// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/parsing/parser.h" #include "src/api.h" #include "src/ast/ast.h" #include "src/ast/ast-expression-rewriter.h" #include "src/ast/ast-expression-visitor.h" #include "src/ast/ast-literal-reindexer.h" #include "src/ast/scopeinfo.h" #include "src/bailout-reason.h" #include "src/base/platform/platform.h" #include "src/bootstrapper.h" #include "src/char-predicates-inl.h" #include "src/codegen.h" #include "src/compiler.h" #include "src/messages.h" #include "src/parsing/parameter-initializer-rewriter.h" #include "src/parsing/parser-base.h" #include "src/parsing/rewriter.h" #include "src/parsing/scanner-character-streams.h" #include "src/runtime/runtime.h" #include "src/string-stream.h" #include "src/tracing/trace-event.h" namespace v8 { namespace internal { ScriptData::ScriptData(const byte* data, int length) : owns_data_(false), rejected_(false), data_(data), length_(length) { if (!IsAligned(reinterpret_cast<intptr_t>(data), kPointerAlignment)) { byte* copy = NewArray<byte>(length); DCHECK(IsAligned(reinterpret_cast<intptr_t>(copy), kPointerAlignment)); CopyBytes(copy, data, length); data_ = copy; AcquireDataOwnership(); } } ParseInfo::ParseInfo(Zone* zone) : zone_(zone), flags_(0), source_stream_(nullptr), source_stream_encoding_(ScriptCompiler::StreamedSource::ONE_BYTE), extension_(nullptr), compile_options_(ScriptCompiler::kNoCompileOptions), script_scope_(nullptr), unicode_cache_(nullptr), stack_limit_(0), hash_seed_(0), isolate_(nullptr), cached_data_(nullptr), ast_value_factory_(nullptr), literal_(nullptr), scope_(nullptr) {} ParseInfo::ParseInfo(Zone* zone, Handle<JSFunction> function) : ParseInfo(zone, Handle<SharedFunctionInfo>(function->shared())) { set_context(Handle<Context>(function->context())); } ParseInfo::ParseInfo(Zone* zone, Handle<SharedFunctionInfo> shared) : ParseInfo(zone) { isolate_ = shared->GetIsolate(); set_lazy(); set_hash_seed(isolate_->heap()->HashSeed()); set_stack_limit(isolate_->stack_guard()->real_climit()); set_unicode_cache(isolate_->unicode_cache()); set_language_mode(shared->language_mode()); set_shared_info(shared); Handle<Script> script(Script::cast(shared->script())); set_script(script); if (!script.is_null() && script->type() == Script::TYPE_NATIVE) { set_native(); } } ParseInfo::ParseInfo(Zone* zone, Handle<Script> script) : ParseInfo(zone) { isolate_ = script->GetIsolate(); set_hash_seed(isolate_->heap()->HashSeed()); set_stack_limit(isolate_->stack_guard()->real_climit()); set_unicode_cache(isolate_->unicode_cache()); set_script(script); if (script->type() == Script::TYPE_NATIVE) { set_native(); } } FunctionEntry ParseData::GetFunctionEntry(int start) { // The current pre-data entry must be a FunctionEntry with the given // start position. if ((function_index_ + FunctionEntry::kSize <= Length()) && (static_cast<int>(Data()[function_index_]) == start)) { int index = function_index_; function_index_ += FunctionEntry::kSize; Vector<unsigned> subvector(&(Data()[index]), FunctionEntry::kSize); return FunctionEntry(subvector); } return FunctionEntry(); } int ParseData::FunctionCount() { int functions_size = FunctionsSize(); if (functions_size < 0) return 0; if (functions_size % FunctionEntry::kSize != 0) return 0; return functions_size / FunctionEntry::kSize; } bool ParseData::IsSane() { if (!IsAligned(script_data_->length(), sizeof(unsigned))) return false; // Check that the header data is valid and doesn't specify // point to positions outside the store. int data_length = Length(); if (data_length < PreparseDataConstants::kHeaderSize) return false; if (Magic() != PreparseDataConstants::kMagicNumber) return false; if (Version() != PreparseDataConstants::kCurrentVersion) return false; if (HasError()) return false; // Check that the space allocated for function entries is sane. int functions_size = FunctionsSize(); if (functions_size < 0) return false; if (functions_size % FunctionEntry::kSize != 0) return false; // Check that the total size has room for header and function entries. int minimum_size = PreparseDataConstants::kHeaderSize + functions_size; if (data_length < minimum_size) return false; return true; } void ParseData::Initialize() { // Prepares state for use. int data_length = Length(); if (data_length >= PreparseDataConstants::kHeaderSize) { function_index_ = PreparseDataConstants::kHeaderSize; } } bool ParseData::HasError() { return Data()[PreparseDataConstants::kHasErrorOffset]; } unsigned ParseData::Magic() { return Data()[PreparseDataConstants::kMagicOffset]; } unsigned ParseData::Version() { return Data()[PreparseDataConstants::kVersionOffset]; } int ParseData::FunctionsSize() { return static_cast<int>(Data()[PreparseDataConstants::kFunctionsSizeOffset]); } void Parser::SetCachedData(ParseInfo* info) { if (compile_options_ == ScriptCompiler::kNoCompileOptions) { cached_parse_data_ = NULL; } else { DCHECK(info->cached_data() != NULL); if (compile_options_ == ScriptCompiler::kConsumeParserCache) { cached_parse_data_ = ParseData::FromCachedData(*info->cached_data()); } } } FunctionLiteral* Parser::DefaultConstructor(const AstRawString* name, bool call_super, Scope* scope, int pos, int end_pos, LanguageMode language_mode) { int materialized_literal_count = -1; int expected_property_count = -1; int parameter_count = 0; if (name == nullptr) name = ast_value_factory()->empty_string(); FunctionKind kind = call_super ? FunctionKind::kDefaultSubclassConstructor : FunctionKind::kDefaultBaseConstructor; Scope* function_scope = NewScope(scope, FUNCTION_SCOPE, kind); SetLanguageMode(function_scope, static_cast<LanguageMode>(language_mode | STRICT)); // Set start and end position to the same value function_scope->set_start_position(pos); function_scope->set_end_position(pos); ZoneList<Statement*>* body = NULL; { AstNodeFactory function_factory(ast_value_factory()); FunctionState function_state(&function_state_, &scope_, function_scope, kind, &function_factory); body = new (zone()) ZoneList<Statement*>(call_super ? 2 : 1, zone()); if (call_super) { // $super_constructor = %_GetSuperConstructor(<this-function>) // %reflect_construct($super_constructor, arguments, new.target) ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone()); VariableProxy* this_function_proxy = scope_->NewUnresolved( factory(), ast_value_factory()->this_function_string(), Variable::NORMAL, pos); ZoneList<Expression*>* tmp = new (zone()) ZoneList<Expression*>(1, zone()); tmp->Add(this_function_proxy, zone()); Expression* super_constructor = factory()->NewCallRuntime( Runtime::kInlineGetSuperConstructor, tmp, pos); args->Add(super_constructor, zone()); VariableProxy* arguments_proxy = scope_->NewUnresolved( factory(), ast_value_factory()->arguments_string(), Variable::NORMAL, pos); args->Add(arguments_proxy, zone()); VariableProxy* new_target_proxy = scope_->NewUnresolved( factory(), ast_value_factory()->new_target_string(), Variable::NORMAL, pos); args->Add(new_target_proxy, zone()); CallRuntime* call = factory()->NewCallRuntime( Context::REFLECT_CONSTRUCT_INDEX, args, pos); body->Add(factory()->NewReturnStatement(call, pos), zone()); } materialized_literal_count = function_state.materialized_literal_count(); expected_property_count = function_state.expected_property_count(); } FunctionLiteral* function_literal = factory()->NewFunctionLiteral( name, function_scope, body, materialized_literal_count, expected_property_count, parameter_count, FunctionLiteral::kNoDuplicateParameters, FunctionLiteral::kAnonymousExpression, FunctionLiteral::kShouldLazyCompile, kind, pos); return function_literal; } // ---------------------------------------------------------------------------- // Target is a support class to facilitate manipulation of the // Parser's target_stack_ (the stack of potential 'break' and // 'continue' statement targets). Upon construction, a new target is // added; it is removed upon destruction. class Target BASE_EMBEDDED { public: Target(Target** variable, BreakableStatement* statement) : variable_(variable), statement_(statement), previous_(*variable) { *variable = this; } ~Target() { *variable_ = previous_; } Target* previous() { return previous_; } BreakableStatement* statement() { return statement_; } private: Target** variable_; BreakableStatement* statement_; Target* previous_; }; class TargetScope BASE_EMBEDDED { public: explicit TargetScope(Target** variable) : variable_(variable), previous_(*variable) { *variable = NULL; } ~TargetScope() { *variable_ = previous_; } private: Target** variable_; Target* previous_; }; // ---------------------------------------------------------------------------- // The CHECK_OK macro is a convenient macro to enforce error // handling for functions that may fail (by returning !*ok). // // CAUTION: This macro appends extra statements after a call, // thus it must never be used where only a single statement // is correct (e.g. an if statement branch w/o braces)! #define CHECK_OK ok); \ if (!*ok) return NULL; \ ((void)0 #define DUMMY ) // to make indentation work #undef DUMMY #define CHECK_FAILED /**/); \ if (failed_) return NULL; \ ((void)0 #define DUMMY ) // to make indentation work #undef DUMMY // ---------------------------------------------------------------------------- // Implementation of Parser bool ParserTraits::IsEval(const AstRawString* identifier) const { return identifier == parser_->ast_value_factory()->eval_string(); } bool ParserTraits::IsArguments(const AstRawString* identifier) const { return identifier == parser_->ast_value_factory()->arguments_string(); } bool ParserTraits::IsEvalOrArguments(const AstRawString* identifier) const { return IsEval(identifier) || IsArguments(identifier); } bool ParserTraits::IsUndefined(const AstRawString* identifier) const { return identifier == parser_->ast_value_factory()->undefined_string(); } bool ParserTraits::IsPrototype(const AstRawString* identifier) const { return identifier == parser_->ast_value_factory()->prototype_string(); } bool ParserTraits::IsConstructor(const AstRawString* identifier) const { return identifier == parser_->ast_value_factory()->constructor_string(); } bool ParserTraits::IsThisProperty(Expression* expression) { DCHECK(expression != NULL); Property* property = expression->AsProperty(); return property != NULL && property->obj()->IsVariableProxy() && property->obj()->AsVariableProxy()->is_this(); } bool ParserTraits::IsIdentifier(Expression* expression) { VariableProxy* operand = expression->AsVariableProxy(); return operand != NULL && !operand->is_this(); } void ParserTraits::PushPropertyName(FuncNameInferrer* fni, Expression* expression) { if (expression->IsPropertyName()) { fni->PushLiteralName(expression->AsLiteral()->AsRawPropertyName()); } else { fni->PushLiteralName( parser_->ast_value_factory()->anonymous_function_string()); } } void ParserTraits::CheckAssigningFunctionLiteralToProperty(Expression* left, Expression* right) { DCHECK(left != NULL); if (left->IsProperty() && right->IsFunctionLiteral()) { right->AsFunctionLiteral()->set_pretenure(); } } Expression* ParserTraits::MarkExpressionAsAssigned(Expression* expression) { VariableProxy* proxy = expression != NULL ? expression->AsVariableProxy() : NULL; if (proxy != NULL) proxy->set_is_assigned(); return expression; } bool ParserTraits::ShortcutNumericLiteralBinaryExpression( Expression** x, Expression* y, Token::Value op, int pos, AstNodeFactory* factory) { if ((*x)->AsLiteral() && (*x)->AsLiteral()->raw_value()->IsNumber() && y->AsLiteral() && y->AsLiteral()->raw_value()->IsNumber()) { double x_val = (*x)->AsLiteral()->raw_value()->AsNumber(); double y_val = y->AsLiteral()->raw_value()->AsNumber(); bool x_has_dot = (*x)->AsLiteral()->raw_value()->ContainsDot(); bool y_has_dot = y->AsLiteral()->raw_value()->ContainsDot(); bool has_dot = x_has_dot || y_has_dot; switch (op) { case Token::ADD: *x = factory->NewNumberLiteral(x_val + y_val, pos, has_dot); return true; case Token::SUB: *x = factory->NewNumberLiteral(x_val - y_val, pos, has_dot); return true; case Token::MUL: *x = factory->NewNumberLiteral(x_val * y_val, pos, has_dot); return true; case Token::DIV: *x = factory->NewNumberLiteral(x_val / y_val, pos, has_dot); return true; case Token::BIT_OR: { int value = DoubleToInt32(x_val) | DoubleToInt32(y_val); *x = factory->NewNumberLiteral(value, pos, has_dot); return true; } case Token::BIT_AND: { int value = DoubleToInt32(x_val) & DoubleToInt32(y_val); *x = factory->NewNumberLiteral(value, pos, has_dot); return true; } case Token::BIT_XOR: { int value = DoubleToInt32(x_val) ^ DoubleToInt32(y_val); *x = factory->NewNumberLiteral(value, pos, has_dot); return true; } case Token::SHL: { int value = DoubleToInt32(x_val) << (DoubleToInt32(y_val) & 0x1f); *x = factory->NewNumberLiteral(value, pos, has_dot); return true; } case Token::SHR: { uint32_t shift = DoubleToInt32(y_val) & 0x1f; uint32_t value = DoubleToUint32(x_val) >> shift; *x = factory->NewNumberLiteral(value, pos, has_dot); return true; } case Token::SAR: { uint32_t shift = DoubleToInt32(y_val) & 0x1f; int value = ArithmeticShiftRight(DoubleToInt32(x_val), shift); *x = factory->NewNumberLiteral(value, pos, has_dot); return true; } case Token::EXP: { double value = std::pow(x_val, y_val); int int_value = static_cast<int>(value); *x = factory->NewNumberLiteral( int_value == value && value != -0.0 ? int_value : value, pos, has_dot); return true; } default: break; } } return false; } Expression* ParserTraits::BuildUnaryExpression(Expression* expression, Token::Value op, int pos, AstNodeFactory* factory) { DCHECK(expression != NULL); if (expression->IsLiteral()) { const AstValue* literal = expression->AsLiteral()->raw_value(); if (op == Token::NOT) { // Convert the literal to a boolean condition and negate it. bool condition = literal->BooleanValue(); return factory->NewBooleanLiteral(!condition, pos); } else if (literal->IsNumber()) { // Compute some expressions involving only number literals. double value = literal->AsNumber(); bool has_dot = literal->ContainsDot(); switch (op) { case Token::ADD: return expression; case Token::SUB: return factory->NewNumberLiteral(-value, pos, has_dot); case Token::BIT_NOT: return factory->NewNumberLiteral(~DoubleToInt32(value), pos, has_dot); default: break; } } } // Desugar '+foo' => 'foo*1' if (op == Token::ADD) { return factory->NewBinaryOperation( Token::MUL, expression, factory->NewNumberLiteral(1, pos, true), pos); } // The same idea for '-foo' => 'foo*(-1)'. if (op == Token::SUB) { return factory->NewBinaryOperation( Token::MUL, expression, factory->NewNumberLiteral(-1, pos), pos); } // ...and one more time for '~foo' => 'foo^(~0)'. if (op == Token::BIT_NOT) { return factory->NewBinaryOperation( Token::BIT_XOR, expression, factory->NewNumberLiteral(~0, pos), pos); } return factory->NewUnaryOperation(op, expression, pos); } Expression* ParserTraits::BuildIteratorResult(Expression* value, bool done) { int pos = RelocInfo::kNoPosition; AstNodeFactory* factory = parser_->factory(); Zone* zone = parser_->zone(); if (value == nullptr) value = factory->NewUndefinedLiteral(pos); auto args = new (zone) ZoneList<Expression*>(2, zone); args->Add(value, zone); args->Add(factory->NewBooleanLiteral(done, pos), zone); return factory->NewCallRuntime(Runtime::kInlineCreateIterResultObject, args, pos); } Expression* ParserTraits::NewThrowReferenceError( MessageTemplate::Template message, int pos) { return NewThrowError(Runtime::kNewReferenceError, message, parser_->ast_value_factory()->empty_string(), pos); } Expression* ParserTraits::NewThrowSyntaxError(MessageTemplate::Template message, const AstRawString* arg, int pos) { return NewThrowError(Runtime::kNewSyntaxError, message, arg, pos); } Expression* ParserTraits::NewThrowTypeError(MessageTemplate::Template message, const AstRawString* arg, int pos) { return NewThrowError(Runtime::kNewTypeError, message, arg, pos); } Expression* ParserTraits::NewThrowError(Runtime::FunctionId id, MessageTemplate::Template message, const AstRawString* arg, int pos) { Zone* zone = parser_->zone(); ZoneList<Expression*>* args = new (zone) ZoneList<Expression*>(2, zone); args->Add(parser_->factory()->NewSmiLiteral(message, pos), zone); args->Add(parser_->factory()->NewStringLiteral(arg, pos), zone); CallRuntime* call_constructor = parser_->factory()->NewCallRuntime(id, args, pos); return parser_->factory()->NewThrow(call_constructor, pos); } void ParserTraits::ReportMessageAt(Scanner::Location source_location, MessageTemplate::Template message, const char* arg, ParseErrorType error_type) { if (parser_->stack_overflow()) { // Suppress the error message (syntax error or such) in the presence of a // stack overflow. The isolate allows only one pending exception at at time // and we want to report the stack overflow later. return; } parser_->pending_error_handler_.ReportMessageAt(source_location.beg_pos, source_location.end_pos, message, arg, error_type); } void ParserTraits::ReportMessage(MessageTemplate::Template message, const char* arg, ParseErrorType error_type) { Scanner::Location source_location = parser_->scanner()->location(); ReportMessageAt(source_location, message, arg, error_type); } void ParserTraits::ReportMessage(MessageTemplate::Template message, const AstRawString* arg, ParseErrorType error_type) { Scanner::Location source_location = parser_->scanner()->location(); ReportMessageAt(source_location, message, arg, error_type); } void ParserTraits::ReportMessageAt(Scanner::Location source_location, MessageTemplate::Template message, const AstRawString* arg, ParseErrorType error_type) { if (parser_->stack_overflow()) { // Suppress the error message (syntax error or such) in the presence of a // stack overflow. The isolate allows only one pending exception at at time // and we want to report the stack overflow later. return; } parser_->pending_error_handler_.ReportMessageAt(source_location.beg_pos, source_location.end_pos, message, arg, error_type); } const AstRawString* ParserTraits::GetSymbol(Scanner* scanner) { const AstRawString* result = parser_->scanner()->CurrentSymbol(parser_->ast_value_factory()); DCHECK(result != NULL); return result; } const AstRawString* ParserTraits::GetNumberAsSymbol(Scanner* scanner) { double double_value = parser_->scanner()->DoubleValue(); char array[100]; const char* string = DoubleToCString(double_value, Vector<char>(array, arraysize(array))); return parser_->ast_value_factory()->GetOneByteString(string); } const AstRawString* ParserTraits::GetNextSymbol(Scanner* scanner) { return parser_->scanner()->NextSymbol(parser_->ast_value_factory()); } Expression* ParserTraits::ThisExpression(Scope* scope, AstNodeFactory* factory, int pos) { return scope->NewUnresolved(factory, parser_->ast_value_factory()->this_string(), Variable::THIS, pos, pos + 4); } Expression* ParserTraits::SuperPropertyReference(Scope* scope, AstNodeFactory* factory, int pos) { // this_function[home_object_symbol] VariableProxy* this_function_proxy = scope->NewUnresolved( factory, parser_->ast_value_factory()->this_function_string(), Variable::NORMAL, pos); Expression* home_object_symbol_literal = factory->NewSymbolLiteral("home_object_symbol", RelocInfo::kNoPosition); Expression* home_object = factory->NewProperty( this_function_proxy, home_object_symbol_literal, pos); return factory->NewSuperPropertyReference( ThisExpression(scope, factory, pos)->AsVariableProxy(), home_object, pos); } Expression* ParserTraits::SuperCallReference(Scope* scope, AstNodeFactory* factory, int pos) { VariableProxy* new_target_proxy = scope->NewUnresolved( factory, parser_->ast_value_factory()->new_target_string(), Variable::NORMAL, pos); VariableProxy* this_function_proxy = scope->NewUnresolved( factory, parser_->ast_value_factory()->this_function_string(), Variable::NORMAL, pos); return factory->NewSuperCallReference( ThisExpression(scope, factory, pos)->AsVariableProxy(), new_target_proxy, this_function_proxy, pos); } Expression* ParserTraits::NewTargetExpression(Scope* scope, AstNodeFactory* factory, int pos) { static const int kNewTargetStringLength = 10; auto proxy = scope->NewUnresolved( factory, parser_->ast_value_factory()->new_target_string(), Variable::NORMAL, pos, pos + kNewTargetStringLength); proxy->set_is_new_target(); return proxy; } Expression* ParserTraits::FunctionSentExpression(Scope* scope, AstNodeFactory* factory, int pos) { // We desugar function.sent into %GeneratorGetInput(generator). Zone* zone = parser_->zone(); ZoneList<Expression*>* args = new (zone) ZoneList<Expression*>(1, zone); VariableProxy* generator = factory->NewVariableProxy( parser_->function_state_->generator_object_variable()); args->Add(generator, zone); return factory->NewCallRuntime(Runtime::kGeneratorGetInput, args, pos); } Literal* ParserTraits::ExpressionFromLiteral(Token::Value token, int pos, Scanner* scanner, AstNodeFactory* factory) { switch (token) { case Token::NULL_LITERAL: return factory->NewNullLiteral(pos); case Token::TRUE_LITERAL: return factory->NewBooleanLiteral(true, pos); case Token::FALSE_LITERAL: return factory->NewBooleanLiteral(false, pos); case Token::SMI: { int value = scanner->smi_value(); return factory->NewSmiLiteral(value, pos); } case Token::NUMBER: { bool has_dot = scanner->ContainsDot(); double value = scanner->DoubleValue(); return factory->NewNumberLiteral(value, pos, has_dot); } default: DCHECK(false); } return NULL; } Expression* ParserTraits::ExpressionFromIdentifier(const AstRawString* name, int start_position, int end_position, Scope* scope, AstNodeFactory* factory) { if (parser_->fni_ != NULL) parser_->fni_->PushVariableName(name); return scope->NewUnresolved(factory, name, Variable::NORMAL, start_position, end_position); } Expression* ParserTraits::ExpressionFromString(int pos, Scanner* scanner, AstNodeFactory* factory) { const AstRawString* symbol = GetSymbol(scanner); if (parser_->fni_ != NULL) parser_->fni_->PushLiteralName(symbol); return factory->NewStringLiteral(symbol, pos); } Expression* ParserTraits::GetIterator(Expression* iterable, AstNodeFactory* factory, int pos) { Expression* iterator_symbol_literal = factory->NewSymbolLiteral("iterator_symbol", RelocInfo::kNoPosition); Expression* prop = factory->NewProperty(iterable, iterator_symbol_literal, pos); Zone* zone = parser_->zone(); ZoneList<Expression*>* args = new (zone) ZoneList<Expression*>(0, zone); return factory->NewCall(prop, args, pos); } Literal* ParserTraits::GetLiteralTheHole(int position, AstNodeFactory* factory) { return factory->NewTheHoleLiteral(RelocInfo::kNoPosition); } Expression* ParserTraits::ParseV8Intrinsic(bool* ok) { return parser_->ParseV8Intrinsic(ok); } FunctionLiteral* ParserTraits::ParseFunctionLiteral( const AstRawString* name, Scanner::Location function_name_location, FunctionNameValidity function_name_validity, FunctionKind kind, int function_token_position, FunctionLiteral::FunctionType type, LanguageMode language_mode, bool* ok) { return parser_->ParseFunctionLiteral( name, function_name_location, function_name_validity, kind, function_token_position, type, language_mode, ok); } ClassLiteral* ParserTraits::ParseClassLiteral( const AstRawString* name, Scanner::Location class_name_location, bool name_is_strict_reserved, int pos, bool* ok) { return parser_->ParseClassLiteral(name, class_name_location, name_is_strict_reserved, pos, ok); } Parser::Parser(ParseInfo* info) : ParserBase<ParserTraits>(info->zone(), &scanner_, info->stack_limit(), info->extension(), info->ast_value_factory(), NULL, this), scanner_(info->unicode_cache()), reusable_preparser_(NULL), original_scope_(NULL), target_stack_(NULL), compile_options_(info->compile_options()), cached_parse_data_(NULL), total_preparse_skipped_(0), pre_parse_timer_(NULL), parsing_on_main_thread_(true) { // Even though we were passed ParseInfo, we should not store it in // Parser - this makes sure that Isolate is not accidentally accessed via // ParseInfo during background parsing. DCHECK(!info->script().is_null() || info->source_stream() != NULL); set_allow_lazy(info->allow_lazy_parsing()); set_allow_natives(FLAG_allow_natives_syntax || info->is_native()); set_allow_tailcalls(FLAG_harmony_tailcalls && !info->is_native() && info->isolate()->is_tail_call_elimination_enabled()); set_allow_harmony_do_expressions(FLAG_harmony_do_expressions); set_allow_harmony_function_name(FLAG_harmony_function_name); set_allow_harmony_function_sent(FLAG_harmony_function_sent); set_allow_harmony_restrictive_declarations( FLAG_harmony_restrictive_declarations); set_allow_harmony_exponentiation_operator( FLAG_harmony_exponentiation_operator); for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount; ++feature) { use_counts_[feature] = 0; } if (info->ast_value_factory() == NULL) { // info takes ownership of AstValueFactory. info->set_ast_value_factory(new AstValueFactory(zone(), info->hash_seed())); info->set_ast_value_factory_owned(); ast_value_factory_ = info->ast_value_factory(); } } FunctionLiteral* Parser::ParseProgram(Isolate* isolate, ParseInfo* info) { // TODO(bmeurer): We temporarily need to pass allow_nesting = true here, // see comment for HistogramTimerScope class. // It's OK to use the Isolate & counters here, since this function is only // called in the main thread. DCHECK(parsing_on_main_thread_); HistogramTimerScope timer_scope(isolate->counters()->parse(), true); TRACE_EVENT0("v8", "V8.Parse"); Handle<String> source(String::cast(info->script()->source())); isolate->counters()->total_parse_size()->Increment(source->length()); base::ElapsedTimer timer; if (FLAG_trace_parse) { timer.Start(); } fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone()); // Initialize parser state. CompleteParserRecorder recorder; if (produce_cached_parse_data()) { log_ = &recorder; } else if (consume_cached_parse_data()) { cached_parse_data_->Initialize(); } source = String::Flatten(source); FunctionLiteral* result; if (source->IsExternalTwoByteString()) { // Notice that the stream is destroyed at the end of the branch block. // The last line of the blocks can't be moved outside, even though they're // identical calls. ExternalTwoByteStringUtf16CharacterStream stream( Handle<ExternalTwoByteString>::cast(source), 0, source->length()); scanner_.Initialize(&stream); result = DoParseProgram(info); } else { GenericStringUtf16CharacterStream stream(source, 0, source->length()); scanner_.Initialize(&stream); result = DoParseProgram(info); } if (result != NULL) { DCHECK_EQ(scanner_.peek_location().beg_pos, source->length()); } HandleSourceURLComments(isolate, info->script()); if (FLAG_trace_parse && result != NULL) { double ms = timer.Elapsed().InMillisecondsF(); if (info->is_eval()) { PrintF("[parsing eval"); } else if (info->script()->name()->IsString()) { String* name = String::cast(info->script()->name()); base::SmartArrayPointer<char> name_chars = name->ToCString(); PrintF("[parsing script: %s", name_chars.get()); } else { PrintF("[parsing script"); } PrintF(" - took %0.3f ms]\n", ms); } if (produce_cached_parse_data()) { if (result != NULL) *info->cached_data() = recorder.GetScriptData(); log_ = NULL; } return result; } FunctionLiteral* Parser::DoParseProgram(ParseInfo* info) { // Note that this function can be called from the main thread or from a // background thread. We should