// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_AST_SCOPES_H_ #define V8_AST_SCOPES_H_ #include "src/ast/ast.h" #include "src/base/compiler-specific.h" #include "src/base/hashmap.h" #include "src/globals.h" #include "src/objects.h" #include "src/zone/zone.h" namespace v8 { namespace internal { class AstNodeFactory; class AstValueFactory; class AstRawString; class Declaration; class ParseInfo; class PreParsedScopeData; class ProducedPreParsedScopeData; class SloppyBlockFunctionStatement; class Statement; class StringSet; class VariableProxy; // A hash map to support fast variable declaration and lookup. class VariableMap: public ZoneHashMap { public: explicit VariableMap(Zone* zone); Variable* Declare( Zone* zone, Scope* scope, const AstRawString* name, VariableMode mode, VariableKind kind = NORMAL_VARIABLE, InitializationFlag initialization_flag = kCreatedInitialized, MaybeAssignedFlag maybe_assigned_flag = kNotAssigned, bool* added = nullptr); // Records that "name" exists (if not recorded yet) but doesn't create a // Variable. Useful for preparsing. Variable* DeclareName(Zone* zone, const AstRawString* name, VariableMode mode); Variable* Lookup(const AstRawString* name); void Remove(Variable* var); void Add(Zone* zone, Variable* var); }; // Sloppy block-scoped function declarations to var-bind class SloppyBlockFunctionMap : public ZoneHashMap { public: class Delegate : public ZoneObject { public: Delegate(Scope* scope, SloppyBlockFunctionStatement* statement, int index) : scope_(scope), statement_(statement), next_(nullptr), index_(index) {} void set_statement(Statement* statement); void set_next(Delegate* next) { next_ = next; } Delegate* next() const { return next_; } Scope* scope() const { return scope_; } int index() const { return index_; } private: Scope* scope_; SloppyBlockFunctionStatement* statement_; Delegate* next_; int index_; }; explicit SloppyBlockFunctionMap(Zone* zone); void Declare(Zone* zone, const AstRawString* name, Scope* scope, SloppyBlockFunctionStatement* statement); private: int count_; }; enum class AnalyzeMode { kRegular, kDebugger }; // Global invariants after AST construction: Each reference (i.e. identifier) // to a JavaScript variable (including global properties) is represented by a // VariableProxy node. Immediately after AST construction and before variable // allocation, most VariableProxy nodes are "unresolved", i.e. not bound to a // corresponding variable (though some are bound during parse time). Variable // allocation binds each unresolved VariableProxy to one Variable and assigns // a location. Note that many VariableProxy nodes may refer to the same Java- // Script variable. // JS environments are represented in the parser using Scope, DeclarationScope // and ModuleScope. DeclarationScope is used for any scope that hosts 'var' // declarations. This includes script, module, eval, varblock, and function // scope. ModuleScope further specializes DeclarationScope. class V8_EXPORT_PRIVATE Scope : public NON_EXPORTED_BASE(ZoneObject) { public: // --------------------------------------------------------------------------- // Construction Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type); #ifdef DEBUG // The scope name is only used for printing/debugging. void SetScopeName(const AstRawString* scope_name) { scope_name_ = scope_name; } void set_needs_migration() { needs_migration_ = true; } #endif // TODO(verwaest): Is this needed on Scope? int num_parameters() const; DeclarationScope* AsDeclarationScope(); const DeclarationScope* AsDeclarationScope() const; ModuleScope* AsModuleScope(); const ModuleScope* AsModuleScope() const; class Snapshot final BASE_EMBEDDED { public: explicit Snapshot(Scope* scope); ~Snapshot(); void Reparent(DeclarationScope* new_parent) const; private: Scope* outer_scope_; Scope* top_inner_scope_; VariableProxy* top_unresolved_; ThreadedList<Variable>::Iterator top_local_; ThreadedList<Declaration>::Iterator top_decl_; const bool outer_scope_calls_eval_; }; enum class DeserializationMode { kIncludingVariables, kScopesOnly }; static Scope* DeserializeScopeChain(Zone* zone, ScopeInfo* scope_info, DeclarationScope* script_scope, AstValueFactory* ast_value_factory, DeserializationMode deserialization_mode); // Checks if the block scope is redundant, i.e. it does not contain any // block scoped declarations. In that case it is removed from the scope // tree and its children are reparented. Scope* FinalizeBlockScope(); bool