// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler/wasm-compiler.h" #include <memory> #include "src/base/optional.h" #include "src/base/platform/elapsed-timer.h" #include "src/base/platform/platform.h" #include "src/base/platform/wrappers.h" #include "src/base/small-vector.h" #include "src/base/v8-fallthrough.h" #include "src/codegen/assembler-inl.h" #include "src/codegen/assembler.h" #include "src/codegen/code-factory.h" #include "src/codegen/compiler.h" #include "src/codegen/interface-descriptors.h" #include "src/codegen/machine-type.h" #include "src/codegen/optimized-compilation-info.h" #include "src/compiler/backend/code-generator.h" #include "src/compiler/backend/instruction-selector.h" #include "src/compiler/common-operator.h" #include "src/compiler/compiler-source-position-table.h" #include "src/compiler/diamond.h" #include "src/compiler/graph-assembler.h" #include "src/compiler/graph-visualizer.h" #include "src/compiler/graph.h" #include "src/compiler/int64-lowering.h" #include "src/compiler/linkage.h" #include "src/compiler/machine-operator.h" #include "src/compiler/node-matchers.h" #include "src/compiler/node-origin-table.h" #include "src/compiler/node-properties.h" #include "src/compiler/pipeline.h" #include "src/compiler/simd-scalar-lowering.h" #include "src/compiler/zone-stats.h" #include "src/execution/isolate-inl.h" #include "src/heap/factory.h" #include "src/logging/counters.h" #include "src/logging/log.h" #include "src/objects/heap-number.h" #include "src/roots/roots.h" #include "src/tracing/trace-event.h" #include "src/trap-handler/trap-handler.h" #include "src/utils/vector.h" #include "src/wasm/function-body-decoder-impl.h" #include "src/wasm/function-compiler.h" #include "src/wasm/graph-builder-interface.h" #include "src/wasm/jump-table-assembler.h" #include "src/wasm/memory-tracing.h" #include "src/wasm/object-access.h" #include "src/wasm/wasm-code-manager.h" #include "src/wasm/wasm-constants.h" #include "src/wasm/wasm-limits.h" #include "src/wasm/wasm-linkage.h" #include "src/wasm/wasm-module.h" #include "src/wasm/wasm-objects-inl.h" #include "src/wasm/wasm-opcodes-inl.h" namespace v8 { namespace internal { namespace compiler { namespace { #define FATAL_UNSUPPORTED_OPCODE(opcode) \ FATAL("Unsupported opcode 0x%x:%s", (opcode), \ wasm::WasmOpcodes::OpcodeName(opcode)); MachineType assert_size(int expected_size, MachineType type) { DCHECK_EQ(expected_size, ElementSizeInBytes(type.representation())); return type; } #define WASM_INSTANCE_OBJECT_SIZE(name) \ (WasmInstanceObject::k##name##OffsetEnd - \ WasmInstanceObject::k##name##Offset + 1) // NOLINT(whitespace/indent) #define WASM_INSTANCE_OBJECT_OFFSET(name) \ wasm::ObjectAccess::ToTagged(WasmInstanceObject::k##name##Offset) #define LOAD_INSTANCE_FIELD(name, type) \ gasm_->Load(assert_size(WASM_INSTANCE_OBJECT_SIZE(name), type), \ instance_node_.get(), WASM_INSTANCE_OBJECT_OFFSET(name)) #define LOAD_FULL_POINTER(base_pointer, byte_offset) \ gasm_->Load(MachineType::Pointer(), base_pointer, byte_offset) #define LOAD_TAGGED_POINTER(base_pointer, byte_offset) \ gasm_->Load(MachineType::TaggedPointer(), base_pointer, byte_offset) #define LOAD_TAGGED_ANY(base_pointer, byte_offset) \ gasm_->Load(MachineType::AnyTagged(), base_pointer, byte_offset) #define LOAD_FIXED_ARRAY_SLOT(array_node, index, type) \ gasm_->Load(type, array_node, \ wasm::ObjectAccess::ElementOffsetInTaggedFixedArray(index)) #define LOAD_FIXED_ARRAY_SLOT_SMI(array_node, index) \ LOAD_FIXED_ARRAY_SLOT(array_node, index, MachineType::TaggedSigned()) #define LOAD_FIXED_ARRAY_SLOT_PTR(array_node, index) \ LOAD_FIXED_ARRAY_SLOT(array_node, index, MachineType::TaggedPointer()) #define LOAD_FIXED_ARRAY_SLOT_ANY(array_node, index) \ LOAD_FIXED_ARRAY_SLOT(array_node, index, MachineType::AnyTagged()) #define STORE_RAW(base, offset, val, rep, barrier) \ STORE_RAW_NODE_OFFSET(base, gasm_->Int32Constant(offset), val, rep, barrier) #define STORE_RAW_NODE_OFFSET(base, node_offset, val, rep, barrier) \ gasm_->Store(StoreRepresentation(rep, barrier), base, node_offset, val) // This can be used to store tagged Smi values only. #define STORE_FIXED_ARRAY_SLOT_SMI(array_node, index, value) \ STORE_RAW(array_node, \ wasm::ObjectAccess::ElementOffsetInTaggedFixedArray(index), value, \ MachineRepresentation::kTaggedSigned, kNoWriteBarrier) // This can be used to store any tagged (Smi and HeapObject) value. #define STORE_FIXED_ARRAY_SLOT_ANY(array_node, index, value) \ STORE_RAW(array_node, \ wasm::ObjectAccess::ElementOffsetInTaggedFixedArray(index), value, \ MachineRepresentation::kTagged, kFullWriteBarrier) void EnsureEnd(MachineGraph* mcgraph) { Graph* g = mcgraph->graph(); if (g->end() == nullptr) { g->SetEnd(g->NewNode(mcgraph->common()->End(0))); } } void MergeControlToEnd(MachineGraph* mcgraph, Node* node) { EnsureEnd(mcgraph); NodeProperties::MergeControlToEnd(mcgraph->graph(), mcgraph->common(), node); } bool ContainsSimd(const wasm::FunctionSig* sig) { for (auto type : sig->all()) { if (type == wasm::kWasmS128) return true; } return false; } bool ContainsInt64(const wasm::FunctionSig* sig) { for (auto type : sig->all()) { if (type == wasm::kWasmI64) return true; } return false; } constexpr Builtins::Name WasmRuntimeStubIdToBuiltinName( wasm::WasmCode::RuntimeStubId runtime_stub_id) { switch (runtime_stub_id) { #define DEF_CASE(name) \ case wasm::WasmCode::k##name: \ return Builtins::k##name; #define DEF_TRAP_CASE(name) DEF_CASE(ThrowWasm##name) WASM_RUNTIME_STUB_LIST(DEF_CASE, DEF_TRAP_CASE) #undef DEF_CASE #undef DEF_TRAP_CASE default: #if V8_HAS_CXX14_CONSTEXPR UNREACHABLE(); #else return Builtins::kAbort; #endif } } CallDescriptor* GetBuiltinCallDescriptor(Builtins::Name name, Zone* zone, StubCallMode stub_mode, bool needs_frame_state = false) { CallInterfaceDescriptor interface_descriptor = Builtins::CallInterfaceDescriptorFor(name); return Linkage::GetStubCallDescriptor( zone, // zone interface_descriptor, // descriptor interface_descriptor.GetStackParameterCount(), // stack parameter count needs_frame_state ? CallDescriptor::kNeedsFrameState : CallDescriptor::kNoFlags, // flags Operator::kNoProperties, // properties stub_mode); // stub call mode } Node* GetBuiltinPointerTarget(MachineGraph* mcgraph, Builtins::Name builtin_id) { static_assert(std::is_same<Smi, BuiltinPtr>(), "BuiltinPtr must be Smi"); return mcgraph->graph()->NewNode( mcgraph->common()->NumberConstant(builtin_id)); } } // namespace JSWasmCallData::JSWasmCallData(const wasm::FunctionSig* wasm_signature) : result_needs_conversion_(wasm_signature->return_count() == 1 && wasm_signature->GetReturn().kind() == wasm::kI64) { arg_needs_conversion_.resize(wasm_signature->parameter_count()); for (size_t i = 0; i < wasm_signature->parameter_count(); i++) { wasm::ValueType type = wasm_signature->GetParam(i); arg_needs_conversion_[i] = type.kind() == wasm::kI64; } } class WasmGraphAssembler : public GraphAssembler { public: WasmGraphAssembler(MachineGraph* mcgraph, Zone* zone) : GraphAssembler(mcgraph, zone) {} template <typename... Args> Node* CallRuntimeStub(wasm::WasmCode::RuntimeStubId stub_id, Args*... args) { auto* call_descriptor = GetBuiltinCallDescriptor( WasmRuntimeStubIdToBuiltinName(stub_id), temp_zone(), StubCallMode::kCallWasmRuntimeStub); // A direct call to a wasm runtime stub defined in this module. // Just encode the stub index. This will be patched at relocation. Node* call_target = mcgraph()->RelocatableIntPtrConstant( stub_id, RelocInfo::WASM_STUB_CALL); return Call(call_descriptor, call_target, args...); } template <typename... Args> Node* CallBuiltin(Builtins::Name name, Args*... args) { // We would like to use gasm_->Call() to implement this method, // but this doesn't work currently when we try to call it from functions // which set IfSuccess/IfFailure control paths (e.g. within Throw()). // TODO(manoskouk): Maybe clean this up at some point and unite with // CallRuntimeStub? auto* call_descriptor = GetBuiltinCallDescriptor( name, temp_zone(), StubCallMode::kCallBuiltinPointer); Node* call_target = GetBuiltinPointerTarget(mcgraph(), name); Node* call = graph()->NewNode(mcgraph()->common()->Call(call_descriptor), call_target, args..., effect(), control()); InitializeEffectControl(call, control()); return call; } // Helper functions for dealing with HeapObjects. // Rule of thumb: if access to a given field in an object is required in // at least two places, put a helper function here. Node* IsI31(Node* object) { if (COMPRESS_POINTERS_BOOL) { return Word32Equal(Word32And(object, Int32Constant(kSmiTagMask)), Int32Constant(kSmiTag)); } else { return WordEqual(WordAnd(object, IntPtrConstant(kSmiTagMask)), IntPtrConstant(kSmiTag)); } } // Maps and their contents. Node* LoadMap(Node* heap_object) { return Load(MachineType::TaggedPointer(), heap_object, wasm::ObjectAccess::ToTagged(HeapObject::kMapOffset)); } Node* LoadInstanceType(Node* map) { return Load(MachineType::Uint16(), map, wasm::ObjectAccess::ToTagged(Map::kInstanceTypeOffset)); } Node* LoadWasmTypeInfo(Node* map) { int offset = Map::kConstructorOrBackPointerOrNativeContextOffset; return Load(MachineType::TaggedPointer(), map, wasm::ObjectAccess::ToTagged(offset)); } Node* LoadSupertypes(Node* wasm_type_info) { return Load(MachineType::TaggedPointer(), wasm_type_info, wasm::ObjectAccess::ToTagged(WasmTypeInfo::kSupertypesOffset)); } // FixedArrays. Node* LoadFixedArrayLengthAsSmi(Node* fixed_array) { return Load(MachineType::TaggedSigned(), fixed_array, wasm::ObjectAccess::ToTagged(FixedArray::kLengthOffset)); } Node* LoadFixedArrayElement(Node* fixed_array, int index, MachineType type = MachineType::AnyTagged()) { return Load(type, fixed_array, wasm::ObjectAccess::ElementOffsetInTaggedFixedArray(index)); } Node* LoadFixedArrayElement(Node* fixed_array, Node* index_intptr, MachineType type = MachineType::AnyTagged()) { Node* offset = IntAdd( IntMul(index_intptr, IntPtrConstant(kTaggedSize)), IntPtrConstant(wasm::ObjectAccess::ToTagged(FixedArray::kHeaderSize))); return Load(type, fixed_array, offset); } // Functions, SharedFunctionInfos, FunctionData. Node* LoadSharedFunctionInfo(Node* js_function) { return Load( MachineType::TaggedPointer(), js_function, wasm::ObjectAccess::SharedFunctionInfoOffsetInTaggedJSFunction()); } Node* LoadContextFromJSFunction(Node* js_function) { return Load(MachineType::TaggedPointer(), js_function, wasm::ObjectAccess::ContextOffsetInTaggedJSFunction()); } Node* LoadFunctionDataFromJSFunction(Node* js_function) { Node* shared = LoadSharedFunctionInfo(js_function); return Load( MachineType::TaggedPointer(), shared, wasm::ObjectAccess::ToTagged(SharedFunctionInfo::kFunctionDataOffset)); } Node* LoadExportedFunctionIndexAsSmi(Node* exported_function_data) { return Load(MachineType::TaggedSigned(), exported_function_data, wasm::ObjectAccess::ToTagged( WasmExportedFunctionData::kFunctionIndexOffset)); } Node* LoadExportedFunctionInstance(Node* exported_function_data) { return Load(MachineType::TaggedPointer(), exported_function_data, wasm::ObjectAccess::ToTagged( WasmExportedFunctionData::kInstanceOffset)); } // JavaScript objects. Node* LoadJSArrayElements(Node* js_array) { return Load(MachineType::AnyTagged(), js_array, wasm::ObjectAccess::ToTagged(JSObject::kElementsOffset)); } // WasmGC objects. MachineType FieldType(const wasm::StructType* type, uint32_t field_index, bool is_signed) { return MachineType::TypeForRepresentation( type->field(field_index).machine_representation(), is_signed); } Node* FieldOffset(const wasm::StructType* type, uint32_t field_index) { return IntPtrConstant(wasm::ObjectAccess::ToTagged( WasmStruct::kHeaderSize + type->field_offset(field_index))); } // It's guaranteed that struct/array fields are aligned to min(field_size, // kTaggedSize), with the latter being 4 or 8 depending on platform and // pointer compression. So on our most common configurations, 8-byte types // must use unaligned loads/stores. Node* LoadWithTaggedAlignment(MachineType type, Node* base, Node* offset) { if (ElementSizeInBytes(type.representation()) > kTaggedSize) { return LoadUnaligned(type, base, offset); } else { return Load(type, base, offset); } } // Same alignment considerations as above. Node* StoreWithTaggedAlignment(Node* base, Node* offset, Node* value, wasm::ValueType type) { MachineRepresentation rep = type.machine_representation(); if (ElementSizeInBytes(rep) > kTaggedSize) { return StoreUnaligned(rep, base, offset, value); } else { WriteBarrierKind write_barrier = type.is_reference_type() ? kPointerWriteBarrier : kNoWriteBarrier; StoreRepresentation store_rep(rep, write_barrier); return Store(store_rep, base, offset, value); } } Node* StoreStructField(Node* struct_object, const wasm::StructType* type, uint32_t field_index, Node* value) { return StoreWithTaggedAlignment(struct_object, FieldOffset(type, field_index), value, type->field(field_index)); } Node* WasmArrayElementOffset(Node* index, wasm::ValueType element_type) { return Int32Add( Int32Constant(wasm::ObjectAccess::ToTagged(WasmArray::kHeaderSize)), Int32Mul(index, Int32Constant(element_type.element_size_bytes()))); } Node* LoadWasmArrayLength(Node* array) { return Load(MachineType::Uint32(), array, wasm::ObjectAccess::ToTagged(WasmArray::kLengthOffset)); } Node* IsDataRefMap(Node* map) { Node* instance_type = LoadInstanceType(map); // We're going to test a range of instance types with a single unsigned // comparison. Statically assert that this is safe, i.e. that there are // no instance types between array and struct types that might possibly // occur (i.e. internal types are OK, types of Wasm objects are not). // At the time of this writing: // WASM_ARRAY_TYPE = 180 // WASM_CAPI_FUNCTION_DATA_TYPE = 181 // WASM_STRUCT_TYPE = 182 // The specific values don't matter; the relative order does. static_assert( WASM_STRUCT_TYPE == static_cast<InstanceType>(WASM_ARRAY_TYPE + 2), "Relying on specific InstanceType values here"); static_assert(WASM_CAPI_FUNCTION_DATA_TYPE == static_cast<InstanceType>(WASM_ARRAY_TYPE + 1), "Relying on specific InstanceType values here"); Node* comparison_value = Int32Sub(instance_type, Int32Constant(WASM_ARRAY_TYPE)); return Uint32LessThanOrEqual( comparison_value, Int32Constant(WASM_STRUCT_TYPE - WASM_ARRAY_TYPE)); } // Generic HeapObject helpers. Node* HasInstanceType(Node* heap_object, InstanceType type) { Node* map = LoadMap(heap_object); Node* instance_type = LoadInstanceType(map); return Word32Equal(instance_type, Int32Constant(type)); } }; WasmGraphBuilder::WasmGraphBuilder( wasm::CompilationEnv* env, Zone* zone, MachineGraph* mcgraph, const wasm::FunctionSig* sig, compiler::SourcePositionTable* source_position_table) : gasm_(std::make_unique<WasmGraphAssembler>(mcgraph, zone)), zone_(zone), mcgraph_(mcgraph), env_(env), has_simd_(ContainsSimd(sig)), untrusted_code_mitigations_(FLAG_untrusted_code_mitigations), sig_(sig), source_position_table_(source_position_table) { DCHECK_IMPLIES(use_trap_handler(), trap_handler::IsTrapHandlerEnabled()); DCHECK_NOT_NULL(mcgraph_); } // Destructor define here where the definition of {WasmGraphAssembler} is // available. WasmGraphBuilder::~WasmGraphBuilder() = default; Node* WasmGraphBuilder::Start(unsigned params) { Node* start = graph()->NewNode(mcgraph()->common()->Start(params)); graph()->SetStart(start); return start; } Node* WasmGraphBuilder::Param(unsigned index) { return graph()->NewNode(mcgraph()->common()->Parameter(index), graph()->start()); } Node* WasmGraphBuilder::Loop(Node* entry) { return graph()->NewNode(mcgraph()->common()->Loop(1), entry); } Node* WasmGraphBuilder::TerminateLoop(Node* effect, Node* control) { Node* terminate = graph()->NewNode(mcgraph()->common()->Terminate(), effect, control); MergeControlToEnd(mcgraph(), terminate); return terminate; } Node* WasmGraphBuilder::LoopExit(Node* loop_node) { DCHECK(loop_node->opcode() == IrOpcode::kLoop); Node* loop_exit = graph()->NewNode(mcgraph()->common()->LoopExit(), control(), loop_node); Node* loop_exit_effect = graph()->NewNode( mcgraph()->common()->LoopExitEffect(), effect(), loop_exit); SetEffectControl(loop_exit_effect, loop_exit); return loop_exit; } Node* WasmGraphBuilder::LoopExitValue(Node* value, MachineRepresentation representation) { DCHECK(control()->opcode() == IrOpcode::kLoopExit); return graph()->NewNode(mcgraph()->common()->LoopExitValue(representation), value, control()); } Node* WasmGraphBuilder::TerminateThrow(Node* effect, Node* control) { Node* terminate = graph()->NewNode(mcgraph()->common()->Throw(), effect, control); MergeControlToEnd(mcgraph(), terminate); return terminate; } bool WasmGraphBuilder::IsPhiWithMerge(Node* phi, Node* merge) { return phi && IrOpcode::IsPhiOpcode(phi->opcode()) && NodeProperties::GetControlInput(phi) == merge; } bool WasmGraphBuilder::ThrowsException(Node* node, Node** if_success, Node** if_exception) { if (node->op()->HasProperty(compiler::Operator::kNoThrow)) { return false; } *if_success = graph()->NewNode(mcgraph()->common()->IfSuccess(), node); *if_exception = graph()->NewNode(mcgraph()->common()->IfException(), node, node); return true; } void WasmGraphBuilder::AppendToMerge(Node* merge, Node* from) { DCHECK(IrOpcode::IsMergeOpcode(merge->opcode())); merge->AppendInput(mcgraph()->zone(), from); int new_size = merge->InputCount(); NodeProperties::ChangeOp( merge, mcgraph()->common()->ResizeMergeOrPhi(merge->op(), new_size)); } void WasmGraphBuilder::AppendToPhi(Node* phi, Node* from) { DCHECK(IrOpcode::IsPhiOpcode(phi->opcode())); int new_size = phi->InputCount(); phi->InsertInput(mcgraph()->zone(), phi->InputCount() - 1, from); NodeProperties::ChangeOp( phi, mcgraph()->common()->ResizeMergeOrPhi(phi->op(), new_size)); } Node* WasmGraphBuilder::Merge(unsigned count, Node** controls) { return graph()->NewNode(mcgraph()->common()->Merge(count), count, controls); } Node* WasmGraphBuilder::Phi(wasm::ValueType type, unsigned count, Node** vals_and_control) { DCHECK(IrOpcode::IsMergeOpcode(vals_and_control[count]->opcode())); DCHECK_EQ(vals_and_control[count]->op()->ControlInputCount(), count); return graph()->NewNode( mcgraph()->common()->Phi(type.machine_representation(), count), count + 1, vals_and_control); } Node* WasmGraphBuilder::EffectPhi(unsigned count, Node** effects_and_control) { DCHECK(IrOpcode::IsMergeOpcode(effects_and_control[count]->opcode())); return graph()->NewNode(mcgraph()->common()->EffectPhi(count), count + 1, effects_and_control); } Node* WasmGraphBuilder::RefNull() { // Technically speaking, this does not generate a valid graph since the effect // of the last Load is not consumed. // TODO(manoskouk): Remove this code once we implement Load elimination // optimization for wasm. if (!ref_null_node_.is_set()) { Node* current_effect = effect(); Node* current_control = control(); SetEffectControl(mcgraph()->graph()->start()); ref_null_node_.set(LOAD_FULL_POINTER( BuildLoadIsolateRoot(), IsolateData::root_slot_offset(RootIndex::kNullValue))); SetEffectControl(current_effect, current_control); } return ref_null_node_.get(); } Node* WasmGraphBuilder::RefFunc(uint32_t function_index) { return gasm_->CallRuntimeStub(wasm::WasmCode::kWasmRefFunc, gasm_->Uint32Constant(function_index)); } Node* WasmGraphBuilder::RefAsNonNull(Node* arg, wasm::WasmCodePosition position) { TrapIfTrue(wasm::kTrapIllegalCast, gasm_->WordEqual(arg, RefNull()), position); return arg; } Node* WasmGraphBuilder::NoContextConstant() { return mcgraph()->IntPtrConstant(0); } Node* WasmGraphBuilder::BuildLoadIsolateRoot() { // The IsolateRoot is loaded from the instance node so that the generated // code is Isolate independent. This can be overridden by setting a specific // node in {isolate_root_node_} beforehand. if (isolate_root_node_.is_set()) return isolate_root_node_.get(); return LOAD_INSTANCE_FIELD(IsolateRoot, MachineType::Pointer()); } Node* WasmGraphBuilder::Int32Constant(int32_t value) { return mcgraph()->Int32Constant(value); } Node* WasmGraphBuilder::Int64Constant(int64_t value) { return mcgraph()->Int64Constant(value); } void WasmGraphBuilder::StackCheck(wasm::WasmCodePosition position) { DCHECK_NOT_NULL(env_); // Wrappers don't get stack checks. if (!FLAG_wasm_stack_checks || !env_->runtime_exception_support) { return; } Node* limit_address = LOAD_INSTANCE_FIELD(StackLimitAddress, MachineType::Pointer()); Node* limit = SetEffect(graph()->NewNode( mcgraph()->machine()->Load(MachineType::Pointer()), limit_address, mcgraph()->IntPtrConstant(0), limit_address, control())); Node* check = SetEffect(graph()->NewNode( mcgraph()->machine()->StackPointerGreaterThan(StackCheckKind::kWasm), limit, effect())); Diamond stack_check(graph(), mcgraph()->common(), check, BranchHint::kTrue); stack_check.Chain(control()); if (stack_check_call_operator_ == nullptr) { // Build and cache the stack check call operator and the constant // representing the stack check code. auto call_descriptor = Linkage::GetStubCallDescriptor( mcgraph()->zone(), // zone NoContextDescriptor{}, // descriptor 0, // stack parameter count CallDescriptor::kNoFlags, // flags Operator::kNoProperties, // properties StubCallMode::kCallWasmRuntimeStub); // stub call mode // A direct call to a wasm runtime stub defined in this module. // Just encode the stub index. This will be patched at relocation. stack_check_code_node_.set(mcgraph()->RelocatableIntPtrConstant( wasm::WasmCode::kWasmStackGuard, RelocInfo::WASM_STUB_CALL)); stack_check_call_operator_ = mcgraph()->common()->Call(call_descriptor); } Node* call = graph()->NewNode(stack_check_call_operator_.get(), stack_check_code_node_.get(), effect(), stack_check.if_false); SetSourcePosition(call, position); Node* ephi = stack_check.EffectPhi(effect(), call); SetEffectControl(ephi, stack_check.merge); } void WasmGraphBuilder::PatchInStackCheckIfNeeded() { if (!needs_stack_check_) return; Node* start = graph()->start(); // Place a stack check which uses a dummy node as control and effect. Node* dummy = graph()->NewNode(mcgraph()->common()->Dead()); SetEffectControl(dummy); // The function-prologue stack check is associated with position 0, which // is never a position of any instruction in the function. StackCheck(0); // In testing, no steck checks were emitted. Nothing to rewire then. if (effect() == dummy) return; // Now patch all control uses of {start} to use {control} and all effect uses // to use {effect} instead. Then rewire the dummy node to use start instead. NodeProperties::ReplaceUses(start, start, effect(), control()); NodeProperties::ReplaceUses(dummy, nullptr, start, start); } Node* WasmGraphBuilder::Binop(wasm::WasmOpcode opcode, Node* left, Node* right, wasm::WasmCodePosition position) { const Operator* op; MachineOperatorBuilder* m = mcgraph()->machine(); switch (opcode) { case wasm::kExprI32Add: op = m->Int32Add(); break; case wasm::kExprI32Sub: op = m->Int32Sub(); break; case wasm::kExprI32Mul: op = m->Int32Mul(); break; case wasm::kExprI32DivS: return BuildI32DivS(left, right, position); case wasm::kExprI32DivU: return BuildI32DivU(left, right, position); case wasm::kExprI32RemS: return BuildI32RemS(left, right, position); case wasm::kExprI32RemU: return BuildI32RemU(left, right, position); case wasm::kExprI32And: op = m->Word32And(); break; case wasm::kExprI32Ior: op = m->Word32Or(); break; case wasm::kExprI32Xor: op = m->Word32Xor(); break; case wasm::kExprI32Shl: op = m->Word32Shl(); right = MaskShiftCount32(right); break; case wasm::kExprI32ShrU: op = m->Word32Shr(); right = MaskShiftCount32(right); break; case wasm::kExprI32ShrS: op = m->Word32Sar(); right = MaskShiftCount32(right); break; case wasm::kExprI32Ror: op = m->Word32Ror(); right = MaskShiftCount32(right); break; case wasm::kExprI32Rol: if (m->Word32Rol().IsSupported()) { op = m->Word32Rol().op(); right = MaskShiftCount32(right); break; } return BuildI32Rol(left, right); case wasm::kExprI32Eq: op = m->Word32Equal(); break; case wasm::kExprI32Ne: return Invert(Binop(wasm::kExprI32Eq, left, right)); case wasm::kExprI32LtS: op = m->Int32LessThan(); break; case wasm::kExprI32LeS: op = m->Int32LessThanOrEqual(); break; case wasm::kExprI32LtU: op = m->Uint32LessThan(); break; case wasm::kExprI32LeU: op = m->Uint32LessThanOrEqual(); break; case wasm::kExprI32GtS: op = m->Int32LessThan(); std::swap(left, right); break; case wasm::kExprI32GeS: op = m->Int32LessThanOrEqual(); std::swap(left, right); break; case wasm::kExprI32GtU: op = m->Uint32LessThan(); std::swap(left, right); break; case wasm::kExprI32GeU: op = m->Uint32LessThanOrEqual(); std::swap(left, right); break; case wasm::kExprI64And: op = m->Word64And(); break; case wasm::kExprI64Add: op = m->Int64Add(); break; case wasm::kExprI64Sub: op = m->Int64Sub(); break; case wasm::kExprI64Mul: op = m->Int64Mul(); break; case wasm::kExprI64DivS: return BuildI64DivS(left, right, position); case wasm::kExprI64DivU: return BuildI64DivU(left, right, position); case wasm::kExprI64RemS: return BuildI64RemS(left, right, position); case wasm::kExprI64RemU: return BuildI64RemU(left, right, position); case wasm::kExprI64Ior: op = m->Word64Or(); break; case wasm::kExprI64Xor: op = m->Word64Xor(); break; case wasm::kExprI64Shl: op = m->Word64Shl(); right = MaskShiftCount64(right); break; case wasm::kExprI64ShrU: op = m->Word64Shr(); right = MaskShiftCount64(right); break; case wasm::kExprI64ShrS: op = m->Word64Sar(); right = MaskShiftCount64(right); break; case wasm::kExprI64Eq: op = m->Word64Equal(); break; case wasm::kExprI64Ne: return Invert(Binop(wasm::kExprI64Eq, left, right)); case wasm::kExprI64LtS: op = m->Int64LessThan(); break; case wasm::kExprI64LeS: op = m->Int64LessThanOrEqual(); break; case wasm::kExprI64LtU: op = m->Uint64LessThan(); break; case wasm::kExprI64LeU: op = m->Uint64LessThanOrEqual(); break; case wasm::kExprI64GtS: op = m->Int64LessThan(); std::swap(left, right); break; case wasm::kExprI64GeS: op = m->Int64LessThanOrEqual(); std::swap(left, right); break; case wasm::kExprI64GtU: op = m->Uint64LessThan(); std::swap(left, right); break; case wasm::kExprI64GeU: op = m->Uint64LessThanOrEqual(); std::swap(left, right); break; case wasm::kExprI64Ror: op = m->Word64Ror(); right = MaskShiftCount64(right); break; case wasm::kExprI64Rol: if (m->Word64Rol().IsSupported()) { op = m->Word64Rol().op(); right = MaskShiftCount64(right); break; } else if (m->Word32Rol().IsSupported()) { op = m->Word64Rol().placeholder(); break; } return BuildI64Rol(left, right); case wasm::kExprF32CopySign: return BuildF32CopySign(left, right); case wasm::kExprF64CopySign: return BuildF64CopySign(left, right); case wasm::kExprF32Add: op = m->Float32Add(); break; case wasm::kExprF32Sub: op = m->Float32Sub(); break; case wasm::kExprF32Mul: op = m->Float32Mul(); break; case wasm::kExprF32Div: op = m->Float32Div(); break; case wasm::kExprF32Eq: op = m->Float32Equal(); break; case wasm::kExprF32Ne: return Invert(Binop(wasm::kExprF32Eq, left, right)); case wasm::kExprF32Lt: op = m->Float32LessThan(); break; case wasm::kExprF32Ge: op = m->Float32LessThanOrEqual(); std::swap(left, right); break; case wasm::kExprF32Gt: op = m->Float32LessThan(); std::swap(left, right); break; case wasm::kExprF32Le: op = m->Float32LessThanOrEqual(); break; case wasm::kExprF64Add: op = m->Float64Add(); break; case wasm::kExprF64Sub: op = m->Float64Sub(); break; case wasm::kExprF64Mul: op = m->Float64Mul(); break; case wasm::kExprF64Div: op = m->Float64Div(); break; case wasm::kExprF64Eq: op = m->Float64Equal(); break; case wasm::kExprF64Ne: return Invert(Binop(wasm::kExprF64Eq, left, right)); case wasm::kExprF64Lt: op = m->Float64LessThan(); break; case wasm::kExprF64Le: op = m->Float64LessThanOrEqual(); break; case wasm::kExprF64Gt: op = m->Float64LessThan(); std::swap(left, right); break; case wasm::kExprF64Ge: op = m->Float64LessThanOrEqual(); std::swap(left, right); break; case wasm::kExprF32Min: op = m->Float32Min(); break; case wasm::kExprF64Min: op = m->Float64Min(); break; case wasm::kExprF32Max: op = m->Float32Max(); break; case wasm::kExprF64Max: op = m->Float64Max(); break; case wasm::kExprF64Pow: return BuildF64Pow(left, right); case wasm::kExprF64Atan2: op = m->Float64Atan2(); break; case wasm::kExprF64Mod: return BuildF64Mod(left, right); case wasm::kExprRefEq: return gasm_->TaggedEqual(left, right); case wasm::kExprI32AsmjsDivS: return BuildI32AsmjsDivS(left, right); case wasm::kExprI32AsmjsDivU: return BuildI32AsmjsDivU(left, right); case wasm::kExprI32AsmjsRemS: return BuildI32AsmjsRemS(left, right); case wasm::kExprI32AsmjsRemU: return BuildI32AsmjsRemU(left, right); case wasm::kExprI32AsmjsStoreMem8: return BuildAsmjsStoreMem(MachineType::Int8(), left, right); case wasm::kExprI32AsmjsStoreMem16: return BuildAsmjsStoreMem(MachineType::Int16(), left, right); case wasm::kExprI32AsmjsStoreMem: return BuildAsmjsStoreMem(MachineType::Int32(), left, right); case wasm::kExprF32AsmjsStoreMem: return BuildAsmjsStoreMem(MachineType::Float32(), left, right); case wasm::kExprF64AsmjsStoreMem: return BuildAsmjsStoreMem(MachineType::Float64(), left, right); default: FATAL_UNSUPPORTED_OPCODE(opcode); } return graph()->NewNode(op, left, right); } Node* WasmGraphBuilder::Unop(wasm::WasmOpcode opcode, Node* input, wasm::WasmCodePosition position) { const Operator* op; MachineOperatorBuilder* m = mcgraph()->machine(); switch (opcode) { case wasm::kExprI32Eqz: op = m->Word32Equal(); return graph()->NewNode(op, input, mcgraph()->Int32Constant(0)); case wasm::kExprF32Abs: op = m->Float32Abs(); break; case wasm::kExprF32Neg: { op = m->Float32Neg(); break; } case wasm::kExprF32Sqrt: op = m->Float32Sqrt(); break; case wasm::kExprF64Abs: op = m->Float64Abs(); break; case wasm::kExprF64Neg: { op = m->Float64Neg(); break; } case wasm::kExprF64Sqrt: op = m->Float64Sqrt(); break; case wasm::kExprI32SConvertF32: case wasm::kExprI32UConvertF32: case wasm::kExprI32SConvertF64: case wasm::kExprI32UConvertF64: case wasm::kExprI32SConvertSatF64: case wasm::kExprI32UConvertSatF64: case wasm::kExprI32SConvertSatF32: case wasm::kExprI32UConvertSatF32: return BuildIntConvertFloat(input, position, opcode); case wasm::kExprI32AsmjsSConvertF64: return BuildI32AsmjsSConvertF64(input); case wasm::kExprI32AsmjsUConvertF64: return BuildI32AsmjsUConvertF64(input); case wasm::kExprF32ConvertF64: op = m->TruncateFloat64ToFloat32(); break; case wasm::kExprF64SConvertI32: op = m->ChangeInt32ToFloat64(); break; case wasm::kExprF64UConvertI32: op = m->ChangeUint32ToFloat64(); break; case wasm::kExprF32SConvertI32: op = m->RoundInt32ToFloat32(); break; case wasm::kExprF32UConvertI32: op = m->RoundUint32ToFloat32(); break; case wasm::kExprI32AsmjsSConvertF32: return BuildI32AsmjsSConvertF32(input); case wasm::kExprI32AsmjsUConvertF32: return BuildI32AsmjsUConvertF32(input); case wasm::kExprF64ConvertF32: op = m->ChangeFloat32ToFloat64(); break; case wasm::kExprF32ReinterpretI32: op = m->BitcastInt32ToFloat32(); break; case wasm::kExprI32ReinterpretF32: op = m->BitcastFloat32ToInt32(); break; case wasm::kExprI32Clz: op = m->Word32Clz(); break; case wasm::kExprI32Ctz: { if (m->Word32Ctz().IsSupported()) { op = m->Word32Ctz().op(); break; } else if (m->Word32ReverseBits().IsSupported()) { Node* reversed = graph()->NewNode(m->Word32ReverseBits().op(), input); Node* result = graph()->NewNode(m->Word32Clz(), reversed); return result; } else { return BuildI32Ctz(input); } } case wasm::kExprI32Popcnt: { if (m->Word32Popcnt().IsSupported()) { op = m->Word32Popcnt().op(); break; } else { return BuildI32Popcnt(input); } } case wasm::kExprF32Floor: { if (!m->Float32RoundDown().IsSupported()) return BuildF32Floor(input); op = m->Float32RoundDown().op(); break; } case wasm::kExprF32Ceil: { if (!m->Float32RoundUp().IsSupported()) return BuildF32Ceil(input); op = m->Float32RoundUp().op(); break; } case wasm::kExprF32Trunc: { if (!m->Float32RoundTruncate().IsSupported()) return BuildF32Trunc(input); op = m->Float32RoundTruncate().op(); break; } case wasm::kExprF32NearestInt: { if (!m->Float32RoundTiesEven().IsSupported()) return BuildF32NearestInt(input); op = m->Float32RoundTiesEven().op(); break; } case wasm::kExprF64Floor: { if (!m->Float64RoundDown().IsSupported()) return BuildF64Floor(input); op = m->Float64RoundDown().op(); break; } case wasm::kExprF64Ceil: { if (!m->Float64RoundUp().IsSupported()) return BuildF64Ceil(input); op = m->Float64RoundUp().op(); break; } case wasm::kExprF64Trunc: { if (!m->Float64RoundTruncate().IsSupported()) return BuildF64Trunc(input); op = m->Float64RoundTruncate().op(); break; } case wasm::kExprF64NearestInt: { if (!m->Float64RoundTiesEven().IsSupported()) return BuildF64NearestInt(input); op = m->Float64RoundTiesEven().op(); break; } case wasm::kExprF64Acos: { return BuildF64Acos(input); } case wasm::kExprF64Asin: { return BuildF64Asin(input); } case wasm::kExprF64Atan: op = m->Float64Atan(); break; case wasm::kExprF64Cos: { op = m->Float64Cos(); break; } case wasm::kExprF64Sin: { op = m->Float64Sin(); break; } case wasm::kExprF64Tan: { op = m->Float64Tan(); break; } case wasm::kExprF64Exp: { op = m->Float64Exp(); break; } case wasm::kExprF64Log: op = m->Float64Log(); break; case wasm::kExprI32ConvertI64: op = m->TruncateInt64ToInt32(); break; case wasm::kExprI64SConvertI32: op = m->ChangeInt32ToInt64(); break; case wasm::kExprI64UConvertI32: op = m->ChangeUint32ToUint64(); break; case wasm::kExprF64ReinterpretI64: op = m->BitcastInt64ToFloat64(); break; case wasm::kExprI64ReinterpretF64: op = m->BitcastFloat64ToInt64(); break; case wasm::kExprI64Clz: op = m->Word64Clz(); break; case wasm::kExprI64Ctz: { OptionalOperator ctz64 = m->Word64Ctz(); if (ctz64.IsSupported()) { op = ctz64.op(); break; } else if (m->Is32() && m->Word32Ctz().IsSupported()) { op = ctz64.placeholder(); break; } else if (m->Word64ReverseBits().IsSupported()) { Node* reversed = graph()->NewNode(m->Word64ReverseBits().op(), input); Node* result = graph()->NewNode(m->Word64Clz(), reversed); return result; } else { return BuildI64Ctz(input); } } case wasm::kExprI64Popcnt: { OptionalOperator popcnt64 = m->Word64Popcnt(); if (popcnt64.IsSupported()) { op = popcnt64.op(); } else if (m->Is32() && m->Word32Popcnt().IsSupported()) { op = popcnt64.placeholder(); } else { return BuildI64Popcnt(input); } break; } case wasm::kExprI64Eqz: op = m->Word64Equal(); return graph()->NewNode(op, input, mcgraph()->Int64Constant(0)); case wasm::kExprF32SConvertI64: if (m->Is32()) { return BuildF32SConvertI64(input); } op = m->RoundInt64ToFloat32(); break; case wasm::kExprF32UConvertI64: if (m->Is32()) { return BuildF32UConvertI64(input); } op = m->RoundUint64ToFloat32(); break; case wasm::kExprF64SConvertI64: if (m->Is32()) { return BuildF64SConvertI64(input); } op = m->RoundInt64ToFloat64(); break; case wasm::kExprF64UConvertI64: if (m->Is32()) { return BuildF64UConvertI64(input); } op = m->RoundUint64ToFloat64(); break; case wasm::kExprI32SExtendI8: op = m->SignExtendWord8ToInt32(); break; case wasm::kExprI32SExtendI16: op = m->SignExtendWord16ToInt32(); break; case wasm::kExprI64SExtendI8: op = m->SignExtendWord8ToInt64(); break; case wasm::kExprI64SExtendI16: op = m->SignExtendWord16ToInt64(); break; case wasm::kExprI64SExtendI32: op = m->SignExtendWord32ToInt64(); break; case wasm::kExprI64SConvertF32: case wasm::kExprI64UConvertF32: case wasm::kExprI64SConvertF64: case wasm::kExprI64UConvertF64: case wasm::kExprI64SConvertSatF32: case wasm::kExprI64UConvertSatF32: case wasm::kExprI64SConvertSatF64: case wasm::kExprI64UConvertSatF64: return mcgraph()->machine()->Is32() ? BuildCcallConvertFloat(input, position, opcode) : BuildIntConvertFloat(input, position, opcode); case wasm::kExprRefIsNull: return graph()->NewNode(m->WordEqual(), input, RefNull()); case