not access anything Isolate / heap dependent // via ParseInfo, and also not pass it forward. DCHECK(scope_ == NULL); DCHECK(target_stack_ == NULL); Mode parsing_mode = FLAG_lazy && allow_lazy() ? PARSE_LAZILY : PARSE_EAGERLY; if (allow_natives() || extension_ != NULL) parsing_mode = PARSE_EAGERLY; FunctionLiteral* result = NULL; { // TODO(wingo): Add an outer SCRIPT_SCOPE corresponding to the native // context, which will have the "this" binding for script scopes. Scope* scope = NewScope(scope_, SCRIPT_SCOPE); info->set_script_scope(scope); if (!info->context().is_null() && !info->context()->IsNativeContext()) { scope = Scope::DeserializeScopeChain(info->isolate(), zone(), *info->context(), scope); // The Scope is backed up by ScopeInfo (which is in the V8 heap); this // means the Parser cannot operate independent of the V8 heap. Tell the // string table to internalize strings and values right after they're // created. This kind of parsing can only be done in the main thread. DCHECK(parsing_on_main_thread_); ast_value_factory()->Internalize(info->isolate()); } original_scope_ = scope; if (info->is_eval()) { if (!scope->is_script_scope() || is_strict(info->language_mode())) { parsing_mode = PARSE_EAGERLY; } scope = NewScope(scope, EVAL_SCOPE); } else if (info->is_module()) { scope = NewScope(scope, MODULE_SCOPE); } scope->set_start_position(0); // Enter 'scope' with the given parsing mode. ParsingModeScope parsing_mode_scope(this, parsing_mode); AstNodeFactory function_factory(ast_value_factory()); FunctionState function_state(&function_state_, &scope_, scope, kNormalFunction, &function_factory); ZoneList<Statement*>* body = new(zone()) ZoneList<Statement*>(16, zone()); bool ok = true; int beg_pos = scanner()->location().beg_pos; if (info->is_module()) { ParseModuleItemList(body, &ok); } else { // Don't count the mode in the use counters--give the program a chance // to enable script-wide strict mode below. scope_->SetLanguageMode(info->language_mode()); ParseStatementList(body, Token::EOS, &ok); } // The parser will peek but not consume EOS. Our scope logically goes all // the way to the EOS, though. scope->set_end_position(scanner()->peek_location().beg_pos); if (ok && is_strict(language_mode())) { CheckStrictOctalLiteral(beg_pos, scanner()->location().end_pos, &ok); } if (ok && is_sloppy(language_mode())) { // TODO(littledan): Function bindings on the global object that modify // pre-existing bindings should be made writable, enumerable and // nonconfigurable if possible, whereas this code will leave attributes // unchanged if the property already exists. InsertSloppyBlockFunctionVarBindings(scope, &ok); } if (ok) { CheckConflictingVarDeclarations(scope_, &ok); } if (ok && info->parse_restriction() == ONLY_SINGLE_FUNCTION_LITERAL) { if (body->length() != 1 || !body->at(0)->IsExpressionStatement() || !body->at(0)->AsExpressionStatement()-> expression()->IsFunctionLiteral()) { ReportMessage(MessageTemplate::kSingleFunctionLiteral); ok = false; } } if (ok) { ParserTraits::RewriteDestructuringAssignments(); result = factory()->NewScriptOrEvalFunctionLiteral( scope_, body, function_state.materialized_literal_count(), function_state.expected_property_count()); } } // Make sure the target stack is empty. DCHECK(target_stack_ == NULL); return result; } FunctionLiteral* Parser::ParseLazy(Isolate* isolate, ParseInfo* info) { // It's OK to use the Isolate & counters here, since this function is only // called in the main thread. DCHECK(parsing_on_main_thread_); HistogramTimerScope timer_scope(isolate->counters()->parse_lazy()); TRACE_EVENT0("v8", "V8.ParseLazy"); Handle<String> source(String::cast(info->script()->source())); isolate->counters()->total_parse_size()->Increment(source->length()); base::ElapsedTimer timer; if (FLAG_trace_parse) { timer.Start(); } Handle<SharedFunctionInfo> shared_info = info->shared_info(); // Initialize parser state. source = String::Flatten(source); FunctionLiteral* result; if (source->IsExternalTwoByteString()) { ExternalTwoByteStringUtf16CharacterStream stream( Handle<ExternalTwoByteString>::cast(source), shared_info->start_position(), shared_info->end_position()); result = ParseLazy(isolate, info, &stream); } else { GenericStringUtf16CharacterStream stream(source, shared_info->start_position(), shared_info->end_position()); result = ParseLazy(isolate, info, &stream); } if (FLAG_trace_parse && result != NULL) { double ms = timer.Elapsed().InMillisecondsF(); base::SmartArrayPointer<char> name_chars = result->debug_name()->ToCString(); PrintF("[parsing function: %s - took %0.3f ms]\n", name_chars.get(), ms); } return result; } static FunctionLiteral::FunctionType ComputeFunctionType( Handle<SharedFunctionInfo> shared_info) { if (shared_info->is_declaration()) { return FunctionLiteral::kDeclaration; } else if (shared_info->is_named_expression()) { return FunctionLiteral::kNamedExpression; } else if (IsConciseMethod(shared_info->kind()) || IsAccessorFunction(shared_info->kind())) { return FunctionLiteral::kAccessorOrMethod; } return FunctionLiteral::kAnonymousExpression; } FunctionLiteral* Parser::ParseLazy(Isolate* isolate, ParseInfo* info, Utf16CharacterStream* source) { Handle<SharedFunctionInfo> shared_info = info->shared_info(); scanner_.Initialize(source); DCHECK(scope_ == NULL); DCHECK(target_stack_ == NULL); Handle<String> name(String::cast(shared_info->name())); DCHECK(ast_value_factory()); fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone()); const AstRawString* raw_name = ast_value_factory()->GetString(name); fni_->PushEnclosingName(raw_name); ParsingModeScope parsing_mode(this, PARSE_EAGERLY); // Place holder for the result. FunctionLiteral* result = NULL; { // Parse the function literal. Scope* scope = NewScope(scope_, SCRIPT_SCOPE); info->set_script_scope(scope); if (!info->context().is_null()) { // Ok to use Isolate here, since lazy function parsing is only done in the // main thread. DCHECK(parsing_on_main_thread_); scope = Scope::DeserializeScopeChain(isolate, zone(), *info->context(), scope); } original_scope_ = scope; AstNodeFactory function_factory(ast_value_factory()); FunctionState function_state(&function_state_, &scope_, scope, shared_info->kind(), &function_factory); DCHECK(is_sloppy(scope->language_mode()) || is_strict(info->language_mode())); DCHECK(info->language_mode() == shared_info->language_mode()); FunctionLiteral::FunctionType function_type = ComputeFunctionType(shared_info); bool ok = true; if (shared_info->is_arrow()) { // TODO(adamk): We should construct this scope from the ScopeInfo. Scope* scope = NewScope(scope_, FUNCTION_SCOPE, FunctionKind::kArrowFunction); // These two bits only need to be explicitly set because we're // not passing the ScopeInfo to the Scope constructor. // TODO(adamk): Remove these calls once the above NewScope call // passes the ScopeInfo. if (shared_info->scope_info()->CallsEval()) { scope->RecordEvalCall(); } SetLanguageMode(scope, shared_info->language_mode()); scope->set_start_position(shared_info->start_position()); ExpressionClassifier formals_classifier(this); ParserFormalParameters formals(scope); Checkpoint checkpoint(this); { // Parsing patterns as variable reference expression creates // NewUnresolved references in current scope. Entrer arrow function // scope for formal parameter parsing. BlockState block_state(&scope_, scope); if (Check(Token::LPAREN)) { // '(' StrictFormalParameters ')' ParseFormalParameterList(&formals, &formals_classifier, &ok); if (ok) ok = Check(Token::RPAREN); } else { // BindingIdentifier ParseFormalParameter(&formals, &formals_classifier, &ok); if (ok) { DeclareFormalParameter(formals.scope, formals.at(0), &formals_classifier); } } } if (ok) { checkpoint.Restore(&formals.materialized_literals_count); // Pass `accept_IN=true` to ParseArrowFunctionLiteral --- This should // not be observable, or else the preparser would have failed. Expression* expression = ParseArrowFunctionLiteral(true, formals, formals_classifier, &ok); if (ok) { // Scanning must end at the same position that was recorded // previously. If not, parsing has been interrupted due to a stack // overflow, at which point the partially parsed arrow function // concise body happens to be a valid expression. This is a problem // only for arrow functions with single expression bodies, since there // is no end token such as "}" for normal functions. if (scanner()->location().end_pos == shared_info->end_position()) { // The pre-parser saw an arrow function here, so the full parser // must produce a FunctionLiteral. DCHECK(expression->IsFunctionLiteral()); result = expression->AsFunctionLiteral(); } else { ok = false; } } } } else if (shared_info->is_default_constructor()) { result = DefaultConstructor( raw_name, IsSubclassConstructor(shared_info->kind()), scope, shared_info->start_position(), shared_info->end_position(), shared_info->language_mode()); } else { result = ParseFunctionLiteral(raw_name, Scanner::Location::invalid(), kSkipFunctionNameCheck, shared_info->kind(), RelocInfo::kNoPosition, function_type, shared_info->language_mode(), &ok); } // Make sure the results agree. DCHECK(ok == (result != NULL)); } // Make sure the target stack is empty. DCHECK(target_stack_ == NULL); if (result != NULL) { Handle<String> inferred_name(shared_info->inferred_name()); result->set_inferred_name(inferred_name); } return result; } void* Parser::ParseStatementList(ZoneList<Statement*>* body, int end_token, bool* ok) { // StatementList :: // (StatementListItem)* <end_token> // Allocate a target stack to use for this set of source // elements. This way, all scripts and functions get their own // target stack thus avoiding illegal breaks and continues across // functions. TargetScope scope(&this->target_stack_); DCHECK(body != NULL); bool directive_prologue = true; // Parsing directive prologue. while (peek() != end_token) { if (directive_prologue && peek() != Token::STRING) { directive_prologue = false; } Scanner::Location token_loc = scanner()->peek_location(); Statement* stat = ParseStatementListItem(CHECK_OK); if (stat == NULL || stat->IsEmpty()) { directive_prologue = false; // End of directive prologue. continue; } if (directive_prologue) { // A shot at a directive. ExpressionStatement* e_stat; Literal* literal; // Still processing directive prologue? if ((e_stat = stat->AsExpressionStatement()) != NULL && (literal = e_stat->expression()->AsLiteral()) != NULL && literal->raw_value()->IsString()) { // Check "use strict" directive (ES5 14.1), "use asm" directive. bool use_strict_found = literal->raw_value()->AsString() == ast_value_factory()->use_strict_string() && token_loc.end_pos - token_loc.beg_pos == ast_value_factory()->use_strict_string()->length() + 2; if (use_strict_found) { if (is_sloppy(scope_->language_mode())) { RaiseLanguageMode(STRICT); } if (!scope_->HasSimpleParameters()) { // TC39 deemed "use strict" directives to be an error when occurring // in the body of a function with non-simple parameter list, on // 29/7/2015. https://goo.gl/ueA7Ln const AstRawString* string = literal->raw_value()->AsString(); ParserTraits::ReportMessageAt( token_loc, MessageTemplate::kIllegalLanguageModeDirective, string); *ok = false; return nullptr; } // Because declarations in strict eval code don't leak into the scope // of the eval call, it is likely that functions declared in strict // eval code will be used within the eval code, so lazy parsing is // probably not a win. if (scope_->is_eval_scope()) mode_ = PARSE_EAGERLY; } else if (literal->raw_value()->AsString() == ast_value_factory()->use_asm_string() && token_loc.end_pos - token_loc.beg_pos == ast_value_factory()->use_asm_string()->length() + 2) { // Store the usage count; The actual use counter on the isolate is // incremented after parsing is done. ++use_counts_[v8::Isolate::kUseAsm]; scope_->SetAsmModule(); } else { // Should not change mode, but will increment UseCounter // if appropriate. Ditto usages below. RaiseLanguageMode(SLOPPY); } } else { // End of the directive prologue. directive_prologue = false; RaiseLanguageMode(SLOPPY); } } else { RaiseLanguageMode(SLOPPY); } body->Add(stat, zone()); } return 0; } Statement* Parser::ParseStatementListItem(bool* ok) { // (Ecma 262 6th Edition, 13.1): // StatementListItem: // Statement // Declaration switch (peek()) { case Token::FUNCTION: return ParseFunctionDeclaration(NULL, ok); case Token::CLASS: Consume(Token::CLASS); return ParseClassDeclaration(NULL, ok); case Token::CONST: return ParseVariableStatement(kStatementListItem, NULL, ok); case Token::VAR: return ParseVariableStatement(kStatementListItem, NULL, ok); case Token::LET: if (IsNextLetKeyword()) { return ParseVariableStatement(kStatementListItem, NULL, ok); } break; default: break; } return ParseStatement(NULL, kAllowLabelledFunctionStatement, ok); } Statement* Parser::ParseModuleItem(bool* ok) { // (Ecma 262 6th Edition, 15.2): // ModuleItem : // ImportDeclaration // ExportDeclaration // StatementListItem switch (peek()) { case Token::IMPORT: return ParseImportDeclaration(ok); case Token::EXPORT: return ParseExportDeclaration(ok); default: return ParseStatementListItem(ok); } } void* Parser::ParseModuleItemList(ZoneList<Statement*>* body, bool* ok) { // (Ecma 262 6th Edition, 15.2): // Module : // ModuleBody? // // ModuleBody : // ModuleItem* DCHECK(scope_->is_module_scope()); while (peek() != Token::EOS) { Statement* stat = ParseModuleItem(CHECK_OK); if (stat && !stat->IsEmpty()) { body->Add(stat, zone()); } } // Check that all exports are bound. ModuleDescriptor* descriptor = scope_->module(); for (ModuleDescriptor::Iterator it = descriptor->iterator(); !it.done(); it.Advance()) { if (scope_->LookupLocal(it.local_name()) == NULL) { // TODO(adamk): Pass both local_name and export_name once ParserTraits // supports multiple arg error messages. // Also try to report this at a better location. ParserTraits::ReportMessage(MessageTemplate::kModuleExportUndefined, it.local_name()); *ok = false; return NULL; } } return NULL; } const AstRawString* Parser::ParseModuleSpecifier(bool* ok) { // ModuleSpecifier : // StringLiteral Expect(Token::STRING, CHECK_OK); return GetSymbol(scanner()); } void* Parser::ParseExportClause(ZoneList<const AstRawString*>* export_names, ZoneList<Scanner::Location>* export_locations, ZoneList<const AstRawString*>* local_names, Scanner::Location* reserved_loc, bool* ok) { // ExportClause : // '{' '}' // '{' ExportsList '}' // '{' ExportsList ',' '}' // // ExportsList : // ExportSpecifier // ExportsList ',' ExportSpecifier // // ExportSpecifier : // IdentifierName // IdentifierName 'as' IdentifierName Expect(Token::LBRACE, CHECK_OK); Token::Value name_tok; while ((name_tok = peek()) != Token::RBRACE) { // Keep track of the first reserved word encountered in case our // caller needs to report an error. if (!reserved_loc->IsValid() && !Token::IsIdentifier(name_tok, STRICT, false)) { *reserved_loc = scanner()->location(); } const AstRawString* local_name = ParseIdentifierName(CHECK_OK); const AstRawString* export_name = NULL; if (CheckContextualKeyword(CStrVector("as"))) { export_name = ParseIdentifierName(CHECK_OK); } if (export_name == NULL) { export_name = local_name; } export_names->Add(export_name, zone()); local_names->Add(local_name, zone()); export_locations->Add(scanner()->location(), zone()); if (peek() == Token::RBRACE) break; Expect(Token::COMMA, CHECK_OK); } Expect(Token::RBRACE, CHECK_OK); return 0; } ZoneList<ImportDeclaration*>* Parser::ParseNamedImports(int pos, bool* ok) { // NamedImports : // '{' '}' // '{' ImportsList '}' // '{' ImportsList ',' '}' // // ImportsList : // ImportSpecifier // ImportsList ',' ImportSpecifier // // ImportSpecifier : // BindingIdentifier // IdentifierName 'as' BindingIdentifier Expect(Token::LBRACE, CHECK_OK); ZoneList<ImportDeclaration*>* result = new (zone()) ZoneList<ImportDeclaration*>(1, zone()); while (peek() != Token::RBRACE) { const AstRawString* import_name = ParseIdentifierName(CHECK_OK); const AstRawString* local_name = import_name; // In the presence of 'as', the left-side of the 'as' can // be any IdentifierName. But without 'as', it must be a valid // BindingIdentifier. if (CheckContextualKeyword(CStrVector("as"))) { local_name = ParseIdentifierName(CHECK_OK); } if (!Token::IsIdentifier(scanner()->current_token(), STRICT, false)) { *ok = false; ReportMessage(MessageTemplate::kUnexpectedReserved); return NULL; } else if (IsEvalOrArguments(local_name)) { *ok = false; ReportMessage(MessageTemplate::kStrictEvalArguments); return NULL; } VariableProxy* proxy = NewUnresolved(local_name, CONST); ImportDeclaration* declaration = factory()->NewImportDeclaration(proxy, import_name, NULL, scope_, pos); Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK); result->Add(declaration, zone()); if (peek() == Token::RBRACE) break; Expect(Token::COMMA, CHECK_OK); } Expect(Token::RBRACE, CHECK_OK); return result; } Statement* Parser::ParseImportDeclaration(bool* ok) { // ImportDeclaration : // 'import' ImportClause 'from' ModuleSpecifier ';' // 'import' ModuleSpecifier ';' // // ImportClause : // NameSpaceImport // NamedImports // ImportedDefaultBinding // ImportedDefaultBinding ',' NameSpaceImport // ImportedDefaultBinding ',' NamedImports // // NameSpaceImport : // '*' 'as' ImportedBinding int pos = peek_position(); Expect(Token::IMPORT, CHECK_OK); Token::Value tok = peek(); // 'import' ModuleSpecifier ';' if (tok == Token::STRING) { const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK); scope_->module()->AddModuleRequest(module_specifier, zone()); ExpectSemicolon(CHECK_OK); return factory()->NewEmptyStatement(pos); } // Parse ImportedDefaultBinding if present. ImportDeclaration* import_default_declaration = NULL; if (tok != Token::MUL && tok != Token::LBRACE) { const AstRawString* local_name = ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK); VariableProxy* proxy = NewUnresolved(local_name, CONST); import_default_declaration = factory()->NewImportDeclaration( proxy, ast_value_factory()->default_string(), NULL, scope_, pos); Declare(import_default_declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK); } const AstRawString* module_instance_binding = NULL; ZoneList<ImportDeclaration*>* named_declarations = NULL; if (import_default_declaration == NULL || Check(Token::COMMA)) { switch (peek()) { case Token::MUL: { Consume(Token::MUL); ExpectContextualKeyword(CStrVector("as"), CHECK_OK); module_instance_binding = ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK); // TODO(ES6): Add an appropriate declaration. break; } case Token::LBRACE: named_declarations = ParseNamedImports(pos, CHECK_OK); break; default: *ok = false; ReportUnexpectedToken(scanner()->current_token()); return NULL; } } ExpectContextualKeyword(CStrVector("from"), CHECK_OK); const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK); scope_->module()->AddModuleRequest(module_specifier, zone()); if (module_instance_binding != NULL) { // TODO(ES6): Set the module specifier for the module namespace binding. } if (import_default_declaration != NULL) { import_default_declaration->set_module_specifier(module_specifier); } if (named_declarations != NULL) { for (int i = 0; i < named_declarations->length(); ++i) { named_declarations->at(i)->set_module_specifier(module_specifier); } } ExpectSemicolon(CHECK_OK); return factory()->NewEmptyStatement(pos); } Statement* Parser::ParseExportDefault(bool* ok) { // Supports the following productions, starting after the 'default' token: // 'export' 'default' FunctionDeclaration // 'export' 'default' ClassDeclaration // 'export' 'default' AssignmentExpression[In] ';' Expect(Token::DEFAULT, CHECK_OK); Scanner::Location default_loc = scanner()->location(); const AstRawString* default_string = ast_value_factory()->default_string(); ZoneList<const AstRawString*> names(1, zone()); Statement* result = nullptr; Expression* default_export = nullptr; switch (peek()) { case Token::FUNCTION: { Consume(Token::FUNCTION); int pos = position(); bool is_generator = Check(Token::MUL); if (peek() == Token::LPAREN) { // FunctionDeclaration[+Default] :: // 'function' '(' FormalParameters ')' '{' FunctionBody '}' // // GeneratorDeclaration[+Default] :: // 'function' '*' '(' FormalParameters ')' '{' FunctionBody '}' default_export = ParseFunctionLiteral( default_string, Scanner::Location::invalid(), kSkipFunctionNameCheck, is_generator ? FunctionKind::kGeneratorFunction : FunctionKind::kNormalFunction, pos, FunctionLiteral::kDeclaration, language_mode(), CHECK_OK); result = factory()->NewEmptyStatement(RelocInfo::kNoPosition); } else { result = ParseFunctionDeclaration(pos, is_generator, &names, CHECK_OK); } break; } case Token::CLASS: Consume(Token::CLASS); if (peek() == Token::EXTENDS || peek() == Token::LBRACE) { // ClassDeclaration[+Default] :: // 'class' ('extends' LeftHandExpression)? '{' ClassBody '}' default_export = ParseClassLiteral(default_string, Scanner::Location::invalid(), false, position(), CHECK_OK); result = factory()->NewEmptyStatement(RelocInfo::kNoPosition); } else { result = ParseClassDeclaration(&names, CHECK_OK); } break; default: { int pos = peek_position(); ExpressionClassifier classifier(this); Expression* expr = ParseAssignmentExpression(true, &classifier, CHECK_OK); RewriteNonPattern(&classifier, CHECK_OK); ExpectSemicolon(CHECK_OK); result = factory()->NewExpressionStatement(expr, pos); break; } } DCHECK_LE(names.length(), 1); if (names.length() == 1) { scope_->module()->AddLocalExport(default_string, names.first(), zone(), ok); if (!*ok) { ParserTraits::ReportMessageAt( default_loc, MessageTemplate::kDuplicateExport, default_string); return nullptr; } } else { // TODO(ES6): Assign result to a const binding with the name "*default*" // and add an export entry with "*default*" as the local name. USE(default_export); } return result; } Statement* Parser::ParseExportDeclaration(bool* ok) { // ExportDeclaration: // 'export' '*' 'from' ModuleSpecifier ';' // 'export' ExportClause ('from' ModuleSpecifier)? ';' // 'export' VariableStatement // 'export' Declaration // 'export' 'default' ... (handled in ParseExportDefault) int pos = peek_position(); Expect(Token::EXPORT, CHECK_OK); Statement* result = NULL; ZoneList<const AstRawString*> names(1, zone()); switch (peek()) { case Token::DEFAULT: return ParseExportDefault(ok); case Token::MUL: { Consume(Token::MUL); ExpectContextualKeyword(CStrVector("from"), CHECK_OK); const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK); scope_->module()->AddModuleRequest(module_specifier, zone()); // TODO(ES6): scope_->module()->AddStarExport(...) ExpectSemicolon(CHECK_OK); return factory()->NewEmptyStatement(pos); } case Token::LBRACE: { // There are two cases here: // // 'export' ExportClause ';' // and // 'export' ExportClause FromClause ';' // // In the first case, the exported identifiers in ExportClause must // not be reserved words, while in the latter they may be. We // pass in a location that gets filled with the first reserved word // encountered, and then throw a SyntaxError if we are in the // non-FromClause case. Scanner::Location reserved_loc = Scanner::Location::invalid(); ZoneList<const AstRawString*> export_names(1, zone()); ZoneList<Scanner::Location> export_locations(1, zone()); ZoneList<const AstRawString*> local_names(1, zone()); ParseExportClause(&export_names, &export_locations, &local_names, &reserved_loc, CHECK_OK); const AstRawString* indirect_export_module_specifier = NULL; if (CheckContextualKeyword(CStrVector("from"))) { indirect_export_module_specifier = ParseModuleSpecifier(CHECK_OK); } else if (reserved_loc.IsValid()) { // No FromClause, so reserved words are invalid in ExportClause. *ok = false; ReportMessageAt(reserved_loc, MessageTemplate::kUnexpectedReserved); return NULL; } ExpectSemicolon(CHECK_OK); const int length = export_names.length(); DCHECK_EQ(length, local_names.length()); DCHECK_EQ(length, export_locations.length()); if (indirect_export_module_specifier == NULL) { for (int i = 0; i < length; ++i) { scope_->module()->AddLocalExport(export_names[i], local_names[i], zone(), ok); if (!*ok) { ParserTraits::ReportMessageAt(export_locations[i], MessageTemplate::kDuplicateExport, export_names[i]); return NULL; } } } else { scope_->module()->AddModuleRequest(indirect_export_module_specifier, zone()); for (int i = 0; i < length; ++i) { // TODO(ES6): scope_->module()->AddIndirectExport(...);( } } return factory()->NewEmptyStatement(pos); } case Token::FUNCTION: result = ParseFunctionDeclaration(&names, CHECK_OK); break; case Token::CLASS: Consume(Token::CLASS); result = ParseClassDeclaration(&names, CHECK_OK); break; case Token::VAR: case Token::LET: case Token::CONST: result = ParseVariableStatement(kStatementListItem, &names, CHECK_OK); break; default: *ok = false; ReportUnexpectedToken(scanner()->current_token()); return NULL; } // Extract declared names into export declarations. ModuleDescriptor* descriptor = scope_->module(); for (int i = 0; i < names.length(); ++i) { descriptor->AddLocalExport(names[i], names[i], zone(), ok); if (!*ok) { // TODO(adamk): Possibly report this error at the right place. ParserTraits::ReportMessage(MessageTemplate::kDuplicateExport, names[i]); return NULL; } } DCHECK_NOT_NULL(result); return result; } Statement* Parser::ParseStatement(ZoneList<const AstRawString*>* labels, AllowLabelledFunctionStatement allow_function, bool* ok) { // Statement :: // EmptyStatement // ... if (peek() == Token::SEMICOLON) { Next(); return factory()->NewEmptyStatement(RelocInfo::kNoPosition); } return ParseSubStatement(labels, allow_function, ok); } Statement* Parser::ParseSubStatement( ZoneList<const AstRawString*>* labels, AllowLabelledFunctionStatement allow_function, bool* ok) { // Statement :: // Block // VariableStatement // EmptyStatement // ExpressionStatement // IfStatement // IterationStatement // ContinueStatement // BreakStatement // ReturnStatement // WithStatement // LabelledStatement // SwitchStatement // ThrowStatement // TryStatement // DebuggerStatement // Note: Since labels can only be used by 'break' and 'continue' // statements, which themselves are only valid within blocks, // iterations or 'switch' statements (i.e., BreakableStatements), // labels can be simply ignored in all other cases; except for // trivial labeled break statements 'label: break label' which is // parsed into an empty statement. switch (peek()) { case Token::LBRACE: return ParseBlock(labels, ok); case Token::SEMICOLON: Next(); return factory()->NewEmptyStatement(RelocInfo::kNoPosition); case Token::IF: return ParseIfStatement(labels, ok); case Token::DO: return ParseDoWhileStatement(labels, ok); case Token::WHILE: return ParseWhileStatement(labels, ok); case Token::FOR: return ParseForStatement(labels, ok); case Token::CONTINUE: case Token::BREAK: case Token::RETURN: case Token::THROW: case Token::TRY: { // These statements must have their labels preserved in an enclosing // block if (labels == NULL) { return ParseStatementAsUnlabelled(labels, ok); } else { Block* result = factory()->NewBlock(labels, 1, false, RelocInfo::kNoPosition); Target target(&this->target_stack_, result); Statement* statement = ParseStatementAsUnlabelled(labels, CHECK_OK); if (result) result->statements()->Add(statement, zone()); return result; } } case Token::WITH: return ParseWithStatement(labels, ok); case Token::SWITCH: return ParseSwitchStatement(labels, ok); case Token::FUNCTION: // FunctionDeclaration only allowed as a StatementListItem, not in // an arbitrary Statement position. Exceptions such as // ES#sec-functiondeclarations-in-ifstatement-statement-clauses // are handled by calling ParseScopedStatement rather than // ParseSubStatement directly. ReportMessageAt(scanner()->peek_location(), is_strict(language_mode()) ? MessageTemplate::kStrictFunction : MessageTemplate::kSloppyFunction); *ok = false; return nullptr; case Token::DEBUGGER: return ParseDebuggerStatement(ok); case Token::VAR: return ParseVariableStatement(kStatement, NULL, ok); default: return ParseExpressionOrLabelledStatement(labels, allow_function, ok); } } Statement* Parser::ParseStatementAsUnlabelled( ZoneList<const AstRawString*>* labels, bool* ok) { switch (peek()) { case Token::CONTINUE: return ParseContinueStatement(ok); case Token::BREAK: return ParseBreakStatement(labels, ok); case Token::RETURN: return ParseReturnStatement(ok); case Token::THROW: return ParseThrowStatement(ok); case Token::TRY: return ParseTryStatement(ok); default: UNREACHABLE(); return NULL; } } VariableProxy* Parser::NewUnresolved(const AstRawString* name, VariableMode mode) { // If we are inside a function, a declaration of a var/const variable is a // truly local variable, and the scope of the variable is always the function // scope. // Let/const variables in harmony mode are always added to the immediately // enclosing scope. Scope* scope = IsLexicalVariableMode(mode) ? scope_ : scope_->DeclarationScope(); return scope->NewUnresolved(factory(), name, Variable::NORMAL, scanner()->location().beg_pos, scanner()->location().end_pos); } Variable* Parser::Declare(Declaration* declaration, DeclarationDescriptor::Kind declaration_kind, bool resolve, bool* ok, Scope* scope) { VariableProxy* proxy = declaration->proxy(); DCHECK(proxy->raw_name() != NULL); const AstRawString* name = proxy->raw_name(); VariableMode mode = declaration->mode(); DCHECK(IsDeclaredVariableMode(mode) && mode != CONST_LEGACY); bool is_function_declaration = declaration->IsFunctionDeclaration(); if (scope == nullptr) scope = scope_; Scope* declaration_scope = IsLexicalVariableMode(mode) ? scope : scope->DeclarationScope(); Variable* var = NULL; // If a suitable scope exists, then we can statically declare this // variable and also set its mode. In any case, a Declaration node // will be added to the scope so that the declaration can be added // to the corresponding activation frame at runtime if necessary. // For instance, var declarations inside a sloppy eval scope need // to be added to the calling function context. Similarly, strict // mode eval scope and lexical eval bindings do not leak variable // declarations to the caller's scope so we declare all locals, too. if (declaration_scope->is_function_scope() || declaration_scope->is_block_scope() || declaration_scope->is_module_scope() || declaration_scope->is_script_scope() || (declaration_scope->is_eval_scope() && (is_strict(declaration_scope->language_mode()) || IsLexicalVariableMode(mode)))) { // Declare the variable in the declaration scope. var = declaration_scope->LookupLocal(name); if (var == NULL) { // Declare the name. Variable::Kind kind = Variable::NORMAL; if (is_function_declaration) { kind = Variable::FUNCTION; } var = declaration_scope->DeclareLocal( name, mode, declaration->initialization(), kind, kNotAssigned); } else if (IsLexicalVariableMode(mode) || IsLexicalVariableMode(var->mode())) { // Allow duplicate function decls for web compat, see bug 4693. if (is_sloppy(language_mode()) && is_function_declaration && var->is_function()) { DCHECK(IsLexicalVariableMode(mode) && IsLexicalVariableMode(var->mode())); ++use_counts_[v8::Isolate::kSloppyModeBlockScopedFunctionRedefinition]; } else { // The name was declared in this scope before; check for conflicting // re-declarations. We have a conflict if either of the declarations // is not a var (in script scope, we also have to ignore legacy const // for compatibility). There is similar code in runtime.cc in the // Declare functions. The function CheckConflictingVarDeclarations // checks for var and let bindings from different scopes whereas this // is a check for conflicting declarations within the same scope. This // check also covers the special case // // function () { let x; { var x; } } // // because the var declaration is hoisted to the function scope where // 'x' is already bound. DCHECK(IsDeclaredVariableMode(var->mode())); // In harmony we treat re-declarations as early errors. See // ES5 16 for a definition of early errors. if (declaration_kind == DeclarationDescriptor::NORMAL) { ParserTraits::ReportMessage(MessageTemplate::kVarRedeclaration, name); } else { ParserTraits::ReportMessage(MessageTemplate::kParamDupe); } *ok = false; return nullptr; } } else if (mode == VAR) { var->set_maybe_assigned(); } } else if (declaration_scope->is_eval_scope() && is_sloppy(declaration_scope->language_mode()) && !IsLexicalVariableMode(mode)) { // In a var binding in a sloppy direct eval, pollute the enclosing scope // with this new binding by doing the following: // The proxy is bound to a lookup variable to force a dynamic declaration // using the DeclareLookupSlot runtime function. Variable::Kind kind = Variable::NORMAL; // TODO(sigurds) figure out if kNotAssigned is OK here var = new (zone()) Variable(declaration_scope, name, mode, kind, declaration->initialization(), kNotAssigned); var->AllocateTo(VariableLocation::LOOKUP, -1); var->SetFromEval(); resolve = true; } // We add a declaration node for every declaration. The compiler // will only generate code if necessary. In particular, declarations // for inner local variables that do not represent functions won't // result in any generated code. // // Note that we always add an unresolved proxy even if it's not // used, simply because we don't know in this method (w/o extra // parameters) if the proxy is needed or not. The proxy will be // bound during variable resolution time unless it was pre-bound // below. // // WARNING: This will lead to multiple declaration nodes for the // same variable if it is declared several times. This is not a // semantic issue as long as we keep the source order, but it may be // a performance issue since it may lead to repeated // RuntimeHidden_DeclareLookupSlot calls. declaration_scope->AddDeclaration(declaration); // If requested and we have a local variable, bind the proxy to the variable // at parse-time. This is used for functions (and consts) declared inside // statements: the corresponding function (or const) variable must be in the // function scope and not a statement-local scope, e.g. as provided with a // 'with' statement: // // with (obj) { // function f() {} // } // // which is translated into: // // with (obj) { // // in this case this is not: 'var f; f = function () {};' // var f = function () {}; // } // // Note that if 'f' is accessed from inside the 'with' statement, it // will be allocated in the context (because we must be able to look // it up dynamically) but it will also be accessed statically, i.e., // with a context slot index and a context chain length for this // initialization code. Thus, inside the 'with' statement, we need // both access to the static and the dynamic context chain; the // runtime needs to provide both. if (resolve && var != NULL) { proxy->BindTo(var); } return var; } // Language extension which is only enabled for source files loaded // through the API's extension mechanism. A native function // declaration is resolved by looking up the function through a // callback provided by the extension. Statement* Parser::ParseNativeDeclaration(bool* ok) { int pos = peek_position(); Expect(Token::FUNCTION, CHECK_OK); // Allow "eval" or "arguments" for backward compatibility. const AstRawString* name = ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK); Expect(Token::LPAREN, CHECK_OK); bool done = (peek() == Token::RPAREN); while (!done) { ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK); done = (peek() == Token::RPAREN); if (!done) { Expect(Token::COMMA, CHECK_OK); } } Expect(Token::RPAREN, CHECK_OK); Expect(Token::SEMICOLON, CHECK_OK); // Make sure that the function containing the native declaration // isn't lazily compiled. The extension structures are only // accessible while parsing the first time not when reparsing // because of lazy compilation. // TODO(adamk): Should this be ClosureScope()? scope_->DeclarationScope()->ForceEagerCompilation(); // TODO(1240846): It's weird that native function declarations are // introduced dynamically when we meet their declarations, whereas // other functions are set up when entering the surrounding scope. VariableProxy* proxy = NewUnresolved(name, VAR); Declaration* declaration = factory()->NewVariableDeclaration(proxy, VAR, scope_, pos); Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK); NativeFunctionLiteral* lit = factory()->NewNativeFunctionLiteral( name, extension_, RelocInfo::kNoPosition); return factory()->NewExpressionStatement( factory()->NewAssignment(Token::INIT, proxy, lit, RelocInfo::kNoPosition), pos); } Statement* Parser::ParseFunctionDeclaration( ZoneList<const AstRawString*>* names, bool* ok) { Expect(Token::FUNCTION, CHECK_OK); int pos = position(); bool is_generator = Check(Token::MUL); return ParseFunctionDeclaration(pos, is_generator, names, ok); } Statement* Parser::ParseFunctionDeclaration( int pos, bool is_generator, ZoneList<const AstRawString*>* names, bool* ok) { // FunctionDeclaration :: // 'function' Identifier '(' FormalParameters ')' '{' FunctionBody '}' // GeneratorDeclaration :: // 'function' '*' Identifier '(' FormalParameters ')' '{' FunctionBody '}' // // 'function' and '*' (if present) have been consumed by the caller. bool is_strict_reserved = false; const AstRawString* name = ParseIdentifierOrStrictReservedWord( &is_strict_reserved, CHECK_OK); FuncNameInferrer::State fni_state(fni_); if (fni_ != NULL) fni_->PushEnclosingName(name); FunctionLiteral* fun = ParseFunctionLiteral( name, scanner()->location(), is_strict_reserved ? kFunctionNameIsStrictReserved : kFunctionNameValidityUnknown, is_generator ? FunctionKind::kGeneratorFunction : FunctionKind::kNormalFunction, pos, FunctionLiteral::kDeclaration, language_mode(), CHECK_OK); // Even if we're not at the top-level of the global or a function // scope, we treat it as such and introduce the function with its // initial value upon entering the corresponding scope. // In ES6, a function behaves as a lexical binding, except in // a script scope, or the initial scope of eval or another function. VariableMode mode = (!scope_->is_declaration_scope() || scope_->is_module_scope()) ? LET : VAR; VariableProxy* proxy = NewUnresolved(name, mode); Declaration* declaration = factory()->NewFunctionDeclaration(proxy, mode, fun, scope_, pos); Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK); if (names) names->Add(name, zone()); EmptyStatement* empty = factory()->NewEmptyStatement(RelocInfo::kNoPosition); if (is_sloppy(language_mode()) && !scope_->is_declaration_scope()) { SloppyBlockFunctionStatement* delegate = factory()->NewSloppyBlockFunctionStatement(empty, scope_); scope_->DeclarationScope()->sloppy_block_function_map()->Declare(name, delegate); return delegate; } return empty; } Statement* Parser::ParseClassDeclaration(ZoneList<const AstRawString*>* names, bool* ok) { // ClassDeclaration :: // 'class' Identifier ('extends' LeftHandExpression)? '{' ClassBody '}' // // 'class' is expected to be consumed by the caller. // // A ClassDeclaration // // class C { ... } // // has the same semantics as: // // let C = class C { ... }; // // so rewrite it as such. int pos = position(); bool is_strict_reserved = false; const AstRawString* name = ParseIdentifierOrStrictReservedWord(&is_strict_reserved, CHECK_OK); ClassLiteral* value = ParseClassLiteral(name, scanner()->location(), is_strict_reserved, pos, CHECK_OK); VariableProxy* proxy = NewUnresolved(name, LET); Declaration* declaration = factory()->NewVariableDeclaration(proxy, LET, scope_, pos); Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK); proxy->var()->set_initializer_position(position()); Assignment* assignment = factory()->NewAssignment(Token::INIT, proxy, value, pos); Statement* assignment_statement = factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition); if (names) names->Add(name, zone()); return assignment_statement; } Block* Parser::ParseBlock(ZoneList<const AstRawString*>* labels, bool finalize_block_scope, bool* ok) { // The harmony mode uses block elements instead of statements. // // Block :: // '{' StatementList '}' // Construct block expecting 16 statements. Block* body = factory()->NewBlock(labels, 16, false, RelocInfo::kNoPosition); Scope* block_scope = NewScope(scope_, BLOCK_SCOPE); // Parse the statements and collect escaping labels. Expect(Token::LBRACE, CHECK_OK); block_scope->set_start_position(scanner()->location().beg_pos); { BlockState block_state(&scope_, block_scope); Target target(&this->target_stack_, body); while (peek() != Token::RBRACE) { Statement* stat = ParseStatementListItem(CHECK_OK); if (stat && !stat->IsEmpty()) { body->statements()->Add(stat, zone()); } } } Expect(Token::RBRACE, CHECK_OK); block_scope->set_end_position(scanner()->location().end_pos); if (finalize_block_scope) { block_scope = block_scope->FinalizeBlockScope(); } body->set_scope(block_scope); return body; } Block* Parser::ParseBlock(ZoneList<const AstRawString*>* labels, bool* ok) { return ParseBlock(labels, true, ok); } Block* Parser::DeclarationParsingResult::BuildInitializationBlock( ZoneList<const AstRawString*>* names, bool* ok) { Block* result = descriptor.parser->factory()->NewBlock( NULL, 1, true, descriptor.declaration_pos); for (auto declaration : declarations) { PatternRewriter::DeclareAndInitializeVariables( result, &descriptor, &declaration, names, CHECK_OK); } return result; } Block* Parser::ParseVariableStatement(VariableDeclarationContext var_context, ZoneList<const AstRawString*>* names, bool* ok) { // VariableStatement :: // VariableDeclarations ';' // The scope of a var/const declared variable anywhere inside a function // is the entire function (ECMA-262, 3rd, 10.1.3, and 12.2). Thus we can // transform a source-level var/const declaration into a (Function) // Scope declaration, and rewrite the source-level initialization into an // assignment statement. We use a block to collect multiple assignments. // // We mark the block as initializer block because we don't want the // rewriter to add a '.result' assignment to such a block (to get compliant // behavior for code such as print(eval('var x = 7')), and for cosmetic // reasons when pretty-printing. Also, unless an assignment (initialization) // is inside an initializer block, it is ignored. DeclarationParsingResult parsing_result; Block* result = ParseVariableDeclarations(var_context, &parsing_result, names, CHECK_OK); ExpectSemicolon(CHECK_OK); return result; } Block* Parser::ParseVariableDeclarations( VariableDeclarationContext var_context, DeclarationParsingResult* parsing_result, ZoneList<const AstRawString*>* names, bool* ok) { // VariableDeclarations :: // ('var' | 'const' | 'let') (Identifier ('=' AssignmentExpression)?)