HasBeenRemoved() const; // Find the first scope that hasn't been removed. Scope* GetUnremovedScope(); // Inserts outer_scope into this scope's scope chain (and removes this // from the current outer_scope_'s inner scope list). // Assumes outer_scope_ is non-null. void ReplaceOuterScope(Scope* outer_scope); Zone* zone() const { return zone_; } void SetMustUsePreParsedScopeData() { if (must_use_preparsed_scope_data_) { return; } must_use_preparsed_scope_data_ = true; if (outer_scope_) { outer_scope_->SetMustUsePreParsedScopeData(); } } bool must_use_preparsed_scope_data() const { return must_use_preparsed_scope_data_; } // --------------------------------------------------------------------------- // Declarations // Lookup a variable in this scope. Returns the variable or nullptr if not // found. Variable* LookupLocal(const AstRawString* name) { Variable* result = variables_.Lookup(name); if (result != nullptr || scope_info_.is_null()) return result; return LookupInScopeInfo(name); } Variable* LookupInScopeInfo(const AstRawString* name); // Lookup a variable in this scope or outer scopes. // Returns the variable or nullptr if not found. Variable* Lookup(const AstRawString* name); // Declare a local variable in this scope. If the variable has been // declared before, the previously declared variable is returned. Variable* DeclareLocal(const AstRawString* name, VariableMode mode, InitializationFlag init_flag = kCreatedInitialized, VariableKind kind = NORMAL_VARIABLE, MaybeAssignedFlag maybe_assigned_flag = kNotAssigned); Variable* DeclareVariable(Declaration* declaration, VariableMode mode, InitializationFlag init, bool* sloppy_mode_block_scope_function_redefinition, bool* ok); // The return value is meaningful only if FLAG_preparser_scope_analysis is on. Variable* DeclareVariableName(const AstRawString* name, VariableMode mode); void DeclareCatchVariableName(const AstRawString* name); // Declarations list. ThreadedList<Declaration>* declarations() { return &decls_; } ThreadedList<Variable>* locals() { return &locals_; } // Create a new unresolved variable. VariableProxy* NewUnresolved(AstNodeFactory* factory, const AstRawString* name, int start_pos = kNoSourcePosition, VariableKind kind = NORMAL_VARIABLE) { // Note that we must not share the unresolved variables with // the same name because they may be removed selectively via // RemoveUnresolved(). DCHECK(!already_resolved_); DCHECK_EQ(factory->zone(), zone()); VariableProxy* proxy = factory->NewVariableProxy(name, kind, start_pos); proxy->set_next_unresolved(unresolved_); unresolved_ = proxy; return proxy; } void AddUnresolved(VariableProxy* proxy); // Remove a unresolved variable. During parsing, an unresolved variable // may have been added optimistically, but then only the variable name // was used (typically for labels). If the variable was not declared, the // addition introduced a new unresolved variable which may end up being // allocated globally as a "ghost" variable. RemoveUnresolved removes // such a variable again if it was added; otherwise this is a no-op. bool RemoveUnresolved(VariableProxy* var); // Creates a new temporary variable in this scope's TemporaryScope. The // name is only used for printing and cannot be used to find the variable. // In particular, the only way to get hold of the temporary is by keeping the // Variable* around. The name should not clash with a legitimate variable // names. // TODO(verwaest): Move to DeclarationScope? Variable* NewTemporary(const AstRawString* name); // --------------------------------------------------------------------------- // Illegal redeclaration support. // Check if the scope has conflicting var // declarations, i.e. a var declaration that has been hoisted from a nested // scope over a let binding of the same name. Declaration* CheckConflictingVarDeclarations(); // Check if the scope has a conflicting lexical declaration that has a name in // the given list. This is used to catch patterns like // `try{}catch(e){let e;}`, // which is an error even though the two 'e's are declared in different // scopes. Declaration* CheckLexDeclarationsConflictingWith( const ZoneList<const AstRawString*>& names); // --------------------------------------------------------------------------- // Scope-specific info. // Inform the scope and outer scopes that the corresponding code contains an // eval call. void RecordEvalCall() { scope_calls_eval_ = true; } void RecordInnerScopeEvalCall() { inner_scope_calls_eval_ = true; for (Scope* scope = outer_scope(); scope != nullptr; scope = scope->outer_scope()) { if (scope->inner_scope_calls_eval_) { return; } scope->inner_scope_calls_eval_ = true; } } // Set the language mode flag (unless disabled by a global flag). void SetLanguageMode(LanguageMode language_mode) { DCHECK(!is_module_scope() || is_strict(language_mode)); set_language_mode(language_mode); } // Inform the scope that the scope may execute declarations nonlinearly. // Currently, the only nonlinear scope is a switch statement. The name is // more general in case something else comes up with similar control flow, // for example the ability to break out of something which does not have // its own lexical scope. // The bit does not need to be stored on the ScopeInfo because none of // the three compilers will perform hole check elimination on a variable // located in VariableLocation::CONTEXT. So, direct eval and closures // will not expose holes. void SetNonlinear() { scope_nonlinear_ = true; } // Position in the source where this scope begins and ends. // // * For the scope of a with statement // with (obj) stmt // start position: start position of first token of 'stmt' // end position: end position of last token of 'stmt' // * For the scope of a block // { stmts } // start position: start position of '{' // end position: end position of '}' // * For the scope of a function literal or decalaration // function fun(a,b) { stmts } // start position: start position of '(' // end position: end position of '}' // * For the scope of a catch block // try { stms } catch(e) { stmts } // start position: start position of '(' // end position: end position of ')' // * For the scope of a for-statement // for (let x ...) stmt // start position: start position of '(' // end position: end position of last token of 'stmt' // * For the scope of a switch statement // switch (tag) { cases } // start position: start position of '{' // end position: end position of '}' int start_position() const { return start_position_; } void set_start_position(int statement_pos) { start_position_ = statement_pos; } int end_position() const { return end_position_; } void set_end_position(int statement_pos) { end_position_ = statement_pos; } // Scopes created for desugaring are hidden. I.e. not visible to the debugger. bool is_hidden() const { return is_hidden_; } void set_is_hidden() { is_hidden_ = true; } void ForceContextAllocationForParameters() { DCHECK(!already_resolved_); force_context_allocation_for_parameters_ = true; } bool has_forced_context_allocation_for_parameters() const { return force_context_allocation_for_parameters_; } // --------------------------------------------------------------------------- // Predicates. // Specific scope types. bool is_eval_scope() const { return scope_type_ == EVAL_SCOPE; } bool is_function_scope() const { return scope_type_ == FUNCTION_SCOPE; } bool is_module_scope() const { return scope_type_ == MODULE_SCOPE; } bool is_script_scope() const { return scope_type_ == SCRIPT_SCOPE; } bool is_catch_scope() const { return scope_type_ == CATCH_SCOPE; } bool is_block_scope() const { return scope_type_ == BLOCK_SCOPE; } bool is_with_scope() const { return scope_type_ == WITH_SCOPE; } bool is_declaration_scope() const { return is_declaration_scope_; } bool inner_scope_calls_eval() const { return inner_scope_calls_eval_; } bool IsAsmModule() const; // Returns true if this scope or any inner scopes that might be eagerly // compiled are asm modules. bool ContainsAsmModule() const; // Does this scope have the potential to execute declarations non-linearly? bool is_nonlinear() const { return scope_nonlinear_; } // Whether this needs to be represented by a runtime context. bool NeedsContext() const { // Catch scopes always have heap slots. DCHECK(!is_catch_scope() || num_heap_slots() > 0); return num_heap_slots() > 0; } // --------------------------------------------------------------------------- // Accessors. // The type of this scope. ScopeType scope_type() const { return scope_type_; } // The language mode of this scope. LanguageMode language_mode() const { return is_strict_ ? LanguageMode::kStrict : LanguageMode::kSloppy; } // inner_scope() and sibling() together implement the inner scope list of a // scope. Inner scope points to the an inner scope of the function, and // "sibling" points to a next inner scope of the outer scope of this scope. Scope* inner_scope() const { return