wasm::kExprI32AsmjsLoadMem8S: return BuildAsmjsLoadMem(MachineType::Int8(), input); case wasm::kExprI32AsmjsLoadMem8U: return BuildAsmjsLoadMem(MachineType::Uint8(), input); case wasm::kExprI32AsmjsLoadMem16S: return BuildAsmjsLoadMem(MachineType::Int16(), input); case wasm::kExprI32AsmjsLoadMem16U: return BuildAsmjsLoadMem(MachineType::Uint16(), input); case wasm::kExprI32AsmjsLoadMem: return BuildAsmjsLoadMem(MachineType::Int32(), input); case wasm::kExprF32AsmjsLoadMem: return BuildAsmjsLoadMem(MachineType::Float32(), input); case wasm::kExprF64AsmjsLoadMem: return BuildAsmjsLoadMem(MachineType::Float64(), input); default: FATAL_UNSUPPORTED_OPCODE(opcode); } return graph()->NewNode(op, input); } Node* WasmGraphBuilder::Float32Constant(float value) { return mcgraph()->Float32Constant(value); } Node* WasmGraphBuilder::Float64Constant(double value) { return mcgraph()->Float64Constant(value); } Node* WasmGraphBuilder::Simd128Constant(const uint8_t value[16]) { has_simd_ = true; return graph()->NewNode(mcgraph()->machine()->S128Const(value)); } namespace { Node* Branch(MachineGraph* mcgraph, Node* cond, Node** true_node, Node** false_node, Node* control, BranchHint hint) { DCHECK_NOT_NULL(cond); DCHECK_NOT_NULL(control); Node* branch = mcgraph->graph()->NewNode(mcgraph->common()->Branch(hint), cond, control); *true_node = mcgraph->graph()->NewNode(mcgraph->common()->IfTrue(), branch); *false_node = mcgraph->graph()->NewNode(mcgraph->common()->IfFalse(), branch); return branch; } } // namespace Node* WasmGraphBuilder::BranchNoHint(Node* cond, Node** true_node, Node** false_node) { return Branch(mcgraph(), cond, true_node, false_node, control(), BranchHint::kNone); } Node* WasmGraphBuilder::BranchExpectFalse(Node* cond, Node** true_node, Node** false_node) { return Branch(mcgraph(), cond, true_node, false_node, control(), BranchHint::kFalse); } TrapId WasmGraphBuilder::GetTrapIdForTrap(wasm::TrapReason reason) { // TODO(wasm): "!env_" should not happen when compiling an actual wasm // function. if (!env_ || !env_->runtime_exception_support) { // We use TrapId::kInvalid as a marker to tell the code generator // to generate a call to a testing c-function instead of a runtime // stub. This code should only be called from a cctest. return TrapId::kInvalid; } switch (reason) { #define TRAPREASON_TO_TRAPID(name) \ case wasm::k##name: \ static_assert( \ static_cast<int>(TrapId::k##name) == wasm::WasmCode::kThrowWasm##name, \ "trap id mismatch"); \ return TrapId::k##name; FOREACH_WASM_TRAPREASON(TRAPREASON_TO_TRAPID) #undef TRAPREASON_TO_TRAPID default: UNREACHABLE(); } } Node* WasmGraphBuilder::TrapIfTrue(wasm::TrapReason reason, Node* cond, wasm::WasmCodePosition position) { TrapId trap_id = GetTrapIdForTrap(reason); Node* node = SetControl(graph()->NewNode(mcgraph()->common()->TrapIf(trap_id), cond, effect(), control())); SetSourcePosition(node, position); return node; } Node* WasmGraphBuilder::TrapIfFalse(wasm::TrapReason reason, Node* cond, wasm::WasmCodePosition position) { TrapId trap_id = GetTrapIdForTrap(reason); Node* node = SetControl(graph()->NewNode( mcgraph()->common()->TrapUnless(trap_id), cond, effect(), control())); SetSourcePosition(node, position); return node; } // Add a check that traps if {node} is equal to {val}. Node* WasmGraphBuilder::TrapIfEq32(wasm::TrapReason reason, Node* node, int32_t val, wasm::WasmCodePosition position) { Int32Matcher m(node); if (m.HasResolvedValue() && !m.Is(val)) return graph()->start(); if (val == 0) { return TrapIfFalse(reason, node, position); } else { return TrapIfTrue(reason, graph()->NewNode(mcgraph()->machine()->Word32Equal(), node, mcgraph()->Int32Constant(val)), position); } } // Add a check that traps if {node} is zero. Node* WasmGraphBuilder::ZeroCheck32(wasm::TrapReason reason, Node* node, wasm::WasmCodePosition position) { return TrapIfEq32(reason, node, 0, position); } // Add a check that traps if {node} is equal to {val}. Node* WasmGraphBuilder::TrapIfEq64(wasm::TrapReason reason, Node* node, int64_t val, wasm::WasmCodePosition position) { Int64Matcher m(node); if (m.HasResolvedValue() && !m.Is(val)) return graph()->start(); return TrapIfTrue(reason, graph()->NewNode(mcgraph()->machine()->Word64Equal(), node, mcgraph()->Int64Constant(val)), position); } // Add a check that traps if {node} is zero. Node* WasmGraphBuilder::ZeroCheck64(wasm::TrapReason reason, Node* node, wasm::WasmCodePosition position) { return TrapIfEq64(reason, node, 0, position); } Node* WasmGraphBuilder::Switch(unsigned count, Node* key) { // The instruction selector will use {kArchTableSwitch} for large switches, // which has limited input count, see {InstructionSelector::EmitTableSwitch}. DCHECK_LE(count, Instruction::kMaxInputCount - 2); // value_range + 2 DCHECK_LE(count, wasm::kV8MaxWasmFunctionBrTableSize + 1); // plus IfDefault return graph()->NewNode(mcgraph()->common()->Switch(count), key, control()); } Node* WasmGraphBuilder::IfValue(int32_t value, Node* sw) { DCHECK_EQ(IrOpcode::kSwitch, sw->opcode()); return graph()->NewNode(mcgraph()->common()->IfValue(value), sw); } Node* WasmGraphBuilder::IfDefault(Node* sw) { DCHECK_EQ(IrOpcode::kSwitch, sw->opcode()); return graph()->NewNode(mcgraph()->common()->IfDefault(), sw); } Node* WasmGraphBuilder::Return(Vector<Node*> vals) { unsigned count = static_cast<unsigned>(vals.size()); base::SmallVector<Node*, 8> buf(count + 3); buf[0] = mcgraph()->Int32Constant(0); if (count > 0) { base::Memcpy(buf.data() + 1, vals.begin(), sizeof(void*) * count); } buf[count + 1] = effect(); buf[count + 2] = control(); Node* ret = graph()->NewNode(mcgraph()->common()->Return(count), count + 3, buf.data()); MergeControlToEnd(mcgraph(), ret); return ret; } Node* WasmGraphBuilder::Trap(wasm::TrapReason reason, wasm::WasmCodePosition position) { TrapIfFalse(reason, Int32Constant(0), position); Return(Vector<Node*>{}); return nullptr; } Node* WasmGraphBuilder::MaskShiftCount32(Node* node) { static const int32_t kMask32 = 0x1F; if (!mcgraph()->machine()->Word32ShiftIsSafe()) { // Shifts by constants are so common we pattern-match them here. Int32Matcher match(node); if (match.HasResolvedValue()) { int32_t masked = (match.ResolvedValue() & kMask32); if (match.ResolvedValue() != masked) node = mcgraph()->Int32Constant(masked); } else { node = graph()->NewNode(mcgraph()->machine()->Word32And(), node, mcgraph()->Int32Constant(kMask32)); } } return node; } Node* WasmGraphBuilder::MaskShiftCount64(Node* node) { static const int64_t kMask64 = 0x3F; if (!mcgraph()->machine()->Word32ShiftIsSafe()) { // Shifts by constants are so common we pattern-match them here. Int64Matcher match(node); if (match.HasResolvedValue()) { int64_t masked = (match.ResolvedValue() & kMask64); if (match.ResolvedValue() != masked) node = mcgraph()->Int64Constant(masked); } else { node = graph()->NewNode(mcgraph()->machine()->Word64And(), node, mcgraph()->Int64Constant(kMask64)); } } return node; } namespace { bool ReverseBytesSupported(MachineOperatorBuilder* m, size_t size_in_bytes) { switch (size_in_bytes) { case 4: case 16: return true; case 8: return m->Is64(); default: break; } return false; } } // namespace Node* WasmGraphBuilder::BuildChangeEndiannessStore( Node* node, MachineRepresentation mem_rep, wasm::ValueType wasmtype) { Node* result; Node* value = node; MachineOperatorBuilder* m = mcgraph()->machine(); int valueSizeInBytes = wasmtype.element_size_bytes(); int valueSizeInBits = 8 * valueSizeInBytes; bool isFloat = false; switch (wasmtype.kind()) { case wasm::kF64: value = graph()->NewNode(m->BitcastFloat64ToInt64(), node); isFloat = true; V8_FALLTHROUGH; case wasm::kI64: result = mcgraph()->Int64Constant(0); break; case wasm::kF32: value = graph()->NewNode(m->BitcastFloat32ToInt32(), node); isFloat = true; V8_FALLTHROUGH; case wasm::kI32: result = mcgraph()->Int32Constant(0); break; case wasm::kS128: DCHECK(ReverseBytesSupported(m, valueSizeInBytes)); break; default: UNREACHABLE(); } if (mem_rep == MachineRepresentation::kWord8) { // No need to change endianness for byte size, return original node return node; } if (wasmtype == wasm::kWasmI64 && mem_rep < MachineRepresentation::kWord64) { // In case we store lower part of WasmI64 expression, we can truncate // upper 32bits value = graph()->NewNode(m->TruncateInt64ToInt32(), value); valueSizeInBytes = wasm::kWasmI32.element_size_bytes(); valueSizeInBits = 8 * valueSizeInBytes; if (mem_rep == MachineRepresentation::kWord16) { value = graph()->NewNode(m->Word32Shl(), value, mcgraph()->Int32Constant(16)); } } else if (wasmtype == wasm::kWasmI32 && mem_rep == MachineRepresentation::kWord16) { value = graph()->NewNode(m->Word32Shl(), value, mcgraph()->Int32Constant(16)); } int i; uint32_t shiftCount; if (ReverseBytesSupported(m, valueSizeInBytes)) { switch (valueSizeInBytes) { case 4: result = graph()->NewNode(m->Word32ReverseBytes(), value); break; case 8: result = graph()->NewNode(m->Word64ReverseBytes(), value); break; case 16: result = graph()->NewNode(m->Simd128ReverseBytes(), value); break; default: UNREACHABLE(); break; } } else { for (i = 0, shiftCount = valueSizeInBits - 8; i < valueSizeInBits / 2; i += 8, shiftCount -= 16) { Node* shiftLower; Node* shiftHigher; Node* lowerByte; Node* higherByte; DCHECK_LT(0, shiftCount); DCHECK_EQ(0, (shiftCount + 8) % 16); if (valueSizeInBits > 32) { shiftLower = graph()->NewNode(m->Word64Shl(), value, mcgraph()->Int64Constant(shiftCount)); shiftHigher = graph()->NewNode(m->Word64Shr(), value, mcgraph()->Int64Constant(shiftCount)); lowerByte = graph()->NewNode( m->Word64And(), shiftLower, mcgraph()->Int64Constant(static_cast<uint64_t>(0xFF) << (valueSizeInBits - 8 - i))); higherByte = graph()->NewNode( m->Word64And(), shiftHigher, mcgraph()->Int64Constant(static_cast<uint64_t>(0xFF) << i)); result = graph()->NewNode(m->Word64Or(), result, lowerByte); result = graph()->NewNode(m->Word64Or(), result, higherByte); } else { shiftLower = graph()->NewNode(m->Word32Shl(), value, mcgraph()->Int32Constant(shiftCount)); shiftHigher = graph()->NewNode(m->Word32Shr(), value, mcgraph()->Int32Constant(shiftCount)); lowerByte = graph()->NewNode( m->Word32And(), shiftLower, mcgraph()->Int32Constant(static_cast<uint32_t>(0xFF) << (valueSizeInBits - 8 - i))); higherByte = graph()->NewNode( m->Word32And(), shiftHigher, mcgraph()->Int32Constant(static_cast<uint32_t>(0xFF) << i)); result = graph()->NewNode(m->Word32Or(), result, lowerByte); result = graph()->NewNode(m->Word32Or(), result, higherByte); } } } if (isFloat) { switch (wasmtype.kind()) { case wasm::kF64: result = graph()->NewNode(m->BitcastInt64ToFloat64(), result); break; case wasm::kF32: result = graph()->NewNode(m->BitcastInt32ToFloat32(), result); break; default: UNREACHABLE(); break; } } return result; } Node* WasmGraphBuilder::BuildChangeEndiannessLoad(Node* node, MachineType memtype, wasm::ValueType wasmtype) { Node* result; Node* value = node; MachineOperatorBuilder* m = mcgraph()->machine(); int valueSizeInBytes = ElementSizeInBytes(memtype.representation()); int valueSizeInBits = 8 * valueSizeInBytes; bool isFloat = false; switch (memtype.representation()) { case MachineRepresentation::kFloat64: value = graph()->NewNode(m->BitcastFloat64ToInt64(), node); isFloat = true; V8_FALLTHROUGH; case MachineRepresentation::kWord64: result = mcgraph()->Int64Constant(0); break; case MachineRepresentation::kFloat32: value = graph()->NewNode(m->BitcastFloat32ToInt32(), node); isFloat = true; V8_FALLTHROUGH; case MachineRepresentation::kWord32: case MachineRepresentation::kWord16: result = mcgraph()->Int32Constant(0); break; case MachineRepresentation::kWord8: // No need to change endianness for byte size, return original node return node; break; case MachineRepresentation::kSimd128: DCHECK(ReverseBytesSupported(m, valueSizeInBytes)); break; default: UNREACHABLE(); } int i; uint32_t shiftCount; if (ReverseBytesSupported(m, valueSizeInBytes < 4 ? 4 : valueSizeInBytes)) { switch (valueSizeInBytes) { case 2: result = graph()->NewNode(m->Word32ReverseBytes(), graph()->NewNode(m->Word32Shl(), value, mcgraph()->Int32Constant(16))); break; case 4: result = graph()->NewNode(m->Word32ReverseBytes(), value); break; case 8: result = graph()->NewNode(m->Word64ReverseBytes(), value); break; case 16: result = graph()->NewNode(m->Simd128ReverseBytes(), value); break; default: UNREACHABLE(); } } else { for (i = 0, shiftCount = valueSizeInBits - 8; i < valueSizeInBits / 2; i += 8, shiftCount -= 16) { Node* shiftLower; Node* shiftHigher; Node* lowerByte; Node* higherByte; DCHECK_LT(0, shiftCount); DCHECK_EQ(0, (shiftCount + 8) % 16); if (valueSizeInBits > 32) { shiftLower = graph()->NewNode(m->Word64Shl(), value, mcgraph()->Int64Constant(shiftCount)); shiftHigher = graph()->NewNode(m->Word64Shr(), value, mcgraph()->Int64Constant(shiftCount)); lowerByte = graph()->NewNode( m->Word64And(), shiftLower, mcgraph()->Int64Constant(static_cast<uint64_t>(0xFF) << (valueSizeInBits - 8 - i))); higherByte = graph()->NewNode( m->Word64And(), shiftHigher, mcgraph()->Int64Constant(static_cast<uint64_t>(0xFF) << i)); result = graph()->NewNode(m->Word64Or(), result, lowerByte); result = graph()->NewNode(m->Word64Or(), result, higherByte); } else { shiftLower = graph()->NewNode(m->Word32Shl(), value, mcgraph()->Int32Constant(shiftCount)); shiftHigher = graph()->NewNode(m->Word32Shr(), value, mcgraph()->Int32Constant(shiftCount)); lowerByte = graph()->NewNode( m->Word32And(), shiftLower, mcgraph()->Int32Constant(static_cast<uint32_t>(0xFF) << (valueSizeInBits - 8 - i))); higherByte = graph()->NewNode( m->Word32And(), shiftHigher, mcgraph()->Int32Constant(static_cast<uint32_t>(0xFF) << i)); result = graph()->NewNode(m->Word32Or(), result, lowerByte); result = graph()->NewNode(m->Word32Or(), result, higherByte); } } } if (isFloat) { switch (memtype.representation()) { case MachineRepresentation::kFloat64: result = graph()->NewNode(m->BitcastInt64ToFloat64(), result); break; case MachineRepresentation::kFloat32: result = graph()->NewNode(m->BitcastInt32ToFloat32(), result); break; default: UNREACHABLE(); break; } } // We need to sign extend the value if (memtype.IsSigned()) { DCHECK(!isFloat); if (valueSizeInBits < 32) { Node* shiftBitCount; // Perform sign extension using following trick // result = (x << machine_width - type_width) >> (machine_width - // type_width) if (wasmtype == wasm::kWasmI64) { shiftBitCount = mcgraph()->Int32Constant(64 - valueSizeInBits); result = graph()->NewNode( m->Word64Sar(), graph()->NewNode(m->Word64Shl(), graph()->NewNode(m->ChangeInt32ToInt64(), result), shiftBitCount), shiftBitCount); } else if (wasmtype == wasm::kWasmI32) { shiftBitCount = mcgraph()->Int32Constant(32 - valueSizeInBits); result = graph()->NewNode( m->Word32Sar(), graph()->NewNode(m->Word32Shl(), result, shiftBitCount), shiftBitCount); } } } return result; } Node* WasmGraphBuilder::BuildF32CopySign(Node* left, Node* right) { Node* result = Unop( wasm::kExprF32ReinterpretI32, Binop(wasm::kExprI32Ior, Binop(wasm::kExprI32And, Unop(wasm::kExprI32ReinterpretF32, left), mcgraph()->Int32Constant(0x7FFFFFFF)), Binop(wasm::kExprI32And, Unop(wasm::kExprI32ReinterpretF32, right), mcgraph()->Int32Constant(0x80000000)))); return result; } Node* WasmGraphBuilder::BuildF64CopySign(Node* left, Node* right) { if (mcgraph()->machine()->Is64()) { return gasm_->BitcastInt64ToFloat64(gasm_->Word64Or( gasm_->Word64And(gasm_->BitcastFloat64ToInt64(left), gasm_->Int64Constant(0x7FFFFFFFFFFFFFFF)), gasm_->Word64And(gasm_->BitcastFloat64ToInt64(right), gasm_->Int64Constant(0x8000000000000000)))); } DCHECK(mcgraph()->machine()->Is32()); Node* high_word_left = gasm_->Float64ExtractHighWord32(left); Node* high_word_right = gasm_->Float64ExtractHighWord32(right); Node* new_high_word = gasm_->Word32Or( gasm_->Word32And(high_word_left, gasm_->Int32Constant(0x7FFFFFFF)), gasm_->Word32And(high_word_right, gasm_->Int32Constant(0x80000000))); return gasm_->Float64InsertHighWord32(left, new_high_word); } namespace { MachineType IntConvertType(wasm::WasmOpcode opcode) { switch (opcode) { case wasm::kExprI32SConvertF32: case wasm::kExprI32SConvertF64: case wasm::kExprI32SConvertSatF32: case wasm::kExprI32SConvertSatF64: return MachineType::Int32(); case wasm::kExprI32UConvertF32: case wasm::kExprI32UConvertF64: case wasm::kExprI32UConvertSatF32: case wasm::kExprI32UConvertSatF64: return MachineType::Uint32(); case wasm::kExprI64SConvertF32: case wasm::kExprI64SConvertF64: case wasm::kExprI64SConvertSatF32: case wasm::kExprI64SConvertSatF64: return MachineType::Int64(); case wasm::kExprI64UConvertF32: case wasm::kExprI64UConvertF64: case wasm::kExprI64UConvertSatF32: case wasm::kExprI64UConvertSatF64: return MachineType::Uint64(); default: UNREACHABLE(); } } MachineType FloatConvertType(wasm::WasmOpcode opcode) { switch (opcode) { case wasm::kExprI32SConvertF32: case wasm::kExprI32UConvertF32: case wasm::kExprI32SConvertSatF32: case wasm::kExprI64SConvertF32: case wasm::kExprI64UConvertF32: case wasm::kExprI32UConvertSatF32: case wasm::kExprI64SConvertSatF32: case wasm::kExprI64UConvertSatF32: return MachineType::Float32(); case wasm::kExprI32SConvertF64: case wasm::kExprI32UConvertF64: case wasm::kExprI64SConvertF64: case wasm::kExprI64UConvertF64: case wasm::kExprI32SConvertSatF64: case wasm::kExprI32UConvertSatF64: case wasm::kExprI64SConvertSatF64: case wasm::kExprI64UConvertSatF64: return MachineType::Float64(); default: UNREACHABLE(); } } const Operator* ConvertOp(WasmGraphBuilder* builder, wasm::WasmOpcode opcode) { switch (opcode) { case wasm::kExprI32SConvertF32: return builder->mcgraph()->machine()->TruncateFloat32ToInt32( TruncateKind::kSetOverflowToMin); case wasm::kExprI32SConvertSatF32: return builder->mcgraph()->machine()->TruncateFloat32ToInt32( TruncateKind::kArchitectureDefault); case wasm::kExprI32UConvertF32: return builder->mcgraph()->machine()->TruncateFloat32ToUint32( TruncateKind::kSetOverflowToMin); case wasm::kExprI32UConvertSatF32: return builder->mcgraph()->machine()->TruncateFloat32ToUint32( TruncateKind::kArchitectureDefault); case wasm::kExprI32SConvertF64: case wasm::kExprI32SConvertSatF64: return builder->mcgraph()->machine()->ChangeFloat64ToInt32(); case wasm::kExprI32UConvertF64: case wasm::kExprI32UConvertSatF64: return builder->mcgraph()->machine()->TruncateFloat64ToUint32(); case wasm::kExprI64SConvertF32: case wasm::kExprI64SConvertSatF32: return builder->mcgraph()->machine()->TryTruncateFloat32ToInt64(); case wasm::kExprI64UConvertF32: case wasm::kExprI64UConvertSatF32: return builder->mcgraph()->machine()->TryTruncateFloat32ToUint64(); case wasm::kExprI64SConvertF64: case wasm::kExprI64SConvertSatF64: return builder->mcgraph()->machine()->TryTruncateFloat64ToInt64(); case wasm::kExprI64UConvertF64: case wasm::kExprI64UConvertSatF64: return builder->mcgraph()->machine()->TryTruncateFloat64ToUint64(); default: UNREACHABLE(); } } wasm::WasmOpcode ConvertBackOp(wasm::WasmOpcode opcode) { switch (opcode) { case wasm::kExprI32SConvertF32: case wasm::kExprI32SConvertSatF32: return wasm::kExprF32SConvertI32; case wasm::kExprI32UConvertF32: case wasm::kExprI32UConvertSatF32: return wasm::kExprF32UConvertI32; case wasm::kExprI32SConvertF64: case wasm::kExprI32SConvertSatF64: return wasm::kExprF64SConvertI32; case wasm::kExprI32UConvertF64: case wasm::kExprI32UConvertSatF64: return wasm::kExprF64UConvertI32; default: UNREACHABLE(); } } bool IsTrappingConvertOp(wasm::WasmOpcode opcode) { switch (opcode) { case wasm::kExprI32SConvertF32: case wasm::kExprI32UConvertF32: case wasm::kExprI32SConvertF64: case wasm::kExprI32UConvertF64: case wasm::kExprI64SConvertF32: case wasm::kExprI64UConvertF32: case wasm::kExprI64SConvertF64: case wasm::kExprI64UConvertF64: return true; case wasm::kExprI32SConvertSatF64: case wasm::kExprI32UConvertSatF64: case wasm::kExprI32SConvertSatF32: case wasm::kExprI32UConvertSatF32: case wasm::kExprI64SConvertSatF32: case wasm::kExprI64UConvertSatF32: case wasm::kExprI64SConvertSatF64: case wasm::kExprI64UConvertSatF64: return false; default: UNREACHABLE(); } } Node* Zero(WasmGraphBuilder* builder, const MachineType& ty) { switch (ty.representation()) { case MachineRepresentation::kWord32: return builder->Int32Constant(0); case MachineRepresentation::kWord64: return builder->Int64Constant(0); case MachineRepresentation::kFloat32: return builder->Float32Constant(0.0); case MachineRepresentation::kFloat64: return builder->Float64Constant(0.0); default: UNREACHABLE(); } } Node* Min(WasmGraphBuilder* builder, const MachineType& ty) { switch (ty.semantic()) { case MachineSemantic::kInt32: return builder->Int32Constant(std::numeric_limits<int32_t>::min()); case MachineSemantic::kUint32: return builder->Int32Constant(std::numeric_limits<uint32_t>::min()); case MachineSemantic::kInt64: return builder->Int64Constant(std::numeric_limits<int64_t>::min()); case MachineSemantic::kUint64: return builder->Int64Constant(std::numeric_limits<uint64_t>::min()); default: UNREACHABLE(); } } Node* Max(WasmGraphBuilder* builder, const MachineType& ty) { switch (ty.semantic()) { case MachineSemantic::kInt32: return builder->Int32Constant(std::numeric_limits<int32_t>::max()); case MachineSemantic::kUint32: return builder->Int32Constant(std::numeric_limits<uint32_t>::max()); case MachineSemantic::kInt64: return builder->Int64Constant(std::numeric_limits<int64_t>::max()); case MachineSemantic::kUint64: return builder->Int64Constant(std::numeric_limits<uint64_t>::max()); default: UNREACHABLE(); } } wasm::WasmOpcode TruncOp(const MachineType& ty) { switch (ty.representation()) { case MachineRepresentation::kFloat32: return wasm::kExprF32Trunc; case MachineRepresentation::kFloat64: return wasm::kExprF64Trunc; default: UNREACHABLE(); } } wasm::WasmOpcode NeOp(const MachineType& ty) { switch (ty.representation()) { case MachineRepresentation::kFloat32: return wasm::kExprF32Ne; case MachineRepresentation::kFloat64: return wasm::kExprF64Ne; default: UNREACHABLE(); } } wasm::WasmOpcode LtOp(const MachineType& ty) { switch (ty.representation()) { case MachineRepresentation::kFloat32: return wasm::kExprF32Lt; case MachineRepresentation::kFloat64: return wasm::kExprF64Lt; default: UNREACHABLE(); } } Node* ConvertTrapTest(WasmGraphBuilder* builder, wasm::WasmOpcode opcode, const MachineType& int_ty, const MachineType& float_ty, Node* trunc, Node* converted_value) { if (int_ty.representation() == MachineRepresentation::kWord32) { Node* check = builder->Unop(ConvertBackOp(opcode), converted_value); return builder->Binop(NeOp(float_ty), trunc, check); } return builder->graph()->NewNode(builder->mcgraph()->common()->Projection(1), trunc, builder->graph()->start()); } Node* ConvertSaturateTest(WasmGraphBuilder* builder, wasm::WasmOpcode opcode, const MachineType& int_ty, const MachineType& float_ty, Node* trunc, Node* converted_value) { Node* test = ConvertTrapTest(builder, opcode, int_ty, float_ty, trunc, converted_value); if (int_ty.representation() == MachineRepresentation::kWord64) { test = builder->Binop(wasm::kExprI64Eq, test, builder->Int64Constant(0)); } return test; } } // namespace Node* WasmGraphBuilder::BuildIntConvertFloat(Node* input, wasm::WasmCodePosition position, wasm::WasmOpcode opcode) { const MachineType int_ty = IntConvertType(opcode); const MachineType float_ty = FloatConvertType(opcode); const Operator* conv_op = ConvertOp(this, opcode); Node* trunc = nullptr; Node* converted_value = nullptr; const bool is_int32 = int_ty.representation() == MachineRepresentation::kWord32; if (is_int32) { trunc = Unop(TruncOp(float_ty), input); converted_value = graph()->NewNode(conv_op, trunc); } else { trunc = graph()->NewNode(conv_op, input); converted_value = graph()->NewNode(mcgraph()->common()->Projection(0), trunc, graph()->start()); } if (IsTrappingConvertOp(opcode)) { Node* test = ConvertTrapTest(this, opcode, int_ty, float_ty, trunc, converted_value); if (is_int32) { TrapIfTrue(wasm::kTrapFloatUnrepresentable, test, position); } else { ZeroCheck64(wasm::kTrapFloatUnrepresentable, test, position); } return converted_value; } if (mcgraph()->machine()->SatConversionIsSafe()) { return converted_value; } Node* test = ConvertSaturateTest(this, opcode, int_ty, float_ty, trunc, converted_value); Diamond tl_d(graph(), mcgraph()->common(), test, BranchHint::kFalse); tl_d.Chain(control()); Node* nan_test = Binop(NeOp(float_ty), input, input); Diamond nan_d(graph(), mcgraph()->common(), nan_test, BranchHint::kFalse); nan_d.Nest(tl_d, true); Node* neg_test = Binop(LtOp(float_ty), input, Zero(this, float_ty)); Diamond sat_d(graph(), mcgraph()->common(), neg_test, BranchHint::kNone); sat_d.Nest(nan_d, false); Node* sat_val = sat_d.Phi(int_ty.representation(), Min(this, int_ty), Max(this, int_ty)); Node* nan_val = nan_d.Phi(int_ty.representation(), Zero(this, int_ty), sat_val); return tl_d.Phi(int_ty.representation(), nan_val, converted_value); } Node* WasmGraphBuilder::BuildI32AsmjsSConvertF32(Node* input) { MachineOperatorBuilder* m = mcgraph()->machine(); // asm.js must use the wacky JS semantics. input = graph()->NewNode(m->ChangeFloat32ToFloat64(), input); return graph()->NewNode(m->TruncateFloat64ToWord32(), input); } Node* WasmGraphBuilder::BuildI32AsmjsSConvertF64(Node* input) { MachineOperatorBuilder* m = mcgraph()->machine(); // asm.js must use the wacky JS semantics. return graph()->NewNode(m->TruncateFloat64ToWord32(), input); } Node* WasmGraphBuilder::BuildI32AsmjsUConvertF32(Node* input) { MachineOperatorBuilder* m = mcgraph()->machine(); // asm.js must use the wacky JS semantics. input = graph()->NewNode(m->ChangeFloat32ToFloat64(), input); return graph()->NewNode(m->TruncateFloat64ToWord32(), input); } Node* WasmGraphBuilder::BuildI32AsmjsUConvertF64(Node* input) { MachineOperatorBuilder* m = mcgraph()->machine(); // asm.js must use the wacky JS semantics. return graph()->NewNode(m->TruncateFloat64ToWord32(), input); } Node* WasmGraphBuilder::BuildBitCountingCall(Node* input, ExternalReference ref, MachineRepresentation input_type) { Node* stack_slot_param = StoreArgsInStackSlot({{input_type, input}}); MachineType sig_types[] = {MachineType::Int32(), MachineType::Pointer()}; MachineSignature sig(1, 1, sig_types); Node* function = graph()->NewNode(mcgraph()->common()->ExternalConstant(ref)); return BuildCCall(&sig, function, stack_slot_param); } Node* WasmGraphBuilder::BuildI32Ctz(Node* input) { return BuildBitCountingCall(input, ExternalReference::wasm_word32_ctz(), MachineRepresentation::kWord32); } Node* WasmGraphBuilder::BuildI64Ctz(Node* input) { return Unop(wasm::kExprI64UConvertI32, BuildBitCountingCall(input, ExternalReference::wasm_word64_ctz(), MachineRepresentation::kWord64)); } Node* WasmGraphBuilder::BuildI32Popcnt(Node* input) { return BuildBitCountingCall(input, ExternalReference::wasm_word32_popcnt(), MachineRepresentation::kWord32); } Node* WasmGraphBuilder::BuildI64Popcnt(Node* input) { return Unop( wasm::kExprI64UConvertI32, BuildBitCountingCall(input, ExternalReference::wasm_word64_popcnt(), MachineRepresentation::kWord64)); } Node* WasmGraphBuilder::BuildF32Trunc(Node* input) { MachineType type = MachineType::Float32(); ExternalReference ref = ExternalReference::wasm_f32_trunc(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF32Floor(Node* input) { MachineType type = MachineType::Float32(); ExternalReference ref = ExternalReference::wasm_f32_floor(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF32Ceil(Node* input) { MachineType type = MachineType::Float32(); ExternalReference ref = ExternalReference::wasm_f32_ceil(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF32NearestInt(Node* input) { MachineType type = MachineType::Float32(); ExternalReference ref = ExternalReference::wasm_f32_nearest_int(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF64Trunc(Node* input) { MachineType type = MachineType::Float64(); ExternalReference ref = ExternalReference::wasm_f64_trunc(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF64Floor(Node* input) { MachineType type = MachineType::Float64(); ExternalReference ref = ExternalReference::wasm_f64_floor(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF64Ceil(Node* input) { MachineType type = MachineType::Float64(); ExternalReference ref = ExternalReference::wasm_f64_ceil(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF64NearestInt(Node* input) { MachineType type = MachineType::Float64(); ExternalReference ref = ExternalReference::wasm_f64_nearest_int(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF64Acos(Node* input) { MachineType type = MachineType::Float64(); ExternalReference ref = ExternalReference::f64_acos_wrapper_function(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF64Asin(Node* input) { MachineType type = MachineType::Float64(); ExternalReference ref = ExternalReference::f64_asin_wrapper_function(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF64Pow(Node* left, Node* right) { MachineType type = MachineType::Float64(); ExternalReference ref = ExternalReference::wasm_float64_pow(); return BuildCFuncInstruction(ref, type, left, right); } Node* WasmGraphBuilder::BuildF64Mod(Node* left, Node* right) { MachineType type = MachineType::Float64(); ExternalReference ref = ExternalReference::f64_mod_wrapper_function(); return BuildCFuncInstruction(ref, type, left, right); } Node* WasmGraphBuilder::BuildCFuncInstruction(ExternalReference ref, MachineType type, Node* input0, Node* input1) { // We do truncation by calling a C function which calculates the result. // The input is passed to the C function as a byte buffer holding the two // input doubles. We reserve this byte buffer as a stack slot, store the // parameters in this buffer slots, pass a pointer to the buffer to the C // function, and after calling the C function we collect the return value from // the buffer. Node* stack_slot; if (input1) { stack_slot = StoreArgsInStackSlot( {{type.representation(), input0}, {type.representation(), input1}}); } else { stack_slot = StoreArgsInStackSlot({{type.representation(), input0}}); } MachineType sig_types[] = {MachineType::Pointer()}; MachineSignature sig(0, 1, sig_types); Node* function = graph()->NewNode(mcgraph()->common()->ExternalConstant(ref)); BuildCCall(&sig, function, stack_slot); return SetEffect(graph()->NewNode(mcgraph()->machine()->Load(type), stack_slot, mcgraph()->Int32Constant(0), effect(), control())); } Node* WasmGraphBuilder::BuildF32SConvertI64(Node* input) { // TODO(titzer/bradnelson): Check handlng of asm.js case. return BuildIntToFloatConversionInstruction( input, ExternalReference::wasm_int64_to_float32(), MachineRepresentation::kWord64, MachineType::Float32()); } Node* WasmGraphBuilder::BuildF32UConvertI64(Node* input) { // TODO(titzer/bradnelson): Check handlng of asm.js case. return BuildIntToFloatConversionInstruction( input, ExternalReference::wasm_uint64_to_float32(), MachineRepresentation::kWord64, MachineType::Float32()); } Node* WasmGraphBuilder::BuildF64SConvertI64(Node* input) { return BuildIntToFloatConversionInstruction( input, ExternalReference::wasm_int64_to_float64(), MachineRepresentation::kWord64, MachineType::Float64()); } Node* WasmGraphBuilder::BuildF64UConvertI64(Node* input) { return BuildIntToFloatConversionInstruction( input, ExternalReference::wasm_uint64_to_float64(), MachineRepresentation::kWord64, MachineType::Float64()); } Node* WasmGraphBuilder::BuildIntToFloatConversionInstruction( Node* input, ExternalReference ref, MachineRepresentation parameter_representation, const MachineType result_type) { int stack_slot_size = std::max(ElementSizeInBytes(parameter_representation), ElementSizeInBytes(result_type.representation())); Node* stack_slot = graph()->NewNode(mcgraph()->machine()->StackSlot(stack_slot_size)); const Operator* store_op = mcgraph()->machine()->Store( StoreRepresentation(parameter_representation, kNoWriteBarrier)); SetEffect(graph()->NewNode(store_op, stack_slot, mcgraph()->Int32Constant(0), input, effect(), control())); MachineType sig_types[] = {MachineType::Pointer()}; MachineSignature sig(0, 1, sig_types); Node* function = graph()->NewNode(mcgraph()->common()->ExternalConstant(ref)); BuildCCall(&sig, function, stack_slot); return SetEffect(graph()->NewNode(mcgraph()->machine()->Load(result_type), stack_slot, mcgraph()->Int32Constant(0), effect(), control())); } namespace { ExternalReference convert_ccall_ref(WasmGraphBuilder* builder, wasm::WasmOpcode opcode) { switch (opcode) { case wasm::kExprI64SConvertF32: case wasm::kExprI64SConvertSatF32: return ExternalReference::wasm_float32_to_int64(); case wasm::kExprI64UConvertF32: case wasm::kExprI64UConvertSatF32: return ExternalReference::wasm_float32_to_uint64(); case wasm::kExprI64SConvertF64: case wasm::kExprI64SConvertSatF64: return ExternalReference::wasm_float64_to_int64(); case wasm::kExprI64UConvertF64: case wasm::kExprI64UConvertSatF64: return ExternalReference::wasm_float64_to_uint64(); default: UNREACHABLE(); } } } // namespace Node* WasmGraphBuilder::BuildCcallConvertFloat(Node* input, wasm::WasmCodePosition position, wasm::WasmOpcode opcode) { const MachineType int_ty = IntConvertType(opcode); const MachineType float_ty = FloatConvertType(opcode); ExternalReference call_ref = convert_ccall_ref(this, opcode); int stack_slot_size = std::max(ElementSizeInBytes(int_ty.representation()), ElementSizeInBytes(float_ty.representation())); Node* stack_slot = graph()->NewNode(mcgraph()->machine()->StackSlot(stack_slot_size)); const Operator* store_op = mcgraph()->machine()->Store( StoreRepresentation(float_ty.representation(), kNoWriteBarrier)); SetEffect(graph()->NewNode(store_op, stack_slot, Int32Constant(0), input, effect(), control())); MachineType sig_types[] = {MachineType::Int32(), MachineType::Pointer()}; MachineSignature sig(1, 1, sig_types); Node* function = graph()->NewNode(mcgraph()->common()->ExternalConstant(call_ref)); Node* overflow = BuildCCall(&sig, function, stack_slot); if (IsTrappingConvertOp(opcode)) { ZeroCheck32(wasm::kTrapFloatUnrepresentable, overflow, position); return SetEffect(graph()->NewNode(mcgraph()->machine()->Load(int_ty), stack_slot, Int32Constant(0), effect(), control())); } Node* test = Binop(wasm::kExprI32Eq, overflow, Int32Constant(0), position); Diamond tl_d(graph(), mcgraph()->common(), test, BranchHint::kFalse); tl_d.Chain(control()); Node* nan_test = Binop(NeOp(float_ty), input, input); Diamond nan_d(graph(), mcgraph()->common(), nan_test, BranchHint::kFalse); nan_d.Nest(tl_d, true); Node* neg_test = Binop(LtOp(float_ty), input, Zero(this, float_ty)); Diamond sat_d(graph(), mcgraph()->common(), neg_test, BranchHint::kNone); sat_d.Nest(nan_d, false); Node* sat_val = sat_d.Phi(int_ty.representation(), Min(this, int_ty), Max(this, int_ty)); Node* load = SetEffect(graph()->NewNode(mcgraph()->machine()->Load(int_ty), stack_slot, Int32Constant(0), effect(), control())); Node* nan_val = nan_d.Phi(int_ty.representation(), Zero(this, int_ty), sat_val); return tl_d.Phi(int_ty.representation(), nan_val, load); } Node* WasmGraphBuilder::MemoryGrow(Node* input) { needs_stack_check_ = true; return gasm_->CallRuntimeStub(wasm::WasmCode::kWasmMemoryGrow, input); } Node* WasmGraphBuilder::Throw(uint32_t exception_index, const wasm::WasmException* exception, const Vector<Node*> values, wasm::WasmCodePosition position) { needs_stack_check_ = true; uint32_t encoded_size = WasmExceptionPackage::GetEncodedSize(exception); Node* values_array = gasm_->CallRuntimeStub(wasm::WasmCode::kWasmAllocateFixedArray, gasm_->IntPtrConstant(encoded_size)); SetSourcePosition(values_array, position); uint32_t index = 0; const wasm::WasmExceptionSig* sig = exception->sig; MachineOperatorBuilder* m = mcgraph()->machine(); for (size_t i = 0; i < sig->parameter_count(); ++i) { Node* value = values[i]; switch (sig->GetParam(i).kind()) { case wasm::kF32: value = graph()->NewNode(m->BitcastFloat32ToInt32(), value); V8_FALLTHROUGH; case wasm::kI32: BuildEncodeException32BitValue(values_array, &index, value); break; case wasm::kF64: value = graph()->NewNode(m->BitcastFloat64ToInt64(), value); V8_FALLTHROUGH; case wasm::kI64: { Node* upper32 = graph()->NewNode( m->TruncateInt64ToInt32(), Binop(wasm::kExprI64ShrU, value, Int64Constant(32))); BuildEncodeException32BitValue(values_array, &index, upper32); Node* lower32 = graph()->NewNode(m->TruncateInt64ToInt32(), value); BuildEncodeException32BitValue(values_array, &index, lower32); break; } case wasm::kS128: BuildEncodeException32BitValue( values_array, &index, graph()->NewNode(m->I32x4ExtractLane(0), value)); BuildEncodeException32BitValue( values_array, &index, graph()->NewNode(m->I32x4ExtractLane(1), value)); BuildEncodeException32BitValue( values_array, &index, graph()->NewNode(m->I32x4ExtractLane(2), value)); BuildEncodeException32BitValue( values_array, &index, graph()->NewNode(m->I32x4ExtractLane(3), value)); break; case wasm::kRef: case wasm::kOptRef: STORE_FIXED_ARRAY_SLOT_ANY(values_array, index, value); ++index; break; case wasm::kRtt: // TODO(7748): Implement. case wasm::kRttWithDepth: case wasm::kI8: case wasm::kI16: case wasm::kStmt: case wasm::kBottom: UNREACHABLE(); } } DCHECK_EQ(encoded_size, index); Node* exception_tag = LoadExceptionTagFromTable(exception_index); Node* throw_call = gasm_->CallRuntimeStub(wasm::WasmCode::kWasmThrow, exception_tag, values_array); SetSourcePosition(throw_call, position); return throw_call; } void WasmGraphBuilder::BuildEncodeException32BitValue(Node* values_array, uint32_t* index, Node* value) { MachineOperatorBuilder* machine = mcgraph()->machine(); Node* upper_halfword_as_smi = BuildChangeUint31ToSmi( graph()->NewNode(machine->Word32Shr(), value, Int32Constant(16))); STORE_FIXED_ARRAY_SLOT_SMI(values_array, *index, upper_halfword_as_smi); ++(*index); Node* lower_halfword_as_smi = BuildChangeUint31ToSmi( graph()->NewNode(machine->Word32And(), value, Int32Constant(0xFFFFu))); STORE_FIXED_ARRAY_SLOT_SMI(values_array, *index, lower_halfword_as_smi); ++(*index); } Node* WasmGraphBuilder::BuildDecodeException32BitValue(Node* values_array, uint32_t* index) { MachineOperatorBuilder* machine = mcgraph()->machine(); Node* upper = BuildChangeSmiToInt32(LOAD_FIXED_ARRAY_SLOT_SMI(values_array, *index)); (*index)++; upper = graph()->NewNode(machine->Word32Shl(), upper, Int32Constant(16)); Node* lower = BuildChangeSmiToInt32(LOAD_FIXED_ARRAY_SLOT_SMI(values_array, *index)); (*index)++; Node* value = graph()->NewNode(machine->Word32Or(), upper, lower); return value; } Node* WasmGraphBuilder::BuildDecodeException64BitValue(Node* values_array, uint32_t* index) { Node* upper = Binop(wasm::kExprI64Shl, Unop(wasm::kExprI64UConvertI32, BuildDecodeException32BitValue(values_array, index)), Int64Constant(32)); Node* lower = Unop(wasm::kExprI64UConvertI32, BuildDecodeException32BitValue(values_array, index)); return Binop(wasm::kExprI64Ior, upper, lower); } Node* WasmGraphBuilder::Rethrow(Node* except_obj) { // TODO(v8:8091): Currently the message of the original exception is not being // preserved when rethrown to the console. The pending message will need to be // saved when caught and restored here while being rethrown. return gasm_->CallRuntimeStub(wasm::WasmCode::kWasmRethrow, except_obj); } Node* WasmGraphBuilder::ExceptionTagEqual(Node* caught_tag, Node* expected_tag) { MachineOperatorBuilder* machine = mcgraph()->machine(); return graph()->NewNode(machine->WordEqual(), caught_tag, expected_tag); } Node* WasmGraphBuilder::LoadExceptionTagFromTable(uint32_t exception_index) { Node* exceptions_table = LOAD_INSTANCE_FIELD(ExceptionsTable, MachineType::TaggedPointer()); Node* tag = LOAD_FIXED_ARRAY_SLOT_PTR(exceptions_table, exception_index); return tag; } Node* WasmGraphBuilder::GetExceptionTag(Node* except_obj) { return gasm_->CallBuiltin( Builtins::kWasmGetOwnProperty, except_obj, LOAD_FULL_POINTER( BuildLoadIsolateRoot(), IsolateData::root_slot_offset(RootIndex::kwasm_exception_tag_symbol)), LOAD_INSTANCE_FIELD(NativeContext, MachineType::TaggedPointer())); } Node* WasmGraphBuilder::GetExceptionValues(Node* except_obj, const wasm::WasmException* exception, Vector<Node*> values) { Node* values_array = gasm_->CallBuiltin( Builtins::kWasmGetOwnProperty, except_obj, LOAD_FULL_POINTER(BuildLoadIsolateRoot(), IsolateData::root_slot_offset( RootIndex::kwasm_exception_values_symbol)), LOAD_INSTANCE_FIELD(NativeContext, MachineType::TaggedPointer())); uint32_t index = 0; const wasm::WasmExceptionSig* sig = exception->sig; DCHECK_EQ(sig->parameter_count(), values.size()); for (size_t i = 0; i < sig->parameter_count(); ++i) { Node* value; switch (sig->GetParam(i).kind()) { case wasm::kI32: value = BuildDecodeException32BitValue(values_array, &index); break; case wasm::kI64: value = BuildDecodeException64BitValue(values_array, &index); break; case wasm::kF32: { value = Unop(wasm::kExprF32ReinterpretI32, BuildDecodeException32BitValue(values_array, &index)); break; } case wasm::kF64: { value = Unop(wasm::kExprF64ReinterpretI64, BuildDecodeException64BitValue(values_array, &index)); break; } case wasm::kS128: value = graph()->NewNode( mcgraph()->machine()->I32x4Splat(), BuildDecodeException32BitValue(values_array, &index)); value = graph()->NewNode( mcgraph()->machine()->I32x4ReplaceLane(1), value, BuildDecodeException32BitValue(values_array, &index)); value = graph()->NewNode( mcgraph()->machine()->I32x4ReplaceLane(2), value, BuildDecodeException32BitValue(values_array, &index)); value = graph()->NewNode( mcgraph()->machine()->I32x4ReplaceLane(3), value, BuildDecodeException32BitValue(values_array, &index)); break; case wasm::kRef: case wasm::kOptRef: value = LOAD_FIXED_ARRAY_SLOT_ANY(values_array, index); ++index; break; case wasm::kRtt: // TODO(7748): Implement. case wasm::kRttWithDepth: case wasm::kI8: case wasm::kI16: case wasm::kStmt: case wasm::kBottom: UNREACHABLE(); } values[i] = value; } DCHECK_EQ(index, WasmExceptionPackage::GetEncodedSize(exception)); return values_array; } Node* WasmGraphBuilder::BuildI32DivS(Node* left, Node* right, wasm::WasmCodePosition position) { MachineOperatorBuilder* m = mcgraph()->machine(); ZeroCheck32(wasm::kTrapDivByZero, right, position); Node* before = control(); Node* denom_is_m1; Node* denom_is_not_m1; BranchExpectFalse( graph()->NewNode(m->Word32Equal(), right, mcgraph()->Int32Constant(-1)), &denom_is_m1, &denom_is_not_m1); SetControl(denom_is_m1); TrapIfEq32(wasm::kTrapDivUnrepresentable, left, kMinInt, position); if (control() != denom_is_m1) { SetControl(graph()->NewNode(mcgraph()->common()->Merge(2), denom_is_not_m1, control())); } else { SetControl(before); } return graph()->NewNode(m->Int32Div(), left, right, control()); } Node* WasmGraphBuilder::BuildI32RemS(Node* left, Node* right, wasm::WasmCodePosition position) { MachineOperatorBuilder* m = mcgraph()->machine(); ZeroCheck32(wasm::kTrapRemByZero, right, position); Diamond d( graph(), mcgraph()->common(), graph()->NewNode(m->Word32Equal(), right, mcgraph()->Int32Constant(-1)), BranchHint::kFalse); d.Chain(control()); return d.Phi(MachineRepresentation::kWord32, mcgraph()->Int32Constant(0), graph()->NewNode(m->Int32Mod(), left, right, d.if_false)); } Node* WasmGraphBuilder::BuildI32DivU(Node* left, Node* right, wasm::WasmCodePosition position) { MachineOperatorBuilder* m = mcgraph()->machine(); return graph()->NewNode(m->Uint32Div(), left, right, ZeroCheck32(wasm::kTrapDivByZero, right, position)); } Node* WasmGraphBuilder::BuildI32RemU(Node* left, Node* right, wasm::WasmCodePosition position) { MachineOperatorBuilder* m = mcgraph()->machine(); return graph()->NewNode(m->Uint32Mod(), left, right, ZeroCheck32(wasm::kTrapRemByZero, right, position)); } Node* WasmGraphBuilder::BuildI32AsmjsDivS(Node* left, Node* right) { MachineOperatorBuilder* m = mcgraph()->machine(); Int32Matcher mr(right); if (mr.HasResolvedValue()) { if (mr.ResolvedValue() == 0) { return mcgraph()->Int32Constant(0); } else if (mr.ResolvedValue() == -1) { // The result is the negation of the left input. return graph()->NewNode(m->Int32Sub(), mcgraph()->Int32Constant(0), left); } return graph()->NewNode(m->Int32Div(), left, right, control()); } // asm.js semantics return 0 on divide or mod by zero. if (m->Int32DivIsSafe()) { // The hardware instruction does the right thing (e.g. arm). return graph()->NewNode(m->Int32Div(), left, right, control()); } // Check denominator for zero. Diamond z( graph(), mcgraph()->common(), graph()->NewNode(m->Word32Equal(), right, mcgraph()->Int32Constant(0)), BranchHint::kFalse); z.Chain(control()); // Check denominator for -1. (avoid minint / -1 case). Diamond n( graph(), mcgraph()->common(), graph()->NewNode(m->Word32Equal(), right, mcgraph()->Int32Constant(-1)), BranchHint::kFalse); n.Chain(z.if_false); Node* div = graph()->NewNode(m->Int32Div(), left, right, n.if_false); Node* neg = graph()->NewNode(m->Int32Sub(), mcgraph()->Int32Constant(0), left); return z.Phi(MachineRepresentation::kWord32, mcgraph()->Int32Constant(0), n.Phi(MachineRepresentation::kWord32, neg, div)); } Node* WasmGraphBuilder::BuildI32AsmjsRemS(Node* left, Node* right) { CommonOperatorBuilder* c = mcgraph()->common(); MachineOperatorBuilder* m = mcgraph()->machine(); Node* const zero = mcgraph()->Int32Constant(0); Int32Matcher mr(right); if (mr.HasResolvedValue()) { if (mr.ResolvedValue() == 0 || mr.ResolvedValue() == -1) { return zero; } return graph()->NewNode(m->Int32Mod(), left, right, control()); } // General case for signed integer modulus, with optimization for (unknown) // power of 2 right hand side. // // if 0 < right then // msk = right - 1 // if right & msk != 0 then // left % right // else // if left < 0 then // -(-left & msk) // else // left & msk // else // if right < -1 then // left % right // else // zero // // Note: We do not use the Diamond helper class here, because it really hurts // readability with nested diamonds. Node* const minus_one = mcgraph()->Int32Constant(-1); const Operator* const merge_op = c->Merge(2); const Operator* const phi_op = c->Phi(MachineRepresentation::kWord32, 2); Node* check0 = graph()->NewNode(m->Int32LessThan(), zero, right); Node* branch0 = graph()->NewNode(c->Branch(BranchHint::kTrue), check0, control()); Node* if_true0 = graph()->NewNode(c->IfTrue(), branch0); Node* true0; { Node* msk = graph()->NewNode(m->Int32Add(), right, minus_one); Node* check1 = graph()->NewNode(m->Word32And(), right, msk); Node* branch1 = graph()->NewNode(c->Branch(), check1, if_true0); Node* if_true1 = graph()->NewNode(c->IfTrue(), branch1); Node* true1 = graph()->NewNode(m->Int32Mod(), left, right, if_true1); Node* if_false1 = graph()->NewNode(c->IfFalse(), branch1); Node* false1; { Node* check2 = graph()->NewNode(m->Int32LessThan(), left, zero); Node* branch2 = graph()->NewNode(c->Branch(BranchHint::kFalse), check2, if_false1); Node* if_true2 = graph()->NewNode(c->IfTrue(), branch2); Node* true2 = graph()->NewNode( m->Int32Sub(), zero, graph()->NewNode(m->Word32And(), graph()->NewNode(m->Int32Sub(), zero, left), msk)); Node* if_false2 = graph()->NewNode(c->IfFalse(), branch2); Node* false2 = graph()->NewNode(m->Word32And(), left, msk); if_false1 = graph()->NewNode(merge_op, if_true2, if_false2); false1 = graph()->NewNode(phi_op, true2, false2, if_false1); } if_true0 = graph()->NewNode(merge_op, if_true1, if_false1); true0 = graph()->NewNode(phi_op, true1, false1, if_true0); } Node* if_false0 = graph()->NewNode(c->IfFalse(), branch0); Node* false0; { Node* check1 = graph()->NewNode(m->Int32LessThan(), right, minus_one); Node* branch1 = graph()->NewNode(c->Branch(BranchHint::kTrue), check1, if_false0); Node* if_true1 = graph()->NewNode(c->IfTrue(), branch1); Node* true1 = graph()->NewNode(m->Int32Mod(), left, right, if_true1); Node* if_false1 = graph()->NewNode(c->IfFalse(), branch1); Node* false1 = zero; if_false0 = graph()->NewNode(merge_op, if_true1, if_false1); false0 = graph()->NewNode(phi_op, true1, false1, if_false0); } Node* merge0 = graph()->NewNode(merge_op, if_true0, if_false0); return graph()->NewNode(phi_op, true0, false0, merge0); } Node* WasmGraphBuilder::BuildI32AsmjsDivU(Node* left, Node* right) { MachineOperatorBuilder* m = mcgraph()->machine(); // asm.js semantics return 0 on divide or mod by zero. if (m->Uint32DivIsSafe()) { // The hardware instruction does the right thing (e.g. arm). return graph()->NewNode(m->Uint32Div(), left, right, control()); } // Explicit check for x % 0. Diamond z( graph(), mcgraph()->common(), graph()->NewNode(m->Word32Equal(), right, mcgraph()->Int32Constant(0)), BranchHint::kFalse); z.Chain(control()); return z.Phi(MachineRepresentation::kWord32, mcgraph()->Int32Constant(0), graph()->NewNode(mcgraph()->machine()->Uint32Div(), left, right, z.if_false)); } Node* WasmGraphBuilder::BuildI32AsmjsRemU(Node* left, Node* right) { MachineOperatorBuilder* m = mcgraph()->machine(); // asm.js semantics return 0 on divide or mod by zero. // Explicit check for x % 0. Diamond z( graph(), mcgraph()->common(), graph()->NewNode(m->Word32Equal(), right, mcgraph()->Int32Constant(0)), BranchHint::kFalse); z.Chain(control()); Node* rem = graph()->NewNode(mcgraph()->machine()->Uint32Mod(), left, right, z.if_false); return z.Phi(MachineRepresentation::kWord32, mcgraph()->Int32Constant(0), rem); } Node* WasmGraphBuilder::BuildI64DivS(Node* left, Node* right, wasm::WasmCodePosition position) { if (mcgraph()->machine()->Is32()) { return BuildDiv64Call(left, right, ExternalReference::wasm_int64_div(), MachineType::Int64(), wasm::kTrapDivByZero, position); } ZeroCheck64(wasm::kTrapDivByZero, right, position); Node* before = control(); Node* denom_is_m1; Node* denom_is_not_m1; BranchExpectFalse(graph()->NewNode(mcgraph()->machine()->Word64Equal(), right, mcgraph()->Int64Constant(-1)), &denom_is_m1, &denom_is_not_m1); SetControl(denom_is_m1); TrapIfEq64(wasm::kTrapDivUnrepresentable, left, std::numeric_limits<int64_t>::min(), position); if (control() != denom_is_m1) { SetControl(graph()->NewNode(mcgraph()->common()->Merge(2), denom_is_not_m1, control())); } else { SetControl(before); } return graph()->NewNode(mcgraph()->machine()->Int64Div(), left, right, control()); } Node* WasmGraphBuilder::BuildI64RemS(Node* left, Node* right, wasm::WasmCodePosition position) { if (mcgraph()->machine()->Is32()) { return BuildDiv64Call(left, right, ExternalReference::wasm_int64_mod(), MachineType::Int64(), wasm::kTrapRemByZero, position); } ZeroCheck64(wasm::kTrapRemByZero, right, position); Diamond d(mcgraph()->graph(), mcgraph()->common(), graph()->NewNode(mcgraph()->machine()->Word64Equal(), right, mcgraph()->Int64Constant(-1))); d.Chain(control()); Node* rem = graph()->NewNode(mcgraph()->machine()->Int64Mod(), left, right, d.if_false); return d.Phi(MachineRepresentation::kWord64, mcgraph()->Int64Constant(0), rem); } Node* WasmGraphBuilder::BuildI64DivU(Node* left, Node* right, wasm::WasmCodePosition position) { if (mcgraph()->machine()->Is32()) { return BuildDiv64Call(left, right, ExternalReference::wasm_uint64_div(), MachineType::Int64(), wasm::kTrapDivByZero, position); } return graph()->NewNode(mcgraph()->machine()->Uint64Div(), left, right, ZeroCheck64(wasm::kTrapDivByZero, right, position)); } Node* WasmGraphBuilder::BuildI64RemU(Node* left, Node* right, wasm::WasmCodePosition position) { if (mcgraph()->machine()->Is32()) { return BuildDiv64Call(left, right, ExternalReference::wasm_uint64_mod(), MachineType::Int64(), wasm::kTrapRemByZero, position); } return graph()->NewNode(mcgraph()->machine()->Uint64Mod(), left, right, ZeroCheck64(wasm::kTrapRemByZero, right, position)); } Node* WasmGraphBuilder::BuildDiv64Call(Node* left, Node* right, ExternalReference ref, MachineType result_type, wasm::TrapReason trap_zero, wasm::WasmCodePosition position) { Node* stack_slot = StoreArgsInStackSlot({{MachineRepresentation::kWord64, left}, {MachineRepresentation::kWord64, right}}); MachineType sig_types[] = {MachineType::Int32(), MachineType::Pointer()}; MachineSignature sig(1, 1, sig_types); Node* function = graph()->NewNode(mcgraph()->common()->ExternalConstant(ref)); Node* call = BuildCCall(&sig, function, stack_slot); ZeroCheck32(trap_zero, call, position); TrapIfEq32(wasm::kTrapDivUnrepresentable, call, -1, position); return SetEffect(graph()->NewNode(mcgraph()->machine()->Load(result_type), stack_slot, mcgraph()->Int32Constant(0), effect(), control())); } template <typename... Args> Node* WasmGraphBuilder::BuildCCall(MachineSignature* sig, Node* function, Args... args) { DCHECK_LE(sig->return_count(), 1); DCHECK_EQ(sizeof...(args), sig->parameter_count()); Node* const call_args[] = {function, args..., effect(), control()}; auto call_descriptor = Linkage::GetSimplifiedCDescriptor(mcgraph()->zone(), sig); const Operator* op = mcgraph()->common()->Call(call_descriptor); return SetEffect(graph()->NewNode(op, arraysize(call_args), call_args)); } Node* WasmGraphBuilder::BuildCallNode(const wasm::FunctionSig* sig, Vector<Node*> args, wasm::WasmCodePosition position, Node* instance_node, const Operator* op, Node* frame_state) { if (instance_node == nullptr) { DCHECK_NOT_NULL(instance_node_); instance_node = instance_node_.get(); } needs_stack_check_ = true; const size_t params = sig->parameter_count(); const size_t has_frame_state = frame_state != nullptr ? 1 : 0; const size_t extra = 3; // instance_node, effect, and control. const size_t count = 1 + params + extra + has_frame_state; // Reallocate the buffer to make space for extra inputs. base::SmallVector<Node*, 16 + extra> inputs(count); DCHECK_EQ(1 + params, args.size()); // Make room for the instance_node parameter at index 1, just after code. inputs[0] = args[0]; // code inputs[1] = instance_node; if (params > 0) base::Memcpy(&inputs[2], &args[1], params * sizeof(Node*)); // Add effect and control inputs. if (has_frame_state != 0) inputs[params + 2] = frame_state; inputs[params + has_frame_state + 2] = effect(); inputs[params + has_frame_state + 3] = control(); Node* call = graph()->NewNode(op, static_cast<int>(count), inputs.begin()); // Return calls have no effect output. Other calls are the new effect node. if (op->EffectOutputCount() > 0) SetEffect(call); DCHECK(position == wasm::kNoCodePosition || position > 0); if (position > 0) SetSourcePosition(call, position); return call; } Node* WasmGraphBuilder::BuildWasmCall(const wasm::FunctionSig* sig, Vector<Node*> args, Vector<Node*> rets, wasm::WasmCodePosition position, Node* instance_node, UseRetpoline use_retpoline, Node* frame_state) { CallDescriptor* call_descriptor = GetWasmCallDescriptor(mcgraph()->zone(), sig, use_retpoline, kWasmFunction, frame_state != nullptr); const Operator* op = mcgraph()->common()->Call(call_descriptor); Node* call = BuildCallNode(sig, args, position, instance_node, op, frame_state); SetControl(call); size_t ret_count = sig->return_count(); if (ret_count == 0) return call; // No return value. DCHECK_EQ(ret_count, rets.size()); if (ret_count == 1) { // Only a single return value. rets[0] = call; } else { // Create projections for all return values. for (size_t i = 0; i < ret_count; i++) { rets[i] = graph()->NewNode(mcgraph()->common()->Projection(i), call, graph()->start()); } } return call; } Node* WasmGraphBuilder::BuildWasmReturnCall(const wasm::FunctionSig* sig, Vector<Node*> args, wasm::WasmCodePosition position, Node* instance_node, UseRetpoline use_retpoline) { CallDescriptor* call_descriptor = GetWasmCallDescriptor(mcgraph()->zone(), sig, use_retpoline); const Operator* op = mcgraph()->common()->TailCall(call_descriptor); Node* call = BuildCallNode(sig, args, position, instance_node, op); MergeControlToEnd(mcgraph(), call); return call; } Node* WasmGraphBuilder::BuildImportCall(const wasm::FunctionSig* sig, Vector<Node*> args, Vector<Node*> rets, wasm::WasmCodePosition position, int func_index, IsReturnCall continuation) { // Load the imported function refs array from the instance. Node* imported_function_refs = LOAD_INSTANCE_FIELD(ImportedFunctionRefs, MachineType::TaggedPointer()); Node* ref_node = LOAD_FIXED_ARRAY_SLOT_PTR(imported_function_refs, func_index); // Load the target from the imported_targets array at a known offset. Node* imported_targets = LOAD_INSTANCE_FIELD(ImportedFunctionTargets, MachineType::Pointer()); Node* target_node = SetEffect(graph()->NewNode( mcgraph()->machine()->Load(MachineType::Pointer()), imported_targets, mcgraph()->Int32Constant(func_index * kSystemPointerSize), effect(), control())); args[0] = target_node; const UseRetpoline use_retpoline = untrusted_code_mitigations_ ? kRetpoline : kNoRetpoline; switch (continuation) { case kCallContinues: return BuildWasmCall(sig, args, rets, position, ref_node, use_retpoline); case kReturnCall: DCHECK(rets.empty()); return BuildWasmReturnCall(sig, args, position, ref_node, use_retpoline); } } Node* WasmGraphBuilder::BuildImportCall(const wasm::FunctionSig* sig, Vector<Node*> args, Vector<Node*> rets, wasm::WasmCodePosition position, Node* func_index, IsReturnCall continuation) { // Load the imported function refs array from the instance. Node* imported_function_refs = LOAD_INSTANCE_FIELD(ImportedFunctionRefs, MachineType::TaggedPointer()); // Access fixed array at {header_size - tag + func_index * kTaggedSize}. Node* func_index_intptr = Uint32ToUintptr(func_index); Node* ref_node = gasm_->LoadFixedArrayElement( imported_function_refs, func_index_intptr, MachineType::TaggedPointer()); // Load the target from the imported_targets array at the offset of // {func_index}. Node* func_index_times_pointersize = gasm_->IntMul( func_index_intptr, gasm_->IntPtrConstant(kSystemPointerSize)); Node* imported_targets = LOAD_INSTANCE_FIELD(ImportedFunctionTargets, MachineType::Pointer()); Node* target_node = SetEffect(graph()->NewNode( mcgraph()->machine()->Load(MachineType::Pointer()), imported_targets, func_index_times_pointersize, effect(), control())); args[0] = target_node; const UseRetpoline use_retpoline = untrusted_code_mitigations_ ? kRetpoline : kNoRetpoline; switch (continuation) { case kCallContinues: return BuildWasmCall(sig, args, rets, position, ref_node, use_retpoline); case kReturnCall: DCHECK(rets.empty()); return BuildWasmReturnCall(sig, args, position, ref_node, use_retpoline); } } Node* WasmGraphBuilder::CallDirect(uint32_t index, Vector<Node*> args, Vector<Node*> rets, wasm::WasmCodePosition position) { DCHECK_NULL(args[0]); const wasm::FunctionSig* sig = env_->module->functions[index].sig; if (env_ && index < env_->module->num_imported_functions) { // Call to an imported function. return BuildImportCall(sig, args, rets, position, index, kCallContinues); } // A direct call to a wasm function defined in this module. // Just encode the function index. This will be patched at instantiation. Address code = static_cast<Address>(index); args[0] = mcgraph()->RelocatableIntPtrConstant(code, RelocInfo::WASM_CALL); return BuildWasmCall(sig, args, rets, position, nullptr, kNoRetpoline); } Node* WasmGraphBuilder::CallIndirect(uint32_t table_index, uint32_t sig_index, Vector<Node*> args, Vector<Node*> rets, wasm::WasmCodePosition position) { return BuildIndirectCall(table_index, sig_index, args, rets, position, kCallContinues); } void WasmGraphBuilder::LoadIndirectFunctionTable(uint32_t table_index, Node** ift_size, Node** ift_sig_ids, Node** ift_targets, Node** ift_instances) { if (table_index == 0) { *ift_size = LOAD_INSTANCE_FIELD(IndirectFunctionTableSize, MachineType::Uint32()); *ift_sig_ids = LOAD_INSTANCE_FIELD(IndirectFunctionTableSigIds, MachineType::Pointer()); *ift_targets = LOAD_INSTANCE_FIELD(IndirectFunctionTableTargets, MachineType::Pointer()); *ift_instances = LOAD_INSTANCE_FIELD(IndirectFunctionTableRefs, MachineType::TaggedPointer()); return; } Node* ift_tables = LOAD_INSTANCE_FIELD(IndirectFunctionTables, MachineType::TaggedPointer()); Node* ift_table = LOAD_FIXED_ARRAY_SLOT_ANY(ift_tables, table_index); *ift_size = gasm_->Load( MachineType::Int32(), ift_table, wasm::ObjectAccess::ToTagged(WasmIndirectFunctionTable::kSizeOffset)); *ift_sig_ids = gasm_->Load( MachineType::Pointer(), ift_table, wasm::ObjectAccess::ToTagged(WasmIndirectFunctionTable::kSigIdsOffset)); *ift_targets = gasm_->Load( MachineType::Pointer(), ift_table, wasm::ObjectAccess::ToTagged(WasmIndirectFunctionTable::kTargetsOffset)); *ift_instances = gasm_->Load( MachineType::TaggedPointer(), ift_table, wasm::ObjectAccess::ToTagged(WasmIndirectFunctionTable::kRefsOffset)); } Node* WasmGraphBuilder::BuildIndirectCall(uint32_t table_index, uint32_t sig_index, Vector<Node*> args, Vector<Node*> rets, wasm::WasmCodePosition position, IsReturnCall continuation) { DCHECK_NOT_NULL(args[0]); DCHECK_NOT_NULL(env_); // First we have to load the table. Node* ift_size; Node* ift_sig_ids; Node* ift_targets; Node* ift_instances; LoadIndirectFunctionTable(table_index, &ift_size, &ift_sig_ids, &ift_targets, &ift_instances); const wasm::FunctionSig* sig = env_->module->signature(sig_index); MachineOperatorBuilder* machine = mcgraph()->machine(); Node* key = args[0]; // Bounds check against the table size. Node* in_bounds = graph()->NewNode(machine->Uint32LessThan(), key, ift_size); TrapIfFalse(wasm::kTrapTableOutOfBounds, in_bounds, position); // Mask the key to prevent SSCA. if (untrusted_code_mitigations_) { // mask = ((key - size) & ~key) >> 31 Node* neg_key = graph()->NewNode(machine->Word32Xor(), key, Int32Constant(-1)); Node* masked_diff = graph()->NewNode( machine->Word32And(), graph()->NewNode(machine->Int32Sub(), key, ift_size), neg_key); Node* mask = graph()->NewNode(machine->Word32Sar(), masked_diff, Int32Constant(31)); key = graph()->NewNode(machine->Word32And(), key, mask); } Node* int32_scaled_key = Uint32ToUintptr( graph()->NewNode(machine->Word32Shl(), key, Int32Constant(2))); Node* loaded_sig = SetEffect( graph()->NewNode(machine->Load(MachineType::Int32()), ift_sig_ids, int32_scaled_key, effect(), control())); // Check that the dynamic type of the function is a subtype of its static // (table) type. Currently, the only subtyping between function types is // $t <: funcref for all $t: function_type. // TODO(7748): Expand this with function subtyping. const bool needs_typechecking = env_->module->tables[table_index].type == wasm::kWasmFuncRef; if (needs_typechecking) { int32_t expected_sig_id = env_->module->canonicalized_type_ids[sig_index]; Node* sig_match = graph()->NewNode(machine->Word32Equal(), loaded_sig, Int32Constant(expected_sig_id)); TrapIfFalse(wasm::kTrapFuncSigMismatch, sig_match, position); } else { // We still have to check that the entry is initialized. // TODO(9495): Skip this check for non-nullable tables when they are // allowed. Node* function_is_null = graph()->NewNode(machine->Word32Equal(), loaded_sig, Int32Constant(-1)); TrapIfTrue(wasm::kTrapNullDereference, function_is_null, position); } Node* key_intptr = Uint32ToUintptr(key); Node* target_instance = gasm_->LoadFixedArrayElement( ift_instances, key_intptr, MachineType::TaggedPointer()); Node* intptr_scaled_key = gasm_->IntMul(key_intptr, gasm_->IntPtrConstant(kSystemPointerSize)); Node* target = SetEffect( graph()->NewNode(machine->Load(MachineType::Pointer()), ift_targets, intptr_scaled_key, effect(), control())); args[0] = target; const UseRetpoline use_retpoline = untrusted_code_mitigations_ ? kRetpoline : kNoRetpoline; switch (continuation) { case kCallContinues: return BuildWasmCall(sig, args, rets, position, target_instance, use_retpoline); case kReturnCall: return BuildWasmReturnCall(sig, args, position, target_instance, use_retpoline); } } Node* WasmGraphBuilder::BuildLoadJumpTableOffsetFromExportedFunctionData( Node* function_data) { Node* jump_table_offset_smi = gasm_->Load(MachineType::TaggedSigned(), function_data, wasm::ObjectAccess::ToTagged( WasmExportedFunctionData::kJumpTableOffsetOffset)); return BuildChangeSmiToIntPtr(jump_table_offset_smi); } // TODO(9495): Support CAPI function refs. Node* WasmGraphBuilder::BuildCallRef(uint32_t sig_index, Vector<Node*> args, Vector<Node*> rets, CheckForNull null_check, IsReturnCall continuation, wasm::WasmCodePosition position) { if (null_check == kWithNullCheck) { TrapIfTrue(wasm::kTrapNullDereference, gasm_->WordEqual(args[0], RefNull()), position); } const wasm::FunctionSig* sig = env_->module->signature(sig_index); Node* function_data = gasm_->LoadFunctionDataFromJSFunction(args[0]); Node* is_js_function = gasm_->HasInstanceType(function_data, WASM_JS_FUNCTION_DATA_TYPE); auto js_label = gasm_->MakeLabel(); auto end_label = gasm_->MakeLabel(MachineRepresentation::kTaggedPointer, MachineRepresentation::kTaggedPointer); gasm_->GotoIf(is_js_function, &js_label); { // Call to a WasmExportedFunction. // Load instance object corresponding to module where callee is defined. Node* callee_instance = gasm_->LoadExportedFunctionInstance(function_data); Node* function_index = gasm_->LoadExportedFunctionIndexAsSmi(function_data); auto imported_label = gasm_->MakeLabel(); // Check if callee is a locally defined or imported function it its module. Node* imported_function_refs = gasm_->Load(MachineType::TaggedPointer(), callee_instance, wasm::ObjectAccess::ToTagged( WasmInstanceObject::kImportedFunctionRefsOffset)); Node* imported_functions_num = gasm_->LoadFixedArrayLengthAsSmi(imported_function_refs); gasm_->GotoIf(gasm_->SmiLessThan(function_index, imported_functions_num), &imported_label); { // Function locally defined in module. Node* jump_table_start = gasm_->Load(MachineType::Pointer(), callee_instance, wasm::ObjectAccess::ToTagged( WasmInstanceObject::kJumpTableStartOffset)); Node* jump_table_offset = BuildLoadJumpTableOffsetFromExportedFunctionData(function_data); Node* jump_table_slot = gasm_->IntAdd(jump_table_start, jump_table_offset); gasm_->Goto(&end_label, jump_table_slot, callee_instance /* Unused, dummy value */); } { // Function imported to module. gasm_->Bind(&imported_label); Node* function_index_intptr = BuildChangeSmiToIntPtr(function_index); Node* imported_instance = gasm_->LoadFixedArrayElement( imported_function_refs, function_index_intptr, MachineType::TaggedPointer()); Node* imported_function_targets = gasm_->Load(MachineType::Pointer(), callee_instance, wasm::ObjectAccess::ToTagged( WasmInstanceObject::kImportedFunctionTargetsOffset)); Node* target_node = gasm_->Load(MachineType::Pointer(), imported_function_targets, gasm_->IntMul(function_index_intptr, gasm_->IntPtrConstant(kSystemPointerSize))); gasm_->Goto(&end_label, target_node, imported_instance); } } { // Call to a WasmJSFunction. The call target is // function_data->wasm_to_js_wrapper_code()->instruction_start(). // The instance_node is the pair // (current WasmInstanceObject, function_data->callable()). gasm_->Bind(&js_label); Node* wrapper_code = gasm_->Load(MachineType::TaggedPointer(), function_data, wasm::ObjectAccess::ToTagged( WasmJSFunctionData::kWasmToJsWrapperCodeOffset)); Node* call_target = gasm_->IntAdd( wrapper_code, gasm_->IntPtrConstant(wasm::ObjectAccess::ToTagged(Code::kHeaderSize))); Node* callable = gasm_->Load( MachineType::TaggedPointer(), function_data, wasm::ObjectAccess::ToTagged(WasmJSFunctionData::kCallableOffset)); // TODO(manoskouk): Find an elegant way to avoid allocating this pair for // every call. Node* function_instance_node = gasm_->CallBuiltin( Builtins::kWasmAllocatePair, instance_node_.get(), callable); gasm_->Goto(&end_label, call_target, function_instance_node); } gasm_->Bind(&end_label); args[0] = end_label.PhiAt(0); Node* instance_node = end_label.PhiAt(1); const UseRetpoline use_retpoline = untrusted_code_mitigations_ ? kRetpoline : kNoRetpoline; Node* call = continuation == kCallContinues ? BuildWasmCall(sig, args, rets, position, instance_node, use_retpoline) : BuildWasmReturnCall(sig, args, position, instance_node, use_retpoline); return call; } Node* WasmGraphBuilder::CallRef(uint32_t sig_index, Vector<Node*> args, Vector<Node*> rets, WasmGraphBuilder::CheckForNull null_check, wasm::WasmCodePosition position) { return BuildCallRef(sig_index, args, rets, null_check, IsReturnCall::kCallContinues, position); } Node* WasmGraphBuilder::ReturnCallRef(uint32_t sig_index, Vector<Node*> args, WasmGraphBuilder::CheckForNull null_check, wasm::WasmCodePosition position) { return BuildCallRef(sig_index, args, {}, null_check, IsReturnCall::kReturnCall, position); } Node* WasmGraphBuilder::ReturnCall(uint32_t index, Vector<Node*> args, wasm::WasmCodePosition position) { DCHECK_NULL(args[0]); const wasm::FunctionSig* sig = env_->module->functions[index].sig; if (env_ && index < env_->module->num_imported_functions) { // Return Call to an imported function. return BuildImportCall(sig, args, {}, position, index, kReturnCall); } // A direct tail call to a wasm function defined in this module. // Just encode the function index. This will be patched during code // generation. Address code = static_cast<Address>(index); args[0] = mcgraph()->RelocatableIntPtrConstant(code, RelocInfo::WASM_CALL); return BuildWasmReturnCall(sig, args, position, nullptr, kNoRetpoline); } Node* WasmGraphBuilder::ReturnCallIndirect(uint32_t table_index, uint32_t sig_index, Vector<Node*> args, wasm::WasmCodePosition position) { return BuildIndirectCall(table_index, sig_index, args, {}, position, kReturnCall); } Node* WasmGraphBuilder::BrOnNull(Node* ref_object, Node** null_node, Node** non_null_node) { BranchExpectFalse(gasm_->WordEqual(ref_object, RefNull()), null_node, non_null_node); // Return value is not used, but we need it for compatibility // with graph-builder-interface. return nullptr; } Node* WasmGraphBuilder::BuildI32Rol(Node* left, Node* right) { // Implement Rol by Ror since TurboFan does not have Rol opcode. // TODO(weiliang): support Word32Rol opcode in TurboFan. Int32Matcher m(right); if (m.HasResolvedValue()) { return Binop(wasm::kExprI32Ror, left, mcgraph()->Int32Constant(32 - (m.ResolvedValue() & 0x1F))); } else { return Binop(wasm::kExprI32Ror, left, Binop(wasm::kExprI32Sub, mcgraph()->Int32Constant(32), right)); } } Node* WasmGraphBuilder::BuildI64Rol(Node* left, Node* right) { // Implement Rol by Ror since TurboFan does not have Rol opcode. // TODO(weiliang): support Word64Rol opcode in TurboFan. Int64Matcher m(right); Node* inv_right = m.HasResolvedValue() ? mcgraph()->Int64Constant(64 - (m.ResolvedValue() & 0x3F)) : Binop(wasm::kExprI64Sub, mcgraph()->Int64Constant(64), right); return Binop(wasm::kExprI64Ror, left, inv_right); } Node* WasmGraphBuilder::Invert(Node* node) { return Unop(wasm::kExprI32Eqz, node); } Node* WasmGraphBuilder::BuildTruncateIntPtrToInt32(Node* value) { return mcgraph()->machine()->Is64() ? gasm_->TruncateInt64ToInt32(value) : value; } Node* WasmGraphBuilder::BuildChangeInt32ToIntPtr(Node* value) { return mcgraph()->machine()->Is64() ? gasm_->ChangeInt32ToInt64(value) : value; } Node* WasmGraphBuilder::BuildChangeIntPtrToInt64(Node* value) { return mcgraph()->machine()->Is32() ? gasm_->ChangeInt32ToInt64(value) : value; } Node* WasmGraphBuilder::BuildChangeInt32ToSmi(Node* value) { // With pointer compression, only the lower 32 bits are used. return COMPRESS_POINTERS_BOOL ? gasm_->Word32Shl(value, BuildSmiShiftBitsConstant32()) : gasm_->WordShl(BuildChangeInt32ToIntPtr(value), BuildSmiShiftBitsConstant()); } Node* WasmGraphBuilder::BuildChangeUint31ToSmi(Node* value) { return COMPRESS_POINTERS_BOOL ? gasm_->Word32Shl(value, BuildSmiShiftBitsConstant32()) : graph()->NewNode(mcgraph()->machine()->WordShl(), Uint32ToUintptr(value), BuildSmiShiftBitsConstant()); } Node* WasmGraphBuilder::BuildSmiShiftBitsConstant() { return gasm_->IntPtrConstant(kSmiShiftSize + kSmiTagSize); } Node* WasmGraphBuilder::BuildSmiShiftBitsConstant32() { return gasm_->Int32Constant(kSmiShiftSize + kSmiTagSize); } Node* WasmGraphBuilder::BuildChangeSmiToInt32(Node* value) { return COMPRESS_POINTERS_BOOL ? gasm_->Word32Sar(gasm_->TruncateInt64ToInt32(value), BuildSmiShiftBitsConstant32()) : BuildTruncateIntPtrToInt32(BuildChangeSmiToIntPtr(value)); } Node* WasmGraphBuilder::BuildChangeSmiToIntPtr(Node* value) { if (COMPRESS_POINTERS_BOOL) { value = BuildChangeSmiToInt32(value); return BuildChangeInt32ToIntPtr(value); } return graph()->NewNode(mcgraph()->machine()->WordSar(), value, BuildSmiShiftBitsConstant()); } Node* WasmGraphBuilder::BuildConvertUint32ToSmiWithSaturation(Node* value, uint32_t maxval) { DCHECK(Smi::IsValid(maxval)); Node* max = mcgraph()->Uint32Constant(maxval); Node* check = graph()->NewNode(mcgraph()->machine()->Uint32LessThanOrEqual(), value, max); Node* valsmi = BuildChangeUint31ToSmi(value); Node* maxsmi = graph()->NewNode(mcgraph()->common()->NumberConstant(maxval)); Diamond d(graph(), mcgraph()->common(), check, BranchHint::kTrue); d.Chain(control()); return d.Phi(MachineRepresentation::kTagged, valsmi, maxsmi); } void WasmGraphBuilder::InitInstanceCache( WasmInstanceCacheNodes* instance_cache) { DCHECK_NOT_NULL(instance_node_); // Load the memory start. instance_cache->mem_start = LOAD_INSTANCE_FIELD(MemoryStart, MachineType::UintPtr()); // Load the memory size. instance_cache->mem_size = LOAD_INSTANCE_FIELD(MemorySize, MachineType::UintPtr()); if (untrusted_code_mitigations_) { // Load the memory mask. instance_cache->mem_mask = LOAD_INSTANCE_FIELD(MemoryMask, MachineType::UintPtr()); } else { // Explicitly set to nullptr to ensure a SEGV when we try to use it. instance_cache->mem_mask = nullptr; } } void WasmGraphBuilder::PrepareInstanceCacheForLoop( WasmInstanceCacheNodes* instance_cache, Node* control) { #define INTRODUCE_PHI(field, rep) \ instance_cache->field = graph()->NewNode(mcgraph()->common()->Phi(rep, 1), \ instance_cache->field, control); INTRODUCE_PHI(mem_start, MachineType::PointerRepresentation()); INTRODUCE_PHI(mem_size, MachineType::PointerRepresentation()); if (untrusted_code_mitigations_) { INTRODUCE_PHI(mem_mask, MachineType::PointerRepresentation()); } #undef INTRODUCE_PHI } void WasmGraphBuilder::NewInstanceCacheMerge(WasmInstanceCacheNodes* to, WasmInstanceCacheNodes* from, Node* merge) { #define INTRODUCE_PHI(field, rep) \ if (to->field != from->field) { \ Node* vals[] = {to->field, from->field, merge}; \ to->field = graph()->NewNode(mcgraph()->common()->Phi(rep, 2), 3, vals); \ } INTRODUCE_PHI(mem_start, MachineType::PointerRepresentation()); INTRODUCE_PHI(mem_size, MachineRepresentation::kWord32); if (untrusted_code_mitigations_) { INTRODUCE_PHI(mem_mask, MachineRepresentation::kWord32); } #undef INTRODUCE_PHI } void WasmGraphBuilder::MergeInstanceCacheInto(WasmInstanceCacheNodes* to, WasmInstanceCacheNodes* from, Node* merge) { to->mem_size = CreateOrMergeIntoPhi(MachineType::PointerRepresentation(), merge, to->mem_size, from->mem_size); to->mem_start = CreateOrMergeIntoPhi(MachineType::PointerRepresentation(), merge, to->mem_start, from->mem_start); if (untrusted_code_mitigations_) { to->mem_mask = CreateOrMergeIntoPhi(MachineType::PointerRepresentation(), merge, to->mem_mask, from->mem_mask); } } Node* WasmGraphBuilder::CreateOrMergeIntoPhi(MachineRepresentation rep, Node* merge, Node* tnode, Node* fnode) { if (IsPhiWithMerge(tnode, merge)) { AppendToPhi(tnode, fnode); } else if (tnode != fnode) { // Note that it is not safe to use {Buffer} here since this method is used // via {CheckForException} while the {Buffer} is in use by another method. uint32_t count = merge->InputCount(); // + 1 for the merge node. base::SmallVector<Node*, 9> inputs(count + 1); for (uint32_t j = 0; j < count - 1; j++) inputs[j] = tnode; inputs[count - 1] = fnode; inputs[count] = merge; tnode = graph()->NewNode(mcgraph()->common()->Phi(rep, count), count + 1, inputs.begin()); } return tnode; } Node* WasmGraphBuilder::CreateOrMergeIntoEffectPhi(Node* merge, Node* tnode, Node* fnode) { if (IsPhiWithMerge(tnode, merge)) { AppendToPhi(tnode, fnode); } else if (tnode != fnode) { // Note that it is not safe to use {Buffer} here since this method is used // via {CheckForException} while the {Buffer} is in use by another method. uint32_t count = merge->InputCount(); // + 1 for the merge node. base::SmallVector<Node*, 9> inputs(count + 1); for (uint32_t j = 0; j < count - 1; j++) { inputs[j] = tnode; } inputs[count - 1] = fnode; inputs[count] = merge; tnode = graph()->NewNode(mcgraph()->common()->EffectPhi(count), count + 1, inputs.begin()); } return tnode; } Node* WasmGraphBuilder::effect() { return gasm_->effect(); } Node* WasmGraphBuilder::control() { return gasm_->control(); } Node* WasmGraphBuilder::SetEffect(Node* node) { SetEffectControl(node, control()); return node; } Node* WasmGraphBuilder::SetControl(Node* node) { SetEffectControl(effect(), node); return node; } void WasmGraphBuilder::SetEffectControl(Node* effect, Node* control) { gasm_->InitializeEffectControl(effect, control); } Node* WasmGraphBuilder::GetImportedMutableGlobals() { if (imported_mutable_globals_ == nullptr) { // Load imported_mutable_globals_ from the instance object at runtime. imported_mutable_globals_ = LOAD_INSTANCE_FIELD(ImportedMutableGlobals, MachineType::UintPtr()); } return imported_mutable_globals_.get(); } void WasmGraphBuilder::GetGlobalBaseAndOffset(MachineType mem_type, const wasm::WasmGlobal& global, Node** base_node, Node** offset_node) { DCHECK_NOT_NULL(instance_node_); if (global.mutability && global.imported) { *base_node = SetEffect(graph()->NewNode( mcgraph()->machine()->Load(MachineType::UintPtr()), GetImportedMutableGlobals(), mcgraph()->Int32Constant(global.index * sizeof(Address)), effect(), control())); *offset_node = mcgraph()->Int32Constant(0); } else { if (globals_start_ == nullptr) { // Load globals_start from the instance object at runtime. // TODO(wasm): we currently generate only one load of the {globals_start} // start per graph, which means it can be placed anywhere by the // scheduler. This is legal because the globals_start should never change. // However, in some cases (e.g. if the instance object is already in a // register), it is slightly more efficient to reload this value from the // instance object. Since this depends on register allocation, it is not // possible to express in the graph, and would essentially constitute a // "mem2reg" optimization in TurboFan. globals_start_ = graph()->NewNode( mcgraph()->machine()->Load(MachineType::UintPtr()), instance_node_.get(), mcgraph()->Int32Constant(WASM_INSTANCE_OBJECT_OFFSET(GlobalsStart)), graph()->start(), graph()->start()); } *base_node = globals_start_.get(); *offset_node = mcgraph()->Int32Constant(global.offset); if (mem_type == MachineType::Simd128() && global.offset != 0) { // TODO(titzer,bbudge): code generation for SIMD memory offsets is broken. *base_node = graph()->NewNode(mcgraph()->machine()->IntAdd(), *base_node, *offset_node); *offset_node = mcgraph()->Int32Constant(0); } } } void WasmGraphBuilder::GetBaseAndOffsetForImportedMutableExternRefGlobal( const wasm::WasmGlobal& global, Node** base, Node** offset) { // Load the base from the ImportedMutableGlobalsBuffer of the instance. Node* buffers = LOAD_INSTANCE_FIELD(ImportedMutableGlobalsBuffers, MachineType::TaggedPointer()); *base = LOAD_FIXED_ARRAY_SLOT_ANY(buffers, global.index); // For the offset we need the index of the global in the buffer, and then // calculate the actual offset from the index. Load the index from the // ImportedMutableGlobals array of the instance. Node* index = SetEffect( graph()->NewNode(mcgraph()->machine()->Load(MachineType::UintPtr()), GetImportedMutableGlobals(), mcgraph()->Int32Constant(global.index * sizeof(Address)), effect(), control())); // From the index, calculate the actual offset in the FixedArray. This // is kHeaderSize + (index * kTaggedSize). kHeaderSize can be acquired with // wasm::ObjectAccess::ElementOffsetInTaggedFixedArray(0). Node* index_times_tagged_size = graph()->NewNode(mcgraph()->machine()->IntMul(), Uint32ToUintptr(index), mcgraph()->Int32Constant(kTaggedSize)); *offset = graph()->NewNode( mcgraph()->machine()->IntAdd(), index_times_tagged_size, mcgraph()->IntPtrConstant( wasm::ObjectAccess::ElementOffsetInTaggedFixedArray(0))); } Node* WasmGraphBuilder::MemBuffer(uintptr_t offset) { DCHECK_NOT_NULL(instance_cache_); Node* mem_start = instance_cache_->mem_start; DCHECK_NOT_NULL(mem_start); if (offset == 0) return mem_start; return gasm_->IntAdd(mem_start, gasm_->UintPtrConstant(offset)); } Node* WasmGraphBuilder::CurrentMemoryPages() { // CurrentMemoryPages can not be called from asm.js. DCHECK_EQ(wasm::kWasmOrigin, env_->module->origin); DCHECK_NOT_NULL(instance_cache_); Node* mem_size = instance_cache_->mem_size; DCHECK_NOT_NULL(mem_size); Node* result = gasm_->WordShr(mem_size, gasm_->Int32Constant(wasm::kWasmPageSizeLog2)); result = env_->module->is_memory64 ? BuildChangeIntPtrToInt64(result) : BuildTruncateIntPtrToInt32(result); return result; } // Only call this function for code which is not reused across instantiations, // as we do not patch the embedded js_context. Node* WasmGraphBuilder::BuildCallToRuntimeWithContext(Runtime::FunctionId f, Node* js_context, Node** parameters, int parameter_count) { const Runtime::Function* fun = Runtime::FunctionForId(f); auto call_descriptor = Linkage::GetRuntimeCallDescriptor( mcgraph()->zone(), f, fun->nargs, Operator::kNoProperties, CallDescriptor::kNoFlags); // The CEntryStub is loaded from the IsolateRoot so that generated code is // Isolate independent. At the moment this is only done for CEntryStub(1). Node* isolate_root = BuildLoadIsolateRoot(); DCHECK_EQ(1, fun->result_size); auto centry_id = Builtins::kCEntry_Return1_DontSaveFPRegs_ArgvOnStack_NoBuiltinExit; Node* centry_stub = LOAD_FULL_POINTER( isolate_root, IsolateData::builtin_slot_offset(centry_id)); // TODO(titzer): allow arbitrary number of runtime arguments // At the moment we only allow 5 parameters. If more parameters are needed, // increase this constant accordingly. static const int kMaxParams = 5; DCHECK_GE(kMaxParams, parameter_count); Node* inputs[kMaxParams + 6]; int count = 0; inputs[count++] = centry_stub; for (int i = 0; i < parameter_count; i++) { inputs[count++] = parameters[i]; } inputs[count++] = mcgraph()->ExternalConstant(ExternalReference::Create(f)); // ref inputs[count++] = mcgraph()->Int32Constant(fun->nargs); // arity inputs[count++] = js_context; // js_context inputs[count++] = effect(); inputs[count++] = control(); Node* call = mcgraph()->graph()->NewNode( mcgraph()->common()->Call(call_descriptor), count, inputs); SetEffect(call); return call; } Node* WasmGraphBuilder::BuildCallToRuntime(Runtime::FunctionId f, Node** parameters, int parameter_count) { return BuildCallToRuntimeWithContext(f, NoContextConstant(), parameters, parameter_count); } Node* WasmGraphBuilder::GlobalGet(uint32_t index) { const wasm::WasmGlobal& global = env_->module->globals[index]; if (global.type.is_reference_type()) { if (global.mutability && global.imported) { Node* base = nullptr; Node* offset = nullptr; GetBaseAndOffsetForImportedMutableExternRefGlobal(global, &base, &offset); return gasm_->Load(MachineType::AnyTagged(), base, offset); } Node* globals_buffer = LOAD_INSTANCE_FIELD(TaggedGlobalsBuffer, MachineType::TaggedPointer()); return LOAD_FIXED_ARRAY_SLOT_ANY(globals_buffer, global.offset); } MachineType mem_type = global.type.machine_type(); if (mem_type.representation() == MachineRepresentation::kSimd128) { has_simd_ = true; } Node* base = nullptr; Node* offset = nullptr; GetGlobalBaseAndOffset(mem_type, global, &base, &offset); Node* result = SetEffect(graph()->NewNode( mcgraph()->machine()->Load(mem_type), base, offset, effect(), control())); #if defined(V8_TARGET_BIG_ENDIAN) result = BuildChangeEndiannessLoad(result, mem_type, global.type); #endif return result; } Node* WasmGraphBuilder::GlobalSet(uint32_t index, Node* val) { const wasm::WasmGlobal& global = env_->module->globals[index]; if (global.type.is_reference_type()) { if (global.mutability && global.imported) { Node* base = nullptr; Node* offset = nullptr; GetBaseAndOffsetForImportedMutableExternRefGlobal(global, &base, &offset); return STORE_RAW_NODE_OFFSET( base, offset, val, MachineRepresentation::kTagged, kFullWriteBarrier); } Node* globals_buffer = LOAD_INSTANCE_FIELD(TaggedGlobalsBuffer, MachineType::TaggedPointer()); return STORE_FIXED_ARRAY_SLOT_ANY(globals_buffer, global.offset, val); } MachineType mem_type = global.type.machine_type(); if (mem_type.representation() == MachineRepresentation::kSimd128) { has_simd_ = true; } Node* base = nullptr; Node* offset = nullptr; GetGlobalBaseAndOffset(mem_type, global, &base, &offset); const Operator* op = mcgraph()->machine()->Store( StoreRepresentation(mem_type.representation(), kNoWriteBarrier)); #if defined(V8_TARGET_BIG_ENDIAN) val = BuildChangeEndiannessStore(val, mem_type.representation(), global.type); #endif return SetEffect( graph()->NewNode(op, base, offset, val, effect(), control())); } Node* WasmGraphBuilder::TableGet(uint32_t table_index, Node* index, wasm::WasmCodePosition position) { return gasm_->CallRuntimeStub(wasm::WasmCode::kWasmTableGet, gasm_->IntPtrConstant(table_index), index); } Node* WasmGraphBuilder::TableSet(uint32_t table_index, Node* index, Node* val, wasm::WasmCodePosition position) { return gasm_->CallRuntimeStub(wasm::WasmCode::kWasmTableSet, gasm_->IntPtrConstant(table_index), index, val); } Node* WasmGraphBuilder::CheckBoundsAndAlignment( int8_t access_size, Node* index, uint64_t offset, wasm::WasmCodePosition position) { // Atomic operations need bounds checks until the backend can emit protected // loads. index = BoundsCheckMem(access_size, index, offset, position, kNeedsBoundsCheck); const uintptr_t align_mask = access_size - 1; // {offset} is validated to be within uintptr_t range in {BoundsCheckMem}. uintptr_t capped_offset = static_cast<uintptr_t>(offset); // Don't emit an alignment check if the index is a constant. // TODO(wasm): a constant match is also done above in {BoundsCheckMem}. UintPtrMatcher match(index); if (match.HasResolvedValue()) { uintptr_t effective_offset = match.ResolvedValue() + capped_offset; if ((effective_offset & align_mask) != 0) { // statically known to be unaligned; trap. TrapIfEq32(wasm::kTrapUnalignedAccess, Int32Constant(0), 0, position); } return index; } // Unlike regular memory accesses, atomic memory accesses should trap if // the effective offset is misaligned. // TODO(wasm): this addition is redundant with one inserted by {MemBuffer}. Node* effective_offset = gasm_->IntAdd(MemBuffer(capped_offset), index); Node* cond = gasm_->WordAnd(effective_offset, gasm_->IntPtrConstant(align_mask)); TrapIfFalse(wasm::kTrapUnalignedAccess, gasm_->Word32Equal(cond, gasm_->Int32Constant(0)), position); return index; } // Insert code to bounds check a memory access if necessary. Return the // bounds-checked index, which is guaranteed to have (the equivalent of) // {uintptr_t} representation. Node* WasmGraphBuilder::BoundsCheckMem(uint8_t access_size, Node* index, uint64_t offset, wasm::WasmCodePosition position, EnforceBoundsCheck enforce_check) { DCHECK_LE(1, access_size); if (!env_->module->is_memory64) index = Uint32ToUintptr(index); if (!FLAG_wasm_bounds_checks) return index; if (use_trap_handler() && enforce_check == kCanOmitBoundsCheck) { return index; } // If the offset does not fit in a uintptr_t, this can never succeed on this // machine. if (offset > std::numeric_limits<uintptr_t>::max() || !base::IsInBounds<uintptr_t>(offset, access_size, env_->max_memory_size)) { // The access will be out of bounds, even for the largest memory. TrapIfEq32(wasm::kTrapMemOutOfBounds, Int32Constant(0), 0, position); return gasm_->UintPtrConstant(0); } uintptr_t end_offset = offset + access_size - 1u; Node* end_offset_node = mcgraph_->UintPtrConstant(end_offset); // In memory64 mode on 32-bit systems, the upper 32 bits need to be zero to // succeed the bounds check. if (kSystemPointerSize == kInt32Size && env_->module->is_memory64) { Node* high_word = gasm_->TruncateInt64ToInt32( gasm_->Word64Shr(index, gasm_->Int32Constant(32))); TrapIfTrue(wasm::kTrapMemOutOfBounds, high_word, position); // Only use the low word for the following bounds check. index = gasm_->TruncateInt64ToInt32(index); } // The accessed memory is [index + offset, index + end_offset]. // Check that the last read byte (at {index + end_offset}) is in bounds. // 1) Check that {end_offset < mem_size}. This also ensures that we can safely // compute {effective_size} as {mem_size - end_offset)}. // {effective_size} is >= 1 if condition 1) holds. // 2) Check that {index + end_offset < mem_size} by // - computing {effective_size} as {mem_size - end_offset} and // - checking that {index < effective_size}. Node* mem_size = instance_cache_->mem_size; if (end_offset > env_->min_memory_size) { // The end offset is larger than the smallest memory. // Dynamically check the end offset against the dynamic memory size. Node* cond = gasm_->UintLessThan(end_offset_node, mem_size); TrapIfFalse(wasm::kTrapMemOutOfBounds, cond, position); } else { // The end offset is <= the smallest memory, so only one check is // required. Check to see if the index is also a constant. UintPtrMatcher match(index); if (match.HasResolvedValue()) { uintptr_t index_val = match.ResolvedValue(); if (index_val < env_->min_memory_size - end_offset) { // The input index is a constant and everything is statically within // bounds of the smallest possible memory. return index; } } } // This produces a positive number since {end_offset <= min_size <= mem_size}. Node* effective_size = gasm_->IntSub(mem_size, end_offset_node); // Introduce the actual bounds check. Node* cond = gasm_->UintLessThan(index, effective_size); TrapIfFalse(wasm::kTrapMemOutOfBounds, cond, position); if (untrusted_code_mitigations_) { // In the fallthrough case, condition the index with the memory mask. Node* mem_mask = instance_cache_->mem_mask; DCHECK_NOT_NULL(mem_mask); index = gasm_->WordAnd(index, mem_mask); } return index; } const Operator* WasmGraphBuilder::GetSafeLoadOperator(int offset, wasm::ValueType type) { int alignment = offset % type.element_size_bytes(); MachineType mach_type = type.machine_type(); if (COMPRESS_POINTERS_BOOL && mach_type.IsTagged()) { // We are loading tagged value from off-heap location, so we need to load // it as a full word otherwise we will not be able to decompress it. mach_type = MachineType::Pointer(); } if (alignment == 0 || mcgraph()->machine()->UnalignedLoadSupported( type.machine_representation())) { return mcgraph()->machine()->Load(mach_type); } return mcgraph()->machine()->UnalignedLoad(mach_type); } const Operator* WasmGraphBuilder::GetSafeStoreOperator(int offset, wasm::ValueType type) { int alignment = offset % type.element_size_bytes(); MachineRepresentation rep = type.machine_representation(); if (COMPRESS_POINTERS_BOOL && IsAnyTagged(rep)) { // We are storing tagged value to off-heap location, so we need to store // it as a full word otherwise we will not be able to decompress it. rep = MachineType::PointerRepresentation(); } if (alignment == 0 || mcgraph()->machine()->UnalignedStoreSupported(rep)) { StoreRepresentation store_rep(rep, WriteBarrierKind::kNoWriteBarrier); return mcgraph()->machine()->Store(store_rep); } UnalignedStoreRepresentation store_rep(rep); return mcgraph()->machine()->UnalignedStore(store_rep); } Node* WasmGraphBuilder::TraceFunctionEntry(wasm::WasmCodePosition position) { Node* call = BuildCallToRuntime(Runtime::kWasmTraceEnter, nullptr, 0); SetSourcePosition(call, position); return call; } Node* WasmGraphBuilder::TraceFunctionExit(Vector<Node*> vals, wasm::WasmCodePosition position) { Node* info = gasm_->IntPtrConstant(0); size_t num_returns = vals.size(); if (num_returns == 1) { wasm::ValueType return_type = sig_->GetReturn(0); MachineRepresentation rep = return_type.machine_representation(); int size = ElementSizeInBytes(rep); info = gasm_->StackSlot(size, size); gasm_->Store(StoreRepresentation(rep, kNoWriteBarrier), info, gasm_->Int32Constant(0), vals[0]); } Node* call = BuildCallToRuntime(Runtime::kWasmTraceExit, &info, 1); SetSourcePosition(call, position); return call; } Node* WasmGraphBuilder::TraceMemoryOperation(bool is_store, MachineRepresentation rep, Node* index, uintptr_t offset, wasm::WasmCodePosition position) { int kAlign = 4; // Ensure that the LSB is 0, such that this looks like a Smi. TNode<RawPtrT> info = gasm_->StackSlot(sizeof(wasm::MemoryTracingInfo), kAlign); Node* effective_offset = gasm_->IntAdd(gasm_->UintPtrConstant(offset), index); auto store = [&](int field_offset, MachineRepresentation rep, Node* data) { gasm_->Store(StoreRepresentation(rep, kNoWriteBarrier), info, gasm_->Int32Constant(field_offset), data); }; // Store effective_offset, is_store, and mem_rep. store(offsetof(wasm::MemoryTracingInfo, offset), MachineType::PointerRepresentation(), effective_offset); store(offsetof(wasm::MemoryTracingInfo, is_store), MachineRepresentation::kWord8, mcgraph()->Int32Constant(is_store ? 1 : 0)); store(offsetof(wasm::MemoryTracingInfo, mem_rep), MachineRepresentation::kWord8, mcgraph()->Int32Constant(static_cast<int>(rep))); Node* args[] = {info}; Node* call = BuildCallToRuntime(Runtime::kWasmTraceMemory, args, arraysize(args)); SetSourcePosition(call, position); return call; } namespace { LoadTransformation GetLoadTransformation( MachineType memtype, wasm::LoadTransformationKind transform) { switch (transform) { case wasm::LoadTransformationKind::kSplat: { if (memtype == MachineType::Int8()) { return LoadTransformation::kS128Load8Splat; } else if (memtype == MachineType::Int16()) { return LoadTransformation::kS128Load16Splat; } else if (memtype == MachineType::Int32()) { return LoadTransformation::kS128Load32Splat; } else if (memtype == MachineType::Int64()) { return LoadTransformation::kS128Load64Splat; } break; } case wasm::LoadTransformationKind::kExtend: { if (memtype == MachineType::Int8()) { return LoadTransformation::kS128Load8x8S; } else if (memtype == MachineType::Uint8()) { return LoadTransformation::kS128Load8x8U; } else if (memtype == MachineType::Int16()) { return LoadTransformation::kS128Load16x4S; } else if (memtype == MachineType::Uint16()) { return LoadTransformation::kS128Load16x4U; } else if (memtype == MachineType::Int32()) { return LoadTransformation::kS128Load32x2S; } else if (memtype == MachineType::Uint32()) { return LoadTransformation::kS128Load32x2U; } break; } case wasm::LoadTransformationKind::kZeroExtend: { if (memtype == MachineType::Int32()) { return LoadTransformation::kS128Load32Zero; } else if (memtype == MachineType::Int64()) { return LoadTransformation::kS128Load64Zero; } break; } } UNREACHABLE(); } MemoryAccessKind GetMemoryAccessKind(MachineGraph* mcgraph, MachineType memtype, bool use_trap_handler) { if (memtype.representation() == MachineRepresentation::kWord8 || mcgraph->machine()->UnalignedLoadSupported(memtype.representation())) { if (use_trap_handler) { return MemoryAccessKind::kProtected; } return MemoryAccessKind::kNormal; } // TODO(eholk): Support unaligned loads with trap handlers. DCHECK(!use_trap_handler); return MemoryAccessKind::kUnaligned; } } // namespace // S390 simulator does not execute BE code, hence needs to also check if we are // running on a LE simulator. // TODO(miladfar): Remove SIM once V8_TARGET_BIG_ENDIAN includes the Sim. #if defined(V8_TARGET_BIG_ENDIAN) || defined(V8_TARGET_ARCH_S390_LE_SIM) Node* WasmGraphBuilder::LoadTransformBigEndian( wasm::ValueType type, MachineType memtype, wasm::LoadTransformationKind transform, Node* index, uint64_t offset, uint32_t alignment, wasm::WasmCodePosition position) { #define LOAD_EXTEND(num_lanes, bytes_per_load, replace_lane) \ result = graph()->NewNode(mcgraph()->machine()->S128Zero()); \ Node* values[num_lanes]; \ for (int i = 0; i < num_lanes; i++) { \ values[i] = LoadMem(type, memtype, index, offset + i * bytes_per_load, \ alignment, position); \ if (memtype.IsSigned()) { \ /* sign extend */ \ values[i] = graph()->NewNode(mcgraph()->machine()->ChangeInt32ToInt64(), \ values[i]); \ } else { \ /* zero extend */ \ values[i] = graph()->NewNode( \ mcgraph()->machine()->ChangeUint32ToUint64(), values[i]); \ } \ } \ for (int lane = 0; lane < num_lanes; lane++) { \ result = graph()->NewNode(mcgraph()->machine()->replace_lane(lane), \ result, values[lane]); \ } Node* result; LoadTransformation transformation = GetLoadTransformation(memtype, transform); switch (transformation) { case LoadTransformation::kS128Load8Splat: { result = LoadMem(type, memtype, index, offset, alignment, position); result = graph()->NewNode(mcgraph()->machine()->I8x16Splat(), result); break; } case LoadTransformation::kS128Load8x8S: case LoadTransformation::kS128Load8x8U: { LOAD_EXTEND(8, 1, I16x8ReplaceLane) break; } case LoadTransformation::kS128Load16Splat: { result = LoadMem(type, memtype, index, offset, alignment, position); result = graph()->NewNode(mcgraph()->machine()->I16x8Splat(), result); break; } case LoadTransformation::kS128Load16x4S: case LoadTransformation::kS128Load16x4U: { LOAD_EXTEND(4, 2, I32x4ReplaceLane) break; } case LoadTransformation::kS128Load32Splat: { result = LoadMem(type, memtype, index, offset, alignment, position); result = graph()->NewNode(mcgraph()->machine()->I32x4Splat(), result); break; } case LoadTransformation::kS128Load32x2S: case LoadTransformation::kS128Load32x2U: { LOAD_EXTEND(2, 4, I64x2ReplaceLane) break; } case LoadTransformation::kS128Load64Splat: { result = LoadMem(type, memtype, index, offset, alignment, position); result = graph()->NewNode(mcgraph()->machine()->I64x2Splat(), result); break; } case LoadTransformation::kS128Load32Zero: { result = graph()->NewNode(mcgraph()->machine()->S128Zero()); result = graph()->NewNode( mcgraph()->machine()->I32x4ReplaceLane(0), result, LoadMem(type, memtype, index, offset, alignment, position)); break; } case LoadTransformation::kS128Load64Zero: { result = graph()->NewNode(mcgraph()->machine()->S128Zero()); result = graph()->NewNode( mcgraph()->machine()->I64x2ReplaceLane(0), result, LoadMem(type, memtype, index, offset, alignment, position)); break; } default: UNREACHABLE(); } return result; #undef LOAD_EXTEND } #endif Node* WasmGraphBuilder::LoadLane(wasm::ValueType type, MachineType memtype, Node* value, Node* index, uint64_t offset, uint32_t alignment, uint8_t laneidx, wasm::WasmCodePosition position) { has_simd_ = true; Node* load; uint8_t access_size = memtype.MemSize(); index = BoundsCheckMem(access_size, index, offset, position, kCanOmitBoundsCheck); // {offset} is validated to be within uintptr_t range in {BoundsCheckMem}. uintptr_t capped_offset = static_cast<uintptr_t>(offset); #if defined(V8_TARGET_BIG_ENDIAN) || defined(V8_TARGET_ARCH_S390_LE_SIM) load = LoadMem(type, memtype, index, offset, alignment, position); if (memtype == MachineType::Int8()) { load = graph()->NewNode(mcgraph()->machine()->I8x16ReplaceLane(laneidx), value, load); } else if (memtype == MachineType::Int16()) { load = graph()->NewNode(mcgraph()->machine()->I16x8ReplaceLane(laneidx), value, load); } else if (memtype == MachineType::Int32()) { load = graph()->NewNode(mcgraph()->machine()->I32x4ReplaceLane(laneidx), value, load); } else if (memtype == MachineType::Int64()) { load = graph()->NewNode(mcgraph()->machine()->I64x2ReplaceLane(laneidx), value, load); } else { UNREACHABLE(); } #else MemoryAccessKind load_kind = GetMemoryAccessKind(mcgraph(), memtype, use_trap_handler()); load = SetEffect(graph()->NewNode( mcgraph()->machine()->LoadLane(load_kind, memtype, laneidx), MemBuffer(capped_offset), index, value, effect(), control())); if (load_kind == MemoryAccessKind::kProtected) { SetSourcePosition(load, position); } #endif if (FLAG_trace_wasm_memory) { TraceMemoryOperation(false, memtype.representation(), index, capped_offset, position); } return load; } Node* WasmGraphBuilder::LoadTransform(wasm::ValueType type, MachineType memtype, wasm::LoadTransformationKind transform, Node* index, uint64_t offset, uint32_t alignment, wasm::WasmCodePosition position) { has_simd_ = true; Node* load; // {offset} is validated to be within uintptr_t range in {BoundsCheckMem}. uintptr_t capped_offset = static_cast<uintptr_t>(offset); #if defined(V8_TARGET_BIG_ENDIAN) || defined(V8_TARGET_ARCH_S390_LE_SIM) // LoadTransform cannot efficiently be executed on BE machines as a // single operation since loaded bytes need to be reversed first, // therefore we divide them into separate "load" and "operation" nodes. load = LoadTransformBigEndian(type, memtype, transform, index, offset, alignment, position); USE(GetMemoryAccessKind); #else // Wasm semantics throw on OOB. Introduce explicit bounds check and // conditioning when not using the trap handler. // Load extends always load 8 bytes. uint8_t access_size = transform == wasm::LoadTransformationKind::kExtend ? 8 : memtype.MemSize(); index = BoundsCheckMem(access_size, index, offset, position, kCanOmitBoundsCheck); LoadTransformation transformation = GetLoadTransformation(memtype, transform); MemoryAccessKind load_kind = GetMemoryAccessKind(mcgraph(), memtype, use_trap_handler()); load = SetEffect(graph()->NewNode( mcgraph()->machine()->LoadTransform(load_kind, transformation), MemBuffer(capped_offset), index, effect(), control())); if (load_kind == MemoryAccessKind::kProtected) { SetSourcePosition(load, position); } #endif if (FLAG_trace_wasm_memory) { TraceMemoryOperation(false, memtype.representation(), index, capped_offset, position); } return load; } Node* WasmGraphBuilder::Prefetch(Node* index, uint64_t offset, uint32_t alignment, bool temporal) { uintptr_t capped_offset = static_cast<uintptr_t>(offset); const Operator* prefetchOp = temporal ? mcgraph()->machine()->PrefetchTemporal() : mcgraph()->machine()->PrefetchNonTemporal(); Node* prefetch = SetEffect(graph()->NewNode( prefetchOp, MemBuffer(capped_offset), index, effect(), control())); return prefetch; } Node* WasmGraphBuilder::LoadMem(wasm::ValueType type, MachineType memtype, Node* index, uint64_t offset, uint32_t alignment, wasm::WasmCodePosition position) { Node* load; if (memtype.representation() == MachineRepresentation::kSimd128) { has_simd_ = true; } // Wasm semantics throw on OOB. Introduce explicit bounds check and // conditioning when not using the trap handler. index = BoundsCheckMem(memtype.MemSize(), index, offset, position, kCanOmitBoundsCheck); // {offset} is validated to be within uintptr_t range in {BoundsCheckMem}. uintptr_t capped_offset = static_cast<uintptr_t>(offset); if (memtype.representation() == MachineRepresentation::kWord8 || mcgraph()->machine()->UnalignedLoadSupported(memtype.representation())) { if (use_trap_handler()) { load = gasm_->ProtectedLoad(memtype, MemBuffer(capped_offset), index); SetSourcePosition(load, position); } else { load = gasm_->Load(memtype, MemBuffer(capped_offset), index); } } else { // TODO(eholk): Support unaligned loads with trap handlers. DCHECK(!use_trap_handler()); load = gasm_->LoadUnaligned(memtype, MemBuffer(capped_offset), index); } #if defined(V8_TARGET_BIG_ENDIAN) load = BuildChangeEndiannessLoad(load, memtype, type); #endif if (type == wasm::kWasmI64 && ElementSizeInBytes(memtype.representation()) < 8) { // TODO(titzer): TF zeroes the upper bits of 64-bit loads for subword sizes. load = memtype.IsSigned() ? gasm_->ChangeInt32ToInt64(load) // sign extend : gasm_->ChangeUint32ToUint64(load); // zero extend } if (FLAG_trace_wasm_memory) { TraceMemoryOperation(false, memtype.representation(), index, capped_offset, position); } return load; } Node* WasmGraphBuilder::StoreLane(MachineRepresentation mem_rep, Node* index, uint64_t offset, uint32_t alignment, Node* val, uint8_t laneidx, wasm::WasmCodePosition position, wasm::ValueType type) { Node* store; has_simd_ = true; index = BoundsCheckMem(i::ElementSizeInBytes(mem_rep), index, offset, position, kCanOmitBoundsCheck); // {offset} is validated to be within uintptr_t range in {BoundsCheckMem}. uintptr_t capped_offset = static_cast<uintptr_t>(offset); #if defined(V8_TARGET_BIG_ENDIAN) || defined(V8_TARGET_ARCH_S390_LE_SIM) Node* output; if (mem_rep == MachineRepresentation::kWord8) { output = graph()->NewNode(mcgraph()->machine()->I8x16ExtractLaneS(laneidx), val); } else if (mem_rep == MachineRepresentation::kWord16) { output = graph()->NewNode(mcgraph()->machine()->I16x8ExtractLaneS(laneidx), val); } else if (mem_rep == MachineRepresentation::kWord32) { output = graph()->NewNode(mcgraph()->machine()->I32x4ExtractLane(laneidx), val); } else if (mem_rep == MachineRepresentation::kWord64) { output = graph()->NewNode(mcgraph()->machine()->I64x2ExtractLane(laneidx), val); } else { UNREACHABLE(); } store = StoreMem(mem_rep, index, offset, alignment, output, position, type); #else MachineType memtype = MachineType(mem_rep, MachineSemantic::kNone); MemoryAccessKind load_kind = GetMemoryAccessKind(mcgraph(), memtype, use_trap_handler()); store = SetEffect(graph()->NewNode( mcgraph()->machine()->StoreLane(load_kind, mem_rep, laneidx), MemBuffer(capped_offset), index, val, effect(), control())); if (load_kind == MemoryAccessKind::kProtected) { SetSourcePosition(store, position); } #endif if (FLAG_trace_wasm_memory) { TraceMemoryOperation(true, mem_rep, index, capped_offset, position); } return store; } Node* WasmGraphBuilder::StoreMem(MachineRepresentation mem_rep, Node* index, uint64_t offset, uint32_t alignment, Node* val, wasm::WasmCodePosition position, wasm::ValueType type) { Node* store; if (mem_rep == MachineRepresentation::kSimd128) { has_simd_ = true; } index = BoundsCheckMem(i::ElementSizeInBytes(mem_rep), index, offset, position, kCanOmitBoundsCheck); #if defined(V8_TARGET_BIG_ENDIAN) val = BuildChangeEndiannessStore(val, mem_rep, type); #endif // {offset} is validated to be within uintptr_t range in {BoundsCheckMem}. uintptr_t capped_offset = static_cast<uintptr_t>(offset); if (mem_rep == MachineRepresentation::kWord8 || mcgraph()->machine()->UnalignedStoreSupported(mem_rep)) { if (use_trap_handler()) { store = gasm_->ProtectedStore(mem_rep, MemBuffer(capped_offset), index, val); SetSourcePosition(store, position); } else { store = gasm_->Store(StoreRepresentation{mem_rep, kNoWriteBarrier}, MemBuffer(capped_offset), index, val); } } else { // TODO(eholk): Support unaligned stores with trap handlers. DCHECK(!use_trap_handler()); UnalignedStoreRepresentation rep(mem_rep); store = gasm_->StoreUnaligned(rep, MemBuffer(capped_offset), index, val); } if (FLAG_trace_wasm_memory) { TraceMemoryOperation(true, mem_rep, index, capped_offset, position); } return store; } namespace { Node* GetAsmJsOOBValue(MachineRepresentation rep, MachineGraph* mcgraph) { switch (rep) { case MachineRepresentation::kWord8: case MachineRepresentation::kWord16: case MachineRepresentation::kWord32: return mcgraph->Int32Constant(0); case MachineRepresentation::kWord64: return mcgraph->Int64Constant(0); case MachineRepresentation::kFloat32: return mcgraph->Float32Constant(std::numeric_limits<float>::quiet_NaN()); case MachineRepresentation::kFloat64: return mcgraph->Float64Constant(std::numeric_limits<double>::quiet_NaN()); default: UNREACHABLE(); } } } // namespace Node* WasmGraphBuilder::BuildAsmjsLoadMem(MachineType