// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler.h" #include <algorithm> #include "src/ast/ast-numbering.h" #include "src/ast/prettyprinter.h" #include "src/ast/scopeinfo.h" #include "src/ast/scopes.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/compilation-cache.h" #include "src/compiler/pipeline.h" #include "src/crankshaft/hydrogen.h" #include "src/crankshaft/lithium.h" #include "src/crankshaft/typing.h" #include "src/debug/debug.h" #include "src/debug/liveedit.h" #include "src/deoptimizer.h" #include "src/full-codegen/full-codegen.h" #include "src/gdb-jit.h" #include "src/interpreter/interpreter.h" #include "src/isolate-inl.h" #include "src/log-inl.h" #include "src/messages.h" #include "src/parsing/parser.h" #include "src/parsing/rewriter.h" #include "src/parsing/scanner-character-streams.h" #include "src/profiler/cpu-profiler.h" #include "src/runtime-profiler.h" #include "src/snapshot/serialize.h" #include "src/vm-state-inl.h" namespace v8 { namespace internal { #define PARSE_INFO_GETTER(type, name) \ type CompilationInfo::name() const { \ CHECK(parse_info()); \ return parse_info()->name(); \ } #define PARSE_INFO_GETTER_WITH_DEFAULT(type, name, def) \ type CompilationInfo::name() const { \ return parse_info() ? parse_info()->name() : def; \ } PARSE_INFO_GETTER(Handle<Script>, script) PARSE_INFO_GETTER(bool, is_eval) PARSE_INFO_GETTER(bool, is_native) PARSE_INFO_GETTER(bool, is_module) PARSE_INFO_GETTER(FunctionLiteral*, literal) PARSE_INFO_GETTER_WITH_DEFAULT(LanguageMode, language_mode, STRICT) PARSE_INFO_GETTER_WITH_DEFAULT(Handle<JSFunction>, closure, Handle<JSFunction>::null()) PARSE_INFO_GETTER_WITH_DEFAULT(Scope*, scope, nullptr) PARSE_INFO_GETTER(Handle<Context>, context) PARSE_INFO_GETTER(Handle<SharedFunctionInfo>, shared_info) #undef PARSE_INFO_GETTER #undef PARSE_INFO_GETTER_WITH_DEFAULT // Exactly like a CompilationInfo, except being allocated via {new} and it also // creates and enters a Zone on construction and deallocates it on destruction. class CompilationInfoWithZone : public CompilationInfo { public: explicit CompilationInfoWithZone(Handle<JSFunction> function) : CompilationInfo(new ParseInfo(&zone_, function)) {} // Virtual destructor because a CompilationInfoWithZone has to exit the // zone scope and get rid of dependent maps even when the destructor is // called when cast as a CompilationInfo. virtual ~CompilationInfoWithZone() { DisableFutureOptimization(); dependencies()->Rollback(); delete parse_info_; parse_info_ = nullptr; } private: Zone zone_; }; bool CompilationInfo::has_shared_info() const { return parse_info_ && !parse_info_->shared_info().is_null(); } bool CompilationInfo::has_context() const { return parse_info_ && !parse_info_->context().is_null(); } bool CompilationInfo::has_literal() const { return parse_info_ && parse_info_->literal() != nullptr; } bool CompilationInfo::has_scope() const { return parse_info_ && parse_info_->scope() != nullptr; } CompilationInfo::CompilationInfo(ParseInfo* parse_info) : CompilationInfo(parse_info, nullptr, Code::ComputeFlags(Code::FUNCTION), BASE, parse_info->isolate(), parse_info->zone()) { // Compiling for the snapshot typically results in different code than // compiling later on. This means that code recompiled with deoptimization // support won't be "equivalent" (as defined by SharedFunctionInfo:: // EnableDeoptimizationSupport), so it will replace the old code and all // its type feedback. To avoid this, always compile functions in the snapshot // with deoptimization support. if (isolate_->serializer_enabled()) EnableDeoptimizationSupport(); if (FLAG_function_context_specialization) MarkAsFunctionContextSpecializing(); if (FLAG_turbo_inlining) MarkAsInliningEnabled(); if (FLAG_turbo_source_positions) MarkAsSourcePositionsEnabled(); if (FLAG_turbo_splitting) MarkAsSplittingEnabled(); if (FLAG_turbo_types) MarkAsTypingEnabled(); if (has_shared_info()) { if (shared_info()->is_compiled()) { // We should initialize the CompilationInfo feedback vector from the // passed in shared info, rather than creating a new one. feedback_vector_ = Handle<TypeFeedbackVector>( shared_info()->feedback_vector(), parse_info->isolate()); } if (shared_info()->never_compiled()) MarkAsFirstCompile(); } } CompilationInfo::CompilationInfo(const char* debug_name, Isolate* isolate, Zone* zone, Code::Flags code_flags) : CompilationInfo(nullptr, debug_name, code_flags, STUB, isolate, zone) {} CompilationInfo::CompilationInfo(ParseInfo* parse_info, const char* debug_name, Code::Flags code_flags, Mode mode, Isolate* isolate, Zone* zone) : parse_info_(parse_info), isolate_(isolate), flags_(0), code_flags_(code_flags), mode_(mode), osr_ast_id_(BailoutId::None()), zone_(zone), deferred_handles_(nullptr), dependencies_(isolate, zone), bailout_reason_(kNoReason), prologue_offset_(Code::kPrologueOffsetNotSet), track_positions_(FLAG_hydrogen_track_positions || isolate->cpu_profiler()->is_profiling()), opt_count_(has_shared_info() ? shared_info()->opt_count() : 0), parameter_count_(0), optimization_id_(-1), osr_expr_stack_height_(0), debug_name_(debug_name) {} CompilationInfo::~CompilationInfo() { DisableFutureOptimization(); delete deferred_handles_; #ifdef DEBUG // Check that no dependent maps have been added or added dependent maps have // been rolled back or committed. DCHECK(dependencies()->IsEmpty()); #endif // DEBUG } int CompilationInfo::num_parameters() const { return has_scope() ? scope()->num_parameters() : parameter_count_; } int CompilationInfo::num_parameters_including_this() const { return num_parameters() + (is_this_defined() ? 1 : 0); } bool CompilationInfo::is_this_defined() const { return !IsStub(); } int CompilationInfo::num_heap_slots() const { return has_scope() ? scope()->num_heap_slots() : 0; } // Primitive functions are unlikely to be picked up by the stack-walking // profiler, so they trigger their own optimization when they're called // for the SharedFunctionInfo::kCallsUntilPrimitiveOptimization-th time. bool CompilationInfo::ShouldSelfOptimize() { return FLAG_crankshaft && !(literal()->flags() & AstProperties::kDontSelfOptimize) && !literal()->dont_optimize() && literal()->scope()->AllowsLazyCompilation() && (!has_shared_info() || !shared_info()->optimization_disabled()); } void CompilationInfo::EnsureFeedbackVector() { if (feedback_vector_.is_null()) { Handle<TypeFeedbackMetadata> feedback_metadata = TypeFeedbackMetadata::New(isolate(), literal()->feedback_vector_spec()); feedback_vector_ = TypeFeedbackVector::New(isolate(), feedback_metadata); } // It's very important that recompiles do not alter the structure of the // type feedback vector. CHECK(!feedback_vector_->metadata()->SpecDiffersFrom( literal()->feedback_vector_spec())); } bool CompilationInfo::has_simple_parameters() { return scope()->has_simple_parameters(); } int CompilationInfo::TraceInlinedFunction(Handle<SharedFunctionInfo> shared, SourcePosition position, int parent_id) { DCHECK(track_positions_); int inline_id = static_cast<int>(inlined_function_infos_.size()); InlinedFunctionInfo info(parent_id, position, UnboundScript::kNoScriptId, shared->start_position()); if (!shared->script()->IsUndefined()) { Handle<Script> script(Script::cast(shared->script())); info.script_id = script->id(); if (FLAG_hydrogen_track_positions && !script->source()->IsUndefined()) { CodeTracer::Scope tracing_scope(isolate()->GetCodeTracer()); OFStream os(tracing_scope.file()); os << "--- FUNCTION SOURCE (" << shared->DebugName()->ToCString().get() << ") id{" << optimization_id() << "," << inline_id << "} ---\n"; { DisallowHeapAllocation no_allocation; int start = shared->start_position(); int len = shared->end_position() - start; String::SubStringRange source(String::cast(script->source()), start, len); for (const auto& c : source) { os << AsReversiblyEscapedUC16(c); } } os << "\n--- END ---\n"; } } inlined_function_infos_.push_back(info); if (FLAG_hydrogen_track_positions && inline_id != 0) { CodeTracer::Scope tracing_scope(isolate()->GetCodeTracer()); OFStream os(tracing_scope.file()); os << "INLINE (" << shared->DebugName()->ToCString().get() << ") id{" << optimization_id() << "," << inline_id << "} AS " << inline_id << " AT " << position << std::endl; } return inline_id; } void CompilationInfo::LogDeoptCallPosition(int pc_offset, int inlining_id) { if (!track_positions_ || IsStub()) return; DCHECK_LT(static_cast<size_t>(inlining_id), inlined_function_infos_.size()); inlined_function_infos_.at(inlining_id).deopt_pc_offsets.push_back(pc_offset); } base::SmartArrayPointer<char> CompilationInfo::GetDebugName() const { if (parse_info() && parse_info()->literal()) { AllowHandleDereference allow_deref; return parse_info()->literal()->debug_name()->ToCString(); } if (parse_info() && !parse_info()->shared_info().is_null()) { return parse_info()->shared_info()->DebugName()->ToCString(); } const char* str = debug_name_ ? debug_name_ : "unknown"; size_t len = strlen(str) + 1; base::SmartArrayPointer<char> name(new char[len]); memcpy(name.get(), str, len); return name; } bool CompilationInfo::ExpectsJSReceiverAsReceiver() { return is_sloppy(language_mode()) && !is_native(); } class HOptimizedGraphBuilderWithPositions: public HOptimizedGraphBuilder { public: explicit HOptimizedGraphBuilderWithPositions(CompilationInfo* info) : HOptimizedGraphBuilder(info) { } #define DEF_VISIT(type) \ void Visit##type(type* node) override { \ SourcePosition old_position = SourcePosition::Unknown(); \ if (node->position() != RelocInfo::kNoPosition) { \ old_position = source_position(); \ SetSourcePosition(node->position()); \ } \ HOptimizedGraphBuilder::Visit##type(node); \ if (!old_position.IsUnknown()) { \ set_source_position(old_position); \ } \ } EXPRESSION_NODE_LIST(DEF_VISIT) #undef DEF_VISIT #define DEF_VISIT(type) \ void Visit##type(type* node) override { \ SourcePosition old_position = SourcePosition::Unknown(); \ if (node->position() != RelocInfo::kNoPosition) { \ old_position = source_position(); \ SetSourcePosition(node->position()); \ } \ HOptimizedGraphBuilder::Visit##type(node); \ if (!old_position.IsUnknown()) { \ set_source_position(old_position); \ } \ } STATEMENT_NODE_LIST(DEF_VISIT) #undef DEF_VISIT #define DEF_VISIT(type) \ void Visit##type(type* node) override { \ HOptimizedGraphBuilder::Visit##type(node); \ } DECLARATION_NODE_LIST(DEF_VISIT) #undef DEF_VISIT }; OptimizedCompileJob::Status OptimizedCompileJob::CreateGraph() { DCHECK(info()->IsOptimizing()); // Do not use Crankshaft/TurboFan if we need to be able to set break points. if (info()->shared_info()->HasDebugInfo()) { return AbortOptimization(kFunctionBeingDebugged); } // Limit the number of times we try to optimize functions. const int kMaxOptCount = FLAG_deopt_every_n_times == 0 ? FLAG_max_opt_count : 1000; if (info()->opt_count() > kMaxOptCount) { return AbortOptimization(kOptimizedTooManyTimes); } // Check the whitelist for Crankshaft. if (!info()->closure()->PassesFilter(FLAG_hydrogen_filter)) { return AbortOptimization(kHydrogenFilter); } // Optimization requires a version of fullcode with deoptimization support. // Recompile the unoptimized version of the code if the current version // doesn't have deoptimization support already. // Otherwise, if we are gathering compilation time and space statistics // for hydrogen, gather baseline statistics for a fullcode compilation. bool should_recompile = !info()->shared_info()->has_deoptimization_support(); if (should_recompile || FLAG_hydrogen_stats) { base::ElapsedTimer timer; if (FLAG_hydrogen_stats) { timer.Start(); } if (!Compiler::EnsureDeoptimizationSupport(info())) { return SetLastStatus(FAILED); } if (FLAG_hydrogen_stats) { isolate()->GetHStatistics()->IncrementFullCodeGen(timer.Elapsed()); } } DCHECK(info()->shared_info()->has_deoptimization_support()); DCHECK(!info()->is_first_compile()); bool optimization_disabled = info()->shared_info()->optimization_disabled(); bool dont_crankshaft = info()->shared_info()->dont_crankshaft(); // Check the enabling conditions for Turbofan. // 1. "use asm" code. bool is_turbofanable_asm = FLAG_turbo_asm && info()->shared_info()->asm_function() && !optimization_disabled; // 2. Fallback for features unsupported by Crankshaft. bool is_unsupported_by_crankshaft_but_turbofanable = dont_crankshaft && strcmp(FLAG_turbo_filter, "~~") == 0 && !optimization_disabled; // 3. Explicitly enabled by the command-line filter. bool passes_turbo_filter = info()->closure()->PassesFilter(FLAG_turbo_filter); // If this is OSR request, OSR must be enabled by Turbofan. bool passes_osr_test = FLAG_turbo_osr || !info()->is_osr(); if ((is_turbofanable_asm || is_unsupported_by_crankshaft_but_turbofanable || passes_turbo_filter) && passes_osr_test) { // Use TurboFan for the compilation. if (FLAG_trace_opt) { OFStream os(stdout); os << "[compiling method " << Brief(*info()->closure()) << " using TurboFan"; if (info()->is_osr()) os << " OSR"; os << "]" << std::endl; } if (info()->shared_info()->asm_function()) { if (info()->osr_frame()) info()->MarkAsFrameSpecializing(); info()->MarkAsFunctionContextSpecializing(); } else if (info()->has_global_object() && FLAG_native_context_specialization) { info()->MarkAsNativeContextSpecializing(); info()->MarkAsTypingEnabled(); } if (!info()->shared_info()->asm_function() || FLAG_turbo_asm_deoptimization) { info()->MarkAsDeoptimizationEnabled(); } Timer t(this, &time_taken_to_create_graph_); compiler::Pipeline pipeline(info()); pipeline.GenerateCode(); if (!info()->code().is_null()) { return SetLastStatus(SUCCEEDED); } } if (!isolate()->use_crankshaft() || dont_crankshaft) { // Crankshaft is entirely disabled. return SetLastStatus(FAILED); } Scope* scope = info()->scope(); if (LUnallocated::TooManyParameters(scope->num_parameters())) { // Crankshaft would require too many Lithium operands. return AbortOptimization(kTooManyParameters); } if (info()->is_osr() && LUnallocated::TooManyParametersOrStackSlots(scope->num_parameters(), scope->num_stack_slots())) { // Crankshaft would require too many Lithium operands. return AbortOptimization(kTooManyParametersLocals); } if (scope->HasIllegalRedeclaration()) { // Crankshaft cannot handle illegal redeclarations. return AbortOptimization(kFunctionWithIllegalRedeclaration); } if (FLAG_trace_opt) { OFStream os(stdout); os << "[compiling method " << Brief(*info()->closure()) << " using Crankshaft"; if (info()->is_osr()) os << " OSR"; os << "]" << std::endl; } if (FLAG_trace_hydrogen) { isolate()->GetHTracer()->TraceCompilation(info()); } // Type-check the function. AstTyper(info()->isolate(), info()->zone(), info()->closure(), info()->scope(), info()->osr_ast_id(), info()->literal()) .Run(); // Optimization could have been disabled by the parser. Note that this check // is only needed because the Hydrogen graph builder is missing some bailouts. if (info()->shared_info()->optimization_disabled()) { return AbortOptimization( info()->shared_info()->disable_optimization_reason()); } graph_builder_ = (info()->is_tracking_positions() || FLAG_trace_ic) ? new (info()->zone()) HOptimizedGraphBuilderWithPositions(info()) : new (info()->zone()) HOptimizedGraphBuilder(info()); Timer t(this, &time_taken_to_create_graph_); graph_ = graph_builder_->CreateGraph(); if (isolate()->has_pending_exception()) { return SetLastStatus(FAILED); } if (graph_ == NULL) return SetLastStatus(BAILED_OUT); if (info()->dependencies()->HasAborted()) { // Dependency has changed during graph creation. Let's try again later. return RetryOptimization(kBailedOutDueToDependencyChange); } return