+[','] // // The ES6 Draft Rev3 specifies the following grammar for const declarations // // ConstDeclaration :: // const ConstBinding (',' ConstBinding)* ';' // ConstBinding :: // Identifier '=' AssignmentExpression // // TODO(ES6): // ConstBinding :: // BindingPattern '=' AssignmentExpression parsing_result->descriptor.parser = this; parsing_result->descriptor.declaration_kind = DeclarationDescriptor::NORMAL; parsing_result->descriptor.declaration_pos = peek_position(); parsing_result->descriptor.initialization_pos = peek_position(); parsing_result->descriptor.mode = VAR; Block* init_block = nullptr; if (var_context != kForStatement) { init_block = factory()->NewBlock( NULL, 1, true, parsing_result->descriptor.declaration_pos); } if (peek() == Token::VAR) { Consume(Token::VAR); } else if (peek() == Token::CONST) { Consume(Token::CONST); DCHECK(var_context != kStatement); parsing_result->descriptor.mode = CONST; } else if (peek() == Token::LET) { Consume(Token::LET); DCHECK(var_context != kStatement); parsing_result->descriptor.mode = LET; } else { UNREACHABLE(); // by current callers } parsing_result->descriptor.scope = scope_; parsing_result->descriptor.hoist_scope = nullptr; bool first_declaration = true; int bindings_start = peek_position(); do { FuncNameInferrer::State fni_state(fni_); // Parse name. if (!first_declaration) Consume(Token::COMMA); Expression* pattern; int decl_pos = peek_position(); { ExpressionClassifier pattern_classifier(this); pattern = ParsePrimaryExpression(&pattern_classifier, CHECK_OK); ValidateBindingPattern(&pattern_classifier, CHECK_OK); if (IsLexicalVariableMode(parsing_result->descriptor.mode)) { ValidateLetPattern(&pattern_classifier, CHECK_OK); } } Scanner::Location variable_loc = scanner()->location(); const AstRawString* single_name = pattern->IsVariableProxy() ? pattern->AsVariableProxy()->raw_name() : nullptr; if (single_name != nullptr) { if (fni_ != NULL) fni_->PushVariableName(single_name); } Expression* value = NULL; int initializer_position = RelocInfo::kNoPosition; if (Check(Token::ASSIGN)) { ExpressionClassifier classifier(this); value = ParseAssignmentExpression(var_context != kForStatement, &classifier, CHECK_OK); RewriteNonPattern(&classifier, CHECK_OK); variable_loc.end_pos = scanner()->location().end_pos; if (!parsing_result->first_initializer_loc.IsValid()) { parsing_result->first_initializer_loc = variable_loc; } // Don't infer if it is "a = function(){...}();"-like expression. if (single_name) { if (fni_ != NULL && value->AsCall() == NULL && value->AsCallNew() == NULL) { fni_->Infer(); } else { fni_->RemoveLastFunction(); } } if (allow_harmony_function_name()) { ParserTraits::SetFunctionNameFromIdentifierRef(value, pattern); } // End position of the initializer is after the assignment expression. initializer_position = scanner()->location().end_pos; } else { // Initializers may be either required or implied unless this is a // for-in/of iteration variable. if (var_context != kForStatement || !PeekInOrOf()) { // ES6 'const' and binding patterns require initializers. if (parsing_result->descriptor.mode == CONST || !pattern->IsVariableProxy()) { ParserTraits::ReportMessageAt( Scanner::Location(decl_pos, scanner()->location().end_pos), MessageTemplate::kDeclarationMissingInitializer, !pattern->IsVariableProxy() ? "destructuring" : "const"); *ok = false; return nullptr; } // 'let x' initializes 'x' to undefined. if (parsing_result->descriptor.mode == LET) { value = GetLiteralUndefined(position()); } } // End position of the initializer is after the variable. initializer_position = position(); } DeclarationParsingResult::Declaration decl(pattern, initializer_position, value); if (var_context == kForStatement) { // Save the declaration for further handling in ParseForStatement. parsing_result->declarations.Add(decl); } else { // Immediately declare the variable otherwise. This avoids O(N^2) // behavior (where N is the number of variables in a single // declaration) in the PatternRewriter having to do with removing // and adding VariableProxies to the Scope (see bug 4699). DCHECK_NOT_NULL(init_block); PatternRewriter::DeclareAndInitializeVariables( init_block, &parsing_result->descriptor, &decl, names, CHECK_OK); } first_declaration = false; } while (peek() == Token::COMMA); parsing_result->bindings_loc = Scanner::Location(bindings_start, scanner()->location().end_pos); DCHECK(*ok); return init_block; } static bool ContainsLabel(ZoneList<const AstRawString*>* labels, const AstRawString* label) { DCHECK(label != NULL); if (labels != NULL) { for (int i = labels->length(); i-- > 0; ) { if (labels->at(i) == label) { return true; } } } return false; } Statement* Parser::ParseExpressionOrLabelledStatement( ZoneList<const AstRawString*>* labels, AllowLabelledFunctionStatement allow_function, bool* ok) { // ExpressionStatement | LabelledStatement :: // Expression ';' // Identifier ':' Statement // // ExpressionStatement[Yield] : // [lookahead ∉ {{, function, class, let [}] Expression[In, ?Yield] ; int pos = peek_position(); switch (peek()) { case Token::FUNCTION: case Token::LBRACE: UNREACHABLE(); // Always handled by the callers. case Token::CLASS: ReportUnexpectedToken(Next()); *ok = false; return nullptr; default: break; } bool starts_with_idenfifier = peek_any_identifier(); Expression* expr = ParseExpression(true, CHECK_OK); if (peek() == Token::COLON && starts_with_idenfifier && expr != NULL && expr->AsVariableProxy() != NULL && !expr->AsVariableProxy()->is_this()) { // Expression is a single identifier, and not, e.g., a parenthesized // identifier. VariableProxy* var = expr->AsVariableProxy(); const AstRawString* label = var->raw_name(); // TODO(1240780): We don't check for redeclaration of labels // during preparsing since keeping track of the set of active // labels requires nontrivial changes to the way scopes are // structured. However, these are probably changes we want to // make later anyway so we should go back and fix this then. if (ContainsLabel(labels, label) || TargetStackContainsLabel(label)) { ParserTraits::ReportMessage(MessageTemplate::kLabelRedeclaration, label); *ok = false; return NULL; } if (labels == NULL) { labels = new(zone()) ZoneList<const AstRawString*>(4, zone()); } labels->Add(label, zone()); // Remove the "ghost" variable that turned out to be a label // from the top scope. This way, we don't try to resolve it // during the scope processing. scope_->RemoveUnresolved(var); Expect(Token::COLON, CHECK_OK); // ES#sec-labelled-function-declarations Labelled Function Declarations if (peek() == Token::FUNCTION && is_sloppy(language_mode())) { if (allow_function == kAllowLabelledFunctionStatement) { return ParseFunctionDeclaration(labels, ok); } else { return ParseScopedStatement(labels, true, ok); } } return ParseStatement(labels, kDisallowLabelledFunctionStatement, ok); } // If we have an extension, we allow a native function declaration. // A native function declaration starts with "native function" with // no line-terminator between the two words. if (extension_ != NULL && peek() == Token::FUNCTION && !scanner()->HasAnyLineTerminatorBeforeNext() && expr != NULL && expr->AsVariableProxy() != NULL && expr->AsVariableProxy()->raw_name() == ast_value_factory()->native_string() && !scanner()->literal_contains_escapes()) { return ParseNativeDeclaration(ok); } // Parsed expression statement, followed by semicolon. ExpectSemicolon(CHECK_OK); return factory()->NewExpressionStatement(expr, pos); } IfStatement* Parser::ParseIfStatement(ZoneList<const AstRawString*>* labels, bool* ok) { // IfStatement :: // 'if' '(' Expression ')' Statement ('else' Statement)? int pos = peek_position(); Expect(Token::IF, CHECK_OK); Expect(Token::LPAREN, CHECK_OK); Expression* condition = ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); Statement* then_statement = ParseScopedStatement(labels, false, CHECK_OK); Statement* else_statement = NULL; if (peek() == Token::ELSE) { Next(); else_statement = ParseScopedStatement(labels, false, CHECK_OK); } else { else_statement = factory()->NewEmptyStatement(RelocInfo::kNoPosition); } return factory()->NewIfStatement( condition, then_statement, else_statement, pos); } Statement* Parser::ParseContinueStatement(bool* ok) { // ContinueStatement :: // 'continue' Identifier? ';' int pos = peek_position(); Expect(Token::CONTINUE, CHECK_OK); const AstRawString* label = NULL; Token::Value tok = peek(); if (!scanner()->HasAnyLineTerminatorBeforeNext() && tok != Token::SEMICOLON && tok != Token::RBRACE && tok != Token::EOS) { // ECMA allows "eval" or "arguments" as labels even in strict mode. label = ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK); } IterationStatement* target = LookupContinueTarget(label, CHECK_OK); if (target == NULL) { // Illegal continue statement. MessageTemplate::Template message = MessageTemplate::kIllegalContinue; if (label != NULL) { message = MessageTemplate::kUnknownLabel; } ParserTraits::ReportMessage(message, label); *ok = false; return NULL; } ExpectSemicolon(CHECK_OK); return factory()->NewContinueStatement(target, pos); } Statement* Parser::ParseBreakStatement(ZoneList<const AstRawString*>* labels, bool* ok) { // BreakStatement :: // 'break' Identifier? ';' int pos = peek_position(); Expect(Token::BREAK, CHECK_OK); const AstRawString* label = NULL; Token::Value tok = peek(); if (!scanner()->HasAnyLineTerminatorBeforeNext() && tok != Token::SEMICOLON && tok != Token::RBRACE && tok != Token::EOS) { // ECMA allows "eval" or "arguments" as labels even in strict mode. label = ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK); } // Parse labeled break statements that target themselves into // empty statements, e.g. 'l1: l2: l3: break l2;' if (label != NULL && ContainsLabel(labels, label)) { ExpectSemicolon(CHECK_OK); return factory()->NewEmptyStatement(pos); } BreakableStatement* target = NULL; target = LookupBreakTarget(label, CHECK_OK); if (target == NULL) { // Illegal break statement. MessageTemplate::Template message = MessageTemplate::kIllegalBreak; if (label != NULL) { message = MessageTemplate::kUnknownLabel; } ParserTraits::ReportMessage(message, label); *ok = false; return NULL; } ExpectSemicolon(CHECK_OK); return factory()->NewBreakStatement(target, pos); } Statement* Parser::ParseReturnStatement(bool* ok) { // ReturnStatement :: // 'return' Expression? ';' // Consume the return token. It is necessary to do that before // reporting any errors on it, because of the way errors are // reported (underlining). Expect(Token::RETURN, CHECK_OK); Scanner::Location loc = scanner()->location(); function_state_->set_return_location(loc); Token::Value tok = peek(); Statement* result; Expression* return_value; if (scanner()->HasAnyLineTerminatorBeforeNext() || tok == Token::SEMICOLON || tok == Token::RBRACE || tok == Token::EOS) { if (IsSubclassConstructor(function_state_->kind())) { return_value = ThisExpression(scope_, factory(), loc.beg_pos); } else { return_value = GetLiteralUndefined(position()); } } else { int pos = peek_position(); return_value = ParseExpression(true, CHECK_OK); if (IsSubclassConstructor(function_state_->kind())) { // For subclass constructors we need to return this in case of undefined // return a Smi (transformed into an exception in the ConstructStub) // for a non object. // // return expr; // // Is rewritten as: // // return (temp = expr) === undefined ? this : // %_IsJSReceiver(temp) ? temp : 1; // temp = expr Variable* temp = scope_->NewTemporary( ast_value_factory()->empty_string()); Assignment* assign = factory()->NewAssignment( Token::ASSIGN, factory()->NewVariableProxy(temp), return_value, pos); // %_IsJSReceiver(temp) ZoneList<Expression*>* is_spec_object_args = new (zone()) ZoneList<Expression*>(1, zone()); is_spec_object_args->Add(factory()->NewVariableProxy(temp), zone()); Expression* is_spec_object_call = factory()->NewCallRuntime( Runtime::kInlineIsJSReceiver, is_spec_object_args, pos); // %_IsJSReceiver(temp) ? temp : throw_expression Expression* is_object_conditional = factory()->NewConditional( is_spec_object_call, factory()->NewVariableProxy(temp), factory()->NewSmiLiteral(1, pos), pos); // temp === undefined Expression* is_undefined = factory()->NewCompareOperation( Token::EQ_STRICT, assign, factory()->NewUndefinedLiteral(RelocInfo::kNoPosition), pos); // is_undefined ? this : is_object_conditional return_value = factory()->NewConditional( is_undefined, ThisExpression(scope_, factory(), pos), is_object_conditional, pos); } // ES6 14.6.1 Static Semantics: IsInTailPosition if (allow_tailcalls() && !is_sloppy(language_mode())) { function_state_->AddExpressionInTailPosition(return_value); } } ExpectSemicolon(CHECK_OK); if (is_generator()) { return_value = BuildIteratorResult(return_value, true); } result = factory()->NewReturnStatement(return_value, loc.beg_pos); Scope* decl_scope = scope_->DeclarationScope(); if (decl_scope->is_script_scope() || decl_scope->is_eval_scope()) { ReportMessageAt(loc, MessageTemplate::kIllegalReturn); *ok = false; return NULL; } return result; } Statement* Parser::ParseWithStatement(ZoneList<const AstRawString*>* labels, bool* ok) { // WithStatement :: // 'with' '(' Expression ')' Statement Expect(Token::WITH, CHECK_OK); int pos = position(); if (is_strict(language_mode())) { ReportMessage(MessageTemplate::kStrictWith); *ok = false; return NULL; } Expect(Token::LPAREN, CHECK_OK); Expression* expr = ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); Scope* with_scope = NewScope(scope_, WITH_SCOPE); Statement* body; { BlockState block_state(&scope_, with_scope); with_scope->set_start_position(scanner()->peek_location().beg_pos); body = ParseScopedStatement(labels, true, CHECK_OK); with_scope->set_end_position(scanner()->location().end_pos); } return factory()->NewWithStatement(with_scope, expr, body, pos); } CaseClause* Parser::ParseCaseClause(bool* default_seen_ptr, bool* ok) { // CaseClause :: // 'case' Expression ':' StatementList // 'default' ':' StatementList Expression* label = NULL; // NULL expression indicates default case if (peek() == Token::CASE) { Expect(Token::CASE, CHECK_OK); label = ParseExpression(true, CHECK_OK); } else { Expect(Token::DEFAULT, CHECK_OK); if (*default_seen_ptr) { ReportMessage(MessageTemplate::kMultipleDefaultsInSwitch); *ok = false; return NULL; } *default_seen_ptr = true; } Expect(Token::COLON, CHECK_OK); int pos = position(); ZoneList<Statement*>* statements = new(zone()) ZoneList<Statement*>(5, zone()); Statement* stat = NULL; while (peek() != Token::CASE && peek() != Token::DEFAULT && peek() != Token::RBRACE) { stat = ParseStatementListItem(CHECK_OK); statements->Add(stat, zone()); } return factory()->NewCaseClause(label, statements, pos); } Statement* Parser::ParseSwitchStatement(ZoneList<const AstRawString*>* labels, bool* ok) { // SwitchStatement :: // 'switch' '(' Expression ')' '{' CaseClause* '}' // In order to get the CaseClauses to execute in their own lexical scope, // but without requiring downstream code to have special scope handling // code for switch statements, desugar into blocks as follows: // { // To group the statements--harmless to evaluate Expression in scope // .tag_variable = Expression; // { // To give CaseClauses a scope // switch (.tag_variable) { CaseClause* } // } // } Block* switch_block = factory()->NewBlock(NULL, 2, false, RelocInfo::kNoPosition); int switch_pos = peek_position(); Expect(Token::SWITCH, CHECK_OK); Expect(Token::LPAREN, CHECK_OK); Expression* tag = ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); Variable* tag_variable = scope_->NewTemporary(ast_value_factory()->dot_switch_tag_string()); Assignment* tag_assign = factory()->NewAssignment( Token::ASSIGN, factory()->NewVariableProxy(tag_variable), tag, tag->position()); Statement* tag_statement = factory()->NewExpressionStatement(tag_assign, RelocInfo::kNoPosition); switch_block->statements()->Add(tag_statement, zone()); // make statement: undefined; // This is needed so the tag isn't returned as the value, in case the switch // statements don't have a value. switch_block->statements()->Add( factory()->NewExpressionStatement( factory()->NewUndefinedLiteral(RelocInfo::kNoPosition), RelocInfo::kNoPosition), zone()); Block* cases_block = factory()->NewBlock(NULL, 1, false, RelocInfo::kNoPosition); Scope* cases_scope = NewScope(scope_, BLOCK_SCOPE); cases_scope->SetNonlinear(); SwitchStatement* switch_statement = factory()->NewSwitchStatement(labels, switch_pos); cases_scope->set_start_position(scanner()->location().beg_pos); { BlockState cases_block_state(&scope_, cases_scope); Target target(&this->target_stack_, switch_statement); Expression* tag_read = factory()->NewVariableProxy(tag_variable); bool default_seen = false; ZoneList<CaseClause*>* cases = new (zone()) ZoneList<CaseClause*>(4, zone()); Expect(Token::LBRACE, CHECK_OK); while (peek() != Token::RBRACE) { CaseClause* clause = ParseCaseClause(&default_seen, CHECK_OK); cases->Add(clause, zone()); } switch_statement->Initialize(tag_read, cases); cases_block->statements()->Add(switch_statement, zone()); } Expect(Token::RBRACE, CHECK_OK); cases_scope->set_end_position(scanner()->location().end_pos); cases_scope = cases_scope->FinalizeBlockScope(); cases_block->set_scope(cases_scope); switch_block->statements()->Add(cases_block, zone()); return switch_block; } Statement* Parser::ParseThrowStatement(bool* ok) { // ThrowStatement :: // 'throw' Expression ';' Expect(Token::THROW, CHECK_OK); int pos = position(); if (scanner()->HasAnyLineTerminatorBeforeNext()) { ReportMessage(MessageTemplate::kNewlineAfterThrow); *ok = false; return NULL; } Expression* exception = ParseExpression(true, CHECK_OK); ExpectSemicolon(CHECK_OK); return factory()->NewExpressionStatement( factory()->NewThrow(exception, pos), pos); } class Parser::DontCollectExpressionsInTailPositionScope { public: DontCollectExpressionsInTailPositionScope( Parser::FunctionState* function_state) : function_state_(function_state), old_value_(function_state->collect_expressions_in_tail_position()) { function_state->set_collect_expressions_in_tail_position(false); } ~DontCollectExpressionsInTailPositionScope() { function_state_->set_collect_expressions_in_tail_position(old_value_); } private: Parser::FunctionState* function_state_; bool old_value_; }; // Collects all return expressions at tail call position in this scope // to a separate list. class Parser::CollectExpressionsInTailPositionToListScope { public: CollectExpressionsInTailPositionToListScope( Parser::FunctionState* function_state, List<Expression*>* list) : function_state_(function_state), list_(list) { function_state->expressions_in_tail_position().Swap(list_); } ~CollectExpressionsInTailPositionToListScope() { function_state_->expressions_in_tail_position().Swap(list_); } private: Parser::FunctionState* function_state_; List<Expression*>* list_; }; TryStatement* Parser::ParseTryStatement(bool* ok) { // TryStatement :: // 'try' Block Catch // 'try' Block Finally // 'try' Block Catch Finally // // Catch :: // 'catch' '(' Identifier ')' Block // // Finally :: // 'finally' Block Expect(Token::TRY, CHECK_OK); int pos = position(); Block* try_block; { DontCollectExpressionsInTailPositionScope no_tail_calls(function_state_); try_block = ParseBlock(NULL, CHECK_OK); } Token::Value tok = peek(); if (tok != Token::CATCH && tok != Token::FINALLY) { ReportMessage(MessageTemplate::kNoCatchOrFinally); *ok = false; return NULL; } Scope* catch_scope = NULL; Variable* catch_variable = NULL; Block* catch_block = NULL; List<Expression*> expressions_in_tail_position_in_catch_block; if (tok == Token::CATCH) { Consume(Token::CATCH); Expect(Token::LPAREN, CHECK_OK); catch_scope = NewScope(scope_, CATCH_SCOPE); catch_scope->set_start_position(scanner()->location().beg_pos); ExpressionClassifier pattern_classifier(this); Expression* pattern = ParsePrimaryExpression(&pattern_classifier, CHECK_OK); ValidateBindingPattern(&pattern_classifier, CHECK_OK); const AstRawString* name = ast_value_factory()->dot_catch_string(); bool is_simple = pattern->IsVariableProxy(); if (is_simple) { auto proxy = pattern->AsVariableProxy(); scope_->RemoveUnresolved(proxy); name = proxy->raw_name(); } catch_variable = catch_scope->DeclareLocal(name, VAR, kCreatedInitialized, Variable::NORMAL); Expect(Token::RPAREN, CHECK_OK); { CollectExpressionsInTailPositionToListScope collect_expressions_in_tail_position_scope( function_state_, &expressions_in_tail_position_in_catch_block); BlockState block_state(&scope_, catch_scope); // TODO(adamk): Make a version of ParseBlock that takes a scope and // a block. catch_block = factory()->NewBlock(nullptr, 16, false, RelocInfo::kNoPosition); Scope* block_scope = NewScope(scope_, BLOCK_SCOPE); block_scope->set_start_position(scanner()->location().beg_pos); { BlockState block_state(&scope_, block_scope); Target target(&this->target_stack_, catch_block); if (!is_simple) { DeclarationDescriptor descriptor; descriptor.declaration_kind = DeclarationDescriptor::NORMAL; descriptor.parser = this; descriptor.scope = scope_; descriptor.hoist_scope = nullptr; descriptor.mode = LET; descriptor.declaration_pos = pattern->position(); descriptor.initialization_pos = pattern->position(); DeclarationParsingResult::Declaration decl( pattern, pattern->position(), factory()->NewVariableProxy(catch_variable)); Block* init_block = factory()->NewBlock(nullptr, 8, true, RelocInfo::kNoPosition); PatternRewriter::DeclareAndInitializeVariables( init_block, &descriptor, &decl, nullptr, CHECK_OK); catch_block->statements()->Add(init_block, zone()); } Expect(Token::LBRACE, CHECK_OK); while (peek() != Token::RBRACE) { Statement* stat = ParseStatementListItem(CHECK_OK); if (stat && !stat->IsEmpty()) { catch_block->statements()->Add(stat, zone()); } } Consume(Token::RBRACE); } block_scope->set_end_position(scanner()->location().end_pos); block_scope = block_scope->FinalizeBlockScope(); catch_block->set_scope(block_scope); } catch_scope->set_end_position(scanner()->location().end_pos); tok = peek(); } Block* finally_block = NULL; DCHECK(tok == Token::FINALLY || catch_block != NULL); if (tok == Token::FINALLY) { Consume(Token::FINALLY); finally_block = ParseBlock(NULL, CHECK_OK); } // Simplify the AST nodes by converting: // 'try B0 catch B1 finally B2' // to: // 'try { try B0 catch B1 } finally B2' if (catch_block != NULL && finally_block != NULL) { // If we have both, create an inner try/catch. DCHECK(catch_scope != NULL && catch_variable != NULL); TryCatchStatement* statement = factory()->NewTryCatchStatement(try_block, catch_scope, catch_variable, catch_block, RelocInfo::kNoPosition); try_block = factory()->NewBlock(NULL, 1, false, RelocInfo::kNoPosition); try_block->statements()->Add(statement, zone()); catch_block = NULL; // Clear to indicate it's been handled. } TryStatement* result = NULL; if (catch_block != NULL) { // For a try-catch construct append return expressions from the catch block // to the list of return expressions. function_state_->expressions_in_tail_position().AddAll( expressions_in_tail_position_in_catch_block); DCHECK(finally_block == NULL); DCHECK(catch_scope != NULL && catch_variable != NULL); result = factory()->NewTryCatchStatement(try_block, catch_scope, catch_variable, catch_block, pos); } else { DCHECK(finally_block != NULL); result = factory()->NewTryFinallyStatement(try_block, finally_block, pos); } return result; } DoWhileStatement* Parser::ParseDoWhileStatement( ZoneList<const AstRawString*>* labels, bool* ok) { // DoStatement :: // 'do' Statement 'while' '(' Expression ')' ';' DoWhileStatement* loop = factory()->NewDoWhileStatement(labels, peek_position()); Target target(&this->target_stack_, loop); Expect(Token::DO, CHECK_OK); Statement* body = ParseScopedStatement(NULL, true, CHECK_OK); Expect(Token::WHILE, CHECK_OK); Expect(Token::LPAREN, CHECK_OK); Expression* cond = ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); // Allow do-statements to be terminated with and without // semi-colons. This allows code such as 'do;while(0)return' to // parse, which would not be the case if we had used the // ExpectSemicolon() functionality here. if (peek() == Token::SEMICOLON) Consume(Token::SEMICOLON); if (loop != NULL) loop->Initialize(cond, body); return loop; } WhileStatement* Parser::ParseWhileStatement( ZoneList<const AstRawString*>* labels, bool* ok) { // WhileStatement :: // 'while' '(' Expression ')' Statement WhileStatement* loop = factory()->NewWhileStatement(labels, peek_position()); Target target(&this->target_stack_, loop); Expect(Token::WHILE, CHECK_OK); Expect(Token::LPAREN, CHECK_OK); Expression* cond = ParseExpression(true, CHECK_OK); Expect(Token::RPAREN, CHECK_OK); Statement* body = ParseScopedStatement(NULL, true, CHECK_OK); if (loop != NULL) loop->Initialize(cond, body); return loop; } // !