type, Node* index) { DCHECK_NOT_NULL(instance_cache_); Node* mem_start = instance_cache_->mem_start; Node* mem_size = instance_cache_->mem_size; DCHECK_NOT_NULL(mem_start); DCHECK_NOT_NULL(mem_size); // Asm.js semantics are defined in terms of typed arrays, hence OOB // reads return {undefined} coerced to the result type (0 for integers, NaN // for float and double). // Note that we check against the memory size ignoring the size of the // stored value, which is conservative if misaligned. Technically, asm.js // should never have misaligned accesses. index = Uint32ToUintptr(index); Diamond bounds_check( graph(), mcgraph()->common(), graph()->NewNode(mcgraph()->machine()->UintLessThan(), index, mem_size), BranchHint::kTrue); bounds_check.Chain(control()); if (untrusted_code_mitigations_) { // Condition the index with the memory mask. Node* mem_mask = instance_cache_->mem_mask; DCHECK_NOT_NULL(mem_mask); index = graph()->NewNode(mcgraph()->machine()->WordAnd(), index, mem_mask); } Node* load = graph()->NewNode(mcgraph()->machine()->Load(type), mem_start, index, effect(), bounds_check.if_true); SetEffectControl(bounds_check.EffectPhi(load, effect()), bounds_check.merge); return bounds_check.Phi(type.representation(), load, GetAsmJsOOBValue(type.representation(), mcgraph())); } Node* WasmGraphBuilder::Uint32ToUintptr(Node* node) { if (mcgraph()->machine()->Is32()) return node; // Fold instances of ChangeUint32ToUint64(IntConstant) directly. Uint32Matcher matcher(node); if (matcher.HasResolvedValue()) { uintptr_t value = matcher.ResolvedValue(); return mcgraph()->IntPtrConstant(bit_cast<intptr_t>(value)); } return graph()->NewNode(mcgraph()->machine()->ChangeUint32ToUint64(), node); } Node* WasmGraphBuilder::BuildAsmjsStoreMem(MachineType type, Node* index, Node* val) { DCHECK_NOT_NULL(instance_cache_); Node* mem_start = instance_cache_->mem_start; Node* mem_size = instance_cache_->mem_size; DCHECK_NOT_NULL(mem_start); DCHECK_NOT_NULL(mem_size); // Asm.js semantics are to ignore OOB writes. // Note that we check against the memory size ignoring the size of the // stored value, which is conservative if misaligned. Technically, asm.js // should never have misaligned accesses. Diamond bounds_check( graph(), mcgraph()->common(), graph()->NewNode(mcgraph()->machine()->Uint32LessThan(), index, mem_size), BranchHint::kTrue); bounds_check.Chain(control()); if (untrusted_code_mitigations_) { // Condition the index with the memory mask. Node* mem_mask = instance_cache_->mem_mask; DCHECK_NOT_NULL(mem_mask); index = graph()->NewNode(mcgraph()->machine()->Word32And(), index, mem_mask); } index = Uint32ToUintptr(index); const Operator* store_op = mcgraph()->machine()->Store(StoreRepresentation( type.representation(), WriteBarrierKind::kNoWriteBarrier)); Node* store = graph()->NewNode(store_op, mem_start, index, val, effect(), bounds_check.if_true); SetEffectControl(bounds_check.EffectPhi(store, effect()), bounds_check.merge); return val; } Node* WasmGraphBuilder::BuildF64x2Ceil(Node* input) { MachineType type = MachineType::Simd128(); ExternalReference ref = ExternalReference::wasm_f64x2_ceil(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF64x2Floor(Node* input) { MachineType type = MachineType::Simd128(); ExternalReference ref = ExternalReference::wasm_f64x2_floor(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF64x2Trunc(Node* input) { MachineType type = MachineType::Simd128(); ExternalReference ref = ExternalReference::wasm_f64x2_trunc(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF64x2NearestInt(Node* input) { MachineType type = MachineType::Simd128(); ExternalReference ref = ExternalReference::wasm_f64x2_nearest_int(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF32x4Ceil(Node* input) { MachineType type = MachineType::Simd128(); ExternalReference ref = ExternalReference::wasm_f32x4_ceil(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF32x4Floor(Node* input) { MachineType type = MachineType::Simd128(); ExternalReference ref = ExternalReference::wasm_f32x4_floor(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF32x4Trunc(Node* input) { MachineType type = MachineType::Simd128(); ExternalReference ref = ExternalReference::wasm_f32x4_trunc(); return BuildCFuncInstruction(ref, type, input); } Node* WasmGraphBuilder::BuildF32x4NearestInt(Node* input) { MachineType type = MachineType::Simd128(); ExternalReference ref = ExternalReference::wasm_f32x4_nearest_int(); return BuildCFuncInstruction(ref, type, input); } void WasmGraphBuilder::PrintDebugName(Node* node) { PrintF("#%d:%s", node->id(), node->op()->mnemonic()); } Graph* WasmGraphBuilder::graph() { return mcgraph()->graph(); } namespace { Signature<MachineRepresentation>* CreateMachineSignature( Zone* zone, const wasm::FunctionSig* sig, WasmGraphBuilder::CallOrigin origin) { Signature<MachineRepresentation>::Builder builder(zone, sig->return_count(), sig->parameter_count()); for (auto ret : sig->returns()) { if (origin == WasmGraphBuilder::kCalledFromJS) { builder.AddReturn(MachineRepresentation::kTagged); } else { builder.AddReturn(ret.machine_representation()); } } for (auto param : sig->parameters()) { if (origin == WasmGraphBuilder::kCalledFromJS) { // Parameters coming from JavaScript are always tagged values. Especially // when the signature says that it's an I64 value, then a BigInt object is // provided by JavaScript, and not two 32-bit parameters. builder.AddParam(MachineRepresentation::kTagged); } else { builder.AddParam(param.machine_representation()); } } return builder.Build(); } } // namespace void WasmGraphBuilder::AddInt64LoweringReplacement( CallDescriptor* original, CallDescriptor* replacement) { if (!lowering_special_case_) { lowering_special_case_ = std::make_unique<Int64LoweringSpecialCase>(); } lowering_special_case_->replacements.insert({original, replacement}); } CallDescriptor* WasmGraphBuilder::GetI32AtomicWaitCallDescriptor() { if (i32_atomic_wait_descriptor_) return i32_atomic_wait_descriptor_; i32_atomic_wait_descriptor_ = GetBuiltinCallDescriptor(Builtins::kWasmI32AtomicWait64, zone_, StubCallMode::kCallWasmRuntimeStub); AddInt64LoweringReplacement( i32_atomic_wait_descriptor_, GetBuiltinCallDescriptor(Builtins::kWasmI32AtomicWait32, zone_, StubCallMode::kCallWasmRuntimeStub)); return i32_atomic_wait_descriptor_; } CallDescriptor* WasmGraphBuilder::GetI64AtomicWaitCallDescriptor() { if (i64_atomic_wait_descriptor_) return i64_atomic_wait_descriptor_; i64_atomic_wait_descriptor_ = GetBuiltinCallDescriptor(Builtins::kWasmI64AtomicWait64, zone_, StubCallMode::kCallWasmRuntimeStub); AddInt64LoweringReplacement( i64_atomic_wait_descriptor_, GetBuiltinCallDescriptor(Builtins::kWasmI64AtomicWait32, zone_, StubCallMode::kCallWasmRuntimeStub)); return i64_atomic_wait_descriptor_; } void WasmGraphBuilder::LowerInt64(Signature<MachineRepresentation>* sig) { if (mcgraph()->machine()->Is64()) return; Int64Lowering r(mcgraph()->graph(), mcgraph()->machine(), mcgraph()->common(), mcgraph()->zone(), sig, std::move(lowering_special_case_)); r.LowerGraph(); } void WasmGraphBuilder::LowerInt64(CallOrigin origin) { LowerInt64(CreateMachineSignature(mcgraph()->zone(), sig_, origin)); } void WasmGraphBuilder::SimdScalarLoweringForTesting() { SimdScalarLowering(mcgraph(), CreateMachineSignature(mcgraph()->zone(), sig_, kCalledFromWasm)) .LowerGraph(); } void WasmGraphBuilder::SetSourcePosition(Node* node, wasm::WasmCodePosition position) { DCHECK_NE(position, wasm::kNoCodePosition); if (source_position_table_) { source_position_table_->SetSourcePosition(node, SourcePosition(position)); } } Node* WasmGraphBuilder::S128Zero() { has_simd_ = true; return graph()->NewNode(mcgraph()->machine()->S128Zero()); } Node* WasmGraphBuilder::SimdOp(wasm::WasmOpcode opcode, Node* const* inputs) { has_simd_ = true; switch (opcode) { case wasm::kExprF64x2Splat: return graph()->NewNode(mcgraph()->machine()->F64x2Splat(), inputs[0]); case wasm::kExprF64x2Abs: return graph()->NewNode(mcgraph()->machine()->F64x2Abs(), inputs[0]); case wasm::kExprF64x2Neg: return graph()->NewNode(mcgraph()->machine()->F64x2Neg(), inputs[0]); case wasm::kExprF64x2Sqrt: return graph()->NewNode(mcgraph()->machine()->F64x2Sqrt(), inputs[0]); case wasm::kExprF64x2Add: return graph()->NewNode(mcgraph()->machine()->F64x2Add(), inputs[0], inputs[1]); case wasm::kExprF64x2Sub: return graph()->NewNode(mcgraph()->machine()->F64x2Sub(), inputs[0], inputs[1]); case wasm::kExprF64x2Mul: return graph()->NewNode(mcgraph()->machine()->F64x2Mul(), inputs[0], inputs[1]); case wasm::kExprF64x2Div: return graph()->NewNode(mcgraph()->machine()->F64x2Div(), inputs[0], inputs[1]); case wasm::kExprF64x2Min: return graph()->NewNode(mcgraph()->machine()->F64x2Min(), inputs[0], inputs[1]); case wasm::kExprF64x2Max: return graph()->NewNode(mcgraph()->machine()->F64x2Max(), inputs[0], inputs[1]); case wasm::kExprF64x2Eq: return graph()->NewNode(mcgraph()->machine()->F64x2Eq(), inputs[0], inputs[1]); case wasm::kExprF64x2Ne: return graph()->NewNode(mcgraph()->machine()->F64x2Ne(), inputs[0], inputs[1]); case wasm::kExprF64x2Lt: return graph()->NewNode(mcgraph()->machine()->F64x2Lt(), inputs[0], inputs[1]); case wasm::kExprF64x2Le: return graph()->NewNode(mcgraph()->machine()->F64x2Le(), inputs[0], inputs[1]); case wasm::kExprF64x2Gt: return graph()->NewNode(mcgraph()->machine()->F64x2Lt(), inputs[1], inputs[0]); case wasm::kExprF64x2Ge: return graph()->NewNode(mcgraph()->machine()->F64x2Le(), inputs[1], inputs[0]); case wasm::kExprF64x2Qfma: return graph()->NewNode(mcgraph()->machine()->F64x2Qfma(), inputs[0], inputs[1], inputs[2]); case wasm::kExprF64x2Qfms: return graph()->NewNode(mcgraph()->machine()->F64x2Qfms(), inputs[0], inputs[1], inputs[2]); case wasm::kExprF64x2Pmin: return graph()->NewNode(mcgraph()->machine()->F64x2Pmin(), inputs[0], inputs[1]); case wasm::kExprF64x2Pmax: return graph()->NewNode(mcgraph()->machine()->F64x2Pmax(), inputs[0], inputs[1]); case wasm::kExprF64x2Ceil: // Architecture support for F64x2Ceil and Float64RoundUp is the same. if (!mcgraph()->machine()->Float64RoundUp().IsSupported()) return BuildF64x2Ceil(inputs[0]); return graph()->NewNode(mcgraph()->machine()->F64x2Ceil(), inputs[0]); case wasm::kExprF64x2Floor: // Architecture support for F64x2Floor and Float64RoundDown is the same. if (!mcgraph()->machine()->Float64RoundDown().IsSupported()) return BuildF64x2Floor(inputs[0]); return graph()->NewNode(mcgraph()->machine()->F64x2Floor(), inputs[0]); case wasm::kExprF64x2Trunc: // Architecture support for F64x2Trunc and Float64RoundTruncate is the // same. if (!mcgraph()->machine()->Float64RoundTruncate().IsSupported()) return BuildF64x2Trunc(inputs[0]); return graph()->NewNode(mcgraph()->machine()->F64x2Trunc(), inputs[0]); case wasm::kExprF64x2NearestInt: // Architecture support for F64x2NearestInt and Float64RoundTiesEven is // the same. if (!mcgraph()->machine()->Float64RoundTiesEven().IsSupported()) return BuildF64x2NearestInt(inputs[0]); return graph()->NewNode(mcgraph()->machine()->F64x2NearestInt(), inputs[0]); case wasm::kExprF64x2ConvertLowI32x4S: return graph()->NewNode(mcgraph()->machine()->F64x2ConvertLowI32x4S(), inputs[0]); case wasm::kExprF64x2ConvertLowI32x4U: return graph()->NewNode(mcgraph()->machine()->F64x2ConvertLowI32x4U(), inputs[0]); case wasm::kExprF64x2PromoteLowF32x4: return graph()->NewNode(mcgraph()->machine()->F64x2PromoteLowF32x4(), inputs[0]); case wasm::kExprF32x4Splat: return graph()->NewNode(mcgraph()->machine()->F32x4Splat(), inputs[0]); case wasm::kExprF32x4SConvertI32x4: return graph()->NewNode(mcgraph()->machine()->F32x4SConvertI32x4(), inputs[0]); case wasm::kExprF32x4UConvertI32x4: return graph()->NewNode(mcgraph()->machine()->F32x4UConvertI32x4(), inputs[0]); case wasm::kExprF32x4Abs: return graph()->NewNode(mcgraph()->machine()->F32x4Abs(), inputs[0]); case wasm::kExprF32x4Neg: return graph()->NewNode(mcgraph()->machine()->F32x4Neg(), inputs[0]); case wasm::kExprF32x4Sqrt: return graph()->NewNode(mcgraph()->machine()->F32x4Sqrt(), inputs[0]); case wasm::kExprF32x4RecipApprox: return graph()->NewNode(mcgraph()->machine()->F32x4RecipApprox(), inputs[0]); case wasm::kExprF32x4RecipSqrtApprox: return graph()->NewNode(mcgraph()->machine()->F32x4RecipSqrtApprox(), inputs[0]); case wasm::kExprF32x4Add: return graph()->NewNode(mcgraph()->machine()->F32x4Add(), inputs[0], inputs[1]); case wasm::kExprF32x4AddHoriz: return graph()->NewNode(mcgraph()->machine()->F32x4AddHoriz(), inputs[0], inputs[1]); case wasm::kExprF32x4Sub: return graph()->NewNode(mcgraph()->machine()->F32x4Sub(), inputs[0], inputs[1]); case wasm::kExprF32x4Mul: return graph()->NewNode(mcgraph()->machine()->F32x4Mul(), inputs[0], inputs[1]); case wasm::kExprF32x4Div: return graph()->NewNode(mcgraph()->machine()->F32x4Div(), inputs[0], inputs[1]); case wasm::kExprF32x4Min: return graph()->NewNode(mcgraph()->machine()->F32x4Min(), inputs[0], inputs[1]); case wasm::kExprF32x4Max: return graph()->NewNode(mcgraph()->machine()->F32x4Max(), inputs[0], inputs[1]); case wasm::kExprF32x4Eq: return graph()->NewNode(mcgraph()->machine()->F32x4Eq(), inputs[0], inputs[1]); case wasm::kExprF32x4Ne: return graph()->NewNode(mcgraph()->machine()->F32x4Ne(), inputs[0], inputs[1]); case wasm::kExprF32x4Lt: return graph()->NewNode(mcgraph()->machine()->F32x4Lt(), inputs[0], inputs[1]); case wasm::kExprF32x4Le: return graph()->NewNode(mcgraph()->machine()->F32x4Le(), inputs[0], inputs[1]); case wasm::kExprF32x4Gt: return graph()->NewNode(mcgraph()->machine()->F32x4Lt(), inputs[1], inputs[0]); case wasm::kExprF32x4Ge: return graph()->NewNode(mcgraph()->machine()->F32x4Le(), inputs[1], inputs[0]); case wasm::kExprF32x4Qfma: return graph()->NewNode(mcgraph()->machine()->F32x4Qfma(), inputs[0], inputs[1], inputs[2]); case wasm::kExprF32x4Qfms: return graph()->NewNode(mcgraph()->machine()->F32x4Qfms(), inputs[0], inputs[1], inputs[2]); case wasm::kExprF32x4Pmin: return graph()->NewNode(mcgraph()->machine()->F32x4Pmin(), inputs[0], inputs[1]); case wasm::kExprF32x4Pmax: return graph()->NewNode(mcgraph()->machine()->F32x4Pmax(), inputs[0], inputs[1]); case wasm::kExprF32x4Ceil: // Architecture support for F32x4Ceil and Float32RoundUp is the same. if (!mcgraph()->machine()->Float32RoundUp().IsSupported()) return BuildF32x4Ceil(inputs[0]); return graph()->NewNode(mcgraph()->machine()->F32x4Ceil(), inputs[0]); case wasm::kExprF32x4Floor: // Architecture support for F32x4Floor and Float32RoundDown is the same. if (!mcgraph()->machine()->Float32RoundDown().IsSupported()) return BuildF32x4Floor(inputs[0]); return graph()->NewNode(mcgraph()->machine()->F32x4Floor(), inputs[0]); case wasm::kExprF32x4Trunc: // Architecture support for F32x4Trunc and Float32RoundTruncate is the // same. if (!mcgraph()->machine()->Float32RoundTruncate().IsSupported()) return BuildF32x4Trunc(inputs[0]); return graph()->NewNode(mcgraph()->machine()->F32x4Trunc(), inputs[0]); case wasm::kExprF32x4NearestInt: // Architecture support for F32x4NearestInt and Float32RoundTiesEven is // the same. if (!mcgraph()->machine()->Float32RoundTiesEven().IsSupported()) return BuildF32x4NearestInt(inputs[0]); return graph()->NewNode(mcgraph()->machine()->F32x4NearestInt(), inputs[0]); case wasm::kExprF32x4DemoteF64x2Zero: return graph()->NewNode(mcgraph()->machine()->F32x4DemoteF64x2Zero(), inputs[0]); case wasm::kExprI64x2Splat: return graph()->NewNode(mcgraph()->machine()->I64x2Splat(), inputs[0]); case wasm::kExprI64x2Abs: return graph()->NewNode(mcgraph()->machine()->I64x2Abs(), inputs[0]); case wasm::kExprI64x2Neg: return graph()->NewNode(mcgraph()->machine()->I64x2Neg(), inputs[0]); case wasm::kExprI64x2SConvertI32x4Low: return graph()->NewNode(mcgraph()->machine()->I64x2SConvertI32x4Low(), inputs[0]); case wasm::kExprI64x2SConvertI32x4High: return graph()->NewNode(mcgraph()->machine()->I64x2SConvertI32x4High(), inputs[0]); case wasm::kExprI64x2UConvertI32x4Low: return graph()->NewNode(mcgraph()->machine()->I64x2UConvertI32x4Low(), inputs[0]); case wasm::kExprI64x2UConvertI32x4High: return graph()->NewNode(mcgraph()->machine()->I64x2UConvertI32x4High(), inputs[0]); case wasm::kExprI64x2BitMask: return graph()->NewNode(mcgraph()->machine()->I64x2BitMask(), inputs[0]); case wasm::kExprI64x2Shl: return graph()->NewNode(mcgraph()->machine()->I64x2Shl(), inputs[0], inputs[1]); case wasm::kExprI64x2ShrS: return graph()->NewNode(mcgraph()->machine()->I64x2ShrS(), inputs[0], inputs[1]); case wasm::kExprI64x2Add: return graph()->NewNode(mcgraph()->machine()->I64x2Add(), inputs[0], inputs[1]); case wasm::kExprI64x2Sub: return graph()->NewNode(mcgraph()->machine()->I64x2Sub(), inputs[0], inputs[1]); case wasm::kExprI64x2Mul: return graph()->NewNode(mcgraph()->machine()->I64x2Mul(), inputs[0], inputs[1]); case wasm::kExprI64x2Eq: return graph()->NewNode(mcgraph()->machine()->I64x2Eq(), inputs[0], inputs[1]); case wasm::kExprI64x2Ne: return graph()->NewNode(mcgraph()->machine()->I64x2Ne(), inputs[0], inputs[1]); case wasm::kExprI64x2LtS: return graph()->NewNode(mcgraph()->machine()->I64x2GtS(), inputs[1], inputs[0]); case wasm::kExprI64x2LeS: return graph()->NewNode(mcgraph()->machine()->I64x2GeS(), inputs[1], inputs[0]); case wasm::kExprI64x2GtS: return graph()->NewNode(mcgraph()->machine()->I64x2GtS(), inputs[0], inputs[1]); case wasm::kExprI64x2GeS: return graph()->NewNode(mcgraph()->machine()->I64x2GeS(), inputs[0], inputs[1]); case wasm::kExprI64x2ShrU: return graph()->NewNode(mcgraph()->machine()->I64x2ShrU(), inputs[0], inputs[1]); case wasm::kExprI64x2ExtMulLowI32x4S: return graph()->NewNode(mcgraph()->machine()->I64x2ExtMulLowI32x4S(), inputs[0], inputs[1]); case wasm::kExprI64x2ExtMulHighI32x4S: return graph()->NewNode(mcgraph()->machine()->I64x2ExtMulHighI32x4S(), inputs[0], inputs[1]); case wasm::kExprI64x2ExtMulLowI32x4U: return graph()->NewNode(mcgraph()->machine()->I64x2ExtMulLowI32x4U(), inputs[0], inputs[1]); case wasm::kExprI64x2ExtMulHighI32x4U: return graph()->NewNode(mcgraph()->machine()->I64x2ExtMulHighI32x4U(), inputs[0], inputs[1]); case wasm::kExprI64x2SignSelect: return graph()->NewNode(mcgraph()->machine()->I64x2SignSelect(), inputs[0], inputs[1], inputs[2]); case wasm::kExprI32x4Splat: return graph()->NewNode(mcgraph()->machine()->I32x4Splat(), inputs[0]); case wasm::kExprI32x4SConvertF32x4: return graph()->NewNode(mcgraph()->machine()->I32x4SConvertF32x4(), inputs[0]); case wasm::kExprI32x4UConvertF32x4: return graph()->NewNode(mcgraph()->machine()->I32x4UConvertF32x4(), inputs[0]); case wasm::kExprI32x4SConvertI16x8Low: return graph()->NewNode(mcgraph()->machine()->I32x4SConvertI16x8Low(), inputs[0]); case wasm::kExprI32x4SConvertI16x8High: return graph()->NewNode(mcgraph()->machine()->I32x4SConvertI16x8High(), inputs[0]); case wasm::kExprI32x4Neg: return graph()->NewNode(mcgraph()->machine()->I32x4Neg(), inputs[0]); case wasm::kExprI32x4Shl: return graph()->NewNode(mcgraph()->machine()->I32x4Shl(), inputs[0], inputs[1]); case wasm::kExprI32x4ShrS: return graph()->NewNode(mcgraph()->machine()->I32x4ShrS(), inputs[0], inputs[1]); case wasm::kExprI32x4Add: return graph()->NewNode(mcgraph()->machine()->I32x4Add(), inputs[0], inputs[1]); case wasm::kExprI32x4AddHoriz: return graph()->NewNode(mcgraph()->machine()->I32x4AddHoriz(), inputs[0], inputs[1]); case wasm::kExprI32x4Sub: return graph()->NewNode(mcgraph()->machine()->I32x4Sub(), inputs[0], inputs[1]); case wasm::kExprI32x4Mul: return graph()->NewNode(mcgraph()->machine()->I32x4Mul(), inputs[0], inputs[1]); case wasm::kExprI32x4MinS: return graph()->NewNode(mcgraph()->machine()->I32x4MinS(), inputs[0], inputs[1]); case wasm::kExprI32x4MaxS: return graph()->NewNode(mcgraph()->machine()->I32x4MaxS(), inputs[0], inputs[1]); case wasm::kExprI32x4Eq: return graph()->NewNode(mcgraph()->machine()->I32x4Eq(), inputs[0], inputs[1]); case wasm::kExprI32x4Ne: return graph()->NewNode(mcgraph()->machine()->I32x4Ne(), inputs[0], inputs[1]); case wasm::kExprI32x4LtS: return graph()->NewNode(mcgraph()->machine()->I32x4GtS(), inputs[1], inputs[0]); case wasm::kExprI32x4LeS: return graph()->NewNode(mcgraph()->machine()->I32x4GeS(), inputs[1], inputs[0]); case wasm::kExprI32x4GtS: return graph()->NewNode(mcgraph()->machine()->I32x4GtS(), inputs[0], inputs[1]); case wasm::kExprI32x4GeS: return graph()->NewNode(mcgraph()->machine()->I32x4GeS(), inputs[0], inputs[1]); case wasm::kExprI32x4UConvertI16x8Low: return graph()->NewNode(mcgraph()->machine()->I32x4UConvertI16x8Low(), inputs[0]); case wasm::kExprI32x4UConvertI16x8High: return graph()->NewNode(mcgraph()->machine()->I32x4UConvertI16x8High(), inputs[0]); case wasm::kExprI32x4ShrU: return graph()->NewNode(mcgraph()->machine()->I32x4ShrU(), inputs[0], inputs[1]); case wasm::kExprI32x4MinU: return graph()->NewNode(mcgraph()->machine()->I32x4MinU(), inputs[0], inputs[1]); case wasm::kExprI32x4MaxU: return graph()->NewNode(mcgraph()->machine()->I32x4MaxU(), inputs[0], inputs[1]); case wasm::kExprI32x4LtU: return graph()->NewNode(mcgraph()->machine()->I32x4GtU(), inputs[1], inputs[0]); case wasm::kExprI32x4LeU: return graph()->NewNode(mcgraph()->machine()->I32x4GeU(), inputs[1], inputs[0]); case wasm::kExprI32x4GtU: return graph()->NewNode(mcgraph()->machine()->I32x4GtU(), inputs[0], inputs[1]); case wasm::kExprI32x4GeU: return graph()->NewNode(mcgraph()->machine()->I32x4GeU(), inputs[0], inputs[1]); case wasm::kExprI32x4Abs: return graph()->NewNode(mcgraph()->machine()->I32x4Abs(), inputs[0]); case wasm::kExprI32x4BitMask: return graph()->NewNode(mcgraph()->machine()->I32x4BitMask(), inputs[0]); case wasm::kExprI32x4DotI16x8S: return graph()->NewNode(mcgraph()->machine()->I32x4DotI16x8S(), inputs[0], inputs[1]); case wasm::kExprI32x4ExtMulLowI16x8S: return graph()->NewNode(mcgraph()->machine()->I32x4ExtMulLowI16x8S(), inputs[0], inputs[1]); case wasm::kExprI32x4ExtMulHighI16x8S: return graph()->NewNode(mcgraph()->machine()->I32x4ExtMulHighI16x8S(), inputs[0], inputs[1]); case wasm::kExprI32x4ExtMulLowI16x8U: return graph()->NewNode(mcgraph()->machine()->I32x4ExtMulLowI16x8U(), inputs[0], inputs[1]); case wasm::kExprI32x4ExtMulHighI16x8U: return graph()->NewNode(mcgraph()->machine()->I32x4ExtMulHighI16x8U(), inputs[0], inputs[1]); case wasm::kExprI32x4SignSelect: return graph()->NewNode(mcgraph()->machine()->I32x4SignSelect(), inputs[0], inputs[1], inputs[2]); case wasm::kExprI32x4ExtAddPairwiseI16x8S: return graph()->NewNode(mcgraph()->machine()->I32x4ExtAddPairwiseI16x8S(), inputs[0]); case wasm::kExprI32x4ExtAddPairwiseI16x8U: return graph()->NewNode(mcgraph()->machine()->I32x4ExtAddPairwiseI16x8U(), inputs[0]); case wasm::kExprI32x4TruncSatF64x2SZero: return graph()->NewNode(mcgraph()->machine()->I32x4TruncSatF64x2SZero(), inputs[0]); case wasm::kExprI32x4TruncSatF64x2UZero: return graph()->NewNode(mcgraph()->machine()->I32x4TruncSatF64x2UZero(), inputs[0]); case wasm::kExprI16x8Splat: return graph()->NewNode(mcgraph()->machine()->I16x8Splat(), inputs[0]); case wasm::kExprI16x8SConvertI8x16Low: return graph()->NewNode(mcgraph()->machine()->I16x8SConvertI8x16Low(), inputs[0]); case wasm::kExprI16x8SConvertI8x16High: return graph()->NewNode(mcgraph()->machine()->I16x8SConvertI8x16High(), inputs[0]); case wasm::kExprI16x8Shl: return graph()->NewNode(mcgraph()->machine()->I16x8Shl(), inputs[0], inputs[1]); case wasm::kExprI16x8ShrS: return graph()->NewNode(mcgraph()->machine()->I16x8ShrS(), inputs[0], inputs[1]); case wasm::kExprI16x8Neg: return graph()->NewNode(mcgraph()->machine()->I16x8Neg(), inputs[0]); case wasm::kExprI16x8SConvertI32x4: return graph()->NewNode(mcgraph()->machine()->I16x8SConvertI32x4(), inputs[0], inputs[1]); case wasm::kExprI16x8Add: return graph()->NewNode(mcgraph()->machine()->I16x8Add(), inputs[0], inputs[1]); case wasm::kExprI16x8AddSatS: return graph()->NewNode(mcgraph()->machine()->I16x8AddSatS(), inputs[0], inputs[1]); case wasm::kExprI16x8AddHoriz: return graph()->NewNode(mcgraph()->machine()->I16x8AddHoriz(), inputs[0], inputs[1]); case wasm::kExprI16x8Sub: return graph()->NewNode(mcgraph()->machine()->I16x8Sub(), inputs[0], inputs[1]); case wasm::kExprI16x8SubSatS: return graph()->NewNode(mcgraph()->machine()->I16x8SubSatS(), inputs[0], inputs[1]); case wasm::kExprI16x8Mul: return graph()->NewNode(mcgraph()->machine()->I16x8Mul(), inputs[0], inputs[1]); case wasm::kExprI16x8MinS: return graph()->NewNode(mcgraph()->machine()->I16x8MinS(), inputs[0], inputs[1]); case wasm::kExprI16x8MaxS: return graph()->NewNode(mcgraph()->machine()->I16x8MaxS(), inputs[0], inputs[1]); case wasm::kExprI16x8Eq: return graph()->NewNode(mcgraph()->machine()->I16x8Eq(), inputs[0], inputs[1]); case wasm::kExprI16x8Ne: return graph()->NewNode(mcgraph()->machine()->I16x8Ne(), inputs[0], inputs[1]); case wasm::kExprI16x8LtS: return graph()->NewNode(mcgraph()->machine()->I16x8GtS(), inputs[1], inputs[0]); case wasm::kExprI16x8LeS: return graph()->NewNode(mcgraph()->machine()->I16x8GeS(), inputs[1], inputs[0]); case wasm::kExprI16x8GtS: return graph()->NewNode(mcgraph()->machine()->I16x8GtS(), inputs[0], inputs[1]); case wasm::kExprI16x8GeS: return graph()->NewNode(mcgraph()->machine()->I16x8GeS(), inputs[0], inputs[1]); case wasm::kExprI16x8UConvertI8x16Low: return graph()->NewNode(mcgraph()->machine()->I16x8UConvertI8x16Low(), inputs[0]); case wasm::kExprI16x8UConvertI8x16High: return graph()->NewNode(mcgraph()->machine()->I16x8UConvertI8x16High(), inputs[0]); case wasm::kExprI16x8UConvertI32x4: return graph()->NewNode(mcgraph()->machine()->I16x8UConvertI32x4(), inputs[0], inputs[1]); case wasm::kExprI16x8ShrU: return graph()->NewNode(mcgraph()->machine()->I16x8ShrU(), inputs[0], inputs[1]); case wasm::kExprI16x8AddSatU: return graph()->NewNode(mcgraph()->machine()->I16x8AddSatU(), inputs[0], inputs[1]); case wasm::kExprI16x8SubSatU: return graph()->NewNode(mcgraph()->machine()->I16x8SubSatU(), inputs[0], inputs[1]); case wasm::kExprI16x8MinU: return graph()->NewNode(mcgraph()->machine()->I16x8MinU(), inputs[0], inputs[1]); case wasm::kExprI16x8MaxU: return graph()->NewNode(mcgraph()->machine()->I16x8MaxU(), inputs[0], inputs[1]); case wasm::kExprI16x8LtU: return graph()->NewNode(mcgraph()->machine()->I16x8GtU(), inputs[1], inputs[0]); case wasm::kExprI16x8LeU: return graph()->NewNode(mcgraph()->machine()->I16x8GeU(), inputs[1], inputs[0]); case wasm::kExprI16x8GtU: return graph()->NewNode(mcgraph()->machine()->I16x8GtU(), inputs[0], inputs[1]); case wasm::kExprI16x8GeU: return graph()->NewNode(mcgraph()->machine()->I16x8GeU(), inputs[0], inputs[1]); case wasm::kExprI16x8RoundingAverageU: return graph()->NewNode(mcgraph()->machine()->I16x8RoundingAverageU(), inputs[0], inputs[1]); case wasm::kExprI16x8Q15MulRSatS: return graph()->NewNode(mcgraph()->machine()->I16x8Q15MulRSatS(), inputs[0], inputs[1]); case wasm::kExprI16x8Abs: return graph()->NewNode(mcgraph()->machine()->I16x8Abs(), inputs[0]); case wasm::kExprI16x8BitMask: return graph()->NewNode(mcgraph()->machine()->I16x8BitMask(), inputs[0]); case wasm::kExprI16x8ExtMulLowI8x16S: return graph()->NewNode(mcgraph()->machine()->I16x8ExtMulLowI8x16S(), inputs[0], inputs[1]); case wasm::kExprI16x8ExtMulHighI8x16S: return graph()->NewNode(mcgraph()->machine()->I16x8ExtMulHighI8x16S(), inputs[0], inputs[1]); case wasm::kExprI16x8ExtMulLowI8x16U: return graph()->NewNode(mcgraph()->machine()->I16x8ExtMulLowI8x16U(), inputs[0], inputs[1]); case wasm::kExprI16x8ExtMulHighI8x16U: return graph()->NewNode(mcgraph()->machine()->I16x8ExtMulHighI8x16U(), inputs[0], inputs[1]); case wasm::kExprI16x8SignSelect: return graph()->NewNode(mcgraph()->machine()->I16x8SignSelect(), inputs[0], inputs[1], inputs[2]); case wasm::kExprI16x8ExtAddPairwiseI8x16S: return graph()->NewNode(mcgraph()->machine()->I16x8ExtAddPairwiseI8x16S(), inputs[0]); case wasm::kExprI16x8ExtAddPairwiseI8x16U: return graph()->NewNode(mcgraph()->machine()->I16x8ExtAddPairwiseI8x16U(), inputs[0]); case wasm::kExprI8x16Splat: return graph()->NewNode(mcgraph()->machine()->I8x16Splat(), inputs[0]); case wasm::kExprI8x16Neg: return graph()->NewNode(mcgraph()->machine()->I8x16Neg(), inputs[0]); case wasm::kExprI8x16Shl: return graph()->NewNode(mcgraph()->machine()->I8x16Shl(), inputs[0], inputs[1]); case wasm::kExprI8x16ShrS: return graph()->NewNode(mcgraph()->machine()->I8x16ShrS(), inputs[0], inputs[1]); case wasm::kExprI8x16SConvertI16x8: return graph()->NewNode(mcgraph()->machine()->I8x16SConvertI16x8(), inputs[0], inputs[1]); case wasm::kExprI8x16Add: return graph()->NewNode(mcgraph()->machine()->I8x16Add(), inputs[0], inputs[1]); case wasm::kExprI8x16AddSatS: return graph()->NewNode(mcgraph()->machine()->I8x16AddSatS(), inputs[0], inputs[1]); case wasm::kExprI8x16Sub: return graph()->NewNode(mcgraph()->machine()->I8x16Sub(), inputs[0], inputs[1]); case wasm::kExprI8x16SubSatS: return graph()->NewNode(mcgraph()->machine()->I8x16SubSatS(), inputs[0], inputs[1]); case wasm::kExprI8x16Mul: return graph()->NewNode(mcgraph()->machine()->I8x16Mul(), inputs[0], inputs[1]); case wasm::kExprI8x16MinS: return graph()->NewNode(mcgraph()->machine()->I8x16MinS(), inputs[0], inputs[1]); case wasm::kExprI8x16MaxS: return graph()->NewNode(mcgraph()->machine()->I8x16MaxS(), inputs[0], inputs[1]); case wasm::kExprI8x16Eq: return graph()->NewNode(mcgraph()->machine()->I8x16Eq(), inputs[0], inputs[1]); case wasm::kExprI8x16Ne: return graph()->NewNode(mcgraph()->machine()->I8x16Ne(), inputs[0], inputs[1]); case wasm::kExprI8x16LtS: return graph()->NewNode(mcgraph()->machine()->I8x16GtS(), inputs[1], inputs[0]); case wasm::kExprI8x16LeS: return graph()->NewNode(mcgraph()->machine()->I8x16GeS(), inputs[1], inputs[0]); case wasm::kExprI8x16GtS: return graph()->NewNode(mcgraph()->machine()->I8x16GtS(), inputs[0], inputs[1]); case wasm::kExprI8x16GeS: return graph()->NewNode(mcgraph()->machine()->I8x16GeS(), inputs[0], inputs[1]); case wasm::kExprI8x16ShrU: return graph()->NewNode(mcgraph()->machine()->I8x16ShrU(), inputs[0], inputs[1]); case wasm::kExprI8x16UConvertI16x8: return graph()->NewNode(mcgraph()->machine()->I8x16UConvertI16x8(), inputs[0], inputs[1]); case wasm::kExprI8x16AddSatU: return graph()->NewNode(mcgraph()->machine()->I8x16AddSatU(), inputs[0], inputs[1]); case wasm::kExprI8x16SubSatU: return graph()->NewNode(mcgraph()->machine()->I8x16SubSatU(), inputs[0], inputs[1]); case wasm::kExprI8x16MinU: return graph()->NewNode(mcgraph()->machine()->I8x16MinU(), inputs[0], inputs[1]); case wasm::kExprI8x16MaxU: return graph()->NewNode(mcgraph()->machine()->I8x16MaxU(), inputs[0], inputs[1]); case wasm::kExprI8x16LtU: return graph()->NewNode(mcgraph()->machine()->I8x16GtU(), inputs[1], inputs[0]); case wasm::kExprI8x16LeU: return graph()->NewNode(mcgraph()->machine()->I8x16GeU(), inputs[1], inputs[0]); case wasm::kExprI8x16GtU: return graph()->NewNode(mcgraph()->machine()->I8x16GtU(), inputs[0], inputs[1]); case wasm::kExprI8x16GeU: return graph()->NewNode(mcgraph()->machine()->I8x16GeU(), inputs[0], inputs[1]); case wasm::kExprI8x16RoundingAverageU: return graph()->NewNode(mcgraph()->machine()->I8x16RoundingAverageU(), inputs[0], inputs[1]); case wasm::kExprI8x16Popcnt: return graph()->NewNode(mcgraph()->machine()->I8x16Popcnt(), inputs[0]); case wasm::kExprI8x16Abs: return graph()->NewNode(mcgraph()->machine()->I8x16Abs(), inputs[0]); case wasm::kExprI8x16BitMask: return graph()->NewNode(mcgraph()->machine()->I8x16BitMask(), inputs[0]); case wasm::kExprI8x16SignSelect: return graph()->NewNode(mcgraph()->machine()->I8x16SignSelect(), inputs[0], inputs[1], inputs[2]); case wasm::kExprS128And: return graph()->NewNode(mcgraph()->machine()->S128And(), inputs[0], inputs[1]); case wasm::kExprS128Or: return graph()->NewNode(mcgraph()->machine()->S128Or(), inputs[0], inputs[1]); case wasm::kExprS128Xor: return graph()->NewNode(mcgraph()->machine()->S128Xor(), inputs[0], inputs[1]); case wasm::kExprS128Not: return graph()->NewNode(mcgraph()->machine()->S128Not(), inputs[0]); case wasm::kExprS128Select: return graph()->NewNode(mcgraph()->machine()->S128Select(), inputs[2], inputs[0], inputs[1]); case wasm::kExprS128AndNot: return graph()->NewNode(mcgraph()->machine()->S128AndNot(), inputs[0], inputs[1]); case wasm::kExprV64x2AllTrue: return graph()->NewNode(mcgraph()->machine()->V64x2AllTrue(), inputs[0]); case wasm::kExprV32x4AllTrue: return graph()->NewNode(mcgraph()->machine()->V32x4AllTrue(), inputs[0]); case wasm::kExprV16x8AllTrue: return graph()->NewNode(mcgraph()->machine()->V16x8AllTrue(), inputs[0]); case wasm::kExprV128AnyTrue: return graph()->NewNode(mcgraph()->machine()->V128AnyTrue(), inputs[0]); case wasm::kExprV8x16AllTrue: return graph()->NewNode(mcgraph()->machine()->V8x16AllTrue(), inputs[0]); case wasm::kExprI8x16Swizzle: return graph()->NewNode(mcgraph()->machine()->I8x16Swizzle(), inputs[0], inputs[1]); default: FATAL_UNSUPPORTED_OPCODE(opcode); } } Node* WasmGraphBuilder::SimdLaneOp(wasm::WasmOpcode opcode, uint8_t lane, Node* const* inputs) { has_simd_ = true; switch (opcode) { case wasm::kExprF64x2ExtractLane: return graph()->NewNode(mcgraph()->machine()->F64x2ExtractLane(lane), inputs[0]); case wasm::kExprF64x2ReplaceLane: return graph()->NewNode(mcgraph()->machine()->F64x2ReplaceLane(lane), inputs[0], inputs[1]); case wasm::kExprF32x4ExtractLane: return graph()->NewNode(mcgraph()->machine()->F32x4ExtractLane(lane), inputs[0]); case wasm::kExprF32x4ReplaceLane: return graph()->NewNode(mcgraph()->machine()->F32x4ReplaceLane(lane), inputs[0], inputs[1]); case wasm::kExprI64x2ExtractLane: return graph()->NewNode(mcgraph()->machine()->I64x2ExtractLane(lane), inputs[0]); case wasm::kExprI64x2ReplaceLane: return graph()->NewNode(mcgraph()->machine()->I64x2ReplaceLane(lane), inputs[0], inputs[1]); case wasm::kExprI32x4ExtractLane: return graph()->NewNode(mcgraph()->machine()->I32x4ExtractLane(lane), inputs[0]); case wasm::kExprI32x4ReplaceLane: return graph()->NewNode(mcgraph()->machine()->I32x4ReplaceLane(lane), inputs[0], inputs[1]); case wasm::kExprI16x8ExtractLaneS: return graph()->NewNode(mcgraph()->machine()->I16x8ExtractLaneS(lane), inputs[0]); case wasm::kExprI16x8ExtractLaneU: return graph()->NewNode(mcgraph()->machine()->I16x8ExtractLaneU(lane), inputs[0]); case wasm::kExprI16x8ReplaceLane: return graph()->NewNode(mcgraph()->machine()->I16x8ReplaceLane(lane), inputs[0], inputs[1]); case wasm::kExprI8x16ExtractLaneS: return graph()->NewNode(mcgraph()->machine()->I8x16ExtractLaneS(lane), inputs[0]); case wasm::kExprI8x16ExtractLaneU: return graph()->NewNode(mcgraph()->machine()->I8x16ExtractLaneU(lane), inputs[0]); case wasm::kExprI8x16ReplaceLane: return graph()->NewNode(mcgraph()->machine()->I8x16ReplaceLane(lane), inputs[0], inputs[1]); default: FATAL_UNSUPPORTED_OPCODE(opcode); } } Node* WasmGraphBuilder::Simd8x16ShuffleOp(const uint8_t shuffle[16], Node* const* inputs) { has_simd_ = true; return graph()->NewNode(mcgraph()->machine()->I8x16Shuffle(shuffle), inputs[0], inputs[1]); } Node* WasmGraphBuilder::AtomicOp(wasm::WasmOpcode opcode, Node* const* inputs, uint32_t alignment, uint64_t offset, wasm::WasmCodePosition position) { struct AtomicOpInfo { enum Type : int8_t { kNoInput = 0, kOneInput = 1, kTwoInputs = 2, kSpecial }; using OperatorByType = const Operator* (MachineOperatorBuilder::*)(MachineType); using OperatorByRep = const Operator* (MachineOperatorBuilder::*)(MachineRepresentation); const Type type; const MachineType machine_type; const OperatorByType operator_by_type = nullptr; const OperatorByRep operator_by_rep = nullptr; constexpr AtomicOpInfo(Type t, MachineType m, OperatorByType o) : type(t), machine_type(m), operator_by_type(o) {} constexpr AtomicOpInfo(Type t, MachineType m, OperatorByRep o) : type(t), machine_type(m), operator_by_rep(o) {} // Constexpr, hence