SetLastStatus(SUCCEEDED); } OptimizedCompileJob::Status OptimizedCompileJob::OptimizeGraph() { DisallowHeapAllocation no_allocation; DisallowHandleAllocation no_handles; DisallowHandleDereference no_deref; DisallowCodeDependencyChange no_dependency_change; DCHECK(last_status() == SUCCEEDED); // TODO(turbofan): Currently everything is done in the first phase. if (!info()->code().is_null()) { return last_status(); } Timer t(this, &time_taken_to_optimize_); DCHECK(graph_ != NULL); BailoutReason bailout_reason = kNoReason; if (graph_->Optimize(&bailout_reason)) { chunk_ = LChunk::NewChunk(graph_); if (chunk_ != NULL) return SetLastStatus(SUCCEEDED); } else if (bailout_reason != kNoReason) { graph_builder_->Bailout(bailout_reason); } return SetLastStatus(BAILED_OUT); } namespace { void AddWeakObjectToCodeDependency(Isolate* isolate, Handle<HeapObject> object, Handle<Code> code) { Handle<WeakCell> cell = Code::WeakCellFor(code); Heap* heap = isolate->heap(); Handle<DependentCode> dep(heap->LookupWeakObjectToCodeDependency(object)); dep = DependentCode::InsertWeakCode(dep, DependentCode::kWeakCodeGroup, cell); heap->AddWeakObjectToCodeDependency(object, dep); } void RegisterWeakObjectsInOptimizedCode(Handle<Code> code) { // TODO(turbofan): Move this to pipeline.cc once Crankshaft dies. Isolate* const isolate = code->GetIsolate(); DCHECK(code->is_optimized_code()); std::vector<Handle<Map>> maps; std::vector<Handle<HeapObject>> objects; { DisallowHeapAllocation no_gc; int const mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | RelocInfo::ModeMask(RelocInfo::CELL); for (RelocIterator it(*code, mode_mask); !it.done(); it.next()) { RelocInfo::Mode mode = it.rinfo()->rmode(); if (mode == RelocInfo::CELL && code->IsWeakObjectInOptimizedCode(it.rinfo()->target_cell())) { objects.push_back(handle(it.rinfo()->target_cell(), isolate)); } else if (mode == RelocInfo::EMBEDDED_OBJECT && code->IsWeakObjectInOptimizedCode( it.rinfo()->target_object())) { Handle<HeapObject> object(HeapObject::cast(it.rinfo()->target_object()), isolate); if (object->IsMap()) { maps.push_back(Handle<Map>::cast(object)); } else { objects.push_back(object); } } } } for (Handle<Map> map : maps) { if (map->dependent_code()->IsEmpty(DependentCode::kWeakCodeGroup)) { isolate->heap()->AddRetainedMap(map); } Map::AddDependentCode(map, DependentCode::kWeakCodeGroup, code); } for (Handle<HeapObject> object : objects) { AddWeakObjectToCodeDependency(isolate, object, code); } code->set_can_have_weak_objects(true); } } // namespace OptimizedCompileJob::Status OptimizedCompileJob::GenerateCode() { DCHECK(last_status() == SUCCEEDED); // TODO(turbofan): Currently everything is done in the first phase. if (!info()->code().is_null()) { info()->dependencies()->Commit(info()->code()); if (info()->is_deoptimization_enabled()) { info()->parse_info()->context()->native_context()->AddOptimizedCode( *info()->code()); RegisterWeakObjectsInOptimizedCode(info()->code()); } RecordOptimizationStats(); return last_status(); } DCHECK(!info()->dependencies()->HasAborted()); DisallowCodeDependencyChange no_dependency_change; DisallowJavascriptExecution no_js(isolate()); { // Scope for timer. Timer timer(this, &time_taken_to_codegen_); DCHECK(chunk_ != NULL); DCHECK(graph_ != NULL); // Deferred handles reference objects that were accessible during // graph creation. To make sure that we don't encounter inconsistencies // between graph creation and code generation, we disallow accessing // objects through deferred handles during the latter, with exceptions. DisallowDeferredHandleDereference no_deferred_handle_deref; Handle<Code> optimized_code = chunk_->Codegen(); if (optimized_code.is_null()) { if (info()->bailout_reason() == kNoReason) { return AbortOptimization(kCodeGenerationFailed); } return SetLastStatus(BAILED_OUT); } RegisterWeakObjectsInOptimizedCode(optimized_code); info()->SetCode(optimized_code); } RecordOptimizationStats(); // Add to the weak list of optimized code objects. info()->context()->native_context()->AddOptimizedCode(*info()->code()); return SetLastStatus(SUCCEEDED); } void OptimizedCompileJob::RecordOptimizationStats() { Handle<JSFunction> function = info()->closure(); if (!function->IsOptimized()) { // Concurrent recompilation and OSR may race. Increment only once. int opt_count = function->shared()->opt_count(); function->shared()->set_opt_count(opt_count + 1); } double ms_creategraph = time_taken_to_create_graph_.InMillisecondsF(); double ms_optimize = time_taken_to_optimize_.InMillisecondsF(); double ms_codegen = time_taken_to_codegen_.InMillisecondsF(); if (FLAG_trace_opt) { PrintF("[optimizing "); function->ShortPrint(); PrintF(" - took %0.3f, %0.3f, %0.3f ms]\n", ms_creategraph, ms_optimize, ms_codegen); } if (FLAG_trace_opt_stats) { static double compilation_time = 0.0; static int compiled_functions = 0; static int code_size = 0; compilation_time += (ms_creategraph + ms_optimize + ms_codegen); compiled_functions++; code_size += function->shared()->SourceSize(); PrintF("Compiled: %d functions with %d byte source size in %fms.\n", compiled_functions, code_size, compilation_time); } if (FLAG_hydrogen_stats) { isolate()->GetHStatistics()->IncrementSubtotals(time_taken_to_create_graph_, time_taken_to_optimize_, time_taken_to_codegen_); } } // Sets the expected number of properties based on estimate from compiler. void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared, int estimate) { // If no properties are added in the constructor, they are more likely // to be added later. if (estimate == 0) estimate = 2; // TODO(yangguo): check whether those heuristics are still up-to-date. // We do not shrink objects that go into a snapshot (yet), so we adjust // the estimate conservatively. if (shared->GetIsolate()->serializer_enabled()) { estimate += 2; } else { // Inobject slack tracking will reclaim redundant inobject space later, // so we can afford to adjust the estimate generously. estimate += 8; } shared->set_expected_nof_properties(estimate); } static void MaybeDisableOptimization(Handle<SharedFunctionInfo> shared_info, BailoutReason bailout_reason) { if (bailout_reason != kNoReason) { shared_info->DisableOptimization(bailout_reason); } } static void RecordFunctionCompilation(Logger::LogEventsAndTags tag, CompilationInfo* info, Handle<SharedFunctionInfo> shared) { // SharedFunctionInfo is passed separately, because if CompilationInfo // was created using Script object, it will not have it. // Log the code generation. If source information is available include // script name and line number. Check explicitly whether logging is // enabled as finding the line number is not free. if (info->isolate()->logger()->is_logging_code_events() || info->isolate()->cpu_profiler()->is_profiling()) { Handle<Script> script = info->parse_info()->script(); Handle<Code> code = info->code(); if (code.is_identical_to(info->isolate()->builtins()->CompileLazy())) { return; } int line_num = Script::GetLineNumber(script, shared->start_position()) + 1; int column_num = Script::GetColumnNumber(script, shared->start_position()) + 1; String* script_name = script->name()->IsString() ? String::cast(script->name()) : info->isolate()->heap()->empty_string(); Logger::LogEventsAndTags log_tag = Logger::ToNativeByScript(tag, *script); PROFILE(info->isolate(), CodeCreateEvent(log_tag, *code, *shared, info, script_name, line_num, column_num)); } } static bool CompileUnoptimizedCode(CompilationInfo* info) { DCHECK(AllowCompilation::IsAllowed(info->isolate())); if (!Compiler::Analyze(info->parse_info()) || !FullCodeGenerator::MakeCode(info)) { Isolate* isolate = info->isolate(); if (!isolate->has_pending_exception()) isolate->StackOverflow(); return false; } return true; } static bool