inner_scope_; } Scope* sibling() const { return sibling_; } // The scope immediately surrounding this scope, or nullptr. Scope* outer_scope() const { return outer_scope_; } Variable* catch_variable() const { DCHECK(is_catch_scope()); DCHECK_EQ(1, num_var()); return static_cast<Variable*>(variables_.Start()->value); } bool ShouldBanArguments(); // --------------------------------------------------------------------------- // Variable allocation. // Result of variable allocation. int num_stack_slots() const { return num_stack_slots_; } int num_heap_slots() const { return num_heap_slots_; } int StackLocalCount() const; int ContextLocalCount() const; // Determine if we can parse a function literal in this scope lazily without // caring about the unresolved variables within. bool AllowsLazyParsingWithoutUnresolvedVariables(const Scope* outer) const; // The number of contexts between this and scope; zero if this == scope. int ContextChainLength(Scope* scope) const; // The number of contexts between this and the outermost context that has a // sloppy eval call. One if this->calls_sloppy_eval(). int ContextChainLengthUntilOutermostSloppyEval() const; // Find the first function, script, eval or (declaration) block scope. This is // the scope where var declarations will be hoisted to in the implementation. DeclarationScope* GetDeclarationScope(); // Find the first non-block declaration scope. This should be either a script, // function, or eval scope. Same as DeclarationScope(), but skips declaration // "block" scopes. Used for differentiating associated function objects (i.e., // the scope for which a function prologue allocates a context) or declaring // temporaries. DeclarationScope* GetClosureScope(); const DeclarationScope* GetClosureScope() const; // Find the first (non-arrow) function or script scope. This is where // 'this' is bound, and what determines the function kind. DeclarationScope* GetReceiverScope(); // Find the innermost outer scope that needs a context. Scope* GetOuterScopeWithContext(); // Analyze() must have been called once to create the ScopeInfo. Handle<ScopeInfo> scope_info() const { DCHECK(!scope_info_.is_null()); return scope_info_; } int num_var() const { return variables_.occupancy(); } // --------------------------------------------------------------------------- // Debugging. #ifdef DEBUG void Print(int n = 0); // n = indentation; n < 0 => don't print recursively // Check that the scope has positions assigned. void CheckScopePositions(); // Check that all Scopes in the scope tree use the same Zone. void CheckZones(); #endif // Retrieve `IsSimpleParameterList` of current or outer function. bool HasSimpleParameters(); void set_is_debug_evaluate_scope() { is_debug_evaluate_scope_ = true; } bool is_debug_evaluate_scope() const { return is_debug_evaluate_scope_; } bool RemoveInnerScope(Scope* inner_scope) { DCHECK_NOT_NULL(inner_scope); if (inner_scope == inner_scope_) { inner_scope_ = inner_scope_->sibling_; return true; } for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) { if (scope->sibling_ == inner_scope) { scope->sibling_ = scope->sibling_->sibling_; return true; } } return false; } protected: explicit Scope(Zone* zone); void set_language_mode(LanguageMode language_mode) { is_strict_ = is_strict(language_mode); } private: Variable* Declare( Zone* zone, const AstRawString* name, VariableMode mode, VariableKind kind = NORMAL_VARIABLE, InitializationFlag initialization_flag = kCreatedInitialized, MaybeAssignedFlag maybe_assigned_flag = kNotAssigned); // This method should only be invoked on scopes created during parsing (i.e., // not deserialized from a context). Also, since NeedsContext() is only // returning a valid result after variables are resolved, NeedsScopeInfo() // should also be invoked after resolution. bool NeedsScopeInfo() const; Variable* NewTemporary(const AstRawString* name, MaybeAssignedFlag maybe_assigned); // Walk the scope chain to find DeclarationScopes; call // SavePreParsedScopeDataForDeclarationScope for each. void SavePreParsedScopeData(); Zone* zone_; // Scope tree. Scope* outer_scope_; // the immediately enclosing outer scope, or nullptr Scope* inner_scope_; // an inner scope of this scope Scope* sibling_; // a sibling inner scope of the outer scope of this scope. // The variables declared in this scope: // // All user-declared variables (incl. parameters). For script scopes // variables may be implicitly 'declared' by being used (possibly