piece. // If FromAnyPointerAddress encounters a slot that belongs to one of // these smaller pieces it will treat it as a slot on a normal Page. Address chunk_end = chunk->address() + chunk->size(); MemoryChunk* inner = MemoryChunk::FromAddress(chunk->address() + Page::kPageSize); MemoryChunk* inner_last = MemoryChunk::FromAddress(chunk_end - 1); while (inner <= inner_last) { // Size of a large chunk is always a multiple of // OS::AllocateAlignment() so there is always // enough space for a fake MemoryChunk header. Address area_end = Min(inner->address() + Page::kPageSize, chunk_end); // Guard against overflow. if (area_end < inner->address()) area_end = chunk_end; inner->SetArea(inner->address(), area_end); inner->set_size(Page::kPageSize); inner->set_owner(lo_space()); inner->SetFlag(MemoryChunk::ABOUT_TO_BE_FREED); inner = MemoryChunk::FromAddress(inner->address() + Page::kPageSize); } } } isolate_->heap()->store_buffer()->Compact(); isolate_->heap()->store_buffer()->Filter(MemoryChunk::ABOUT_TO_BE_FREED); for (chunk = chunks_queued_for_free_; chunk != NULL; chunk = next) { next = chunk->next_chunk(); isolate_->memory_allocator()->Free(chunk); } chunks_queued_for_free_ = NULL; } void Heap::RememberUnmappedPage(Address page, bool compacted) { uintptr_t p = reinterpret_cast<uintptr_t>(page); // Tag the page pointer to make it findable in the dump file. if (compacted) { p ^= 0xc1ead & (Page::kPageSize - 1); // Cleared. } else { p ^= 0x1d1ed & (Page::kPageSize - 1); // I died. } remembered_unmapped_pages_[remembered_unmapped_pages_index_] = reinterpret_cast<Address>(p); remembered_unmapped_pages_index_++; remembered_unmapped_pages_index_ %= kRememberedUnmappedPages; } void Heap::ClearObjectStats(bool clear_last_time_stats) { memset(object_counts_, 0, sizeof(object_counts_)); memset(object_sizes_, 0, sizeof(object_sizes_)); if (clear_last_time_stats) { memset(object_counts_last_time_, 0, sizeof(object_counts_last_time_)); memset(object_sizes_last_time_, 0, sizeof(object_sizes_last_time_)); } } static base::LazyMutex object_stats_mutex = LAZY_MUTEX_INITIALIZER; void Heap::TraceObjectStat(const char* name, int count, int size, double time) { PrintIsolate(isolate_, "heap:%p, time:%f, gc:%d, type:%s, count:%d, size:%d\n", static_cast<void*>(this), time, ms_count_, name, count, size); } void Heap::TraceObjectStats() { base::LockGuard<base::Mutex> lock_guard(object_stats_mutex.Pointer()); int index; int count; int size; int total_size = 0; double time = isolate_->time_millis_since_init(); #define TRACE_OBJECT_COUNT(name) \ count = static_cast<int>(object_counts_[name]); \ size = static_cast<int>(object_sizes_[name]) / KB; \ total_size += size; \ TraceObjectStat(#name, count, size, time); INSTANCE_TYPE_LIST(TRACE_OBJECT_COUNT) #undef TRACE_OBJECT_COUNT #define TRACE_OBJECT_COUNT(name) \ index = FIRST_CODE_KIND_SUB_TYPE + Code::name; \ count = static_cast<int>(object_counts_[index]); \ size = static_cast<int>(object_sizes_[index]) / KB; \ TraceObjectStat("*CODE_" #name, count, size, time); CODE_KIND_LIST(TRACE_OBJECT_COUNT) #undef TRACE_OBJECT_COUNT #define TRACE_OBJECT_COUNT(name) \ index = FIRST_FIXED_ARRAY_SUB_TYPE + name; \ count = static_cast<int>(object_counts_[index]); \ size = static_cast<int>(object_sizes_[index]) / KB; \ TraceObjectStat("*FIXED_ARRAY_" #name, count, size, time); FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(TRACE_OBJECT_COUNT) #undef TRACE_OBJECT_COUNT #define TRACE_OBJECT_COUNT(name) \ index = \ FIRST_CODE_AGE_SUB_TYPE + Code::k##name##CodeAge - Code::kFirstCodeAge; \ count = static_cast<int>(object_counts_[index]); \ size = static_cast<int>(object_sizes_[index]) / KB; \ TraceObjectStat("*CODE_AGE_" #name, count, size, time); CODE_AGE_LIST_COMPLETE(TRACE_OBJECT_COUNT) #undef TRACE_OBJECT_COUNT } void Heap::CheckpointObjectStats() { base::LockGuard<base::Mutex> lock_guard(object_stats_mutex.Pointer()); Counters* counters = isolate()->counters(); #define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ counters->count_of_##name()->Increment( \ static_cast<int>(object_counts_[name])); \ counters->count_of_##name()->Decrement( \ static_cast<int>(object_counts_last_time_[name])); \ counters->size_of_##name()->Increment( \ static_cast<int>(object_sizes_[name])); \ counters->size_of_##name()->Decrement( \ static_cast<int>(object_sizes_last_time_[name])); INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT) #undef ADJUST_LAST_TIME_OBJECT_COUNT int index; #define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ index = FIRST_CODE_KIND_SUB_TYPE + Code::name; \ counters->count_of_CODE_TYPE_##name()->Increment( \ static_cast<int>(object_counts_[index])); \ counters->count_of_CODE_TYPE_##name()->Decrement( \ static_cast<int>(object_counts_last_time_[index])); \ counters->size_of_CODE_TYPE_##name()->Increment( \ static_cast<int>(object_sizes_[index])); \ counters->size_of_CODE_TYPE_##name()->Decrement( \ static_cast<int>(object_sizes_last_time_[index])); CODE_KIND_LIST(ADJUST_LAST_TIME_OBJECT_COUNT) #undef ADJUST_LAST_TIME_OBJECT_COUNT #define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ index = FIRST_FIXED_ARRAY_SUB_TYPE + name; \ counters->count_of_FIXED_ARRAY_##name()->Increment( \ static_cast<int>(object_counts_[index])); \ counters->count_of_FIXED_ARRAY_##name()->Decrement( \ static_cast<int>(object_counts_last_time_[index])); \ counters->size_of_FIXED_ARRAY_##name()->Increment( \ static_cast<int>(object_sizes_[index])); \ counters->size_of_FIXED_ARRAY_##name()->Decrement( \ static_cast<int>(object_sizes_last_time_[index])); FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(ADJUST_LAST_TIME_OBJECT_COUNT) #undef ADJUST_LAST_TIME_OBJECT_COUNT #define ADJUST_LAST_TIME_OBJECT_COUNT(name) \ index = \ FIRST_CODE_AGE_SUB_TYPE + Code::k##name##CodeAge - Code::kFirstCodeAge; \ counters->count_of_CODE_AGE_##name()->Increment( \ static_cast<int>(object_counts_[index])); \ counters->count_of_CODE_AGE_##name()->Decrement( \ static_cast<int>(object_counts_last_time_[index])); \ counters->size_of_CODE_AGE_##name()->Increment( \ static_cast<int>(object_sizes_[index])); \ counters->size_of_CODE_AGE_##name()->Decrement( \ static_cast<int>(object_sizes_last_time_[index])); CODE_AGE_LIST_COMPLETE(ADJUST_LAST_TIME_OBJECT_COUNT) #undef ADJUST_LAST_TIME_OBJECT_COUNT MemCopy(object_counts_last_time_, object_counts_, sizeof(object_counts_)); MemCopy(object_sizes_last_time_, object_sizes_, sizeof(object_sizes_)); ClearObjectStats(); } void Heap::RegisterStrongRoots(Object** start, Object** end) { StrongRootsList* list = new StrongRootsList(); list->next = strong_roots_list_; list->start = start; list->end = end; strong_roots_list_ = list; } void Heap::UnregisterStrongRoots(Object** start) { StrongRootsList* prev = NULL; StrongRootsList* list = strong_roots_list_; while (list != nullptr) { StrongRootsList* next = list->next; if (list->start == start) { if (prev) { prev->next = next; } else { strong_roots_list_ = next; } delete list; } else { prev = list; } list = next; } } bool Heap::GetObjectTypeName(size_t index, const char** object_type, const char** object_sub_type) { if (index >= OBJECT_STATS_COUNT) return false; switch (static_cast<int>(index)) { #define COMPARE_AND_RETURN_NAME(name) \ case name: \ *object_type = #name; \ *object_sub_type = ""; \ return true; INSTANCE_TYPE_LIST(COMPARE_AND_RETURN_NAME) #undef COMPARE_AND_RETURN_NAME #define COMPARE_AND_RETURN_NAME(name) \ case FIRST_CODE_KIND_SUB_TYPE + Code::name: \ *object_type = "CODE_TYPE"; \ *object_sub_type = "CODE_KIND/" #name; \ return true; CODE_KIND_LIST(COMPARE_AND_RETURN_NAME) #undef COMPARE_AND_RETURN_NAME #define COMPARE_AND_RETURN_NAME(name) \ case FIRST_FIXED_ARRAY_SUB_TYPE + name: \ *object_type = "FIXED_ARRAY_TYPE"; \ *object_sub_type = #name; \ return true; FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(COMPARE_AND_RETURN_NAME) #undef COMPARE_AND_RETURN_NAME #define COMPARE_AND_RETURN_NAME(name) \ case FIRST_CODE_AGE_SUB_TYPE + Code::k##name##CodeAge - Code::kFirstCodeAge: \ *object_type = "CODE_TYPE"; \ *object_sub_type = "CODE_AGE/" #name; \ return true; CODE_AGE_LIST_COMPLETE(COMPARE_AND_RETURN_NAME) #undef COMPARE_AND_RETURN_NAME } return false; } } // namespace internal } // namespace v8