UseIgnition(CompilationInfo* info) { // Cannot use Ignition when the {function_data} is already used. if (info->has_shared_info() && info->shared_info()->HasBuiltinFunctionId()) { return false; } // Checks whether top level functions should be passed by the filter. if (info->closure().is_null()) { Vector<const char> filter = CStrVector(FLAG_ignition_filter); return (filter.length() == 0) || (filter.length() == 1 && filter[0] == '*'); } // Finally respect the filter. return info->closure()->PassesFilter(FLAG_ignition_filter); } static int CodeAndMetadataSize(CompilationInfo* info) { int size = 0; if (info->has_bytecode_array()) { Handle<BytecodeArray> bytecode_array = info->bytecode_array(); size += bytecode_array->BytecodeArraySize(); size += bytecode_array->constant_pool()->Size(); size += bytecode_array->handler_table()->Size(); size += bytecode_array->source_position_table()->Size(); } else { Handle<Code> code = info->code(); size += code->CodeSize(); size += code->relocation_info()->Size(); size += code->deoptimization_data()->Size(); size += code->handler_table()->Size(); } return size; } static bool GenerateBaselineCode(CompilationInfo* info) { bool success; if (FLAG_ignition && UseIgnition(info)) { success = interpreter::Interpreter::MakeBytecode(info); } else { success = FullCodeGenerator::MakeCode(info); } if (success) { Isolate* isolate = info->isolate(); Counters* counters = isolate->counters(); counters->total_baseline_code_size()->Increment(CodeAndMetadataSize(info)); counters->total_baseline_compile_count()->Increment(1); } return success; } static bool CompileBaselineCode(CompilationInfo* info) { DCHECK(AllowCompilation::IsAllowed(info->isolate())); if (!Compiler::Analyze(info->parse_info()) || !GenerateBaselineCode(info)) { Isolate* isolate = info->isolate(); if (!isolate->has_pending_exception()) isolate->StackOverflow(); return false; } return true; } MUST_USE_RESULT static MaybeHandle<Code> GetUnoptimizedCodeCommon( CompilationInfo* info) { VMState<COMPILER> state(info->isolate()); PostponeInterruptsScope postpone(info->isolate()); // Parse and update CompilationInfo with the results. if (!Parser::ParseStatic(info->parse_info())) return MaybeHandle<Code>(); Handle<SharedFunctionInfo> shared = info->shared_info(); FunctionLiteral* lit = info->literal(); DCHECK_EQ(shared->language_mode(), lit->language_mode()); SetExpectedNofPropertiesFromEstimate(shared, lit->expected_property_count()); MaybeDisableOptimization(shared, lit->dont_optimize_reason()); // Compile either unoptimized code or bytecode for the interpreter. if (!CompileBaselineCode(info)) return MaybeHandle<Code>(); if (info->code()->kind() == Code::FUNCTION) { // Only for full code. RecordFunctionCompilation(Logger::LAZY_COMPILE_TAG, info, shared); } // Update the shared function info with the scope info. Allocating the // ScopeInfo object may cause a GC. Handle<ScopeInfo> scope_info = ScopeInfo::Create(info->isolate(), info->zone(), info->scope()); shared->set_scope_info(*scope_info); // Update the code and feedback vector for the shared function info. shared->ReplaceCode(*info->code()); shared->set_feedback_vector(*info->feedback_vector()); if (info->has_bytecode_array()) { DCHECK(shared->function_data()->IsUndefined()); shared->set_function_data(*info->bytecode_array()); } return info->code(); } MUST_USE_RESULT static MaybeHandle<Code> GetCodeFromOptimizedCodeMap( Handle<JSFunction> function, BailoutId osr_ast_id) { Handle<SharedFunctionInfo> shared(function->shared()); DisallowHeapAllocation no_gc; CodeAndLiterals cached = shared->SearchOptimizedCodeMap( function->context()->native_context(), osr_ast_id); if (cached.code != nullptr) { // Caching of optimized code enabled and optimized code found. if (cached.literals != nullptr) function->set_literals(cached.literals); DCHECK(!cached.code->marked_for_deoptimization()); DCHECK(function->shared()->is_compiled()); return Handle<Code>(cached.code); } return MaybeHandle<Code>(); } static void InsertCodeIntoOptimizedCodeMap(CompilationInfo* info) { Handle<Code> code = info->code(); if (code->kind() != Code::OPTIMIZED_FUNCTION) return; // Nothing to do. // Function context specialization folds-in the function context, // so no sharing can occur. if (info->is_function_context_specializing()) return; // Frame specialization implies function context specialization. DCHECK(!info->is_frame_specializing()); // Cache optimized context-specific code. Handle<JSFunction> function = info->closure(); Handle<SharedFunctionInfo> shared(function->shared()); Handle<LiteralsArray> literals(function->literals()); Handle<Context> native_context(function->context()->native_context()); SharedFunctionInfo::AddToOptimizedCodeMap(shared, native_context, code, literals, info->osr_ast_id()); // Do not cache (native) context-independent code compiled for OSR. if (code->is_turbofanned() && info->is_osr()) return; // Cache optimized (native) context-independent code. if (FLAG_turbo_cache_shared_code && code->is_turbofanned() && !info->is_native_context_specializing()) { DCHECK(!info->is_function_context_specializing()); DCHECK(info->osr_ast_id().IsNone()); Handle<SharedFunctionInfo> shared(function->shared()); SharedFunctionInfo::AddSharedCodeToOptimizedCodeMap(shared, code); } } static bool Renumber(ParseInfo* parse_info) { if (!AstNumbering::Renumber(parse_info->isolate(), parse_info->zone(), parse_info->literal())) { return false; } Handle<SharedFunctionInfo> shared_info = parse_info->shared_info(); if (!shared_info.is_null()) { FunctionLiteral* lit = parse_info->literal(); shared_info->set_ast_node_count(lit->ast_node_count()); MaybeDisableOptimization(shared_info, lit->dont_optimize_reason()); shared_info->set_dont_crankshaft(lit->flags() & AstProperties::kDontCrankshaft); } return true; } bool Compiler::Analyze(ParseInfo* info) { DCHECK_NOT_NULL(info->literal()); if (!Rewriter::Rewrite(info)) return false; if (!Scope::Analyze(info)) return false; if (!Renumber(info)) return false; DCHECK_NOT_NULL(info->scope()); return true; } bool Compiler::ParseAndAnalyze(ParseInfo* info) { if (!Parser::ParseStatic(info)) return false; return Compiler::Analyze(info); } static bool GetOptimizedCodeNow(CompilationInfo* info) { Isolate* isolate = info->isolate(); CanonicalHandleScope canonical(isolate); if (!Compiler::ParseAndAnalyze(info->parse_info())) return false; TimerEventScope<TimerEventRecompileSynchronous> timer(isolate); OptimizedCompileJob job(info); if (job.CreateGraph() != OptimizedCompileJob::SUCCEEDED || job.OptimizeGraph() != OptimizedCompileJob::SUCCEEDED || job.GenerateCode() != OptimizedCompileJob::SUCCEEDED) { if (FLAG_trace_opt) { PrintF("[aborted optimizing "); info->closure()->ShortPrint(); PrintF(" because: %s]\n", GetBailoutReason(info->bailout_reason())); } return false; } // Success! DCHECK(!isolate->has_pending_exception()); InsertCodeIntoOptimizedCodeMap(info); RecordFunctionCompilation(Logger::LAZY_COMPILE_TAG, info, info->shared_info()); return true; } static bool GetOptimizedCodeLater(CompilationInfo* info) { Isolate* isolate = info->isolate(); CanonicalHandleScope canonical(isolate); if (!isolate->optimizing_compile_dispatcher()->IsQueueAvailable()) { if (FLAG_trace_concurrent_recompilation) { PrintF(" ** Compilation queue full, will retry optimizing "); info->closure()->ShortPrint(); PrintF(" later.\n"); } return false; } CompilationHandleScope handle_scope(info); if (!Compiler::ParseAndAnalyze(info->parse_info())) return false; // Reopen handles in the new CompilationHandleScope. info->ReopenHandlesInNewHandleScope(); info->parse_info()->ReopenHandlesInNewHandleScope(); TimerEventScope<TimerEventRecompileSynchronous> timer(info->isolate()); OptimizedCompileJob* job = new (info->zone()) OptimizedCompileJob(info); OptimizedCompileJob::Status status = job->CreateGraph(); if (status != OptimizedCompileJob::SUCCEEDED) return false; isolate->optimizing_compile_dispatcher()->QueueForOptimization(job); if (FLAG_trace_concurrent_recompilation) { PrintF(" ** Queued "); info->closure()->ShortPrint(); if (info->is_osr()) { PrintF(" for concurrent OSR at %d.