in // an inner scope) with no intervening with statements or eval calls. VariableMap variables_; // In case of non-scopeinfo-backed scopes, this contains the variables of the // map above in order of addition. ThreadedList<Variable> locals_; // Unresolved variables referred to from this scope. The proxies themselves // form a linked list of all unresolved proxies. VariableProxy* unresolved_; // Declarations. ThreadedList<Declaration> decls_; // Serialized scope info support. Handle<ScopeInfo> scope_info_; // Debugging support. #ifdef DEBUG const AstRawString* scope_name_; // True if it doesn't need scope resolution (e.g., if the scope was // constructed based on a serialized scope info or a catch context). bool already_resolved_; // True if this scope may contain objects from a temp zone that needs to be // fixed up. bool needs_migration_; #endif // Source positions. int start_position_; int end_position_; // Computed via AllocateVariables. int num_stack_slots_; int num_heap_slots_; // The scope type. const ScopeType scope_type_; // Scope-specific information computed during parsing. // // The language mode of this scope. STATIC_ASSERT(LanguageModeSize == 2); bool is_strict_ : 1; // This scope or a nested catch scope or with scope contain an 'eval' call. At // the 'eval' call site this scope is the declaration scope. bool scope_calls_eval_ : 1; // This scope's declarations might not be executed in order (e.g., switch). bool scope_nonlinear_ : 1; bool is_hidden_ : 1; // Temporary workaround that allows masking of 'this' in debug-evalute scopes. bool is_debug_evaluate_scope_ : 1; // True if one of the inner scopes or the scope itself calls eval. bool inner_scope_calls_eval_ : 1; bool force_context_allocation_ : 1; bool force_context_allocation_for_parameters_ : 1; // True if it holds 'var' declarations. bool is_declaration_scope_ : 1; bool must_use_preparsed_scope_data_ : 1; // Create a non-local variable with a given name. // These variables are looked up dynamically at runtime. Variable* NonLocal(const AstRawString* name, VariableMode mode); // Variable resolution. // Lookup a variable reference given by name recursively starting with this // scope, and stopping when reaching the outer_scope_end scope. If the code is // executed because of a call to 'eval', the context parameter should be set // to the calling context of 'eval'. Variable* LookupRecursive(ParseInfo* info, VariableProxy* proxy, Scope* outer_scope_end); void ResolveTo(ParseInfo* info, VariableProxy* proxy, Variable* var); MUST_USE_RESULT bool ResolveVariable(ParseInfo* info, VariableProxy* proxy); MUST_USE_RESULT bool ResolveVariablesRecursively(ParseInfo* info); // Finds free variables of this scope. This mutates the unresolved variables // list along the way, so full resolution cannot be done afterwards. // If a ParseInfo* is passed, non-free variables will be resolved. VariableProxy* FetchFreeVariables(DeclarationScope* max_outer_scope, ParseInfo* info = nullptr, VariableProxy* stack = nullptr); // Predicates. bool MustAllocate(Variable* var); bool MustAllocateInContext(Variable* var); // Variable allocation. void AllocateStackSlot(Variable* var); void AllocateHeapSlot(Variable* var); void AllocateNonParameterLocal(Variable* var); void AllocateDeclaredGlobal(Variable* var); void AllocateNonParameterLocalsAndDeclaredGlobals(); void AllocateVariablesRecursively(); void AllocateScopeInfosRecursively(Isolate* isolate, MaybeHandle<ScopeInfo> outer_scope); void AllocateDebuggerScopeInfos(Isolate* isolate, MaybeHandle<ScopeInfo> outer_scope); // Construct a scope based on the scope info. Scope(Zone* zone, ScopeType type, Handle<ScopeInfo> scope_info); // Construct a catch scope with a binding for the name. Scope(Zone* zone, const AstRawString* catch_variable_name, MaybeAssignedFlag maybe_assigned, Handle<ScopeInfo> scope_info); void AddInnerScope(Scope* inner_scope) { inner_scope->sibling_ = inner_scope_; inner_scope_ = inner_scope; inner_scope->outer_scope_ = this; } void SetDefaults(); friend class DeclarationScope; friend class ScopeTestHelper; }; class V8_EXPORT_PRIVATE DeclarationScope : public Scope { public: DeclarationScope(Zone* zone, Scope* outer_scope, ScopeType scope_type, FunctionKind function_kind = kNormalFunction); DeclarationScope(Zone* zone, ScopeType scope_type, Handle<ScopeInfo> scope_info); // Creates a script scope. DeclarationScope(Zone* zone, AstValueFactory* ast_value_factory); bool IsDeclaredParameter(const