just a table lookup in most compilers. static constexpr AtomicOpInfo Get(wasm::WasmOpcode opcode) { switch (opcode) { #define CASE(Name, Type, MachType, Op) \ case wasm::kExpr##Name: \ return {Type, MachineType::MachType(), &MachineOperatorBuilder::Op}; // Binops. CASE(I32AtomicAdd, kOneInput, Uint32, Word32AtomicAdd) CASE(I64AtomicAdd, kOneInput, Uint64, Word64AtomicAdd) CASE(I32AtomicAdd8U, kOneInput, Uint8, Word32AtomicAdd) CASE(I32AtomicAdd16U, kOneInput, Uint16, Word32AtomicAdd) CASE(I64AtomicAdd8U, kOneInput, Uint8, Word64AtomicAdd) CASE(I64AtomicAdd16U, kOneInput, Uint16, Word64AtomicAdd) CASE(I64AtomicAdd32U, kOneInput, Uint32, Word64AtomicAdd) CASE(I32AtomicSub, kOneInput, Uint32, Word32AtomicSub) CASE(I64AtomicSub, kOneInput, Uint64, Word64AtomicSub) CASE(I32AtomicSub8U, kOneInput, Uint8, Word32AtomicSub) CASE(I32AtomicSub16U, kOneInput, Uint16, Word32AtomicSub) CASE(I64AtomicSub8U, kOneInput, Uint8, Word64AtomicSub) CASE(I64AtomicSub16U, kOneInput, Uint16, Word64AtomicSub) CASE(I64AtomicSub32U, kOneInput, Uint32, Word64AtomicSub) CASE(I32AtomicAnd, kOneInput, Uint32, Word32AtomicAnd) CASE(I64AtomicAnd, kOneInput, Uint64, Word64AtomicAnd) CASE(I32AtomicAnd8U, kOneInput, Uint8, Word32AtomicAnd) CASE(I32AtomicAnd16U, kOneInput, Uint16, Word32AtomicAnd) CASE(I64AtomicAnd8U, kOneInput, Uint8, Word64AtomicAnd) CASE(I64AtomicAnd16U, kOneInput, Uint16, Word64AtomicAnd) CASE(I64AtomicAnd32U, kOneInput, Uint32, Word64AtomicAnd) CASE(I32AtomicOr, kOneInput, Uint32, Word32AtomicOr) CASE(I64AtomicOr, kOneInput, Uint64, Word64AtomicOr) CASE(I32AtomicOr8U, kOneInput, Uint8, Word32AtomicOr) CASE(I32AtomicOr16U, kOneInput, Uint16, Word32AtomicOr) CASE(I64AtomicOr8U, kOneInput, Uint8, Word64AtomicOr) CASE(I64AtomicOr16U, kOneInput, Uint16, Word64AtomicOr) CASE(I64AtomicOr32U, kOneInput, Uint32, Word64AtomicOr) CASE(I32AtomicXor, kOneInput, Uint32, Word32AtomicXor) CASE(I64AtomicXor, kOneInput, Uint64, Word64AtomicXor) CASE(I32AtomicXor8U, kOneInput, Uint8, Word32AtomicXor) CASE(I32AtomicXor16U, kOneInput, Uint16, Word32AtomicXor) CASE(I64AtomicXor8U, kOneInput, Uint8, Word64AtomicXor) CASE(I64AtomicXor16U, kOneInput, Uint16, Word64AtomicXor) CASE(I64AtomicXor32U, kOneInput, Uint32, Word64AtomicXor) CASE(I32AtomicExchange, kOneInput, Uint32, Word32AtomicExchange) CASE(I64AtomicExchange, kOneInput, Uint64, Word64AtomicExchange) CASE(I32AtomicExchange8U, kOneInput, Uint8, Word32AtomicExchange) CASE(I32AtomicExchange16U, kOneInput, Uint16, Word32AtomicExchange) CASE(I64AtomicExchange8U, kOneInput, Uint8, Word64AtomicExchange) CASE(I64AtomicExchange16U, kOneInput, Uint16, Word64AtomicExchange) CASE(I64AtomicExchange32U, kOneInput, Uint32, Word64AtomicExchange) // Compare-exchange. CASE(I32AtomicCompareExchange, kTwoInputs, Uint32, Word32AtomicCompareExchange) CASE(I64AtomicCompareExchange, kTwoInputs, Uint64, Word64AtomicCompareExchange) CASE(I32AtomicCompareExchange8U, kTwoInputs, Uint8, Word32AtomicCompareExchange) CASE(I32AtomicCompareExchange16U, kTwoInputs, Uint16, Word32AtomicCompareExchange) CASE(I64AtomicCompareExchange8U, kTwoInputs, Uint8, Word64AtomicCompareExchange) CASE(I64AtomicCompareExchange16U, kTwoInputs, Uint16, Word64AtomicCompareExchange) CASE(I64AtomicCompareExchange32U, kTwoInputs, Uint32, Word64AtomicCompareExchange) // Load. CASE(I32AtomicLoad, kNoInput, Uint32, Word32AtomicLoad) CASE(I64AtomicLoad, kNoInput, Uint64, Word64AtomicLoad) CASE(I32AtomicLoad8U, kNoInput, Uint8, Word32AtomicLoad) CASE(I32AtomicLoad16U, kNoInput, Uint16, Word32AtomicLoad) CASE(I64AtomicLoad8U, kNoInput, Uint8, Word64AtomicLoad) CASE(I64AtomicLoad16U, kNoInput, Uint16, Word64AtomicLoad) CASE(I64AtomicLoad32U, kNoInput, Uint32, Word64AtomicLoad) // Store. CASE(I32AtomicStore, kOneInput, Uint32, Word32AtomicStore) CASE(I64AtomicStore, kOneInput, Uint64, Word64AtomicStore) CASE(I32AtomicStore8U, kOneInput, Uint8, Word32AtomicStore) CASE(I32AtomicStore16U, kOneInput, Uint16, Word32AtomicStore) CASE(I64AtomicStore8U, kOneInput, Uint8, Word64AtomicStore) CASE(I64AtomicStore16U, kOneInput, Uint16, Word64AtomicStore) CASE(I64AtomicStore32U, kOneInput, Uint32, Word64AtomicStore) #undef CASE case wasm::kExprAtomicNotify: return {kSpecial, MachineType::Int32(), OperatorByType{nullptr}}; case wasm::kExprI32AtomicWait: return {kSpecial, MachineType::Int32(), OperatorByType{nullptr}}; case wasm::kExprI64AtomicWait: return {kSpecial, MachineType::Int64(), OperatorByType{nullptr}}; default: #if V8_HAS_CXX14_CONSTEXPR UNREACHABLE(); #else // Return something for older GCC. return {kSpecial, MachineType::Int64(), OperatorByType{nullptr}}; #endif } } }; AtomicOpInfo info = AtomicOpInfo::Get(opcode); Node* index = CheckBoundsAndAlignment(info.machine_type.MemSize(), inputs[0], offset, position); // {offset} is validated to be within uintptr_t range in {BoundsCheckMem}. uintptr_t capped_offset = static_cast<uintptr_t>(offset); if (info.type != AtomicOpInfo::kSpecial) { const Operator* op = info.operator_by_type ? (mcgraph()->machine()->*info.operator_by_type)(info.machine_type) : (mcgraph()->machine()->*info.operator_by_rep)( info.machine_type.representation()); Node* input_nodes[6] = {MemBuffer(capped_offset), index}; int num_actual_inputs = info.type; std::copy_n(inputs + 1, num_actual_inputs, input_nodes + 2); input_nodes[num_actual_inputs + 2] = effect(); input_nodes[num_actual_inputs + 3] = control(); return gasm_->AddNode( graph()->NewNode(op, num_actual_inputs + 4, input_nodes)); } // After we've bounds-checked, compute the effective offset. Node* effective_offset = gasm_->IntAdd(gasm_->UintPtrConstant(capped_offset), index); switch (opcode) { case wasm::kExprAtomicNotify: return gasm_->CallRuntimeStub(wasm::WasmCode::kWasmAtomicNotify, effective_offset, inputs[1]); case wasm::kExprI32AtomicWait: { auto* call_descriptor = GetI32AtomicWaitCallDescriptor(); intptr_t target = mcgraph()->machine()->Is64() ? wasm::WasmCode::kWasmI32AtomicWait64 : wasm::WasmCode::kWasmI32AtomicWait32; Node* call_target = mcgraph()->RelocatableIntPtrConstant( target, RelocInfo::WASM_STUB_CALL); return gasm_->Call(call_descriptor, call_target, effective_offset, inputs[1], inputs[2]); } case wasm::kExprI64AtomicWait: { auto* call_descriptor = GetI64AtomicWaitCallDescriptor(); intptr_t target = mcgraph()->machine()->Is64() ? wasm::WasmCode::kWasmI64AtomicWait64 : wasm::WasmCode::kWasmI64AtomicWait32; Node* call_target = mcgraph()->RelocatableIntPtrConstant( target, RelocInfo::WASM_STUB_CALL); return gasm_->Call(call_descriptor, call_target, effective_offset, inputs[1], inputs[2]); } default: FATAL_UNSUPPORTED_OPCODE(opcode); } } Node* WasmGraphBuilder::AtomicFence() { return SetEffect(graph()->NewNode(mcgraph()->machine()->MemBarrier(), effect(), control())); } Node* WasmGraphBuilder::MemoryInit(uint32_t data_segment_index, Node* dst, Node* src, Node* size, wasm::WasmCodePosition position) { // The data segment index must be in bounds since it is required by // validation. DCHECK_LT(data_segment_index, env_->module->num_declared_data_segments); Node* function = graph()->NewNode(mcgraph()->common()->ExternalConstant( ExternalReference::wasm_memory_init())); Node* stack_slot = StoreArgsInStackSlot( {{MachineType::PointerRepresentation(), instance_node_.get()}, {MachineRepresentation::kWord32, dst}, {MachineRepresentation::kWord32, src}, {MachineRepresentation::kWord32, gasm_->Uint32Constant(data_segment_index)}, {MachineRepresentation::kWord32, size}}); MachineType sig_types[] = {MachineType::Int32(), MachineType::Pointer()}; MachineSignature sig(1, 1, sig_types); Node* call = SetEffect(BuildCCall(&sig, function, stack_slot)); return TrapIfFalse(wasm::kTrapMemOutOfBounds, call, position); } Node* WasmGraphBuilder::DataDrop(uint32_t data_segment_index, wasm::WasmCodePosition position) { DCHECK_LT(data_segment_index, env_->module->num_declared_data_segments); Node* seg_size_array = LOAD_INSTANCE_FIELD(DataSegmentSizes, MachineType::Pointer()); STATIC_ASSERT(wasm::kV8MaxWasmDataSegments <= kMaxUInt32 >> 2); const Operator* store_op = mcgraph()->machine()->Store( StoreRepresentation(MachineRepresentation::kWord32, kNoWriteBarrier)); return SetEffect( graph()->NewNode(store_op, seg_size_array, mcgraph()->IntPtrConstant(data_segment_index << 2), mcgraph()->Int32Constant(0), effect(), control())); } Node* WasmGraphBuilder::StoreArgsInStackSlot( std::initializer_list<std::pair<MachineRepresentation, Node*>> args) { int slot_size = 0; for (auto arg : args) { slot_size += ElementSizeInBytes(arg.first); } DCHECK_LT(0, slot_size); Node* stack_slot = graph()->NewNode(mcgraph()->machine()->StackSlot(slot_size)); int offset = 0; for (auto arg : args) { MachineRepresentation type = arg.first; Node* value = arg.second; gasm_->Store(StoreRepresentation(type, kNoWriteBarrier), stack_slot, mcgraph()->Int32Constant(offset), value); offset += ElementSizeInBytes(type); } return stack_slot; } Node* WasmGraphBuilder::MemoryCopy(Node* dst, Node* src, Node* size, wasm::WasmCodePosition position) { Node* function = graph()->NewNode(mcgraph()->common()->ExternalConstant( ExternalReference::wasm_memory_copy())); Node* stack_slot = StoreArgsInStackSlot( {{MachineType::PointerRepresentation(), instance_node_.get()}, {MachineRepresentation::kWord32, dst}, {MachineRepresentation::kWord32, src}, {MachineRepresentation::kWord32, size}}); MachineType sig_types[] = {MachineType::Int32(), MachineType::Pointer()}; MachineSignature sig(1, 1, sig_types); Node* call = SetEffect(BuildCCall(&sig, function, stack_slot)); return TrapIfFalse(wasm::kTrapMemOutOfBounds, call, position); } Node* WasmGraphBuilder::MemoryFill(Node* dst, Node* value, Node* size, wasm::WasmCodePosition position) { Node* function = graph()->NewNode(mcgraph()->common()->ExternalConstant( ExternalReference::wasm_memory_fill())); Node* stack_slot = StoreArgsInStackSlot( {{MachineType::PointerRepresentation(), instance_node_.get()}, {MachineRepresentation::kWord32, dst}, {MachineRepresentation::kWord32, value}, {MachineRepresentation::kWord32, size}}); MachineType sig_types[] = {MachineType::Int32(), MachineType::Pointer()}; MachineSignature sig(1, 1, sig_types); Node* call = SetEffect(BuildCCall(&sig, function, stack_slot)); return TrapIfFalse(wasm::kTrapMemOutOfBounds, call, position); } Node* WasmGraphBuilder::TableInit(uint32_t table_index, uint32_t elem_segment_index, Node* dst, Node* src, Node* size, wasm::WasmCodePosition position) { return gasm_->CallRuntimeStub( wasm::WasmCode::kWasmTableInit, dst, src, size, graph()->NewNode(mcgraph()->common()->NumberConstant(table_index)), graph()->NewNode( mcgraph()->common()->NumberConstant(elem_segment_index))); } Node* WasmGraphBuilder::ElemDrop(uint32_t elem_segment_index, wasm::WasmCodePosition position) { // The elem segment index must be in bounds since it is required by // validation. DCHECK_LT(elem_segment_index, env_->module->elem_segments.size()); Node* dropped_elem_segments = LOAD_INSTANCE_FIELD(DroppedElemSegments, MachineType::Pointer()); const Operator* store_op = mcgraph()->machine()->Store( StoreRepresentation(MachineRepresentation::kWord8, kNoWriteBarrier)); return SetEffect( graph()->NewNode(store_op, dropped_elem_segments, mcgraph()->IntPtrConstant(elem_segment_index), mcgraph()->Int32Constant(1), effect(), control())); } Node* WasmGraphBuilder::TableCopy(uint32_t table_dst_index, uint32_t table_src_index, Node* dst, Node* src, Node* size, wasm::WasmCodePosition position) { return gasm_->CallRuntimeStub( wasm::WasmCode::kWasmTableCopy, dst, src, size, graph()->NewNode(mcgraph()->common()->NumberConstant(table_dst_index)), graph()->NewNode(mcgraph()->common()->NumberConstant(table_src_index))); } Node* WasmGraphBuilder::TableGrow(uint32_t table_index, Node* value, Node* delta) { Node* args[] = { graph()->NewNode(mcgraph()->common()->NumberConstant(table_index)), value, BuildConvertUint32ToSmiWithSaturation(delta, FLAG_wasm_max_table_size)}; Node* result = BuildCallToRuntime(Runtime::kWasmTableGrow, args, arraysize(args)); return BuildChangeSmiToInt32(result); } Node* WasmGraphBuilder::TableSize(uint32_t table_index) { Node* tables = LOAD_INSTANCE_FIELD(Tables, MachineType::TaggedPointer()); Node* table = LOAD_FIXED_ARRAY_SLOT_ANY(tables, table_index); int length_field_size = WasmTableObject::kCurrentLengthOffsetEnd - WasmTableObject::kCurrentLengthOffset + 1; Node* length_smi = gasm_->Load( assert_size(length_field_size, MachineType::TaggedSigned()), table, wasm::ObjectAccess::ToTagged(WasmTableObject::kCurrentLengthOffset)); return BuildChangeSmiToInt32(length_smi); } Node* WasmGraphBuilder::TableFill(uint32_t table_index, Node* start, Node* value, Node* count) { Node* args[] = { graph()->NewNode(mcgraph()->common()->NumberConstant(table_index)), BuildConvertUint32ToSmiWithSaturation(start, FLAG_wasm_max_table_size), value, BuildConvertUint32ToSmiWithSaturation(count, FLAG_wasm_max_table_size)}; return BuildCallToRuntime(Runtime::kWasmTableFill, args, arraysize(args)); } Node* WasmGraphBuilder::StructNewWithRtt(uint32_t struct_index, const wasm::StructType* type, Node* rtt, Vector<Node*> fields) { Node* s = gasm_->CallBuiltin(Builtins::kWasmAllocateStructWithRtt, rtt); for (uint32_t i = 0; i < type->field_count(); i++) { gasm_->StoreStructField(s, type, i, fields[i]); } return s; } Node* WasmGraphBuilder::ArrayNewWithRtt(uint32_t array_index, const wasm::ArrayType* type, Node* length, Node* initial_value, Node* rtt, wasm::WasmCodePosition position) { TrapIfFalse(wasm::kTrapArrayOutOfBounds, gasm_->Uint32LessThanOrEqual( length, gasm_->Uint32Constant(wasm::kV8MaxWasmArrayLength)), position); wasm::ValueType element_type = type->element_type(); Node* a = gasm_->CallBuiltin(Builtins::kWasmAllocateArrayWithRtt, rtt, length, graph()->NewNode(mcgraph()->common()->Int32Constant( element_type.element_size_bytes()))); auto loop = gasm_->MakeLoopLabel(MachineRepresentation::kWord32); auto done = gasm_->MakeLabel(); Node* start_offset = gasm_->Int32Constant( wasm::ObjectAccess::ToTagged(WasmArray::kHeaderSize)); Node* element_size = gasm_->Int32Constant(element_type.element_size_bytes()); Node* end_offset = gasm_->Int32Add(start_offset, gasm_->Int32Mul(element_size, length)); // Loops need the graph's end to have been set up. EnsureEnd(mcgraph()); gasm_->Goto(&loop, start_offset); gasm_->Bind(&loop); { Node* offset = loop.PhiAt(0); Node* check = gasm_->Uint32LessThan(offset, end_offset); gasm_->GotoIfNot(check, &done); gasm_->StoreWithTaggedAlignment(a, offset, initial_value, type->element_type()); offset = gasm_->Int32Add(offset, element_size); gasm_->Goto(&loop, offset); } gasm_->Bind(&done); return a; } Node* WasmGraphBuilder::RttCanon(uint32_t type_index) { Node* maps_list = LOAD_INSTANCE_FIELD(ManagedObjectMaps, MachineType::TaggedPointer()); return LOAD_FIXED_ARRAY_SLOT_PTR(maps_list, type_index); } Node* WasmGraphBuilder::RttSub(uint32_t type_index, Node* parent_rtt) { return gasm_->CallBuiltin( Builtins::kWasmAllocateRtt, graph()->NewNode(mcgraph()->common()->Int32Constant(type_index)), parent_rtt); } void AssertFalse(MachineGraph* mcgraph, GraphAssembler* gasm, Node* condition) { #if DEBUG if (FLAG_debug_code) { auto ok = gasm->MakeLabel(); gasm->GotoIfNot(condition, &ok); EnsureEnd(mcgraph); gasm->Unreachable(); gasm->Bind(&ok); } #endif } WasmGraphBuilder::Callbacks WasmGraphBuilder::TestCallbacks( GraphAssemblerLabel<1>* label) { return {// succeed_if [=](Node* condition, BranchHint hint) -> void { gasm_->GotoIf(condition, label, hint, gasm_->Int32Constant(1)); }, // fail_if [=](Node* condition, BranchHint hint) -> void { gasm_->GotoIf(condition, label, hint, gasm_->Int32Constant(0)); }, // fail_if_not [=](Node* condition, BranchHint hint) -> void { gasm_->GotoIfNot(condition, label, hint, gasm_->Int32Constant(0)); }}; } WasmGraphBuilder::Callbacks WasmGraphBuilder::CastCallbacks( GraphAssemblerLabel<0>* label, wasm::WasmCodePosition position) { return {// succeed_if [=](Node* condition, BranchHint hint) -> void { gasm_->GotoIf(condition, label, hint); }, // fail_if [=](Node* condition, BranchHint hint) -> void { TrapIfTrue(wasm::kTrapIllegalCast, condition, position); }, // fail_if_not [=](Node* condition, BranchHint hint) -> void { TrapIfFalse(wasm::kTrapIllegalCast, condition, position); }}; } WasmGraphBuilder::Callbacks WasmGraphBuilder::BranchCallbacks( SmallNodeVector& no_match_controls, SmallNodeVector& no_match_effects, SmallNodeVector& match_controls, SmallNodeVector& match_effects) { return { // succeed_if [&](Node* condition, BranchHint hint) -> void { Node* branch = graph()->NewNode(mcgraph()->common()->Branch(hint), condition, control()); match_controls.emplace_back( graph()->NewNode(mcgraph()->common()->IfTrue(), branch)); match_effects.emplace_back(effect()); SetControl(graph()->NewNode(mcgraph()->common()->IfFalse(), branch)); }, // fail_if [&](Node* condition, BranchHint hint) -> void { Node* branch = graph()->NewNode(mcgraph()->common()->Branch(hint), condition, control()); no_match_controls.emplace_back( graph()->NewNode(mcgraph()->common()->IfTrue(), branch)); no_match_effects.emplace_back(effect()); SetControl(graph()->NewNode(mcgraph()->common()->IfFalse(), branch)); }, // fail_if_not [&](Node* condition, BranchHint hint) -> void { Node* branch = graph()->NewNode(mcgraph()->common()->Branch(hint), condition, control()); no_match_controls.emplace_back( graph()->NewNode(mcgraph()->common()->IfFalse(), branch)); no_match_effects.emplace_back(effect()); SetControl(graph()->NewNode(mcgraph()->common()->IfTrue(), branch)); }}; } void WasmGraphBuilder::TypeCheck( Node* object, Node* rtt, WasmGraphBuilder::ObjectReferenceKnowledge config, bool null_succeeds, Callbacks callbacks) { if (config.object_can_be_null) { (null_succeeds ? callbacks.succeed_if : callbacks.fail_if)( gasm_->WordEqual(object, RefNull()), BranchHint::kFalse); } Node* map = gasm_->LoadMap(object); if (config.reference_kind == kFunction) { // Currently, the only way for a function to match an rtt is if its map // is equal to that rtt. callbacks.fail_if_not(gasm_->TaggedEqual(map, rtt), BranchHint::kTrue); return; } DCHECK(config.reference_kind == kArrayOrStruct); callbacks.succeed_if(gasm_->TaggedEqual(map, rtt), BranchHint::kTrue); Node* type_info = gasm_->LoadWasmTypeInfo(map); Node* supertypes = gasm_->LoadSupertypes(type_info); Node* supertypes_length = BuildChangeSmiToInt32(gasm_->LoadFixedArrayLengthAsSmi(supertypes)); Node* rtt_depth = config.rtt_depth >= 0 ? gasm_->Int32Constant(config.rtt_depth) : BuildChangeSmiToInt32(gasm_->LoadFixedArrayLengthAsSmi( gasm_->LoadSupertypes(gasm_->LoadWasmTypeInfo(rtt)))); callbacks.fail_if_not(gasm_->Uint32LessThan(rtt_depth, supertypes_length), BranchHint::kTrue); Node* maybe_match = gasm_->LoadFixedArrayElement( supertypes, rtt_depth, MachineType::TaggedPointer()); callbacks.fail_if_not(gasm_->TaggedEqual(maybe_match, rtt), BranchHint::kTrue); } void WasmGraphBuilder::DataCheck(Node* object, bool object_can_be_null, Callbacks callbacks) { if (object_can_be_null) { callbacks.fail_if(gasm_->WordEqual(object, RefNull()), BranchHint::kFalse); } callbacks.fail_if(gasm_->IsI31(object), BranchHint::kFalse); Node* map = gasm_->LoadMap(object); callbacks.fail_if_not(gasm_->IsDataRefMap(map), BranchHint::kTrue); } void WasmGraphBuilder::FuncCheck(Node* object, bool object_can_be_null, Callbacks callbacks) { if (object_can_be_null) { callbacks.fail_if(gasm_->WordEqual(object, RefNull()), BranchHint::kFalse); } callbacks.fail_if(gasm_->IsI31(object), BranchHint::kFalse); callbacks.fail_if_not(gasm_->HasInstanceType(object, JS_FUNCTION_TYPE), BranchHint::kTrue); } Node* WasmGraphBuilder::BrOnCastAbs( Node** match_control, Node** match_effect, Node** no_match_control, Node** no_match_effect, std::function<void(Callbacks)> type_checker) { SmallNodeVector no_match_controls, no_match_effects, match_controls, match_effects; type_checker(BranchCallbacks(no_match_controls, no_match_effects, match_controls, match_effects)); match_controls.emplace_back(control()); match_effects.emplace_back(effect()); // Wire up the control/effect nodes. unsigned count = static_cast<unsigned>(match_controls.size()); DCHECK_EQ(match_controls.size(), match_effects.size()); *match_control = Merge(count, match_controls.data()); // EffectPhis need their control dependency as an additional input. match_effects.emplace_back(*match_control); *match_effect = EffectPhi(count, match_effects.data()); DCHECK_EQ(no_match_controls.size(), no_match_effects.size()); // Range is 2..4, so casting to unsigned is safe. count = static_cast<unsigned>(no_match_controls.size()); *no_match_control = Merge(count, no_match_controls.data()); // EffectPhis need their control dependency as an additional input. no_match_effects.emplace_back(*no_match_control); *no_match_effect = EffectPhi(count, no_match_effects.data()); // Return value is not used, but we need it for compatibility // with graph-builder-interface. return nullptr; } Node* WasmGraphBuilder::RefTest(Node* object, Node* rtt, ObjectReferenceKnowledge config) { auto done = gasm_->MakeLabel(MachineRepresentation::kWord32); TypeCheck(object, rtt, config, false, TestCallbacks(&done)); gasm_->Goto(&done, gasm_->Int32Constant(1)); gasm_->Bind(&done); return done.PhiAt(0); } Node* WasmGraphBuilder::RefCast(Node* object, Node* rtt, ObjectReferenceKnowledge config, wasm::WasmCodePosition position) { auto done = gasm_->MakeLabel(); TypeCheck(object, rtt, config, true, CastCallbacks(&done, position)); gasm_->Goto(&done); gasm_->Bind(&done); return object; } Node* WasmGraphBuilder::BrOnCast(Node* object, Node* rtt, ObjectReferenceKnowledge config, Node** match_control, Node** match_effect, Node** no_match_control, Node** no_match_effect) { return BrOnCastAbs(match_control, match_effect, no_match_control, no_match_effect, [=](Callbacks callbacks) -> void { return TypeCheck(object, rtt, config, false, callbacks); }); } Node* WasmGraphBuilder::RefIsData(Node* object, bool object_can_be_null) { auto done = gasm_->MakeLabel(MachineRepresentation::kWord32); DataCheck(object, object_can_be_null, TestCallbacks(&done)); gasm_->Goto(&done, gasm_->Int32Constant(1)); gasm_->Bind(&done); return done.PhiAt(0); } Node* WasmGraphBuilder::RefAsData(Node* object, bool object_can_be_null, wasm::WasmCodePosition position) { auto done = gasm_->MakeLabel(); DataCheck(object, object_can_be_null, CastCallbacks(&done, position)); gasm_->Goto(&done); gasm_->Bind(&done); return object; } Node* WasmGraphBuilder::BrOnData(Node* object, Node* /*rtt*/, ObjectReferenceKnowledge config, Node** match_control, Node** match_effect, Node** no_match_control, Node** no_match_effect) { return BrOnCastAbs(match_control, match_effect, no_match_control, no_match_effect, [=](Callbacks callbacks) -> void { return DataCheck(object, config.object_can_be_null, callbacks); }); } Node* WasmGraphBuilder::RefIsFunc(Node* object, bool object_can_be_null) { auto done = gasm_->MakeLabel(MachineRepresentation::kWord32); FuncCheck(object, object_can_be_null, TestCallbacks(&done)); gasm_->Goto(&done, gasm_->Int32Constant(1)); gasm_->Bind(&done); return done.PhiAt(0); } Node* WasmGraphBuilder::RefAsFunc(Node* object, bool object_can_be_null, wasm::WasmCodePosition position) { auto done = gasm_->MakeLabel(); FuncCheck(object, object_can_be_null, CastCallbacks(&done, position)); gasm_->Goto(&done); gasm_->Bind(&done); return object; } Node* WasmGraphBuilder::BrOnFunc(Node* object, Node* /*rtt*/, ObjectReferenceKnowledge config, Node** match_control, Node** match_effect, Node** no_match_control, Node** no_match_effect) { return BrOnCastAbs(match_control, match_effect, no_match_control, no_match_effect, [=](Callbacks callbacks) -> void { return FuncCheck(object, config.object_can_be_null, callbacks); }); } Node* WasmGraphBuilder::RefIsI31(Node* object) { return gasm_->IsI31(object); } Node* WasmGraphBuilder::RefAsI31(Node* object, wasm::WasmCodePosition position) { TrapIfFalse(wasm::kTrapIllegalCast, gasm_->IsI31(object), position); return object; } Node* WasmGraphBuilder::BrOnI31(Node* object, Node* /* rtt */, ObjectReferenceKnowledge /* config */, Node** match_control, Node** match_effect, Node** no_match_control, Node** no_match_effect) { Node* branch = graph()->NewNode(mcgraph()->common()->Branch(BranchHint::kTrue), gasm_->IsI31(object), control()); Node* if_true = graph()->NewNode(mcgraph()->common()->IfTrue(), branch); Node* if_false = graph()->NewNode(mcgraph()->common()->IfFalse(), branch); SetControl(if_false); *match_control = if_true; *match_effect = effect(); *no_match_control = if_false; *no_match_effect = effect(); // Unused return value, needed for typing of BUILD in graph-builder-interface. return nullptr; } Node* WasmGraphBuilder::StructGet(Node* struct_object, const wasm::StructType* struct_type, uint32_t field_index, CheckForNull null_check, bool is_signed, wasm::WasmCodePosition position) { if (null_check == kWithNullCheck) { TrapIfTrue(wasm::kTrapNullDereference, gasm_->WordEqual(struct_object, RefNull()), position); } MachineType machine_type = gasm_->FieldType(struct_type, field_index, is_signed); Node* offset = gasm_->FieldOffset(struct_type, field_index); return gasm_->LoadWithTaggedAlignment(machine_type, struct_object, offset); } Node* WasmGraphBuilder::StructSet(Node* struct_object, const wasm::StructType* struct_type, uint32_t field_index, Node* field_value, CheckForNull null_check, wasm::WasmCodePosition position) { if (null_check == kWithNullCheck) { TrapIfTrue(wasm::kTrapNullDereference, gasm_->WordEqual(struct_object, RefNull()), position); } return gasm_->StoreStructField(struct_object, struct_type, field_index, field_value); } void WasmGraphBuilder::BoundsCheck(Node* array, Node* index, wasm::WasmCodePosition position) { Node* length = gasm_->LoadWasmArrayLength(array); TrapIfFalse(wasm::kTrapArrayOutOfBounds, gasm_->Uint32LessThan(index, length), position); } Node* WasmGraphBuilder::ArrayGet(Node* array_object, const wasm::ArrayType* type, Node* index, CheckForNull null_check, bool is_signed, wasm::WasmCodePosition position) { if (null_check == kWithNullCheck) { TrapIfTrue(wasm::kTrapNullDereference, gasm_->WordEqual(array_object, RefNull()), position); } BoundsCheck(array_object, index, position); MachineType machine_type = MachineType::TypeForRepresentation( type->element_type().machine_representation(), is_signed); Node* offset = gasm_->WasmArrayElementOffset(index, type->element_type()); return gasm_->LoadWithTaggedAlignment(machine_type, array_object, offset); } Node* WasmGraphBuilder::ArraySet(Node* array_object, const wasm::ArrayType* type, Node* index, Node* value, CheckForNull null_check, wasm::WasmCodePosition position) { if (null_check == kWithNullCheck) { TrapIfTrue(wasm::kTrapNullDereference, gasm_->WordEqual(array_object, RefNull()), position); } BoundsCheck(array_object, index, position); Node* offset = gasm_->WasmArrayElementOffset(index, type->element_type()); return gasm_->StoreWithTaggedAlignment(array_object, offset, value, type->element_type()); } Node* WasmGraphBuilder::ArrayLen(Node* array_object, CheckForNull null_check, wasm::WasmCodePosition position) { if (null_check == kWithNullCheck) { TrapIfTrue(wasm::kTrapNullDereference, gasm_->WordEqual(array_object, RefNull()), position); } return gasm_->LoadWasmArrayLength(array_object); } // 1 bit V8 Smi tag, 31 bits V8 Smi shift, 1 bit i31ref high-bit truncation. constexpr int kI31To32BitSmiShift = 33; Node* WasmGraphBuilder::I31New(Node* input) { if (SmiValuesAre31Bits()) { return gasm_->Word32Shl(input, BuildSmiShiftBitsConstant32()); } DCHECK(SmiValuesAre32Bits()); input = BuildChangeInt32ToIntPtr(input); return gasm_->WordShl(input, gasm_->IntPtrConstant(kI31To32BitSmiShift)); } Node* WasmGraphBuilder::I31GetS(Node* input) { if (SmiValuesAre31Bits()) { input = BuildTruncateIntPtrToInt32(input); return gasm_->Word32SarShiftOutZeros(input, BuildSmiShiftBitsConstant32()); } DCHECK(SmiValuesAre32Bits()); return BuildTruncateIntPtrToInt32( gasm_->WordSar(input, gasm_->IntPtrConstant(kI31To32BitSmiShift))); } Node* WasmGraphBuilder::I31GetU(Node* input) { if (SmiValuesAre31Bits()) { input = BuildTruncateIntPtrToInt32(input); return gasm_->Word32Shr(input, BuildSmiShiftBitsConstant32()); } DCHECK(SmiValuesAre32Bits()); return BuildTruncateIntPtrToInt32( gasm_->WordShr(input, gasm_->IntPtrConstant(kI31To32BitSmiShift))); } class WasmDecorator final : public GraphDecorator { public: explicit WasmDecorator(NodeOriginTable* origins, wasm::Decoder* decoder) : origins_(origins), decoder_(decoder) {} void Decorate(Node* node) final { origins_->SetNodeOrigin( node, NodeOrigin("wasm graph creation", "n/a", NodeOrigin::kWasmBytecode, decoder_->position())); } private: compiler::NodeOriginTable* origins_; wasm::Decoder* decoder_; }; void WasmGraphBuilder::AddBytecodePositionDecorator( NodeOriginTable* node_origins, wasm::Decoder* decoder) { DCHECK_NULL(decorator_); decorator_ = graph()->zone()->New<WasmDecorator>(node_origins, decoder); graph()->AddDecorator(decorator_); } void WasmGraphBuilder::RemoveBytecodePositionDecorator() { DCHECK_NOT_NULL(decorator_); graph()->RemoveDecorator(decorator_); decorator_ = nullptr; } namespace { class WasmWrapperGraphBuilder : public WasmGraphBuilder { public: WasmWrapperGraphBuilder(Zone* zone, MachineGraph* mcgraph, const wasm::FunctionSig* sig, const wasm::WasmModule* module, compiler::SourcePositionTable* spt, StubCallMode stub_mode, wasm::WasmFeatures features) : WasmGraphBuilder(nullptr, zone, mcgraph, sig, spt), module_(module), stub_mode_(stub_mode), enabled_features_(features) {} CallDescriptor* GetI64ToBigIntCallDescriptor() { if (i64_to_bigint_descriptor_) return i64_to_bigint_descriptor_; i64_to_bigint_descriptor_ = GetBuiltinCallDescriptor(Builtins::kI64ToBigInt, zone_, stub_mode_); AddInt64LoweringReplacement( i64_to_bigint_descriptor_, GetBuiltinCallDescriptor(Builtins::kI32PairToBigInt, zone_, stub_mode_)); return i64_to_bigint_descriptor_; } CallDescriptor* GetBigIntToI64CallDescriptor(bool needs_frame_state) { if (bigint_to_i64_descriptor_) return bigint_to_i64_descriptor_; bigint_to_i64_descriptor_ = GetBuiltinCallDescriptor( Builtins::kBigIntToI64, zone_, stub_mode_, needs_frame_state); AddInt64LoweringReplacement( bigint_to_i64_descriptor_, GetBuiltinCallDescriptor(Builtins::kBigIntToI32Pair, zone_, stub_mode_)); return bigint_to_i64_descriptor_; } Node* GetTargetForBuiltinCall(wasm::WasmCode::RuntimeStubId wasm_stub, Builtins::Name builtin_id) { return (stub_mode_ == StubCallMode::kCallWasmRuntimeStub) ? mcgraph()->RelocatableIntPtrConstant(wasm_stub, RelocInfo::WASM_STUB_CALL) : GetBuiltinPointerTarget(mcgraph(), builtin_id); } Node* BuildLoadUndefinedValueFromInstance() { if (undefined_value_node_ == nullptr) { Node* isolate_root = LOAD_INSTANCE_FIELD(IsolateRoot, MachineType::Pointer()); undefined_value_node_ = gasm_->Load( MachineType::Pointer(), isolate_root, mcgraph()->Int32Constant( IsolateData::root_slot_offset(RootIndex::kUndefinedValue))); } return undefined_value_node_.get(); } Node* BuildChangeInt32ToNumber(Node* value) { // We expect most integers at runtime to be Smis, so it is important for // wrapper performance that Smi conversion be inlined. if (SmiValuesAre32Bits()) { return BuildChangeInt32ToSmi(value); } DCHECK(SmiValuesAre31Bits()); auto builtin = gasm_->MakeDeferredLabel(); auto done = gasm_->MakeLabel(MachineRepresentation::kTagged); // Double value to test if value can be a Smi, and if so, to convert it. Node* add = gasm_->Int32AddWithOverflow(value, value); Node* ovf = gasm_->Projection(1, add); gasm_->GotoIf(ovf, &builtin); // If it didn't overflow, the result is {2 * value} as pointer-sized value. Node* smi_tagged = BuildChangeInt32ToIntPtr(gasm_->Projection(0, add)); gasm_->Goto(&done, smi_tagged); // Otherwise, call builtin, to convert to a HeapNumber. gasm_->Bind(&builtin); CommonOperatorBuilder* common = mcgraph()->common(); Node* target = GetTargetForBuiltinCall(wasm::WasmCode::kWasmInt32ToHeapNumber, Builtins::kWasmInt32ToHeapNumber); if (!int32_to_heapnumber_operator_.is_set()) { auto call_descriptor = Linkage::GetStubCallDescriptor( mcgraph()->zone(), WasmInt32ToHeapNumberDescriptor(), 0, CallDescriptor::kNoFlags, Operator::kNoProperties, stub_mode_); int32_to_heapnumber_operator_.set(common->Call(call_descriptor)); } Node* call = gasm_->Call(int32_to_heapnumber_operator_.get(), target, value); gasm_->Goto(&done, call); gasm_->Bind(&done); return done.PhiAt(0); } Node* BuildChangeTaggedToInt32(Node* value, Node* context, Node* frame_state) { // We expect most integers at runtime to be Smis, so it is important for // wrapper performance that Smi conversion be inlined. auto builtin = gasm_->MakeDeferredLabel(); auto done = gasm_->MakeLabel(MachineRepresentation::kWord32); gasm_->GotoIfNot(IsSmi(value), &builtin); // If Smi, convert to int32. Node* smi = BuildChangeSmiToInt32(value); gasm_->Goto(&done, smi); // Otherwise, call builtin which changes non-Smi to Int32. gasm_->Bind(&builtin); CommonOperatorBuilder* common = mcgraph()->common(); Node* target = GetTargetForBuiltinCall(wasm::WasmCode::kWasmTaggedNonSmiToInt32, Builtins::kWasmTaggedNonSmiToInt32); if (!tagged_non_smi_to_int32_operator_.is_set()) { auto call_descriptor = Linkage::GetStubCallDescriptor( mcgraph()->zone(), WasmTaggedNonSmiToInt32Descriptor(), 0, frame_state ? CallDescriptor::kNeedsFrameState : CallDescriptor::kNoFlags, Operator::kNoProperties, stub_mode_); tagged_non_smi_to_int32_operator_.set(common->Call(call_descriptor)); } Node* call = frame_state ? gasm_->Call(tagged_non_smi_to_int32_operator_.get(), target, value, context, frame_state) : gasm_->Call(tagged_non_smi_to_int32_operator_.get(), target, value, context); SetSourcePosition(call, 1); gasm_->Goto(&done, call); gasm_->Bind(&done); return done.PhiAt(0); } Node* BuildChangeFloat32ToNumber(Node* value) { CommonOperatorBuilder* common = mcgraph()->common(); Node* target = GetTargetForBuiltinCall(wasm::WasmCode::kWasmFloat32ToNumber, Builtins::kWasmFloat32ToNumber); if (!float32_to_number_operator_.is_set()) { auto call_descriptor = Linkage::GetStubCallDescriptor( mcgraph()->zone(), WasmFloat32ToNumberDescriptor(), 0, CallDescriptor::kNoFlags, Operator::kNoProperties, stub_mode_); float32_to_number_operator_.set(common->Call(call_descriptor)); } return gasm_->Call(float32_to_number_operator_.get(), target, value); } Node* BuildChangeFloat64ToNumber(Node* value) { CommonOperatorBuilder* common = mcgraph()->common(); Node* target = GetTargetForBuiltinCall(wasm::WasmCode::kWasmFloat64ToNumber, Builtins::kWasmFloat64ToNumber); if (!float64_to_number_operator_.is_set()) { auto call_descriptor = Linkage::GetStubCallDescriptor( mcgraph()->zone(), WasmFloat64ToNumberDescriptor(), 0, CallDescriptor::kNoFlags, Operator::kNoProperties, stub_mode_); float64_to_number_operator_.set(common->Call(call_descriptor)); } return gasm_->Call(float64_to_number_operator_.get(), target, value); } Node* BuildChangeTaggedToFloat64(Node* value, Node* context, Node* frame_state) { CommonOperatorBuilder* common = mcgraph()->common(); Node* target = GetTargetForBuiltinCall(wasm::WasmCode::kWasmTaggedToFloat64, Builtins::kWasmTaggedToFloat64); bool needs_frame_state = frame_state != nullptr; if (!tagged_to_float64_operator_.is_set()) { auto call_descriptor = Linkage::GetStubCallDescriptor( mcgraph()->zone(), WasmTaggedToFloat64Descriptor(), 0, frame_state ? CallDescriptor::kNeedsFrameState : CallDescriptor::kNoFlags, Operator::kNoProperties, stub_mode_); tagged_to_float64_operator_.set(common->Call(call_descriptor)); } Node* call = needs_frame_state ? gasm_->Call(tagged_to_float64_operator_.get(), target, value, context, frame_state) : gasm_->Call(tagged_to_float64_operator_.get(), target, value, context); SetSourcePosition(call, 1); return call; } int AddArgumentNodes(Vector<Node*> args, int pos, int param_count, const wasm::FunctionSig* sig) { // Convert wasm numbers to JS values. for (int i = 0; i < param_count; ++i) { Node* param = Param(i + 1); // Start from index 1 to drop the instance_node. args[pos++] = ToJS(param, sig->GetParam(i)); } return pos; } Node* ToJS(Node* node, wasm::ValueType type) { switch (type.kind()) { case wasm::kI32: return BuildChangeInt32ToNumber(node); case wasm::kS128: UNREACHABLE(); case wasm::kI64: { return BuildChangeInt64ToBigInt(node); } case wasm::kF32: return BuildChangeFloat32ToNumber(node); case wasm::kF64: return BuildChangeFloat64ToNumber(node); case wasm::kRef: case wasm::kOptRef: { uint32_t representation = type.heap_representation(); if (representation == wasm::HeapType::kExtern || representation == wasm::HeapType::kFunc) { return node; } if (representation == wasm::HeapType::kData) { // TODO(7748): Update this when JS interop is settled. return BuildAllocateObjectWrapper(node); } if (representation == wasm::HeapType::kAny) { // Only wrap {node} if it is an array or struct. // TODO(7748): Update this when JS interop is settled. auto done = gasm_->MakeLabel(MachineRepresentation::kTaggedPointer); gasm_->GotoIfNot(gasm_->IsDataRefMap(gasm_->LoadMap(node)), &done, node); Node* wrapped = BuildAllocateObjectWrapper(node); gasm_->Goto(&done, wrapped); gasm_->Bind(&done); return done.PhiAt(0); } if (type.has_index() && module_->has_signature(type.ref_index())) { // Typed function return node; } // If this is reached, then IsJSCompatibleSignature() is too permissive. // TODO(7748): Figure out a JS interop story for arrays and structs. UNREACHABLE(); } case wasm::kRtt: case wasm::kRttWithDepth: // TODO(7748): Figure out what to do for RTTs. UNIMPLEMENTED(); case wasm::kI8: case wasm::kI16: case wasm::kStmt: case wasm::kBottom: UNREACHABLE(); } } // TODO(7748): Temporary solution to allow round-tripping of Wasm objects // through JavaScript, where they show up as opaque boxes. This will disappear // once we have a proper WasmGC <-> JS interaction story. Node* BuildAllocateObjectWrapper(Node* input) { return gasm_->CallBuiltin( Builtins::kWasmAllocateObjectWrapper, input, LOAD_INSTANCE_FIELD(NativeContext, MachineType::TaggedPointer())); } enum UnpackFailureBehavior : bool { kReturnInput, kReturnNull }; Node* BuildUnpackObjectWrapper(Node* input, UnpackFailureBehavior failure) { Node* obj = gasm_->CallBuiltin( Builtins::kWasmGetOwnProperty, input, LOAD_FULL_POINTER(BuildLoadIsolateRoot(), IsolateData::root_slot_offset( RootIndex::kwasm_wrapped_object_symbol)), LOAD_INSTANCE_FIELD(NativeContext, MachineType::TaggedPointer())); // Invalid object wrappers (i.e. any other JS object that doesn't have the // magic hidden property) will return {undefined}. Map that to {null} or // {input}, depending on the value of {failure}. Node* undefined = BuildLoadUndefinedValueFromInstance(); Node* is_undefined = gasm_->WordEqual(obj, undefined); Diamond check(graph(), mcgraph()->common(), is_undefined, BranchHint::kFalse); check.Chain(control()); return check.Phi(MachineRepresentation::kTagged, failure == kReturnInput ? input : RefNull(), obj); } Node* BuildChangeInt64ToBigInt(Node* input) { const Operator* call = mcgraph()->common()->Call(GetI64ToBigIntCallDescriptor()); Node* target; if (mcgraph()->machine()->Is64()) { target = GetTargetForBuiltinCall(wasm::WasmCode::kI64ToBigInt, Builtins::kI64ToBigInt); } else { DCHECK(mcgraph()->machine()->Is32()); // On 32-bit platforms we already set the target to the // I32PairToBigInt builtin here, so that we don't have to replace the // target in the int64-lowering. target = GetTargetForBuiltinCall(wasm::WasmCode::kI32PairToBigInt, Builtins::kI32PairToBigInt); } return SetEffectControl( graph()->NewNode(call, target, input, effect(), control())); } Node* BuildChangeBigIntToInt64(Node* input, Node* context, Node* frame_state) { const Operator* call = mcgraph()->common()->Call( GetBigIntToI64CallDescriptor(frame_state != nullptr)); Node* target; if (mcgraph()->machine()->Is64()) { target = GetTargetForBuiltinCall(wasm::WasmCode::kBigIntToI64, Builtins::kBigIntToI64); } else { DCHECK(mcgraph()->machine()->Is32()); // On 32-bit platforms we already set the target to the // BigIntToI32Pair builtin here, so that we don't have to replace the // target in the int64-lowering. target = GetTargetForBuiltinCall(wasm::WasmCode::kBigIntToI32Pair, Builtins::kBigIntToI32Pair); } if (frame_state) return SetEffectControl(graph()->NewNode( call, target, input, context, frame_state, effect(), control())); return SetEffectControl( graph()->NewNode(call, target, input, context, effect(), control())); } void BuildCheckValidRefValue(Node* input, Node* js_context, wasm::ValueType type) { // Make sure ValueType fits in a Smi. STATIC_ASSERT(wasm::ValueType::kLastUsedBit + 1 <= kSmiValueSize); Node* inputs[] = {instance_node_.get(), input, mcgraph()->IntPtrConstant( IntToSmi(static_cast<int>(type.raw_bit_field())))}; Node* check = BuildChangeSmiToInt32(SetEffect(BuildCallToRuntimeWithContext( Runtime::kWasmIsValidRefValue, js_context, inputs, 3))); Diamond type_check(graph(), mcgraph()->common(), check, BranchHint::kTrue); type_check.Chain(control()); SetControl(type_check.if_false); Node* old_effect = effect(); BuildCallToRuntimeWithContext(Runtime::kWasmThrowJSTypeError, js_context, nullptr, 0); SetEffectControl(type_check.EffectPhi(old_effect, effect()), type_check.merge); } Node* FromJS(Node* input, Node* js_context, wasm::ValueType type, Node* frame_state = nullptr) { switch (type.kind()) { case wasm::kRef: case wasm::kOptRef: { switch (type.heap_representation()) { case wasm::HeapType::kExtern: return input; case wasm::HeapType::kAny: // If this is a wrapper for arrays/structs, unpack it. // TODO(7748): Update this when JS interop has settled. return BuildUnpackObjectWrapper(input, kReturnInput); case wasm::HeapType::kFunc: BuildCheckValidRefValue(input, js_context, type); return input; case wasm::HeapType::kData: // TODO(7748): Update this when JS interop has settled. BuildCheckValidRefValue(input, js_context, type); return BuildUnpackObjectWrapper(input, kReturnNull); case wasm::HeapType::kEq: case wasm::HeapType::kI31: // If this is reached, then IsJSCompatibleSignature() is too // permissive. UNREACHABLE(); default: if (module_->has_signature(type.ref_index())) { BuildCheckValidRefValue(input, js_context, type); return input; } // If this is reached, then IsJSCompatibleSignature() is too // permissive. UNREACHABLE(); } } case wasm::kF32: return graph()->NewNode( mcgraph()->machine()->TruncateFloat64ToFloat32(), BuildChangeTaggedToFloat64(input, js_context, frame_state)); case wasm::kF64: return BuildChangeTaggedToFloat64(input, js_context, frame_state); case wasm::kI32: return BuildChangeTaggedToInt32(input, js_context, frame_state); case wasm::kI64: // i64 values can only come from BigInt. return BuildChangeBigIntToInt64(input, js_context, frame_state); case wasm::kRtt: // TODO(7748): Implement. case wasm::kRttWithDepth: case wasm::kS128: case wasm::kI8: case wasm::kI16: case wasm::kBottom: case wasm::kStmt: UNREACHABLE(); break; } } Node* SmiToFloat32(Node* input) { return graph()->NewNode(mcgraph()->machine()->RoundInt32ToFloat32(), BuildChangeSmiToInt32(input)); } Node* SmiToFloat64(Node* input) { return graph()->NewNode(mcgraph()->machine()->ChangeInt32ToFloat64(), BuildChangeSmiToInt32(input)); } Node* HeapNumberToFloat64(Node* input) { return gasm_->Load(MachineType::Float64(), input, wasm::ObjectAccess::ToTagged(HeapNumber::kValueOffset)); } Node* FromJSFast(Node* input, wasm::ValueType type) { switch (type.kind()) { case wasm::kI32: return BuildChangeSmiToInt32(input); case wasm::kF32: { auto done = gasm_->MakeLabel(MachineRepresentation::kFloat32); auto heap_number = gasm_->MakeLabel(); gasm_->GotoIfNot(IsSmi(input), &heap_number); gasm_->Goto(&done, SmiToFloat32(input)); gasm_->Bind(&heap_number); Node* value = graph()->NewNode(mcgraph()->machine()->TruncateFloat64ToFloat32(), HeapNumberToFloat64(input)); gasm_->Goto(&done, value); gasm_->Bind(&done); return done.PhiAt(0); } case wasm::kF64: { auto done = gasm_->MakeLabel(MachineRepresentation::kFloat64); auto heap_number = gasm_->MakeLabel(); gasm_->GotoIfNot(IsSmi(input), &heap_number); gasm_->Goto(&done, SmiToFloat64(input)); gasm_->Bind(&heap_number); gasm_->Goto(&done, HeapNumberToFloat64(input)); gasm_->Bind(&done); return done.PhiAt(0); } case wasm::kRef: case wasm::kOptRef: case wasm::kI64: case wasm::kRtt: case wasm::kRttWithDepth: case wasm::kS128: case wasm::kI8: case wasm::kI16: case wasm::kBottom: case wasm::kStmt: UNREACHABLE(); break; } } void BuildModifyThreadInWasmFlagHelper(Node* thread_in_wasm_flag_address, bool new_value) { if (FLAG_debug_code) { Node* flag_value = SetEffect( graph()->NewNode(mcgraph()->machine()->Load(MachineType::Pointer()), thread_in_wasm_flag_address, mcgraph()->Int32Constant(0), effect(), control())); Node* check = graph()->NewNode(mcgraph()->machine()->Word32Equal(), flag_value, mcgraph()->Int32Constant(new_value ? 0 : 1)); Diamond flag_check(graph(), mcgraph()->common(), check, BranchHint::kTrue); flag_check.Chain(control()); SetControl(flag_check.if_false); Node* message_id = graph()->NewNode( mcgraph()->common()->NumberConstant(static_cast<int32_t>( new_value ? AbortReason::kUnexpectedThreadInWasmSet : AbortReason::kUnexpectedThreadInWasmUnset))); Node* old_effect = effect(); Node* call = BuildCallToRuntimeWithContext( Runtime::kAbort, NoContextConstant(), &message_id, 1); flag_check.merge->ReplaceInput(1, call); SetEffectControl(flag_check.EffectPhi(old_effect, effect()), flag_check.merge); } SetEffect(graph()->NewNode( mcgraph()->machine()->Store(StoreRepresentation( MachineRepresentation::kWord32, kNoWriteBarrier)), thread_in_wasm_flag_address, mcgraph()->Int32Constant(0), mcgraph()->Int32Constant(new_value ? 1 : 0), effect(), control())); } void BuildModifyThreadInWasmFlag(bool new_value) { if (!trap_handler::IsTrapHandlerEnabled()) return; Node* isolate_root = BuildLoadIsolateRoot(); Node* thread_in_wasm_flag_address = gasm_->Load(MachineType::Pointer(), isolate_root, Isolate::thread_in_wasm_flag_address_offset()); BuildModifyThreadInWasmFlagHelper(thread_in_wasm_flag_address, new_value); } class ModifyThreadInWasmFlagScope { public: ModifyThreadInWasmFlagScope( WasmWrapperGraphBuilder* wasm_wrapper_graph_builder, WasmGraphAssembler* gasm) : wasm_wrapper_graph_builder_(wasm_wrapper_graph_builder) { if (!trap_handler::IsTrapHandlerEnabled()) return; Node* isolate_root = wasm_wrapper_graph_builder_->BuildLoadIsolateRoot(); thread_in_wasm_flag_address_ = gasm->Load(MachineType::Pointer(), isolate_root, Isolate::thread_in_wasm_flag_address_offset()); wasm_wrapper_graph_builder_->BuildModifyThreadInWasmFlagHelper( thread_in_wasm_flag_address_, true); } ~ModifyThreadInWasmFlagScope() { if (!trap_handler::IsTrapHandlerEnabled()) return; wasm_wrapper_graph_builder_->BuildModifyThreadInWasmFlagHelper( thread_in_wasm_flag_address_, false); } private: WasmWrapperGraphBuilder* wasm_wrapper_graph_builder_; Node* thread_in_wasm_flag_address_; }; Node* BuildMultiReturnFixedArrayFromIterable(const wasm::FunctionSig* sig, Node* iterable, Node* context) { Node* length = BuildChangeUint31ToSmi( mcgraph()->Uint32Constant(static_cast<uint32_t>(sig->return_count()))); return gasm_->CallBuiltin(Builtins::kIterableToFixedArrayForWasm, iterable, length, context); } // Generate a call to the AllocateJSArray builtin. Node* BuildCallAllocateJSArray(Node* array_length, Node* context) { // Since we don't check that args will fit in an array, // we make sure this is true based on statically known limits. STATIC_ASSERT(wasm::kV8MaxWasmFunctionMultiReturns <= JSArray::kInitialMaxFastElementArray); return SetControl(gasm_->CallBuiltin(Builtins::kWasmAllocateJSArray, array_length, context)); } Node* BuildCallAndReturn(bool is_import, Node* js_context, Node* function_data, base::SmallVector<Node*, 16> args, const JSWasmCallData* js_wasm_call_data, Node* frame_state) { const int rets_count = static_cast<int>(sig_->return_count()); base::SmallVector<Node*, 1> rets(rets_count); // Set the ThreadInWasm flag before we do the actual call. { ModifyThreadInWasmFlagScope modify_thread_in_wasm_flag_builder( this, gasm_.get()); if (is_import) { // Call to an imported function. // Load function index from {WasmExportedFunctionData}. Node* function_index = BuildChangeSmiToInt32( gasm_->LoadExportedFunctionIndexAsSmi(function_data)); BuildImportCall(sig_, VectorOf(args), VectorOf(rets), wasm::kNoCodePosition, function_index, kCallContinues); } else { // Call to a wasm function defined in this module. // The call target is the jump table slot for that function. Node* jump_table_start = LOAD_INSTANCE_FIELD(JumpTableStart, MachineType::Pointer()); Node* jump_table_offset = BuildLoadJumpTableOffsetFromExportedFunctionData(function_data); Node* jump_table_slot = graph()->NewNode(mcgraph()->machine()->IntAdd(), jump_table_start, jump_table_offset); args[0] = jump_table_slot; BuildWasmCall(sig_, VectorOf(args), VectorOf(rets), wasm::kNoCodePosition, nullptr, kNoRetpoline, frame_state); } } Node* jsval; if (sig_->return_count() == 0) { // We do not use {BuildLoadUndefinedValueFromInstance} here because it // would create an invalid graph. Node* isolate_root = LOAD_INSTANCE_FIELD(IsolateRoot, MachineType::Pointer()); jsval = gasm_->Load( MachineType::Pointer(), isolate_root, mcgraph()->Int32Constant( IsolateData::root_slot_offset(RootIndex::kUndefinedValue))); } else if (sig_->return_count() == 1) { jsval = js_wasm_call_data && !js_wasm_call_data->result_needs_conversion() ? rets[0] : ToJS(rets[0], sig_->GetReturn()); } else { int32_t return_count = static_cast<int32_t>(sig_->return_count()); Node* size = graph()->NewNode(mcgraph()->common()->NumberConstant(return_count)); jsval = BuildCallAllocateJSArray(size, js_context); Node* fixed_array = gasm_->LoadJSArrayElements(jsval); for (int i = 0; i < return_count; ++i) { Node* value = ToJS(rets[i], sig_->GetReturn(i)); STORE_FIXED_ARRAY_SLOT_ANY(fixed_array, i, value); } } return jsval; } bool QualifiesForFastTransform(const wasm::FunctionSig*) { const int wasm_count = static_cast<int>(sig_->parameter_count()); for (int i = 0; i < wasm_count; ++i) { wasm::ValueType type = sig_->GetParam(i); switch (type.kind()) { case wasm::kRef: case wasm::kOptRef: case wasm::kI64: case wasm::kRtt: case wasm::kRttWithDepth: case wasm::kS128: case wasm::kI8: case wasm::kI16: case wasm::kBottom: case wasm::kStmt: return false; case wasm::kI32: case wasm::kF32: case wasm::kF64: break; } } return true; } Node* IsSmi(Node* input) { return gasm_->Word32Equal( gasm_->Word32And(BuildTruncateIntPtrToInt32(input), gasm_->Int32Constant(kSmiTagMask)), gasm_->Int32Constant(kSmiTag)); } void CanTransformFast( Node* input, wasm::ValueType type, v8::internal::compiler::GraphAssemblerLabel<0>* slow_path) { switch (type.kind()) { case wasm::kI32: { gasm_->GotoIfNot(IsSmi(input), slow_path); return; } case wasm::kF32: case wasm::kF64: { auto done = gasm_->MakeLabel(); gasm_->GotoIf(IsSmi(input), &done); Node* map = gasm_->Load(MachineType::TaggedPointer(), input, wasm::ObjectAccess::ToTagged(HeapObject::kMapOffset)); Node* heap_number_map = LOAD_FULL_POINTER( BuildLoadIsolateRoot(), IsolateData::root_slot_offset(RootIndex::kHeapNumberMap)); Node* is_heap_number = gasm_->WordEqual(heap_number_map, map); gasm_->GotoIf(is_heap_number, &done); gasm_->Goto(slow_path); gasm_->Bind(&done); return; } case wasm::kRef: case wasm::kOptRef: case wasm::kI64: case wasm::kRtt: case wasm::kRttWithDepth: case wasm::kS128: case wasm::kI8: case wasm::kI16: case wasm::kBottom: case wasm::kStmt: UNREACHABLE(); break; } } void BuildJSToWasmWrapper(bool is_import, const JSWasmCallData* js_wasm_call_data = nullptr, Node* frame_state = nullptr) { const int wasm_param_count = static_cast<int>(sig_->parameter_count()); // Build the start and the JS parameter nodes. SetEffectControl(Start(wasm_param_count + 5)); // Create the js_closure and js_context parameters. Node* js_closure = graph()->NewNode(mcgraph()->common()->Parameter( Linkage::kJSCallClosureParamIndex, "%closure"), graph()->start()); Node* js_context = graph()->NewNode( mcgraph()->common()->Parameter( Linkage::GetJSCallContextParamIndex(wasm_param_count + 1), "%context"), graph()->start()); // Create the instance_node node to pass as parameter. It is loaded from // an actual reference to an instance or a placeholder reference, // called {WasmExportedFunction} via the {WasmExportedFunctionData} // structure. Node* function_data = gasm_->LoadFunctionDataFromJSFunction(js_closure); instance_node_.set(gasm_->LoadExportedFunctionInstance(function_data)); if (!wasm::IsJSCompatibleSignature(sig_, module_, enabled_features_)) { // Throw a TypeError. Use the js_context of the calling javascript // function (passed as a parameter), such that the generated code is // js_context independent. BuildCallToRuntimeWithContext(Runtime::kWasmThrowJSTypeError, js_context, nullptr, 0); TerminateThrow(effect(), control()); return; } const int args_count = wasm_param_count + 1; // +1 for wasm_code. // Check whether the signature of the function allows for a fast // transformation (if any params exist that need transformation). // Create a fast transformation path, only if it does. bool include_fast_path = !js_wasm_call_data && wasm_param_count > 0 && QualifiesForFastTransform(sig_); // Prepare Param() nodes. Param() nodes can only be created once, // so we need to use the same nodes along all possible transformation paths. base::SmallVector<Node*, 16> params(args_count); for (int i = 0; i < wasm_param_count; ++i) params[i + 1] = Param(i + 1); auto done = gasm_->MakeLabel(MachineRepresentation::kTagged); if (include_fast_path) { auto slow_path = gasm_->MakeDeferredLabel(); // Check if the params received on runtime can be actually transformed // using the fast transformation. When a param that cannot be transformed // fast is encountered, skip checking the rest and fall back to the slow // path. for (int i = 0; i < wasm_param_count; ++i) { CanTransformFast(params[i + 1], sig_->GetParam(i), &slow_path); } // Convert JS parameters to wasm numbers using the fast transformation // and build the call. base::SmallVector<Node*, 16> args(args_count); for (int i = 0; i < wasm_param_count; ++i) { Node* wasm_param = FromJSFast(params[i + 1], sig_->GetParam(i)); args[i + 1] = wasm_param; } Node* jsval = BuildCallAndReturn(is_import, js_context, function_data, args, js_wasm_call_data, frame_state); gasm_->Goto(&done, jsval); gasm_->Bind(&slow_path); } // Convert JS parameters to wasm numbers using the default transformation // and build the call. base::SmallVector<Node*, 16> args(args_count); for (int i = 0; i < wasm_param_count; ++i) { bool do_conversion = !js_wasm_call_data || js_wasm_call_data->arg_needs_conversion(i); if (do_conversion) { args[i + 1] = FromJS(params[i + 1], js_context, sig_->GetParam(i), frame_state); } else { Node* wasm_param = params[i + 1]; // For Float32 parameters // we set UseInfo::CheckedNumberOrOddballAsFloat64 in // simplified-lowering and we need to add here a conversion from Float64 // to Float32. if (sig_->GetParam(i).kind() == wasm::kF32) { wasm_param = graph()->NewNode( mcgraph()->machine()->TruncateFloat64ToFloat32(), wasm_param); } args[i + 1] = wasm_param; } } Node* jsval = BuildCallAndReturn(is_import, js_context, function_data, args, js_wasm_call_data, frame_state); // If both the default and a fast transformation paths are present, // get the return value based on the path used. if (include_fast_path) { gasm_->Goto(&done, jsval); gasm_->Bind(&done); Return(done.PhiAt(0)); } else { Return(jsval); } if (ContainsInt64(sig_)) LowerInt64(kCalledFromJS); } Node* BuildReceiverNode(Node* callable_node, Node* native_context, Node* undefined_node) { // Check function strict bit. Node* shared_function_info = gasm_->LoadSharedFunctionInfo(callable_node); Node* flags = gasm_->Load(MachineType::Int32(), shared_function_info, wasm::ObjectAccess::FlagsOffsetInSharedFunctionInfo()); Node* strict_check = Binop(wasm::kExprI32And, flags, mcgraph()->Int32Constant(SharedFunctionInfo::IsNativeBit::kMask | SharedFunctionInfo::IsStrictBit::kMask)); // Load global receiver if sloppy else use undefined. Diamond strict_d(graph(), mcgraph()->common(), strict_check, BranchHint::kNone); Node* old_effect = effect(); SetControl(strict_d.if_false); Node* global_proxy = LOAD_FIXED_ARRAY_SLOT_PTR(native_context, Context::GLOBAL_PROXY_INDEX); SetEffectControl(strict_d.EffectPhi(old_effect, global_proxy), strict_d.merge); return strict_d.Phi(MachineRepresentation::kTagged, undefined_node, global_proxy); } bool BuildWasmToJSWrapper(WasmImportCallKind kind, int expected_arity) { int wasm_count = static_cast<int>(sig_->parameter_count()); // Build the start and the parameter nodes. SetEffectControl(Start(wasm_count + 4)); instance_node_.set(Param(wasm::kWasmInstanceParameterIndex)); Node* native_context = LOAD_INSTANCE_FIELD(NativeContext, MachineType::TaggedPointer()); if (kind == WasmImportCallKind::kRuntimeTypeError) { // ======================================================================= // === Runtime TypeError ================================================= // ======================================================================= BuildCallToRuntimeWithContext(Runtime::kWasmThrowJSTypeError, native_context, nullptr, 0); TerminateThrow(effect(), control()); return false; } // The callable is passed as the last parameter, after Wasm arguments. Node* callable_node = Param(wasm_count + 1); Node* undefined_node = BuildLoadUndefinedValueFromInstance(); Node* call = nullptr; // Clear the ThreadInWasm flag. BuildModifyThreadInWasmFlag(false); switch (kind) { // ======================================================================= // === JS Functions with matching arity ================================== // ======================================================================= case WasmImportCallKind::kJSFunctionArityMatch: { base::SmallVector<Node*, 16> args(wasm_count + 7); int pos = 0; Node* function_context = gasm_->LoadContextFromJSFunction(callable_node); args[pos++] = callable_node; // target callable. // Determine receiver at runtime. args[pos++] = BuildReceiverNode(callable_node, native_context, undefined_node); auto call_descriptor = Linkage::GetJSCallDescriptor( graph()->zone(), false, wasm_count + 1, CallDescriptor::kNoFlags); // Convert wasm numbers to JS values. pos = AddArgumentNodes(VectorOf(args), pos, wasm_count, sig_); args[pos++] = undefined_node; // new target args[pos++] = mcgraph()->Int32Constant(wasm_count); // argument count args[pos++] = function_context; args[pos++] = effect(); args[pos++] = control(); DCHECK_EQ(pos, args.size()); call = graph()->NewNode(mcgraph()->common()->Call(call_descriptor), pos, args.begin()); break; } // ======================================================================= // === JS Functions with mismatching arity =============================== // ======================================================================= case WasmImportCallKind::kJSFunctionArityMismatch: { int pushed_count = std::max(expected_arity, wasm_count); base::SmallVector<Node*, 16> args(pushed_count + 7); int pos = 0; args[pos++] = callable_node; // target callable. // Determine receiver at runtime. args[pos++] = BuildReceiverNode(callable_node, native_context, undefined_node); // Convert wasm numbers to JS values. pos = AddArgumentNodes(VectorOf(args), pos, wasm_count, sig_); for (int i = wasm_count; i < expected_arity; ++i) { args[pos++] = undefined_node; } args[pos++] = undefined_node; // new target args[pos++] = mcgraph()->Int32Constant(wasm_count); // argument count Node* function_context = gasm_->LoadContextFromJSFunction(callable_node); args[pos++] = function_context; args[pos++] = effect(); args[pos++] = control(); DCHECK_EQ(pos, args.size()); auto call_descriptor = Linkage::GetJSCallDescriptor( graph()->zone(), false, pushed_count + 1, CallDescriptor::kNoFlags); call = graph()->NewNode(mcgraph()->common()->Call(call_descriptor), pos, args.begin()); break; } // ======================================================================= // === General case of unknown callable ================================== // ======================================================================= case WasmImportCallKind::kUseCallBuiltin: { base::SmallVector<Node*, 16> args(wasm_count + 7); int pos = 0; args[pos++] = GetBuiltinPointerTarget(mcgraph(), Builtins::kCall_ReceiverIsAny); args[pos++] = callable_node; args[pos++] = mcgraph()->Int32Constant(wasm_count); // argument count args[pos++] = undefined_node; // receiver auto call_descriptor = Linkage::GetStubCallDescriptor( graph()->zone(), CallTrampolineDescriptor{}, wasm_count + 1, CallDescriptor::kNoFlags, Operator::kNoProperties, StubCallMode::kCallBuiltinPointer); // Convert wasm numbers to JS values. pos = AddArgumentNodes(VectorOf(args), pos, wasm_count, sig_); // The native_context is sufficient here, because all kind of callables // which depend on the context provide their own context. The context // here is only needed if the target is a constructor to throw a // TypeError, if the target is a native function, or if the target is a // callable JSObject, which can only be constructed by the runtime. args[pos++] = native_context; args[pos++] = effect(); args[pos++] = control(); DCHECK_EQ(pos, args.size()); call = graph()->NewNode(mcgraph()->common()->Call(call_descriptor), pos, args.begin()); break; } default: UNREACHABLE(); } DCHECK_NOT_NULL(call); SetEffect(call); SetSourcePosition(call, 0); // Convert the return value(s) back. if (sig_->return_count() <= 1) { Node* val = sig_->return_count() == 0 ? mcgraph()->Int32Constant(0) : FromJS(call, native_context, sig_->GetReturn()); BuildModifyThreadInWasmFlag(true); Return(val); } else { Node* fixed_array = BuildMultiReturnFixedArrayFromIterable(sig_, call, native_context); base::SmallVector<Node*, 8> wasm_values(sig_->return_count()); for (unsigned i = 0; i < sig_->return_count(); ++i) { wasm_values[i] = FromJS(LOAD_FIXED_ARRAY_SLOT_ANY(fixed_array, i), native_context, sig_->GetReturn(i)); } BuildModifyThreadInWasmFlag(true); Return(VectorOf(wasm_values)); } if (ContainsInt64(sig_)) LowerInt64(kCalledFromWasm); return true; } void BuildCapiCallWrapper(Address address) { // Store arguments on our stack, then align the stack for calling to C. int param_bytes = 0; for (wasm::ValueType type : sig_->parameters()) { param_bytes += type.element_size_bytes(); } int return_bytes = 0; for (wasm::ValueType type : sig_->returns()) { return_bytes += type.element_size_bytes(); } int stack_slot_bytes = std::max(param_bytes, return_bytes); Node* values = stack_slot_bytes == 0 ? mcgraph()->IntPtrConstant(0) : graph()->NewNode(mcgraph()->machine()->StackSlot( stack_slot_bytes, kDoubleAlignment)); int offset = 0; int param_count = static_cast<int>(sig_->parameter_count()); for (int i = 0; i < param_count; ++i) { wasm::ValueType type = sig_->GetParam(i); // Start from the parameter with index 1 to drop the instance_node. // TODO(jkummerow): When a values is a reference type, we should pass it // in a GC-safe way, not just as a raw pointer. SetEffect(graph()->NewNode(GetSafeStoreOperator(offset, type), values, Int32Constant(offset), Param(i + 1), effect(), control())); offset += type.element_size_bytes(); } // The function is passed as the last parameter, after Wasm arguments. Node* function_node = Param(param_count + 1); Node* sfi_data = gasm_->LoadFunctionDataFromJSFunction(function_node); Node* host_data_foreign = gasm_->Load(MachineType::AnyTagged(), sfi_data, wasm::ObjectAccess::ToTagged( WasmCapiFunctionData::kEmbedderDataOffset)); BuildModifyThreadInWasmFlag(false); Node* isolate_root = BuildLoadIsolateRoot(); Node* fp_value = graph()->NewNode(mcgraph()->machine()->LoadFramePointer()); STORE_RAW(isolate_root, Isolate::c_entry_fp_offset(), fp_value, MachineType::PointerRepresentation(), kNoWriteBarrier); // TODO(jkummerow): Load the address from the {host_data}, and cache // wrappers per signature. const ExternalReference ref = ExternalReference::Create(address); Node* function = graph()->NewNode(mcgraph()->common()->ExternalConstant(ref)); // Parameters: Address host_data_foreign, Address arguments. MachineType host_sig_types[] = { MachineType::Pointer(), MachineType::Pointer(), MachineType::Pointer()}; MachineSignature host_sig(1, 2, host_sig_types); Node* return_value = BuildCCall(&host_sig, function, host_data_foreign, values); BuildModifyThreadInWasmFlag(true); Node* exception_branch = graph()->NewNode( mcgraph()->common()->Branch(BranchHint::kTrue), graph()->NewNode(mcgraph()->machine()->WordEqual(), return_value, mcgraph()->IntPtrConstant(0)), control()); SetControl( graph()->NewNode(mcgraph()->common()->IfFalse(), exception_branch)); WasmRethrowDescriptor interface_descriptor; auto call_descriptor = Linkage::GetStubCallDescriptor( mcgraph()->zone(), interface_descriptor, interface_descriptor.GetStackParameterCount(), CallDescriptor::kNoFlags, Operator::kNoProperties, StubCallMode::kCallWasmRuntimeStub); Node* call_target = mcgraph()->RelocatableIntPtrConstant( wasm::WasmCode::kWasmRethrow, RelocInfo::WASM_STUB_CALL); Node* throw_effect = graph()->NewNode(mcgraph()->common()->Call(call_descriptor), call_target, return_value, effect(), control()); TerminateThrow(throw_effect, control()); SetControl( graph()->NewNode(mcgraph()->common()->IfTrue(), exception_branch)); DCHECK_LT(sig_->return_count(), wasm::kV8MaxWasmFunctionMultiReturns); size_t return_count = sig_->return_count(); if (return_count == 0) { Return(Int32Constant(0)); } else { base::SmallVector<Node*, 8> returns(return_count); offset = 0; for (size_t i = 0; i < return_count; ++i) { wasm::ValueType type = sig_->GetReturn(i); Node* val = SetEffect( graph()->NewNode(GetSafeLoadOperator(offset, type), values, Int32Constant(offset), effect(), control())); returns[i] = val; offset += type.element_size_bytes(); } Return(VectorOf(returns)); } if (ContainsInt64(sig_)) LowerInt64(kCalledFromWasm); } void BuildJSToJSWrapper(Isolate* isolate) { int wasm_count = static_cast<int>(sig_->parameter_count()); // Build the start and the parameter nodes. int param_count = 1 /* closure */ + 1 /* receiver */ + wasm_count + 1 /* new.target */ + 1 /* #arg */ + 1 /* context */; SetEffectControl(Start(param_count)); Node* closure = Param(Linkage::kJSCallClosureParamIndex); Node* context = Param(Linkage::GetJSCallContextParamIndex(wasm_count + 1)); // Since JS-to-JS wrappers are specific to one Isolate, it is OK to embed // values (for undefined and root) directly into the instruction stream. isolate_root_node_ = mcgraph()->IntPtrConstant(isolate->isolate_root()); undefined_value_node_ = graph()->NewNode(mcgraph()->common()->HeapConstant( isolate->factory()->undefined_value())); // Throw a TypeError if the signature is incompatible with JavaScript. if (!wasm::IsJSCompatibleSignature(sig_, module_, enabled_features_)) { BuildCallToRuntimeWithContext(Runtime::kWasmThrowJSTypeError, context, nullptr, 0); TerminateThrow(effect(), control()); return; } // Load the original callable from the closure. Node* func_data = gasm_->LoadFunctionDataFromJSFunction(closure); Node* callable = LOAD_TAGGED_ANY( func_data, wasm::ObjectAccess::ToTagged(WasmJSFunctionData::kCallableOffset)); // Call the underlying closure. base::SmallVector<Node*, 16> args(wasm_count + 7); int pos = 0; args[pos++] = GetBuiltinPointerTarget(mcgraph(), Builtins::kCall_ReceiverIsAny); args[pos++] = callable; args[pos++] = mcgraph()->Int32Constant(wasm_count); // argument count args[pos++] = BuildLoadUndefinedValueFromInstance(); // receiver auto call_descriptor = Linkage::GetStubCallDescriptor( graph()->zone(), CallTrampolineDescriptor{}, wasm_count + 1, CallDescriptor::kNoFlags, Operator::kNoProperties, StubCallMode::kCallBuiltinPointer); // Convert parameter JS values to wasm numbers and back to JS values. for (int i = 0; i < wasm_count; ++i) { Node* param = Param(i + 1); // Start from index 1 to skip receiver. args[pos++] = ToJS(FromJS(param, context, sig_->GetParam(i)), sig_->GetParam(i)); } args[pos++] = context; args[pos++] = effect(); args[pos++] = control(); DCHECK_EQ(pos, args.size()); Node* call = SetEffect(graph()->NewNode( mcgraph()->common()->Call(call_descriptor), pos, args.begin())); // Convert return JS values to wasm numbers and back to JS values. Node* jsval; if (sig_->return_count() == 0) { jsval = BuildLoadUndefinedValueFromInstance(); } else if (sig_->return_count() == 1) { jsval = ToJS(FromJS(call, context, sig_->GetReturn()), sig_->GetReturn()); } else { Node* fixed_array = BuildMultiReturnFixedArrayFromIterable(sig_, call, context); int32_t return_count = static_cast<int32_t>(sig_->return_count()); Node* size = graph()->NewNode(mcgraph()->common()->NumberConstant(return_count)); jsval = BuildCallAllocateJSArray(size, context); Node* result_fixed_array = gasm_->LoadJSArrayElements(jsval); for (unsigned i = 0; i < sig_->return_count(); ++i) { const auto& type = sig_->GetReturn(i); Node* elem = LOAD_FIXED_ARRAY_SLOT_ANY(fixed_array, i); Node* cast = ToJS(FromJS(elem, context, type), type); STORE_FIXED_ARRAY_SLOT_ANY(result_fixed_array, i, cast); } } Return(jsval); } void BuildCWasmEntry() { // +1 offset for first parameter index being -1. SetEffectControl(Start(CWasmEntryParameters::kNumParameters + 1)); Node* code_entry = Param(CWasmEntryParameters::kCodeEntry); Node* object_ref = Param(CWasmEntryParameters::kObjectRef); Node* arg_buffer = Param(CWasmEntryParameters::kArgumentsBuffer); Node* c_entry_fp = Param(CWasmEntryParameters::kCEntryFp); Node* fp_value = graph()->NewNode(mcgraph()->machine()->LoadFramePointer()); STORE_RAW(fp_value, TypedFrameConstants::kFirstPushedFrameValueOffset, c_entry_fp, MachineType::PointerRepresentation(), kNoWriteBarrier); int wasm_arg_count = static_cast<int>(sig_->parameter_count()); base::SmallVector<Node*, 16> args(wasm_arg_count + 4); int pos = 0; args[pos++] = code_entry; args[pos++] = object_ref; int offset = 0; for (wasm::ValueType type : sig_->parameters()) { Node* arg_load = SetEffect( graph()->NewNode(GetSafeLoadOperator(offset, type), arg_buffer, Int32Constant(offset), effect(), control())); args[pos++] = arg_load; offset += type.element_size_bytes(); } args[pos++] = effect(); args[pos++] = control(); // Call the wasm code. auto call_descriptor = GetWasmCallDescriptor(mcgraph()->zone(), sig_); DCHECK_EQ(pos, args.size()); Node* call = SetEffect(graph()->NewNode( mcgraph()->common()->Call(call_descriptor), pos, args.begin())); Node* if_success = graph()->NewNode(mcgraph()->common()->IfSuccess(), call); Node* if_exception = graph()->NewNode(mcgraph()->common()->IfException(), call, call); // Handle exception: return it. SetControl(if_exception); Return(if_exception); // Handle success: store the return value(s). SetControl(if_success); pos = 0; offset = 0; for (wasm::ValueType type : sig_->returns()) { Node* value = sig_->return_count() == 1 ? call : graph()->NewNode(mcgraph()->common()->Projection(pos), call, control()); SetEffect(graph()->NewNode(GetSafeStoreOperator(offset, type), arg_buffer, Int32Constant(offset), value, effect(), control())); offset += type.element_size_bytes(); pos++; } Return(mcgraph()->IntPtrConstant(0)); if (mcgraph()->machine()->Is32() && ContainsInt64(sig_)) { // No special lowering should be requested in the C