\n", info->osr_ast_id().ToInt()); } else { PrintF(" for concurrent optimization.\n"); } } return true; } MaybeHandle<Code> Compiler::GetUnoptimizedCode(Handle<JSFunction> function) { DCHECK(!function->GetIsolate()->has_pending_exception()); DCHECK(!function->is_compiled()); if (function->shared()->is_compiled()) { return Handle<Code>(function->shared()->code()); } CompilationInfoWithZone info(function); Handle<Code> result; ASSIGN_RETURN_ON_EXCEPTION(info.isolate(), result, GetUnoptimizedCodeCommon(&info), Code); return result; } MaybeHandle<Code> Compiler::GetLazyCode(Handle<JSFunction> function) { Isolate* isolate = function->GetIsolate(); DCHECK(!isolate->has_pending_exception()); DCHECK(!function->is_compiled()); AggregatedHistogramTimerScope timer(isolate->counters()->compile_lazy()); // If the debugger is active, do not compile with turbofan unless we can // deopt from turbofan code. if (FLAG_turbo_asm && function->shared()->asm_function() && (FLAG_turbo_asm_deoptimization || !isolate->debug()->is_active()) && !FLAG_turbo_osr) { CompilationInfoWithZone info(function); VMState<COMPILER> state(isolate); PostponeInterruptsScope postpone(isolate); info.SetOptimizing(); if (GetOptimizedCodeNow(&info)) { DCHECK(function->shared()->is_compiled()); return info.code(); } // We have failed compilation. If there was an exception clear it so that // we can compile unoptimized code. if (isolate->has_pending_exception()) isolate->clear_pending_exception(); } if (function->shared()->is_compiled()) { return Handle<Code>(function->shared()->code()); } CompilationInfoWithZone info(function); Handle<Code> result; ASSIGN_RETURN_ON_EXCEPTION(isolate, result, GetUnoptimizedCodeCommon(&info), Code); if (FLAG_always_opt) { Handle<Code> opt_code; if (Compiler::GetOptimizedCode(function, Compiler::NOT_CONCURRENT) .ToHandle(&opt_code)) { result = opt_code; } } return result; } bool Compiler::Compile(Handle<JSFunction> function, ClearExceptionFlag flag) { if (function->is_compiled()) return true; MaybeHandle<Code> maybe_code = Compiler::GetLazyCode(function); Handle<Code> code; if (!maybe_code.ToHandle(&code)) { if (flag == CLEAR_EXCEPTION) { function->GetIsolate()->clear_pending_exception(); } return false; } function->ReplaceCode(*code); DCHECK(function->is_compiled()); return true; } // TODO(turbofan): In the future, unoptimized code with deopt support could // be generated lazily once deopt is triggered. bool Compiler::EnsureDeoptimizationSupport(CompilationInfo* info) { DCHECK_NOT_NULL(info->literal()); DCHECK(info->has_scope()); Handle<SharedFunctionInfo> shared = info->shared_info(); if (!shared->has_deoptimization_support()) { // TODO(titzer): just reuse the ParseInfo for the unoptimized compile. CompilationInfoWithZone unoptimized(info->closure()); // Note that we use the same AST that we will use for generating the // optimized code. ParseInfo* parse_info = unoptimized.parse_info(); parse_info->set_literal(info->literal()); parse_info->set_scope(info->scope()); parse_info->set_context(info->context()); unoptimized.EnableDeoptimizationSupport(); // If the current code has reloc info for serialization, also include // reloc info for serialization for the new code, so that deopt support // can be added without losing IC state. if (shared->code()->kind() == Code::FUNCTION && shared->code()->has_reloc_info_for_serialization()) { unoptimized.PrepareForSerializing(); } if (!FullCodeGenerator::MakeCode(&unoptimized)) return false; shared->EnableDeoptimizationSupport(*unoptimized.code()); shared->set_feedback_vector(*unoptimized.feedback_vector()); info->MarkAsCompiled(); // The scope info might not have been set if a lazily compiled // function is inlined before being called for the first time. if (shared->scope_info() == ScopeInfo::Empty(info->isolate())) { Handle<ScopeInfo> target_scope_info = ScopeInfo::Create(info->isolate(), info->zone(), info->scope()); shared->set_scope_info(*target_scope_info); } // The existing unoptimized code was replaced with the new one. RecordFunctionCompilation(Logger::LAZY_COMPILE_TAG, &unoptimized, shared); } return true; } bool CompileEvalForDebugging(Handle<JSFunction> function, Handle<SharedFunctionInfo> shared) { Handle<Script> script(Script::cast(shared->script())); Handle<Context> context(function->context()); Zone zone; ParseInfo parse_info(&zone, script); CompilationInfo info(&parse_info); Isolate* isolate = info.isolate(); parse_info.set_eval(); parse_info.set_context(context); if (context->IsNativeContext()) parse_info.set_global(); parse_info.set_toplevel(); parse_info.set_allow_lazy_parsing(false); parse_info.set_language_mode(shared->language_mode()); parse_info.set_parse_restriction(NO_PARSE_RESTRICTION); info.MarkAsDebug(); VMState<COMPILER> state(info.isolate()); if (!Parser::ParseStatic(&parse_info)) { isolate->clear_pending_exception(); return false; } FunctionLiteral* lit = parse_info.literal(); LiveEditFunctionTracker live_edit_tracker(isolate, lit); if (!CompileUnoptimizedCode(&info)) { isolate->clear_pending_exception(); return false; } shared->ReplaceCode(*info.code()); return true; } bool CompileForDebugging(CompilationInfo* info) { info->MarkAsDebug(); if (GetUnoptimizedCodeCommon(info).is_null()) { info->isolate()->clear_pending_exception(); return false; } return true; } static inline bool IsEvalToplevel(Handle<SharedFunctionInfo> shared) { return shared->is_toplevel() && shared->script()->IsScript() && Script::cast(shared->script())->compilation_type() == Script::COMPILATION_TYPE_EVAL; } bool Compiler::CompileDebugCode(Handle<JSFunction> function) { Handle<SharedFunctionInfo> shared(function->shared()); if (IsEvalToplevel(shared)) { return CompileEvalForDebugging(function, shared); } else { CompilationInfoWithZone info(function); return CompileForDebugging(&info); } } bool Compiler::CompileDebugCode(Handle<SharedFunctionInfo> shared) { DCHECK(shared->allows_lazy_compilation_without_context()); DCHECK(!IsEvalToplevel(shared)); Zone zone; ParseInfo parse_info(&zone, shared); CompilationInfo info(&parse_info); return CompileForDebugging(&info); } void Compiler::CompileForLiveEdit(Handle<Script> script) { // TODO(635): support extensions. Zone zone; ParseInfo parse_info(&zone, script); CompilationInfo info(&parse_info); PostponeInterruptsScope postpone(info.isolate()); VMState<COMPILER> state(info.isolate()); // Get rid of old list of shared function infos. info.MarkAsFirstCompile(); info.MarkAsDebug(); info.parse_info()->set_global(); if (!Parser::ParseStatic(info.parse_info())) return; LiveEditFunctionTracker tracker(info.isolate(), parse_info.literal()); if (!CompileUnoptimizedCode(&info)) return; if (info.has_shared_info()) { Handle<ScopeInfo> scope_info = ScopeInfo::Create(info.isolate(), info.zone(), info.scope()); info.shared_info()->set_scope_info(*scope_info); } tracker.RecordRootFunctionInfo(info.code()); } static Handle<SharedFunctionInfo> CompileToplevel(CompilationInfo* info) { Isolate* isolate = info->isolate(); PostponeInterruptsScope postpone(isolate); DCHECK(!isolate->native_context().is_null()); ParseInfo* parse_info = info->parse_info(); Handle<Script> script = parse_info->script(); // TODO(svenpanne) Obscure place for this, perhaps move to OnBeforeCompile? FixedArray* array = isolate->native_context()->embedder_data(); script->set_context_data(array->get(v8::Context::kDebugIdIndex)); isolate->debug()->OnBeforeCompile(script); DCHECK(parse_info->is_eval() || parse_info->is_global() || parse_info->is_module()); parse_info->set_toplevel(); Handle<SharedFunctionInfo> result; { VMState<COMPILER> state(info->isolate()); if (parse_info->literal() == NULL) { // Parse the script if needed (if it's already parsed, literal() is // non-NULL). If compiling for debugging, we may eagerly compile inner // functions, so do not parse lazily in that case. ScriptCompiler::CompileOptions options = parse_info->compile_options(); bool parse_allow_lazy = (options == ScriptCompiler::kConsumeParserCache || String::cast(script->source())->length() > FLAG_min_preparse_length) && !info->is_debug(); parse_info->set_allow_lazy_parsing(parse_allow_lazy); if (!parse_allow_lazy && (options == ScriptCompiler::kProduceParserCache || options == ScriptCompiler::kConsumeParserCache)) { // We are going to parse eagerly, but we either 1) have cached data // produced by lazy parsing or 2) are asked to generate cached data. // Eager parsing cannot benefit from cached data, and producing cached // data while parsing eagerly is not implemented. parse_info->set_cached_data(nullptr); parse_info->set_compile_options(ScriptCompiler::kNoCompileOptions); } if (!Parser::ParseStatic(parse_info)) { return Handle<SharedFunctionInfo>::null(); } } DCHECK(!info->is_debug() || !parse_info->allow_lazy_parsing()); info->MarkAsFirstCompile(); FunctionLiteral* lit = parse_info->literal(); LiveEditFunctionTracker live_edit_tracker(isolate, lit); // Measure how long it takes to do the compilation; only take the // rest of the function into account to avoid overlap with the // parsing statistics. HistogramTimer* rate = info->is_eval() ? info->isolate()->counters()->compile_eval() : info->isolate()->counters()->compile(); HistogramTimerScope timer(rate); // Compile the code. if (!CompileBaselineCode(info)) { return Handle<SharedFunctionInfo>::null(); } // Allocate function. DCHECK(!info->code().is_null()); result = isolate->factory()->NewSharedFunctionInfo( lit->name(), lit->materialized_literal_count(), lit->kind(), info->code(), ScopeInfo::Create(info->isolate(), info->zone(), info->scope()), info->feedback_vector()); if (info->has_bytecode_array()) { DCHECK(result->function_data()->IsUndefined()); result->set_function_data(*info->bytecode_array()); } DCHECK_EQ(RelocInfo::kNoPosition, lit->function_token_position()); SharedFunctionInfo::InitFromFunctionLiteral(result, lit); SharedFunctionInfo::SetScript(result, script); result->set_is_toplevel(true); if (info->is_eval()) { // Eval scripts cannot be (re-)compiled without context. result->set_allows_lazy_compilation_without_context(false); } Handle<String> script_name = script->name()->IsString() ? Handle<String>(String::cast(script->name())) : isolate->factory()->empty_string(); Logger::LogEventsAndTags log_tag = info->is_eval() ? Logger::EVAL_TAG : Logger::ToNativeByScript(Logger::SCRIPT_TAG, *script); PROFILE(isolate, CodeCreateEvent( log_tag, *info->code(), *result, info, *script_name)); // Hint to the runtime system used when allocating space for initial // property space by setting the expected number of properties for // the instances of the function. SetExpectedNofPropertiesFromEstimate(result, lit->expected_property_count()); if (!script.is_null()) script->set_compilation_state(Script::COMPILATION_STATE_COMPILED); live_edit_tracker.RecordFunctionInfo(result, lit, info->zone()); } return result; } MaybeHandle<JSFunction> Compiler::GetFunctionFromEval( Handle<String> source, Handle<SharedFunctionInfo> outer_info, Handle<Context> context, LanguageMode language_mode, ParseRestriction restriction, int line_offset, int column_offset, Handle<Object> script_name, ScriptOriginOptions options) { Isolate* isolate = source->GetIsolate(); int source_length = source->length(); isolate->counters()->total_eval_size()->Increment(source_length); isolate->counters()->total_compile_size()->Increment(source_length); CompilationCache* compilation_cache = isolate->compilation_cache(); MaybeHandle<SharedFunctionInfo> maybe_shared_info = compilation_cache->LookupEval(source, outer_info, context, language_mode, line_offset); Handle<SharedFunctionInfo> shared_info; Handle<Script> script; if (!maybe_shared_info.ToHandle(&shared_info)) { script = isolate->factory()->NewScript(source); if (!script_name.is_null()) { script->set_name(*script_name); script->set_line_offset(line_offset); script->set_column_offset(column_offset); } script->set_origin_options(options); Zone zone; ParseInfo parse_info(&zone, script); CompilationInfo info(&parse_info); parse_info.set_eval(); if (context->IsNativeContext()) parse_info.set_global(); parse_info.set_language_mode(language_mode); parse_info.set_parse_restriction(restriction); parse_info.set_context(context); Debug::RecordEvalCaller(script); shared_info = CompileToplevel(&info); if (shared_info.is_null()) { return MaybeHandle<JSFunction>(); } else { // Explicitly disable optimization for eval code. We're not yet prepared // to handle eval-code in the optimizing compiler. if (restriction != ONLY_SINGLE_FUNCTION_LITERAL) { shared_info->DisableOptimization(kEval); } // If caller is strict mode, the result must be in strict mode as well. DCHECK(is_sloppy(language_mode) || is_strict(shared_info->language_mode())); compilation_cache->PutEval(source, outer_info, context, shared_info, line_offset); } } else if (shared_info->ic_age() != isolate->heap()->global_ic_age()) { shared_info->ResetForNewContext(isolate->heap()->global_ic_age()); } Handle<JSFunction> result = isolate->factory()->NewFunctionFromSharedFunctionInfo( shared_info, context, NOT_TENURED); // OnAfterCompile has to be called after we create the JSFunction, which we // may require to recompile the eval for debugging, if we find a function // that contains break points in the eval script. isolate->debug()->OnAfterCompile(script); return result; } Handle<SharedFunctionInfo> Compiler::CompileScript( Handle<String> source, Handle<Object> script_name, int line_offset, int column_offset, ScriptOriginOptions resource_options, Handle<Object> source_map_url, Handle<Context> context, v8::Extension* extension, ScriptData** cached_data, ScriptCompiler::CompileOptions compile_options, NativesFlag natives, bool is_module) { Isolate* isolate = source->GetIsolate(); if (compile_options == ScriptCompiler::kNoCompileOptions) { cached_data = NULL; } else if (compile_options == ScriptCompiler::kProduceParserCache || compile_options == ScriptCompiler::kProduceCodeCache) { DCHECK(cached_data && !*cached_data); DCHECK(extension == NULL); DCHECK(!isolate->debug()->is_loaded()); } else { DCHECK(compile_options == ScriptCompiler::kConsumeParserCache || compile_options == ScriptCompiler::kConsumeCodeCache); DCHECK(cached_data && *cached_data); DCHECK(extension == NULL); } int source_length = source->length(); isolate->counters()->total_load_size()->Increment(source_length); isolate->counters()->total_compile_size()->Increment(source_length); // TODO(rossberg): The natives do not yet obey strong mode rules // (for example, some macros use '=='). bool use_strong = FLAG_use_strong && !isolate->bootstrapper()->IsActive(); LanguageMode language_mode = construct_language_mode(FLAG_use_strict, use_strong); CompilationCache* compilation_cache = isolate->compilation_cache(); // Do a lookup in the compilation cache but not for extensions. MaybeHandle<SharedFunctionInfo> maybe_result; Handle<SharedFunctionInfo> result; if (extension == NULL) { // First check per-isolate compilation cache. maybe_result = compilation_cache->LookupScript( source, script_name, line_offset, column_offset, resource_options, context, language_mode); if (maybe_result.is_null() && FLAG_serialize_toplevel && compile_options == ScriptCompiler::kConsumeCodeCache && !isolate->debug()->is_loaded()) { // Then check cached code provided by embedder. HistogramTimerScope timer(isolate->counters()->compile_deserialize()); Handle<SharedFunctionInfo> result; if (CodeSerializer::Deserialize(isolate, *cached_data, source) .ToHandle(&result)) { // Promote to per-isolate compilation cache. compilation_cache->PutScript(source, context, language_mode, result); return result; } // Deserializer failed. Fall through to compile. } } base::ElapsedTimer timer; if (FLAG_profile_deserialization && FLAG_serialize_toplevel && compile_options == ScriptCompiler::kProduceCodeCache) { timer.Start(); } if (!maybe_result.ToHandle(&result)) { // No cache entry found. Compile the script. // Create a script object describing the script to be compiled. Handle<Script> script = isolate->factory()->NewScript(source); if (natives == NATIVES_CODE) { script->set_type(Script::TYPE_NATIVE); script->set_hide_source(true); } else if (natives == EXTENSION_CODE) { script->set_type(Script::TYPE_EXTENSION); script->set_hide_source(true); } if (!script_name.is_null()) { script->set_name(*script_name); script->set_line_offset(line_offset); script->set_column_offset(column_offset); } script->set_origin_options(resource_options); if (!source_map_url.is_null()) { script->set_source_mapping_url(*source_map_url); } // Compile the function and add it to the cache. Zone zone; ParseInfo parse_info(&zone, script); CompilationInfo info(&parse_info); if (FLAG_harmony_modules && is_module) { parse_info.set_module(); } else { parse_info.set_global(); } if (compile_options != ScriptCompiler::kNoCompileOptions) { parse_info.set_cached_data(cached_data); } parse_info.set_compile_options(compile_options); parse_info.set_extension(extension); parse_info.set_context(context); if (FLAG_serialize_toplevel && compile_options == ScriptCompiler::kProduceCodeCache) { info.PrepareForSerializing(); } parse_info.set_language_mode( static_cast<LanguageMode>(info.language_mode() | language_mode)); result = CompileToplevel(&info); if (extension == NULL && !result.is_null()) { compilation_cache->PutScript(source, context, language_mode, result); if (FLAG_serialize_toplevel && compile_options == ScriptCompiler::kProduceCodeCache) { HistogramTimerScope histogram_timer( isolate->counters()->compile_serialize()); *cached_data = CodeSerializer::Serialize(isolate, result, source); if (FLAG_profile_deserialization) { PrintF("[Compiling and serializing took %0.3f ms]\n", timer.Elapsed().InMillisecondsF()); } } } if (result.is_null()) { isolate->ReportPendingMessages(); } else { isolate->debug()->OnAfterCompile(script); } } else if (result->ic_age() != isolate->heap()->global_ic_age()) { result->ResetForNewContext(isolate->heap()->global_ic_age()); } return result; } Handle<SharedFunctionInfo> Compiler::CompileStreamedScript( Handle<Script> script, ParseInfo* parse_info, int source_length) { Isolate* isolate = script->GetIsolate(); // TODO(titzer): increment the counters in caller. isolate->counters()->total_load_size()->Increment(source_length); isolate->counters()->total_compile_size()->Increment(source_length); LanguageMode language_mode = construct_language_mode(FLAG_use_strict, FLAG_use_strong); parse_info->set_language_mode( static_cast<LanguageMode>(parse_info->language_mode() | language_mode)); CompilationInfo compile_info(parse_info); // The source was parsed lazily, so compiling for debugging is not possible. DCHECK(!compile_info.is_debug()); Handle<SharedFunctionInfo> result = CompileToplevel(&compile_info); if (!result.is_null()) isolate->debug()->OnAfterCompile(script); return result; } Handle<SharedFunctionInfo> Compiler::GetSharedFunctionInfo( FunctionLiteral* literal, Handle<Script> script, CompilationInfo* outer_info) { // Precondition: code has been parsed and scopes have been analyzed. Isolate* isolate = outer_info->isolate(); MaybeHandle<SharedFunctionInfo> maybe_existing; if (outer_info->is_first_compile()) { // On the first compile, there are no existing shared function info for // inner functions yet, so do not try to find them. All bets are off for // live edit though. DCHECK(script->FindSharedFunctionInfo(literal).is_null() || isolate->debug()->live_edit_enabled()); } else { maybe_existing = script->FindSharedFunctionInfo(literal); } // We found an existing shared function info. If it's already compiled, // don't worry about compiling it, and simply return it. If it's not yet // compiled, continue to decide whether to eagerly compile. // Carry on if we are compiling eager to obtain code for debugging, // unless we already have code with debut break slots. Handle<SharedFunctionInfo> existing; if (maybe_existing.ToHandle(&existing) && existing->is_compiled()) { if (!outer_info->is_debug() || existing->HasDebugCode()) { return existing; } } Zone zone; ParseInfo parse_info(&zone, script); CompilationInfo info(&parse_info); parse_info.set_literal(literal); parse_info.set_scope(literal->scope()); parse_info.set_language_mode(literal->scope()->language_mode()); if (outer_info->will_serialize()) info.PrepareForSerializing(); if (outer_info->is_first_compile()) info.MarkAsFirstCompile(); if (outer_info->is_debug()) info.MarkAsDebug(); LiveEditFunctionTracker live_edit_tracker(isolate, literal); // Determine if the function can be lazily compiled. This is necessary to // allow some of our builtin JS files to be lazily compiled. These // builtins cannot be handled lazily by the parser, since we have to know // if a function uses the special natives syntax, which is something the // parser records. // If the debugger requests compilation for break points, we cannot be // aggressive about lazy compilation, because it might trigger compilation // of functions without an outer context when setting a breakpoint through // Debug::FindSharedFunctionInfoInScript. bool allow_lazy_without_ctx = literal->AllowsLazyCompilationWithoutContext(); // Compile eagerly for live edit. When compiling debug code, eagerly compile // unless we can lazily compile without the context. bool allow_lazy = literal->AllowsLazyCompilation() && !LiveEditFunctionTracker::IsActive(isolate) && (!info.is_debug() || allow_lazy_without_ctx); bool lazy = FLAG_lazy && allow_lazy && !literal->should_eager_compile(); // Generate code Handle<ScopeInfo> scope_info; if (lazy) { Handle<Code> code = isolate->builtins()->CompileLazy(); info.SetCode(code); // There's no need in theory for a lazy-compiled function to have a type // feedback vector, but some parts of the system expect all // SharedFunctionInfo instances to have one. The size of the vector depends // on how many feedback-needing nodes are in the tree, and when lazily // parsing we might not know that, if this function was never parsed before. // In that case the vector will be replaced the next time MakeCode is // called. info.EnsureFeedbackVector(); scope_info = Handle<ScopeInfo>(ScopeInfo::Empty(isolate)); } else if (Renumber(info.parse_info()) && GenerateBaselineCode(&info)) { // Code generation will ensure that the feedback vector is present and // appropriately sized. DCHECK(!info.code().is_null()); scope_info = ScopeInfo::Create(info.isolate(), info.zone(), info.scope()); if (literal->should_eager_compile() && literal->should_be_used_once_hint()) { info.code()->MarkToBeExecutedOnce(isolate); } } else { return Handle<SharedFunctionInfo>::null(); } if (maybe_existing.is_null()) { // Create a shared function info object. Handle<SharedFunctionInfo> result = isolate->factory()->NewSharedFunctionInfo( literal->name(), literal->materialized_literal_count(), literal->kind(), info.code(), scope_info, info.feedback_vector()); if (info.has_bytecode_array()) { DCHECK(result->function_data()->IsUndefined()); result->set_function_data(*info.bytecode_array()); } SharedFunctionInfo::InitFromFunctionLiteral(result, literal); SharedFunctionInfo::SetScript(result, script); result->set_is_toplevel(false); // If