AstRawString* name) { // If IsSimpleParameterList is false, duplicate parameters are not allowed, // however `arguments` may be allowed if function is not strict code. Thus, // the assumptions explained above do not hold. return params_.Contains(variables_.Lookup(name)); } FunctionKind function_kind() const { return function_kind_; } bool is_arrow_scope() const { return is_function_scope() && IsArrowFunction(function_kind_); } // Inform the scope that the corresponding code uses "super". void RecordSuperPropertyUsage() { DCHECK(IsConciseMethod(function_kind()) || IsAccessorFunction(function_kind()) || IsClassConstructor(function_kind())); scope_uses_super_property_ = true; } // Does this scope access "super" property (super.foo). bool NeedsHomeObject() const { return scope_uses_super_property_ || (inner_scope_calls_eval_ && (IsConciseMethod(function_kind()) || IsAccessorFunction(function_kind()) || IsClassConstructor(function_kind()))); } bool calls_sloppy_eval() const { return scope_calls_eval_ && is_sloppy(language_mode()); } bool was_lazily_parsed() const { return was_lazily_parsed_; } #ifdef DEBUG void set_is_being_lazily_parsed(bool is_being_lazily_parsed) { is_being_lazily_parsed_ = is_being_lazily_parsed; } bool is_being_lazily_parsed() const { return is_being_lazily_parsed_; } #endif bool ShouldEagerCompile() const; void set_should_eager_compile(); void SetScriptScopeInfo(Handle<ScopeInfo> scope_info) { DCHECK(is_script_scope()); DCHECK(scope_info_.is_null()); scope_info_ = scope_info; } bool asm_module() const { return asm_module_; } void set_asm_module(); bool should_ban_arguments() const { return IsClassFieldsInitializerFunction(function_kind()); } void DeclareThis(AstValueFactory* ast_value_factory); void DeclareArguments(AstValueFactory* ast_value_factory); void DeclareDefaultFunctionVariables(AstValueFactory* ast_value_factory); // Declare the function variable for a function literal. This variable // is in an intermediate scope between this function scope and the the // outer scope. Only possible for function scopes; at most one variable. // // This function needs to be called after all other variables have been // declared in the scope. It will add a variable for {name} to {variables_}; // either the function variable itself, or a non-local in case the function // calls sloppy eval. Variable* DeclareFunctionVar(const AstRawString* name); // Declare some special internal variables which must be accessible to // Ignition without ScopeInfo. Variable* DeclareGeneratorObjectVar(const AstRawString* name); Variable* DeclarePromiseVar(const AstRawString* name); // Declare a parameter in this scope. When there are duplicated // parameters the rightmost one 'wins'. However, the implementation // expects all parameters to be declared and from left to right. Variable* DeclareParameter(const AstRawString* name, VariableMode mode, bool is_optional, bool is_rest, bool* is_duplicate, AstValueFactory* ast_value_factory, int position); // Declares that a parameter with the name exists. Creates a Variable and // returns it if FLAG_preparser_scope_analysis is on. Variable* DeclareParameterName(const AstRawString* name, bool is_rest, AstValueFactory* ast_value_factory, bool declare_local, bool add_parameter); // Declare an implicit global variable in this scope which must be a // script scope. The variable was introduced (possibly from an inner // scope) by a reference to an unresolved variable with no intervening // with statements or eval calls. Variable* DeclareDynamicGlobal(const AstRawString* name, VariableKind variable_kind); // The variable corresponding to the 'this' value. Variable* receiver() { DCHECK(has_this_declaration()); DCHECK_NOT_NULL(receiver_); return receiver_; } // TODO(wingo): Add a GLOBAL_SCOPE scope type which will lexically allocate // "this" (and no other variable) on the native context. Script scopes then // will not have a "this" declaration. bool has_this_declaration() const { return (is_function_scope() && !is_arrow_scope()) || is_module_scope(); } // The variable corresponding to the 'new.target' value. Variable* new_target_var() { return new_target_; } // The variable holding the function literal for named function // literals, or nullptr. Only valid for function scopes. Variable* function_var() const { return function_; } Variable* generator_object_var() const { DCHECK(is_function_scope() || is_module_scope()); return