entry. DCHECK_NULL(lowering_special_case_); MachineRepresentation sig_reps[] = { MachineType::PointerRepresentation(), // return value MachineType::PointerRepresentation(), // target MachineRepresentation::kTagged, // object_ref MachineType::PointerRepresentation(), // argv MachineType::PointerRepresentation() // c_entry_fp }; Signature<MachineRepresentation> c_entry_sig(1, 4, sig_reps); Int64Lowering r(mcgraph()->graph(), mcgraph()->machine(), mcgraph()->common(), mcgraph()->zone(), &c_entry_sig); r.LowerGraph(); } } private: const wasm::WasmModule* module_; StubCallMode stub_mode_; SetOncePointer<Node> undefined_value_node_; SetOncePointer<const Operator> int32_to_heapnumber_operator_; SetOncePointer<const Operator> tagged_non_smi_to_int32_operator_; SetOncePointer<const Operator> float32_to_number_operator_; SetOncePointer<const Operator> float64_to_number_operator_; SetOncePointer<const Operator> tagged_to_float64_operator_; wasm::WasmFeatures enabled_features_; CallDescriptor* bigint_to_i64_descriptor_ = nullptr; CallDescriptor* i64_to_bigint_descriptor_ = nullptr; }; } // namespace void BuildInlinedJSToWasmWrapper( Zone* zone, MachineGraph* mcgraph, const wasm::FunctionSig* signature, const wasm::WasmModule* module, compiler::SourcePositionTable* spt, StubCallMode stub_mode, wasm::WasmFeatures features, const JSWasmCallData* js_wasm_call_data, Node* frame_state) { WasmWrapperGraphBuilder builder(zone, mcgraph, signature, module, spt, stub_mode, features); builder.BuildJSToWasmWrapper(false, js_wasm_call_data, frame_state); } std::unique_ptr<OptimizedCompilationJob> NewJSToWasmCompilationJob( Isolate* isolate, wasm::WasmEngine* wasm_engine, const wasm::FunctionSig* sig, const wasm::WasmModule* module, bool is_import, const wasm::WasmFeatures& enabled_features) { //---------------------------------------------------------------------------- // Create the Graph. //---------------------------------------------------------------------------- std::unique_ptr<Zone> zone = std::make_unique<Zone>( wasm_engine->allocator(), ZONE_NAME, kCompressGraphZone); Graph* graph = zone->New<Graph>(zone.get()); CommonOperatorBuilder* common = zone->New<CommonOperatorBuilder>(zone.get()); MachineOperatorBuilder* machine = zone->New<MachineOperatorBuilder>( zone.get(), MachineType::PointerRepresentation(), InstructionSelector::SupportedMachineOperatorFlags(), InstructionSelector::AlignmentRequirements()); MachineGraph* mcgraph = zone->New<MachineGraph>(graph, common, machine); WasmWrapperGraphBuilder builder(zone.get(), mcgraph, sig, module, nullptr, StubCallMode::kCallBuiltinPointer, enabled_features); builder.BuildJSToWasmWrapper(is_import); //---------------------------------------------------------------------------- // Create the compilation job. //---------------------------------------------------------------------------- std::unique_ptr<char[]> debug_name = WasmExportedFunction::GetDebugName(sig); int params = static_cast<int>(sig->parameter_count()); CallDescriptor* incoming = Linkage::GetJSCallDescriptor( zone.get(), false, params + 1, CallDescriptor::kNoFlags); return Pipeline::NewWasmHeapStubCompilationJob( isolate, wasm_engine, incoming, std::move(zone), graph, CodeKind::JS_TO_WASM_FUNCTION, std::move(debug_name), WasmAssemblerOptions()); } std::pair<WasmImportCallKind, Handle<JSReceiver>> ResolveWasmImportCall( Handle<JSReceiver> callable, const wasm::FunctionSig* expected_sig, const wasm::WasmModule* module, const wasm::WasmFeatures& enabled_features) { if (WasmExportedFunction::IsWasmExportedFunction(*callable)) { auto imported_function = Handle<WasmExportedFunction>::cast(callable); if (!imported_function->MatchesSignature(module, expected_sig)) { return std::make_pair(WasmImportCallKind::kLinkError, callable); } uint32_t func_index = static_cast<uint32_t>(imported_function->function_index()); if (func_index >= imported_function->instance().module()->num_imported_functions) { return std::make_pair(WasmImportCallKind::kWasmToWasm, callable); } Isolate* isolate = callable->GetIsolate(); // Resolve the shortcut to the underlying callable and continue. Handle<WasmInstanceObject> instance(imported_function->instance(), isolate); ImportedFunctionEntry entry(instance, func_index); callable = handle(entry.callable(), isolate); } if (WasmJSFunction::IsWasmJSFunction(*callable)) { auto js_function = Handle<WasmJSFunction>::cast(callable); if (!js_function->MatchesSignature(expected_sig)) { return std::make_pair(WasmImportCallKind::kLinkError, callable); } Isolate* isolate = callable->GetIsolate(); // Resolve the short-cut to the underlying callable and continue. callable = handle(js_function->GetCallable(), isolate); } if (WasmCapiFunction::IsWasmCapiFunction(*callable)) { auto capi_function = Handle<WasmCapiFunction>::cast(callable); if (!capi_function->MatchesSignature(expected_sig)) { return std::make_pair(WasmImportCallKind::kLinkError, callable); } return std::make_pair(WasmImportCallKind::kWasmToCapi, callable); } // Assuming we are calling to JS, check whether this would be a runtime error. if (!wasm::IsJSCompatibleSignature(expected_sig, module, enabled_features)) { return std::make_pair(WasmImportCallKind::kRuntimeTypeError, callable); } // For JavaScript calls, determine whether the target has an arity match. if (callable->IsJSFunction()) { Handle<JSFunction> function = Handle<JSFunction>::cast(callable); Handle<SharedFunctionInfo> shared(function->shared(), function->GetIsolate()); // Check for math intrinsics. #define COMPARE_SIG_FOR_BUILTIN(name) \ { \ const wasm::FunctionSig* sig = \ wasm::WasmOpcodes::Signature(wasm::kExpr##name); \ if (!sig) sig = wasm::WasmOpcodes::AsmjsSignature(wasm::kExpr##name); \ DCHECK_NOT_NULL(sig); \ if (*expected_sig == *sig) { \ return std::make_pair(WasmImportCallKind::k##name, callable); \ } \ } #define COMPARE_SIG_FOR_BUILTIN_F64(name) \ case Builtins::kMath##name: \ COMPARE_SIG_FOR_BUILTIN(F64##name); \ break; #define COMPARE_SIG_FOR_BUILTIN_F32_F64(name) \ case Builtins::kMath##name: \ COMPARE_SIG_FOR_BUILTIN(F64##name); \ COMPARE_SIG_FOR_BUILTIN(F32##name); \ break; if (FLAG_wasm_math_intrinsics && shared->HasBuiltinId()) { switch (shared->builtin_id()) { COMPARE_SIG_FOR_BUILTIN_F64(Acos); COMPARE_SIG_FOR_BUILTIN_F64(Asin); COMPARE_SIG_FOR_BUILTIN_F64(Atan); COMPARE_SIG_FOR_BUILTIN_F64(Cos); COMPARE_SIG_FOR_BUILTIN_F64(Sin); COMPARE_SIG_FOR_BUILTIN_F64(Tan); COMPARE_SIG_FOR_BUILTIN_F64(Exp); COMPARE_SIG_FOR_BUILTIN_F64(Log); COMPARE_SIG_FOR_BUILTIN_F64(Atan2); COMPARE_SIG_FOR_BUILTIN_F64(Pow); COMPARE_SIG_FOR_BUILTIN_F32_F64(Min); COMPARE_SIG_FOR_BUILTIN_F32_F64(Max); COMPARE_SIG_FOR_BUILTIN_F32_F64(Abs); COMPARE_SIG_FOR_BUILTIN_F32_F64(Ceil); COMPARE_SIG_FOR_BUILTIN_F32_F64(Floor); COMPARE_SIG_FOR_BUILTIN_F32_F64(Sqrt); case Builtins::kMathFround: COMPARE_SIG_FOR_BUILTIN(F32ConvertF64); break; default: break; } } #undef COMPARE_SIG_FOR_BUILTIN #undef COMPARE_SIG_FOR_BUILTIN_F64 #undef COMPARE_SIG_FOR_BUILTIN_F32_F64 if (IsClassConstructor(shared->kind())) { // Class constructor will throw anyway. return std::make_pair(WasmImportCallKind::kUseCallBuiltin, callable); } if (shared->internal_formal_parameter_count() == expected_sig->parameter_count()) { return std::make_pair(WasmImportCallKind::kJSFunctionArityMatch, callable); } // If function isn't compiled, compile it now. Isolate* isolate = callable->GetIsolate(); IsCompiledScope is_compiled_scope(shared->is_compiled_scope(isolate)); if (!is_compiled_scope.is_compiled()) { Compiler::Compile(isolate, function, Compiler::CLEAR_EXCEPTION, &is_compiled_scope); } return std::make_pair(WasmImportCallKind::kJSFunctionArityMismatch, callable); } // Unknown case. Use the call builtin. return std::make_pair(WasmImportCallKind::kUseCallBuiltin, callable); } namespace { wasm::WasmOpcode GetMathIntrinsicOpcode(WasmImportCallKind kind, const char** name_ptr) { #define CASE(name) \ case WasmImportCallKind::k##name: \ *name_ptr = "WasmMathIntrinsic:" #name; \ return wasm::kExpr##name switch (kind) { CASE(F64Acos); CASE(F64Asin); CASE(F64Atan); CASE(F64Cos); CASE(F64Sin); CASE(F64Tan); CASE(F64Exp); CASE(F64Log); CASE(F64Atan2); CASE(F64Pow); CASE(F64Ceil); CASE(F64Floor); CASE(F64Sqrt); CASE(F64Min); CASE(F64Max); CASE(F64Abs); CASE(F32Min); CASE(F32Max); CASE(F32Abs); CASE(F32Ceil); CASE(F32Floor); CASE(F32Sqrt); CASE(F32ConvertF64); default: UNREACHABLE(); return wasm::kExprUnreachable; } #undef CASE } wasm::WasmCompilationResult CompileWasmMathIntrinsic( wasm::WasmEngine* wasm_engine, WasmImportCallKind kind, const wasm::FunctionSig* sig) { DCHECK_EQ(1, sig->return_count()); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.wasm.detailed"), "wasm.CompileWasmMathIntrinsic"); Zone zone(wasm_engine->allocator(), ZONE_NAME, kCompressGraphZone); // Compile a Wasm function with a single bytecode and let TurboFan // generate either inlined machine code or a call to a helper. SourcePositionTable* source_positions = nullptr; MachineGraph* mcgraph = zone.New<MachineGraph>( zone.New<Graph>(&zone), zone.New<CommonOperatorBuilder>(&zone), zone.New<MachineOperatorBuilder>( &zone, MachineType::PointerRepresentation(), InstructionSelector::SupportedMachineOperatorFlags(), InstructionSelector::AlignmentRequirements())); wasm::CompilationEnv env( nullptr, wasm::UseTrapHandler::kNoTrapHandler, wasm::RuntimeExceptionSupport::kNoRuntimeExceptionSupport, wasm::WasmFeatures::All(), wasm::LowerSimd::kNoLowerSimd); WasmGraphBuilder builder(&env, mcgraph->zone(), mcgraph, sig, source_positions); // Set up the graph start. Node* start = builder.Start(static_cast<int>(sig->parameter_count() + 1 + 1)); builder.SetEffectControl(start); builder.set_instance_node(builder.Param(wasm::kWasmInstanceParameterIndex)); // Generate either a unop or a binop. Node* node = nullptr; const char* debug_name = "WasmMathIntrinsic"; auto opcode = GetMathIntrinsicOpcode(kind, &debug_name); switch (sig->parameter_count()) { case 1: node = builder.Unop(opcode, builder.Param(1)); break; case 2: node = builder.Binop(opcode, builder.Param(1), builder.Param(2)); break; default: UNREACHABLE(); } builder.Return(node); // Run the compiler pipeline to generate machine code. auto call_descriptor = GetWasmCallDescriptor(&zone, sig); if (mcgraph->machine()->Is32()) { call_descriptor = GetI32WasmCallDescriptor(&zone, call_descriptor); } wasm::WasmCompilationResult result = Pipeline::GenerateCodeForWasmNativeStub( wasm_engine, call_descriptor, mcgraph, CodeKind::WASM_FUNCTION, wasm::WasmCode::kFunction, debug_name, WasmStubAssemblerOptions(), source_positions); return result; } } // namespace wasm::WasmCompilationResult CompileWasmImportCallWrapper( wasm::WasmEngine* wasm_engine, wasm::CompilationEnv* env, WasmImportCallKind kind, const wasm::FunctionSig* sig, bool source_positions, int expected_arity) { DCHECK_NE(WasmImportCallKind::kLinkError, kind); DCHECK_NE(WasmImportCallKind::kWasmToWasm, kind); // Check for math intrinsics first. if (FLAG_wasm_math_intrinsics && kind >= WasmImportCallKind::kFirstMathIntrinsic && kind <= WasmImportCallKind::kLastMathIntrinsic) { return CompileWasmMathIntrinsic(wasm_engine, kind, sig); } TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.wasm.detailed"), "wasm.CompileWasmImportCallWrapper"); //---------------------------------------------------------------------------- // Create the Graph //---------------------------------------------------------------------------- Zone zone(wasm_engine->allocator(), ZONE_NAME, kCompressGraphZone); Graph* graph = zone.New<Graph>(&zone); CommonOperatorBuilder* common = zone.New<CommonOperatorBuilder>(&zone); MachineOperatorBuilder* machine = zone.New<MachineOperatorBuilder>( &zone, MachineType::PointerRepresentation(), InstructionSelector::SupportedMachineOperatorFlags(), InstructionSelector::AlignmentRequirements()); MachineGraph* mcgraph = zone.New<MachineGraph>(graph, common, machine); SourcePositionTable* source_position_table = source_positions ? zone.New<SourcePositionTable>(graph) : nullptr; WasmWrapperGraphBuilder builder( &zone, mcgraph, sig, env->module, source_position_table, StubCallMode::kCallWasmRuntimeStub, env->enabled_features); builder.BuildWasmToJSWrapper(kind, expected_arity); // Build a name in the form "wasm-to-js-<kind>-<signature>". constexpr size_t kMaxNameLen = 128; char func_name[kMaxNameLen]; int name_prefix_len = SNPrintF(VectorOf(func_name, kMaxNameLen), "wasm-to-js-%d-", static_cast<int>(kind)); PrintSignature(VectorOf(func_name, kMaxNameLen) + name_prefix_len, sig, '-'); // Schedule and compile to machine code. CallDescriptor* incoming = GetWasmCallDescriptor(&zone, sig, WasmGraphBuilder::kNoRetpoline, WasmCallKind::kWasmImportWrapper); if (machine->Is32()) { incoming = GetI32WasmCallDescriptor(&zone, incoming); } wasm::WasmCompilationResult result = Pipeline::GenerateCodeForWasmNativeStub( wasm_engine, incoming, mcgraph, CodeKind::WASM_TO_JS_FUNCTION, wasm::WasmCode::kWasmToJsWrapper, func_name, WasmStubAssemblerOptions(), source_position_table); result.kind = wasm::WasmCompilationResult::kWasmToJsWrapper; return result; } wasm::WasmCode* CompileWasmCapiCallWrapper(wasm::WasmEngine* wasm_engine, wasm::NativeModule* native_module, const wasm::FunctionSig* sig, Address address) { TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.wasm.detailed"), "wasm.CompileWasmCapiFunction"); Zone zone(wasm_engine->allocator(), ZONE_NAME, kCompressGraphZone); // TODO(jkummerow): Extract common code into helper method. SourcePositionTable* source_positions = nullptr; MachineGraph* mcgraph = zone.New<MachineGraph>( zone.New<Graph>(&zone), zone.New<CommonOperatorBuilder>(&zone), zone.New<MachineOperatorBuilder>( &zone, MachineType::PointerRepresentation(), InstructionSelector::SupportedMachineOperatorFlags(), InstructionSelector::AlignmentRequirements())); WasmWrapperGraphBuilder builder( &zone, mcgraph, sig, native_module->module(), source_positions, StubCallMode::kCallWasmRuntimeStub, native_module->enabled_features()); // Set up the graph start. int param_count = static_cast<int>(sig->parameter_count()) + 1 /* offset for first parameter index being -1 */ + 1 /* Wasm instance */ + 1 /* kExtraCallableParam */; Node* start = builder.Start(param_count); builder.SetEffectControl(start); builder.set_instance_node(builder.Param(wasm::kWasmInstanceParameterIndex)); builder.BuildCapiCallWrapper(address); // Run the compiler pipeline to generate machine code. CallDescriptor* call_descriptor = GetWasmCallDescriptor(&zone, sig, WasmGraphBuilder::kNoRetpoline, WasmCallKind::kWasmCapiFunction); if (mcgraph->machine()->Is32()) { call_descriptor = GetI32WasmCallDescriptor(&zone, call_descriptor); } const char* debug_name = "WasmCapiCall"; wasm::WasmCompilationResult result = Pipeline::GenerateCodeForWasmNativeStub( wasm_engine, call_descriptor, mcgraph, CodeKind::WASM_TO_CAPI_FUNCTION, wasm::WasmCode::kWasmToCapiWrapper, debug_name, WasmStubAssemblerOptions(), source_positions); std::unique_ptr<wasm::WasmCode> wasm_code = native_module->AddCode( wasm::kAnonymousFuncIndex, result.code_desc, result.frame_slot_count, result.tagged_parameter_slots, result.protected_instructions_data.as_vector(), result.source_positions.as_vector(), wasm::WasmCode::kWasmToCapiWrapper, wasm::ExecutionTier::kNone, wasm::kNoDebugging); return native_module->PublishCode(std::move(wasm_code)); } MaybeHandle<Code> CompileWasmToJSWrapper(Isolate* isolate, const wasm::FunctionSig* sig, WasmImportCallKind kind, int expected_arity) { std::unique_ptr<Zone> zone = std::make_unique<Zone>( isolate->allocator(), ZONE_NAME, kCompressGraphZone); // Create the Graph Graph* graph = zone->New<Graph>(zone.get()); CommonOperatorBuilder* common = zone->New<CommonOperatorBuilder>(zone.get()); MachineOperatorBuilder* machine = zone->New<MachineOperatorBuilder>( zone.get(), MachineType::PointerRepresentation(), InstructionSelector::SupportedMachineOperatorFlags(), InstructionSelector::AlignmentRequirements()); MachineGraph* mcgraph = zone->New<MachineGraph>(graph, common, machine); WasmWrapperGraphBuilder builder(zone.get(), mcgraph, sig, nullptr, nullptr, StubCallMode::kCallWasmRuntimeStub, wasm::WasmFeatures::FromIsolate(isolate)); builder.BuildWasmToJSWrapper(kind, expected_arity); // Build a name in the form "wasm-to-js-<kind>-<signature>". constexpr size_t kMaxNameLen = 128; constexpr size_t kNamePrefixLen = 11; auto name_buffer = std::unique_ptr<char[]>(new char[kMaxNameLen]); base::Memcpy(name_buffer.get(), "wasm-to-js:", kNamePrefixLen); PrintSignature(VectorOf(name_buffer.get(), kMaxNameLen) + kNamePrefixLen, sig); // Generate the call descriptor. CallDescriptor* incoming = GetWasmCallDescriptor(zone.get(), sig, WasmGraphBuilder::kNoRetpoline, WasmCallKind::kWasmImportWrapper); // Run the compilation job synchronously. std::unique_ptr<OptimizedCompilationJob> job( Pipeline::NewWasmHeapStubCompilationJob( isolate, isolate->wasm_engine(), incoming, std::move(zone), graph, CodeKind::WASM_TO_JS_FUNCTION, std::move(name_buffer), AssemblerOptions::Default(isolate))); // Compile the wrapper if (job->ExecuteJob(isolate->counters()->runtime_call_stats()) == CompilationJob::FAILED || job->FinalizeJob(isolate) == CompilationJob::FAILED) { return Handle<Code>(); } Handle<Code> code = job->compilation_info()->code(); return code; } MaybeHandle<Code> CompileJSToJSWrapper(Isolate* isolate, const wasm::FunctionSig* sig, const wasm::WasmModule* module) { std::unique_ptr<Zone> zone = std::make_unique<Zone>( isolate->allocator(), ZONE_NAME, kCompressGraphZone); Graph* graph = zone->New<Graph>(zone.get()); CommonOperatorBuilder* common = zone->New<CommonOperatorBuilder>(zone.get()); MachineOperatorBuilder* machine = zone->New<MachineOperatorBuilder>( zone.get(), MachineType::PointerRepresentation(), InstructionSelector::SupportedMachineOperatorFlags(), InstructionSelector::AlignmentRequirements()); MachineGraph* mcgraph = zone->New<MachineGraph>(graph, common, machine); WasmWrapperGraphBuilder builder(zone.get(), mcgraph, sig, module, nullptr, StubCallMode::kCallBuiltinPointer, wasm::WasmFeatures::FromIsolate(isolate)); builder.BuildJSToJSWrapper(isolate); int wasm_count = static_cast<int>(sig->parameter_count()); CallDescriptor* incoming = Linkage::GetJSCallDescriptor( zone.get(), false, wasm_count + 1, CallDescriptor::kNoFlags); // Build a name in the form "js-to-js:<params>:<returns>". constexpr size_t kMaxNameLen = 128; constexpr size_t kNamePrefixLen = 9; auto name_buffer = std::unique_ptr<char[]>(new char[kMaxNameLen]); base::Memcpy(name_buffer.get(), "js-to-js:", kNamePrefixLen); PrintSignature(VectorOf(name_buffer.get(), kMaxNameLen) + kNamePrefixLen, sig); // Run the compilation job synchronously. std::unique_ptr<OptimizedCompilationJob> job( Pipeline::NewWasmHeapStubCompilationJob( isolate, isolate->wasm_engine(), incoming, std::move(zone), graph, CodeKind::JS_TO_JS_FUNCTION, std::move(name_buffer), AssemblerOptions::Default(isolate))); if (job->ExecuteJob(isolate->counters()->runtime_call_stats()) == CompilationJob::FAILED || job->FinalizeJob(isolate) == CompilationJob::FAILED) { return {}; } Handle<Code> code = job->compilation_info()->code(); return code; } Handle<Code> CompileCWasmEntry(Isolate* isolate, const wasm::FunctionSig* sig, const wasm::WasmModule* module) { std::unique_ptr<Zone> zone = std::make_unique<Zone>( isolate->allocator(), ZONE_NAME, kCompressGraphZone); Graph* graph = zone->New<Graph>(zone.get()); CommonOperatorBuilder* common = zone->New<CommonOperatorBuilder>(zone.get()); MachineOperatorBuilder* machine = zone->New<MachineOperatorBuilder>( zone.get(), MachineType::PointerRepresentation(), InstructionSelector::SupportedMachineOperatorFlags(), InstructionSelector::AlignmentRequirements()); MachineGraph* mcgraph = zone->New<MachineGraph>(graph, common, machine); WasmWrapperGraphBuilder builder(zone.get(), mcgraph, sig, module, nullptr, StubCallMode::kCallBuiltinPointer, wasm::WasmFeatures::FromIsolate(isolate)); builder.BuildCWasmEntry(); // Schedule and compile to machine code. MachineType sig_types[] = {MachineType::Pointer(), // return MachineType::Pointer(), // target MachineType::AnyTagged(), // object_ref MachineType::Pointer(), // argv MachineType::Pointer()}; // c_entry_fp MachineSignature incoming_sig(1, 4, sig_types); // Traps need the root register, for TailCallRuntime to call // Runtime::kThrowWasmError. CallDescriptor::Flags flags = CallDescriptor::kInitializeRootRegister; CallDescriptor* incoming = Linkage::GetSimplifiedCDescriptor(zone.get(), &incoming_sig, flags); // Build a name in the form "c-wasm-entry:<params>:<returns>". constexpr size_t kMaxNameLen = 128; constexpr size_t kNamePrefixLen = 13; auto name_buffer = std::unique_ptr<char[]>(new char[kMaxNameLen]); base::Memcpy(name_buffer.get(), "c-wasm-entry:", kNamePrefixLen); PrintSignature(VectorOf(name_buffer.get(), kMaxNameLen) + kNamePrefixLen, sig); // Run the compilation job synchronously. std::unique_ptr<OptimizedCompilationJob> job( Pipeline::NewWasmHeapStubCompilationJob( isolate, isolate->wasm_engine(), incoming, std::move(zone), graph, CodeKind::C_WASM_ENTRY, std::move(name_buffer), AssemblerOptions::Default(isolate))); CHECK_NE(job->ExecuteJob(isolate->counters()->runtime_call_stats(), nullptr), CompilationJob::FAILED); CHECK_NE(job->FinalizeJob(isolate), CompilationJob::FAILED); return job->compilation_info()->code(); } namespace { bool BuildGraphForWasmFunction(AccountingAllocator* allocator, wasm::CompilationEnv* env, const wasm::FunctionBody& func_body, int func_index, wasm::WasmFeatures* detected, MachineGraph* mcgraph, NodeOriginTable* node_origins, SourcePositionTable* source_positions) { // Create a TF graph during decoding. WasmGraphBuilder builder(env, mcgraph->zone(), mcgraph, func_body.sig, source_positions); wasm::VoidResult graph_construction_result = wasm::BuildTFGraph(allocator, env->enabled_features, env->module, &builder, detected, func_body, node_origins); if (graph_construction_result.failed()) { if (FLAG_trace_wasm_compiler) { StdoutStream{} << "Compilation failed: " << graph_construction_result.error().message() << std::endl; } return false; } // Lower SIMD first, i64x2 nodes will be lowered to int64 nodes, then int64 // lowering will take care of them. auto sig = CreateMachineSignature(mcgraph->zone(), func_body.sig, WasmGraphBuilder::kCalledFromWasm); if (builder.has_simd() && (!CpuFeatures::SupportsWasmSimd128() || env->lower_simd)) { SimdScalarLowering(mcgraph, sig).LowerGraph(); // SimdScalarLowering changes all v128 to 4 i32, so update the machine // signature for the call to LowerInt64. size_t return_count = 0; size_t param_count = 0; for (auto ret : sig->returns()) { return_count += ret == MachineRepresentation::kSimd128 ? 4 : 1; } for (auto param : sig->parameters()) { param_count += param == MachineRepresentation::kSimd128 ? 4 : 1; } Signature<MachineRepresentation>::Builder sig_builder( mcgraph->zone(), return_count, param_count); for (auto ret : sig->returns()) { if (ret == MachineRepresentation::kSimd128) { for (int i = 0; i < 4; ++i) { sig_builder.AddReturn(MachineRepresentation::kWord32); } } else { sig_builder.AddReturn(ret); } } for (auto param : sig->parameters()) { if (param == MachineRepresentation::kSimd128) { for (int i = 0; i < 4; ++i) { sig_builder.AddParam(MachineRepresentation::kWord32); } } else { sig_builder.AddParam(param); } } sig = sig_builder.Build(); } builder.LowerInt64(sig); if (func_index >= FLAG_trace_wasm_ast_start && func_index < FLAG_trace_wasm_ast_end) { PrintRawWasmCode(allocator, func_body, env->module, wasm::kPrintLocals); } return true; } Vector<const char> GetDebugName(Zone* zone, int index) { // TODO(herhut): Use name from module if available. constexpr int kBufferLength = 24; EmbeddedVector<char, kBufferLength> name_vector; int name_len = SNPrintF(name_vector, "wasm-function#%d", index); DCHECK(name_len > 0 && name_len < name_vector.length()); char* index_name = zone->NewArray<char>(name_len); base::Memcpy(index_name, name_vector.begin(), name_len); return Vector<const char>(index_name, name_len); } } // namespace wasm::WasmCompilationResult ExecuteTurbofanWasmCompilation( wasm::WasmEngine* wasm_engine, wasm::CompilationEnv* env, const wasm::FunctionBody& func_body, int func_index, Counters* counters, wasm::WasmFeatures* detected) { TRACE_EVENT2(TRACE_DISABLED_BY_DEFAULT("v8.wasm.detailed"), "wasm.CompileTopTier", "func_index", func_index, "body_size", func_body.end - func_body.start); Zone zone(wasm_engine->allocator(), ZONE_NAME, kCompressGraphZone); MachineGraph* mcgraph = zone.New<MachineGraph>( zone.New<Graph>(&zone), zone.New<CommonOperatorBuilder>(&zone), zone.New<MachineOperatorBuilder>( &zone, MachineType::PointerRepresentation(), InstructionSelector::SupportedMachineOperatorFlags(), InstructionSelector::AlignmentRequirements())); OptimizedCompilationInfo info(GetDebugName(&zone, func_index), &zone, CodeKind::WASM_FUNCTION); if (env->runtime_exception_support) { info.set_wasm_runtime_exception_support(); } if (info.trace_turbo_json()) { TurboCfgFile tcf; tcf << AsC1VCompilation(&info); } NodeOriginTable* node_origins = info.trace_turbo_json() ? zone.New<NodeOriginTable>(mcgraph->graph()) : nullptr; SourcePositionTable* source_positions = mcgraph->zone()->New<SourcePositionTable>(mcgraph->graph()); if (!BuildGraphForWasmFunction(wasm_engine->allocator(), env, func_body, func_index, detected, mcgraph, node_origins, source_positions)) { return wasm::WasmCompilationResult{}; } if (node_origins) { node_origins->AddDecorator(); } // Run the compiler pipeline to generate machine code. auto call_descriptor = GetWasmCallDescriptor(&zone, func_body.sig); if (mcgraph->machine()->Is32()) { call_descriptor = GetI32WasmCallDescriptor(&zone, call_descriptor); } if (ContainsSimd(func_body.sig) && (!CpuFeatures::SupportsWasmSimd128() || env->lower_simd)) { call_descriptor = GetI32WasmCallDescriptorForSimd(&zone, call_descriptor); } Pipeline::GenerateCodeForWasmFunction( &info, wasm_engine, mcgraph, call_descriptor, source_positions, node_origins, func_body, env->module, func_index); if (counters) { counters->wasm_compile_function_peak_memory_bytes()->AddSample( static_cast<int>(mcgraph->graph()->zone()->allocation_size())); } auto result = info.ReleaseWasmCompilationResult(); CHECK_NOT_NULL(result); // Compilation expected to succeed. DCHECK_EQ(wasm::ExecutionTier::kTurbofan, result->result_tier); return std::move(*result); } namespace { // Helper for allocating either an GP or FP reg, or the next stack slot. class LinkageLocationAllocator { public: template <size_t kNumGpRegs, size_t kNumFpRegs> constexpr LinkageLocationAllocator(const Register (&gp)[kNumGpRegs], const DoubleRegister (&fp)[kNumFpRegs]) : allocator_(wasm::LinkageAllocator(gp, fp)) {} LinkageLocation Next(MachineRepresentation rep) { MachineType type = MachineType::TypeForRepresentation(rep); if (IsFloatingPoint(rep)) { if (allocator_.CanAllocateFP(rep)) { int reg_code = allocator_.NextFpReg(rep); return LinkageLocation::ForRegister(reg_code, type); } } else if (allocator_.CanAllocateGP()) { int reg_code = allocator_.NextGpReg(); return LinkageLocation::ForRegister(reg_code, type); } // Cannot use register; use stack slot. int index = -1 - allocator_.NextStackSlot(rep); return LinkageLocation::ForCallerFrameSlot(index, type); } void SetStackOffset(int offset) { allocator_.SetStackOffset(offset); } int NumStackSlots() const { return allocator_.NumStackSlots(); } private: wasm::LinkageAllocator allocator_; }; } // namespace // General code uses the above configuration data. CallDescriptor* GetWasmCallDescriptor( Zone* zone, const wasm::FunctionSig* fsig, WasmGraphBuilder::UseRetpoline use_retpoline, WasmCallKind call_kind, bool need_frame_state) { // The extra here is to accomodate the instance object as first parameter // and, when specified, the additional callable. bool extra_callable_param = call_kind == kWasmImportWrapper || call_kind == kWasmCapiFunction; int extra_params = extra_callable_param ? 2 : 1; LocationSignature::Builder locations(zone, fsig->return_count(), fsig->parameter_count() + extra_params); // Add register and/or stack parameter(s). LinkageLocationAllocator params(wasm::kGpParamRegisters, wasm::kFpParamRegisters); // The instance object. locations.AddParam(params.Next(MachineRepresentation::kTaggedPointer)); const size_t param_offset = 1; // Actual params start here. // Parameters are separated into two groups (first all untagged, then all // tagged parameters). This allows for easy iteration of tagged parameters // during frame iteration. const size_t parameter_count = fsig->parameter_count(); for (size_t i = 0; i < parameter_count; i++) { MachineRepresentation param = fsig->GetParam(i).machine_representation(); // Skip tagged parameters (e.g. any-ref). if (IsAnyTagged(param)) continue; auto l = params.Next(param); locations.AddParamAt(i + param_offset, l); } for (size_t i = 0; i < parameter_count; i++) { MachineRepresentation param = fsig->GetParam(i).machine_representation(); // Skip untagged parameters. if (!IsAnyTagged(param)) continue; auto l = params.Next(param); locations.AddParamAt(i + param_offset, l); } // Import call wrappers have an additional (implicit) parameter, the callable. // For consistency with JS, we use the JSFunction register. if (extra_callable_param) { locations.AddParam(LinkageLocation::ForRegister( kJSFunctionRegister.code(), MachineType::TaggedPointer())); } // Add return location(s). LinkageLocationAllocator rets(wasm::kGpReturnRegisters, wasm::kFpReturnRegisters); int parameter_slots = params.NumStackSlots(); if (ShouldPadArguments(parameter_slots)) parameter_slots++; rets.SetStackOffset(parameter_slots); const int return_count = static_cast<int>(locations.return_count_); for (int i = 0; i < return_count; i++) { MachineRepresentation ret = fsig->GetReturn(i).machine_representation(); auto l = rets.Next(ret); locations.AddReturn(l); } const RegList kCalleeSaveRegisters = 0; const RegList kCalleeSaveFPRegisters = 0; // The target for wasm calls is always a code object. MachineType target_type = MachineType::Pointer(); LinkageLocation target_loc = LinkageLocation::ForAnyRegister(target_type); CallDescriptor::Kind descriptor_kind; if (call_kind == kWasmFunction) { descriptor_kind = CallDescriptor::kCallWasmFunction; } else if (call_kind == kWasmImportWrapper) { descriptor_kind = CallDescriptor::kCallWasmImportWrapper; } else { DCHECK_EQ(call_kind, kWasmCapiFunction); descriptor_kind = CallDescriptor::kCallWasmCapiFunction; } CallDescriptor::Flags flags = use_retpoline ? CallDescriptor::kRetpoline : need_frame_state ? CallDescriptor::kNeedsFrameState : CallDescriptor::kNoFlags; return zone->New<CallDescriptor>( // -- descriptor_kind, // kind target_type, // target MachineType target_loc, // target location locations.Build(), // location_sig parameter_slots, // stack_parameter_count compiler::Operator::kNoProperties, // properties kCalleeSaveRegisters, // callee-saved registers kCalleeSaveFPRegisters, // callee-saved fp regs flags, // flags "wasm-call", // debug name StackArgumentOrder::kDefault, // order of the arguments in the stack 0, // allocatable registers rets.NumStackSlots() - parameter_slots); // stack_return_count } namespace { CallDescriptor* ReplaceTypeInCallDescriptorWith( Zone* zone, const CallDescriptor* call_descriptor, size_t num_replacements, MachineType input_type, MachineRepresentation output_type) { size_t parameter_count = call_descriptor->ParameterCount(); size_t return_count = call_descriptor->ReturnCount(); for (size_t i = 0; i < call_descriptor->ParameterCount(); i++) { if (call_descriptor->GetParameterType(i) == input_type) { parameter_count += num_replacements - 1; } } for (size_t i = 0; i < call_descriptor->ReturnCount(); i++) { if (call_descriptor->GetReturnType(i) == input_type) { return_count += num_replacements - 1; } } if (parameter_count == call_descriptor->ParameterCount() && return_count == call_descriptor->ReturnCount()) { return const_cast<CallDescriptor*>(call_descriptor); } LocationSignature::Builder locations(zone, return_count, parameter_count); // The last parameter may be the special callable parameter. In that case we // have to preserve it as the last parameter, i.e. we allocate it in the new // location signature again in the same register. bool has_callable_param = (call_descriptor->GetInputLocation(call_descriptor->InputCount() - 1) == LinkageLocation::ForRegister(kJSFunctionRegister.code(), MachineType::TaggedPointer())); LinkageLocationAllocator params(wasm::kGpParamRegisters, wasm::kFpParamRegisters); for (size_t i = 0, e = call_descriptor->ParameterCount() - (has_callable_param ? 1 : 0); i < e; i++) { if (call_descriptor->GetParameterType(i) == input_type) { for (size_t j = 0; j < num_replacements; j++) { locations.AddParam(params.Next(output_type)); } } else { locations.AddParam( params.Next(call_descriptor->GetParameterType(i).representation())); } } if (has_callable_param) { locations.AddParam(LinkageLocation::ForRegister( kJSFunctionRegister.code(), MachineType::TaggedPointer())); } LinkageLocationAllocator rets(wasm::kGpReturnRegisters, wasm::kFpReturnRegisters); rets.SetStackOffset(params.NumStackSlots()); for (size_t i = 0; i < call_descriptor->ReturnCount(); i++) { if (call_descriptor->GetReturnType(i) == input_type) { for (size_t j = 0; j < num_replacements; j++) { locations.AddReturn(rets.Next(output_type)); } } else { locations.AddReturn( rets.Next(call_descriptor->GetReturnType(i).representation())); } } return zone->New<CallDescriptor>( // -- call_descriptor->kind(), // kind call_descriptor->GetInputType(0), // target MachineType call_descriptor->GetInputLocation(0), // target location locations.Build(), // location_sig params.NumStackSlots(), // stack_parameter_count call_descriptor->properties(), // properties call_descriptor->CalleeSavedRegisters(), // callee-saved registers call_descriptor->CalleeSavedFPRegisters(), // callee-saved fp regs call_descriptor->flags(), // flags call_descriptor->debug_name(), // debug name call_descriptor->GetStackArgumentOrder(), // stack order call_descriptor->AllocatableRegisters(), // allocatable registers rets.NumStackSlots() - params.NumStackSlots()); // stack_return_count } } // namespace CallDescriptor* GetI32WasmCallDescriptor( Zone* zone, const CallDescriptor* call_descriptor) { return ReplaceTypeInCallDescriptorWith(zone, call_descriptor, 2, MachineType::Int64(), MachineRepresentation::kWord32); } CallDescriptor* GetI32WasmCallDescriptorForSimd( Zone* zone, CallDescriptor* call_descriptor) { return ReplaceTypeInCallDescriptorWith(zone, call_descriptor, 4, MachineType::Simd128(), MachineRepresentation::kWord32); } AssemblerOptions WasmAssemblerOptions() { AssemblerOptions options; // Relocation info required to serialize {WasmCode} for proper functions. options.record_reloc_info_for_serialization = true; options.enable_root_array_delta_access = false; return options; } AssemblerOptions WasmStubAssemblerOptions() { AssemblerOptions options; // Relocation info not necessary because stubs are not serialized. options.record_reloc_info_for_serialization = false; options.enable_root_array_delta_access = false; return options; } #undef FATAL_UNSUPPORTED_OPCODE #undef WASM_INSTANCE_OBJECT_SIZE #undef WASM_INSTANCE_OBJECT_OFFSET #undef LOAD_INSTANCE_FIELD #undef LOAD_TAGGED_POINTER #undef LOAD_TAGGED_ANY #undef LOAD_FIXED_ARRAY_SLOT #undef LOAD_FIXED_ARRAY_SLOT_SMI #undef LOAD_FIXED_ARRAY_SLOT_PTR #undef LOAD_FIXED_ARRAY_SLOT_ANY #undef STORE_RAW #undef STORE_RAW_NODE_OFFSET #undef STORE_FIXED_ARRAY_SLOT_SMI #undef STORE_FIXED_ARRAY_SLOT_ANY } // namespace compiler } // namespace internal } // namespace v8