the outer function has been compiled before, we cannot be sure that // shared function info for this function literal has been created for the // first time. It may have already been compiled previously. result->set_never_compiled(outer_info->is_first_compile() && lazy); RecordFunctionCompilation(Logger::FUNCTION_TAG, &info, result); result->set_allows_lazy_compilation(literal->AllowsLazyCompilation()); result->set_allows_lazy_compilation_without_context(allow_lazy_without_ctx); // Set the expected number of properties for instances and return // the resulting function. SetExpectedNofPropertiesFromEstimate(result, literal->expected_property_count()); live_edit_tracker.RecordFunctionInfo(result, literal, info.zone()); return result; } else if (!lazy) { // Assert that we are not overwriting (possibly patched) debug code. DCHECK(!existing->HasDebugCode()); existing->ReplaceCode(*info.code()); existing->set_scope_info(*scope_info); existing->set_feedback_vector(*info.feedback_vector()); } return existing; } Handle<SharedFunctionInfo> Compiler::GetSharedFunctionInfoForNative( v8::Extension* extension, Handle<String> name) { Isolate* isolate = name->GetIsolate(); v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate); // Compute the function template for the native function. v8::Local<v8::FunctionTemplate> fun_template = extension->GetNativeFunctionTemplate(v8_isolate, v8::Utils::ToLocal(name)); DCHECK(!fun_template.IsEmpty()); // Instantiate the function and create a shared function info from it. Handle<JSFunction> fun = Handle<JSFunction>::cast(Utils::OpenHandle( *fun_template->GetFunction(v8_isolate->GetCurrentContext()) .ToLocalChecked())); const int literals = fun->NumberOfLiterals(); Handle<Code> code = Handle<Code>(fun->shared()->code()); Handle<Code> construct_stub = Handle<Code>(fun->shared()->construct_stub()); Handle<SharedFunctionInfo> shared = isolate->factory()->NewSharedFunctionInfo( name, literals, FunctionKind::kNormalFunction, code, Handle<ScopeInfo>(fun->shared()->scope_info()), Handle<TypeFeedbackVector>(fun->shared()->feedback_vector())); shared->set_construct_stub(*construct_stub); // Copy the function data to the shared function info. shared->set_function_data(fun->shared()->function_data()); int parameters = fun->shared()->internal_formal_parameter_count(); shared->set_internal_formal_parameter_count(parameters); return shared; } MaybeHandle<Code> Compiler::GetOptimizedCode(Handle<JSFunction> function, ConcurrencyMode mode, BailoutId osr_ast_id, JavaScriptFrame* osr_frame) { Isolate* isolate = function->GetIsolate(); Handle<SharedFunctionInfo> shared(function->shared(), isolate); if (shared->HasDebugInfo()) return MaybeHandle<Code>(); Handle<Code> cached_code; if (GetCodeFromOptimizedCodeMap( function, osr_ast_id).ToHandle(&cached_code)) { if (FLAG_trace_opt) { PrintF("[found optimized code for "); function->ShortPrint(); if (!osr_ast_id.IsNone()) { PrintF(" at OSR AST id %d", osr_ast_id.ToInt()); } PrintF("]\n"); } return cached_code; } DCHECK(AllowCompilation::IsAllowed(isolate)); Handle<Code> current_code(shared->code()); if (!shared->is_compiled() || shared->scope_info() == ScopeInfo::Empty(isolate)) { // The function was never compiled. Compile it unoptimized first. // TODO(titzer): reuse the AST and scope info from this compile. CompilationInfoWithZone unoptimized(function); unoptimized.EnableDeoptimizationSupport(); if (!GetUnoptimizedCodeCommon(&unoptimized).ToHandle(¤t_code)) { return MaybeHandle<Code>(); } shared->ReplaceCode(*current_code); } current_code->set_profiler_ticks(0); // TODO(mstarzinger): We cannot properly deserialize a scope chain containing // an eval scope and hence would fail at parsing the eval source again. if (shared->disable_optimization_reason() == kEval) { return MaybeHandle<Code>(); } // TODO(mstarzinger): We cannot properly deserialize a scope chain for the // builtin context, hence Genesis::InstallExperimentalNatives would fail. if (shared->is_toplevel() && isolate->bootstrapper()->IsActive()) { return MaybeHandle<Code>(); } base::SmartPointer<CompilationInfo> info( new CompilationInfoWithZone(function)); VMState<COMPILER> state(isolate); DCHECK(!isolate->has_pending_exception()); PostponeInterruptsScope postpone(isolate); info->SetOptimizingForOsr(osr_ast_id, current_code); if (mode == CONCURRENT) { if (GetOptimizedCodeLater(info.get())) { info.Detach(); // The background recompile job owns this now. return isolate->builtins()->InOptimizationQueue(); } } else { info->set_osr_frame(osr_frame); if (GetOptimizedCodeNow(info.get())) return info->code(); } if (isolate->has_pending_exception()) isolate->clear_pending_exception(); return MaybeHandle<Code>(); } MaybeHandle<Code> Compiler::GetConcurrentlyOptimizedCode( OptimizedCompileJob* job) { // Take ownership of compilation info. Deleting compilation info // also tears down the zone and the recompile job. base::SmartPointer<CompilationInfo> info(job->info()); Isolate* isolate = info->isolate(); VMState<COMPILER> state(isolate); TimerEventScope<TimerEventRecompileSynchronous> timer(info->isolate()); Handle<SharedFunctionInfo> shared = info->shared_info(); shared->code()->set_profiler_ticks(0); DCHECK(!shared->HasDebugInfo()); // 1) Optimization on the concurrent thread may have failed. // 2) The function may have already been optimized by OSR. Simply continue. // Except when OSR already disabled optimization for some reason. // 3) The code may have already been invalidated due to dependency change. // 4) Code generation may have failed. if (job->last_status() == OptimizedCompileJob::SUCCEEDED) { if (shared->optimization_disabled()) { job->RetryOptimization(kOptimizationDisabled); } else if (info->dependencies()->HasAborted()) { job->RetryOptimization(kBailedOutDueToDependencyChange); } else if (job->GenerateCode() == OptimizedCompileJob::SUCCEEDED) { RecordFunctionCompilation(Logger::LAZY_COMPILE_TAG, info.get(), shared); if (shared->SearchOptimizedCodeMap(info->context()->native_context(), info->osr_ast_id()).code == nullptr) { InsertCodeIntoOptimizedCodeMap(info.get()); } if (FLAG_trace_opt) { PrintF("[completed optimizing "); info->closure()->ShortPrint(); PrintF("]\n"); } return Handle<Code>(*info->code()); } } DCHECK(job->last_status() != OptimizedCompileJob::SUCCEEDED); if (FLAG_trace_opt) { PrintF("[aborted optimizing "); info->closure()->ShortPrint(); PrintF(" because: %s]\n", GetBailoutReason(info->bailout_reason())); } return MaybeHandle<Code>(); } CompilationPhase::CompilationPhase(const char* name, CompilationInfo* info) : name_(name), info_(info) { if (FLAG_hydrogen_stats) { info_zone_start_allocation_size_ = info->zone()->allocation_size(); timer_.Start(); } } CompilationPhase::~CompilationPhase() { if (FLAG_hydrogen_stats) { size_t size = zone()->allocation_size(); size += info_->zone()->allocation_size() - info_zone_start_allocation_size_; isolate()->GetHStatistics()->SaveTiming(name_, timer_.Elapsed(), size); } } bool CompilationPhase::ShouldProduceTraceOutput() const { // Trace if the appropriate trace flag is set and the phase name's first // character is in the FLAG_trace_phase command line parameter. AllowHandleDereference allow_deref; bool tracing_on = info()->IsStub() ? FLAG_trace_hydrogen_stubs : (FLAG_trace_hydrogen && info()->closure()->PassesFilter(FLAG_trace_hydrogen_filter)); return (tracing_on && base::OS::StrChr(const_cast<char*>(FLAG_trace_phase), name_[0]) != NULL); } #if DEBUG void CompilationInfo::PrintAstForTesting() { PrintF("--- Source from AST ---\n%s\n", PrettyPrinter(isolate()).PrintProgram(literal())); } #endif } // namespace internal } // namespace v8