GetRareVariable(RareVariable::kGeneratorObject); } Variable* promise_var() const { DCHECK(is_function_scope()); DCHECK(IsAsyncFunction(function_kind_)); if (IsAsyncGeneratorFunction(function_kind_)) return nullptr; return GetRareVariable(RareVariable::kPromise); } // Parameters. The left-most parameter has index 0. // Only valid for function and module scopes. Variable* parameter(int index) const { DCHECK(is_function_scope() || is_module_scope()); return params_[index]; } // Returns the number of formal parameters, excluding a possible rest // parameter. Examples: // function foo(a, b) {} ==> 2 // function foo(a, b, ...c) {} ==> 2 // function foo(a, b, c = 1) {} ==> 3 int num_parameters() const { return has_rest_ ? params_.length() - 1 : params_.length(); } // The function's rest parameter (nullptr if there is none). Variable* rest_parameter() const { return has_rest_ ? params_[params_.length() - 1] : nullptr; } bool has_simple_parameters() const { return has_simple_parameters_; } // TODO(caitp): manage this state in a better way. PreParser must be able to // communicate that the scope is non-simple, without allocating any parameters // as the Parser does. This is necessary to ensure that TC39's proposed early // error can be reported consistently regardless of whether lazily parsed or // not. void SetHasNonSimpleParameters() { DCHECK(is_function_scope()); has_simple_parameters_ = false; } // The local variable 'arguments' if we need to allocate it; nullptr // otherwise. Variable* arguments() const { DCHECK(!is_arrow_scope() || arguments_ == nullptr); return arguments_; } Variable* this_function_var() const { Variable* this_function = GetRareVariable(RareVariable::kThisFunction); // This is only used in derived constructors atm. DCHECK(this_function == nullptr || (is_function_scope() && (IsClassConstructor(function_kind()) || IsConciseMethod(function_kind()) || IsAccessorFunction(function_kind())))); return this_function; } // Adds a local variable in this scope's locals list. This is for adjusting // the scope of temporaries and do-expression vars when desugaring parameter // initializers. void AddLocal(Variable* var); void DeclareSloppyBlockFunction( const AstRawString* name, Scope* scope, SloppyBlockFunctionStatement* statement = nullptr); // Go through sloppy_block_function_map_ and hoist those (into this scope) // which should be hoisted. void HoistSloppyBlockFunctions(AstNodeFactory* factory); SloppyBlockFunctionMap* sloppy_block_function_map() { return sloppy_block_function_map_; } // Replaces the outer scope with the outer_scope_info in |info| if there is // one. void AttachOuterScopeInfo(ParseInfo* info, Isolate* isolate); // Compute top scope and allocate variables. For lazy compilation the top // scope only contains the single lazily compiled function, so this // doesn't re-allocate variables repeatedly. // // Returns false if private fields can not be resolved and // ParseInfo's pending_error_handler will be populated with an // error. Otherwise, returns true. MUST_USE_RESULT static bool Analyze(ParseInfo* info); // To be called during parsing. Do just enough scope analysis that we can // discard the Scope contents for lazily compiled functions. In particular, // this records variables which cannot be resolved inside the Scope (we don't // yet know what they will resolve to since the outer Scopes are incomplete) // and recreates them with the correct Zone with ast_node_factory. void AnalyzePartially(AstNodeFactory* ast_node_factory); // Allocate ScopeInfos for top scope and any inner scopes that need them. // Does nothing if ScopeInfo is already allocated. static void AllocateScopeInfos(ParseInfo* info, Isolate* isolate, AnalyzeMode mode); Handle<StringSet> CollectNonLocals(ParseInfo* info, Handle<StringSet> non_locals); // Determine if we can use lazy compilation for this scope. bool AllowsLazyCompilation() const; // Make sure this closure and all outer closures are eagerly compiled. void ForceEagerCompilation() { DCHECK_EQ(this, GetClosureScope()); DeclarationScope* s; for (s = this; !s->is_script_scope(); s = s->outer_scope()->GetClosureScope()) { s->force_eager_compilation_ = true; } s->force_eager_compilation_ = true; } #ifdef DEBUG void PrintParameters(); #endif void AllocateLocals(); void AllocateParameterLocals(); void AllocateReceiver(); void ResetAfterPreparsing(AstValueFactory* ast_value_factory, bool aborted); bool is_skipped_function() const { return is_skipped_function_; } void set_is_skipped_function(bool is_skipped_function) { is_skipped_function_ = is_skipped_function; } // Save data describing the context allocation of the variables in this scope // and its subscopes (except scopes at the laziness boundary). The data is // saved in produced_preparsed_scope_data_. void SavePreParsedScopeDataForDeclarationScope(); void set_produced_preparsed_scope_data( ProducedPreParsedScopeData* produced_preparsed_scope_data) { produced_preparsed_scope_data_ = produced_preparsed_scope_data; } ProducedPreParsedScopeData* produced_preparsed_scope_data() const { return produced_preparsed_scope_data_; } private: void AllocateParameter(Variable* var, int index); // Resolve and fill in the allocation information for all variables // in this scopes. Must be called *after* all scopes have been // processed (parsed) to ensure that unresolved variables can be // resolved properly. // // In the case of code compiled and run using 'eval', the context // parameter is the context in which eval was called. In all other // cases the context parameter is an empty handle. // // Returns false if private fields can not be resolved. bool AllocateVariables(ParseInfo* info); void SetDefaults(); // If the scope is a function scope, this is the function kind. const FunctionKind function_kind_; bool has_simple_parameters_ : 1; // This scope contains an "use asm" annotation. bool asm_module_ : 1; bool force_eager_compilation_ : 1; // This function scope has a rest parameter. bool has_rest_ : 1; // This scope has a parameter called "arguments". bool has_arguments_parameter_ : 1; // This scope uses "super" property ('super.foo'). bool scope_uses_super_property_ : 1; bool should_eager_compile_ : 1; // Set to true after we have finished lazy parsing the scope. bool was_lazily_parsed_ : 1; #if DEBUG bool is_being_lazily_parsed_ : 1; #endif bool is_skipped_function_ : 1; // Parameter list in source order. ZoneList<Variable*> params_; // Map of function names to lists of functions defined in sloppy blocks SloppyBlockFunctionMap* sloppy_block_function_map_; // Convenience variable. Variable* receiver_; // Function variable, if any; function scopes only. Variable* function_; // new.target variable, function scopes only. Variable* new_target_; // Convenience variable; function scopes only. Variable* arguments_; // For producing the scope allocation data during preparsing. ProducedPreParsedScopeData* produced_preparsed_scope_data_; struct RareData : public ZoneObject { // Convenience variable; Subclass constructor only Variable* this_function = nullptr; // Generator object, if any; generator function scopes and module scopes // only. Variable* generator_object = nullptr; // Promise, if any; async function scopes only. Variable* promise = nullptr; }; enum class RareVariable { kThisFunction = offsetof(RareData, this_function), kGeneratorObject = offsetof(RareData, generator_object), kPromise = offsetof(RareData, promise) }; V8_INLINE RareData* EnsureRareData() { if (rare_data_ == nullptr) { rare_data_ = new (zone_) RareData; } return rare_data_; } V8_INLINE Variable* GetRareVariable(RareVariable id) const { if (rare_data_ == nullptr) return nullptr; return *reinterpret_cast<Variable**>( reinterpret_cast<uint8_t*>(rare_data_) + static_cast<ptrdiff_t>(id)); } // Set `var` to null if it's non-null and Predicate (Variable*) -> bool // returns true. template <typename Predicate> V8_INLINE void NullifyRareVariableIf(RareVariable id, Predicate predicate) { if (V8_LIKELY(rare_data_ == nullptr)) return; Variable** var = reinterpret_cast<Variable**>( reinterpret_cast<uint8_t*>(rare_data_) + static_cast<ptrdiff_t>(id)); if (*var && predicate(*var)) *var = nullptr; } RareData* rare_data_ = nullptr; }; class ModuleScope final : public DeclarationScope { public: ModuleScope(DeclarationScope* script_scope, AstValueFactory* ast_value_factory); // Deserialization. // The generated ModuleDescriptor does not preserve all information. In // particular, its module_requests map will be empty because we no longer need // the map after parsing. ModuleScope(Handle<ScopeInfo> scope_info, AstValueFactory* ast_value_factory); ModuleDescriptor* module() const { DCHECK_NOT_NULL(module_descriptor_); return module_descriptor_; } // Set MODULE as VariableLocation for all variables that will live in a // module's export table. void AllocateModuleVariables(); private: ModuleDescriptor* module_descriptor_; }; } // namespace internal } // namespace v8 #endif // V8_AST_SCOPES_H_