%_IsJSReceiver(result = iterator.next()) && // %ThrowIteratorResultNotAnObject(result) Expression* Parser::BuildIteratorNextResult(Expression* iterator, Variable* result, int pos) { Expression* next_literal = factory()->NewStringLiteral( ast_value_factory()->next_string(), RelocInfo::kNoPosition); Expression* next_property = factory()->NewProperty(iterator, next_literal, RelocInfo::kNoPosition); ZoneList<Expression*>* next_arguments = new (zone()) ZoneList<Expression*>(0, zone()); Expression* next_call = factory()->NewCall(next_property, next_arguments, pos); Expression* result_proxy = factory()->NewVariableProxy(result); Expression* left = factory()->NewAssignment(Token::ASSIGN, result_proxy, next_call, pos); // %_IsJSReceiver(...) ZoneList<Expression*>* is_spec_object_args = new (zone()) ZoneList<Expression*>(1, zone()); is_spec_object_args->Add(left, zone()); Expression* is_spec_object_call = factory()->NewCallRuntime( Runtime::kInlineIsJSReceiver, is_spec_object_args, pos); // %ThrowIteratorResultNotAnObject(result) Expression* result_proxy_again = factory()->NewVariableProxy(result); ZoneList<Expression*>* throw_arguments = new (zone()) ZoneList<Expression*>(1, zone()); throw_arguments->Add(result_proxy_again, zone()); Expression* throw_call = factory()->NewCallRuntime( Runtime::kThrowIteratorResultNotAnObject, throw_arguments, pos); return factory()->NewBinaryOperation( Token::AND, factory()->NewUnaryOperation(Token::NOT, is_spec_object_call, pos), throw_call, pos); } void Parser::InitializeForEachStatement(ForEachStatement* stmt, Expression* each, Expression* subject, Statement* body, int each_keyword_pos) { ForOfStatement* for_of = stmt->AsForOfStatement(); if (for_of != NULL) { InitializeForOfStatement(for_of, each, subject, body, each_keyword_pos); } else { if (each->IsArrayLiteral() || each->IsObjectLiteral()) { Variable* temp = scope_->NewTemporary(ast_value_factory()->empty_string()); VariableProxy* temp_proxy = factory()->NewVariableProxy(temp); Expression* assign_each = PatternRewriter::RewriteDestructuringAssignment( this, factory()->NewAssignment(Token::ASSIGN, each, temp_proxy, RelocInfo::kNoPosition), scope_); auto block = factory()->NewBlock(nullptr, 2, false, RelocInfo::kNoPosition); block->statements()->Add(factory()->NewExpressionStatement( assign_each, RelocInfo::kNoPosition), zone()); block->statements()->Add(body, zone()); body = block; each = factory()->NewVariableProxy(temp); } stmt->Initialize(each, subject, body); } } void Parser::InitializeForOfStatement(ForOfStatement* for_of, Expression* each, Expression* iterable, Statement* body, int next_result_pos) { Variable* iterator = scope_->NewTemporary(ast_value_factory()->dot_iterator_string()); Variable* result = scope_->NewTemporary(ast_value_factory()->dot_result_string()); Expression* assign_iterator; Expression* next_result; Expression* result_done; Expression* assign_each; int get_iterator_pos = iterable->position(); // iterator = iterable[Symbol.iterator]() assign_iterator = factory()->NewAssignment( Token::ASSIGN, factory()->NewVariableProxy(iterator), GetIterator(iterable, factory(), get_iterator_pos), iterable->position()); // !%_IsJSReceiver(result = iterator.next()) && // %ThrowIteratorResultNotAnObject(result) { // result = iterator.next() Expression* iterator_proxy = factory()->NewVariableProxy(iterator); next_result = BuildIteratorNextResult(iterator_proxy, result, next_result_pos); } // result.done { Expression* done_literal = factory()->NewStringLiteral( ast_value_factory()->done_string(), RelocInfo::kNoPosition); Expression* result_proxy = factory()->NewVariableProxy(result); result_done = factory()->NewProperty(result_proxy, done_literal, RelocInfo::kNoPosition); } // each = result.value { Expression* value_literal = factory()->NewStringLiteral( ast_value_factory()->value_string(), RelocInfo::kNoPosition); Expression* result_proxy = factory()->NewVariableProxy(result); Expression* result_value = factory()->NewProperty( result_proxy, value_literal, RelocInfo::kNoPosition); assign_each = factory()->NewAssignment(Token::ASSIGN, each, result_value, RelocInfo::kNoPosition); if (each->IsArrayLiteral() || each->IsObjectLiteral()) { assign_each = PatternRewriter::RewriteDestructuringAssignment( this, assign_each->AsAssignment(), scope_); } } for_of->Initialize(each, iterable, body, iterator, assign_iterator, next_result, result_done, assign_each); } Statement* Parser::DesugarLexicalBindingsInForStatement( Scope* inner_scope, VariableMode mode, ZoneList<const AstRawString*>* names, ForStatement* loop, Statement* init, Expression* cond, Statement* next, Statement* body, bool* ok) { // ES6 13.7.4.8 specifies that on each loop iteration the let variables are // copied into a new environment. Moreover, the "next" statement must be // evaluated not in the environment of the just completed iteration but in // that of the upcoming one. We achieve this with the following desugaring. // Extra care is needed to preserve the completion value of the original loop. // // We are given a for statement of the form // // labels: for (let/const x = i; cond; next) body // // and rewrite it as follows. Here we write {{ ... }} for init-blocks, ie., // blocks whose ignore_completion_value_ flag is set. // // { // let/const x = i; // temp_x = x; // first = 1; // undefined; // outer: for (;;) { // let/const x = temp_x; // {{ if (first == 1) { // first = 0; // } else { // next; // } // flag = 1; // if (!cond) break; // }} // labels: for (; flag == 1; flag = 0, temp_x = x) { // body // } // {{ if (flag == 1) // Body used break. // break; // }} // } // } DCHECK(names->length() > 0); ZoneList<Variable*> temps(names->length(), zone()); Block* outer_block = factory()->NewBlock(NULL, names->length() + 4, false, RelocInfo::kNoPosition); // Add statement: let/const x = i. outer_block->statements()->Add(init, zone()); const AstRawString* temp_name = ast_value_factory()->dot_for_string(); // For each lexical variable x: // make statement: temp_x = x. for (int i = 0; i < names->length(); i++) { VariableProxy* proxy = NewUnresolved(names->at(i), LET); Variable* temp = scope_->NewTemporary(temp_name); VariableProxy* temp_proxy = factory()->NewVariableProxy(temp); Assignment* assignment = factory()->NewAssignment( Token::ASSIGN, temp_proxy, proxy, RelocInfo::kNoPosition); Statement* assignment_statement = factory()->NewExpressionStatement( assignment, RelocInfo::kNoPosition); outer_block->statements()->Add(assignment_statement, zone()); temps.Add(temp, zone()); } Variable* first = NULL; // Make statement: first = 1. if (next) { first = scope_->NewTemporary(temp_name); VariableProxy* first_proxy = factory()->NewVariableProxy(first); Expression* const1 = factory()->NewSmiLiteral(1, RelocInfo::kNoPosition); Assignment* assignment = factory()->NewAssignment( Token::ASSIGN, first_proxy, const1, RelocInfo::kNoPosition); Statement* assignment_statement = factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition); outer_block->statements()->Add(assignment_statement, zone()); } // make statement: undefined; outer_block->statements()->Add( factory()->NewExpressionStatement( factory()->NewUndefinedLiteral(RelocInfo::kNoPosition), RelocInfo::kNoPosition), zone()); // Make statement: outer: for (;;) // Note that we don't actually create the label, or set this loop up as an // explicit break target, instead handing it directly to those nodes that // need to know about it. This should be safe because we don't run any code // in this function that looks up break targets. ForStatement* outer_loop = factory()->NewForStatement(NULL, RelocInfo::kNoPosition); outer_block->statements()->Add(outer_loop, zone()); outer_block->set_scope(scope_); Block* inner_block = factory()->NewBlock(NULL, 3, false, RelocInfo::kNoPosition); { BlockState block_state(&scope_, inner_scope); Block* ignore_completion_block = factory()->NewBlock( NULL, names->length() + 3, true, RelocInfo::kNoPosition); ZoneList<Variable*> inner_vars(names->length(), zone()); // For each let variable x: // make statement: let/const x = temp_x. for (int i = 0; i < names->length(); i++) { VariableProxy* proxy = NewUnresolved(names->at(i), mode); Declaration* declaration = factory()->NewVariableDeclaration( proxy, mode, scope_, RelocInfo::kNoPosition); Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK); inner_vars.Add(declaration->proxy()->var(), zone()); VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i)); Assignment* assignment = factory()->NewAssignment( Token::INIT, proxy, temp_proxy, RelocInfo::kNoPosition); Statement* assignment_statement = factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition); DCHECK(init->position() != RelocInfo::kNoPosition); proxy->var()->set_initializer_position(init->position()); ignore_completion_block->statements()->Add(assignment_statement, zone()); } // Make statement: if (first == 1) { first = 0; } else { next; } if (next) { DCHECK(first); Expression* compare = NULL; // Make compare expression: first == 1. { Expression* const1 = factory()->NewSmiLiteral(1, RelocInfo::kNoPosition); VariableProxy* first_proxy = factory()->NewVariableProxy(first); compare = factory()->NewCompareOperation(Token::EQ, first_proxy, const1, RelocInfo::kNoPosition); } Statement* clear_first = NULL; // Make statement: first = 0. { VariableProxy* first_proxy = factory()->NewVariableProxy(first); Expression* const0 = factory()->NewSmiLiteral(0, RelocInfo::kNoPosition); Assignment* assignment = factory()->NewAssignment( Token::ASSIGN, first_proxy, const0, RelocInfo::kNoPosition); clear_first = factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition); } Statement* clear_first_or_next = factory()->NewIfStatement( compare, clear_first, next, RelocInfo::kNoPosition); ignore_completion_block->statements()->Add(clear_first_or_next, zone()); } Variable* flag = scope_->NewTemporary(temp_name); // Make statement: flag = 1. { VariableProxy* flag_proxy = factory()->NewVariableProxy(flag); Expression* const1 = factory()->NewSmiLiteral(1, RelocInfo::kNoPosition); Assignment* assignment = factory()->NewAssignment( Token::ASSIGN, flag_proxy, const1, RelocInfo::kNoPosition); Statement* assignment_statement = factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition); ignore_completion_block->statements()->Add(assignment_statement, zone()); } // Make statement: if (!cond) break. if (cond) { Statement* stop = factory()->NewBreakStatement(outer_loop, RelocInfo::kNoPosition); Statement* noop = factory()->NewEmptyStatement(RelocInfo::kNoPosition); ignore_completion_block->statements()->Add( factory()->NewIfStatement(cond, noop, stop, cond->position()), zone()); } inner_block->statements()->Add(ignore_completion_block, zone()); // Make cond expression for main loop: flag == 1. Expression* flag_cond = NULL; { Expression* const1 = factory()->NewSmiLiteral(1, RelocInfo::kNoPosition); VariableProxy* flag_proxy = factory()->NewVariableProxy(flag); flag_cond = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1, RelocInfo::kNoPosition); } // Create chain of expressions "flag = 0, temp_x = x, ..." Statement* compound_next_statement = NULL; { Expression* compound_next = NULL; // Make expression: flag = 0. { VariableProxy* flag_proxy = factory()->NewVariableProxy(flag); Expression* const0 = factory()->NewSmiLiteral(0, RelocInfo::kNoPosition); compound_next = factory()->NewAssignment( Token::ASSIGN, flag_proxy, const0, RelocInfo::kNoPosition); } // Make the comma-separated list of temp_x = x assignments. int inner_var_proxy_pos = scanner()->location().beg_pos; for (int i = 0; i < names->length(); i++) { VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i)); VariableProxy* proxy = factory()->NewVariableProxy(inner_vars.at(i), inner_var_proxy_pos); Assignment* assignment = factory()->NewAssignment( Token::ASSIGN, temp_proxy, proxy, RelocInfo::kNoPosition); compound_next = factory()->NewBinaryOperation( Token::COMMA, compound_next, assignment, RelocInfo::kNoPosition); } compound_next_statement = factory()->NewExpressionStatement( compound_next, RelocInfo::kNoPosition); } // Make statement: labels: for (; flag == 1; flag = 0, temp_x = x) // Note that we re-use the original loop node, which retains its labels // and ensures that any break or continue statements in body point to // the right place. loop->Initialize(NULL, flag_cond, compound_next_statement, body); inner_block->statements()->Add(loop, zone()); // Make statement: {{if (flag == 1) break;}} { Expression* compare = NULL; // Make compare expresion: flag == 1. { Expression* const1 = factory()->NewSmiLiteral(1, RelocInfo::kNoPosition); VariableProxy* flag_proxy = factory()->NewVariableProxy(flag); compare = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1, RelocInfo::kNoPosition); } Statement* stop = factory()->NewBreakStatement(outer_loop, RelocInfo::kNoPosition); Statement* empty = factory()->NewEmptyStatement(RelocInfo::kNoPosition); Statement* if_flag_break = factory()->NewIfStatement( compare, stop, empty, RelocInfo::kNoPosition); Block* ignore_completion_block = factory()->NewBlock(NULL, 1, true, RelocInfo::kNoPosition); ignore_completion_block->statements()->Add(if_flag_break, zone()); inner_block->statements()->Add(ignore_completion_block, zone()); } inner_scope->set_end_position(scanner()->location().end_pos); inner_block->set_scope(inner_scope); } outer_loop->Initialize(NULL, NULL, NULL, inner_block); return outer_block; } Statement* Parser::ParseScopedStatement(ZoneList<const AstRawString*>* labels, bool legacy, bool* ok) { if (is_strict(language_mode()) || peek() != Token::FUNCTION || (legacy && allow_harmony_restrictive_declarations())) { return ParseSubStatement(labels, kDisallowLabelledFunctionStatement, ok); } else { if (legacy) { ++use_counts_[v8::Isolate::kLegacyFunctionDeclaration]; } // Make a block around the statement for a lexical binding // is introduced by a FunctionDeclaration. Scope* body_scope = NewScope(scope_, BLOCK_SCOPE); body_scope->set_start_position(scanner()->location().beg_pos); BlockState block_state(&scope_, body_scope); Block* block = factory()->NewBlock(NULL, 1, false, RelocInfo::kNoPosition); Statement* body = ParseFunctionDeclaration(NULL, CHECK_OK); block->statements()->Add(body, zone()); body_scope->set_end_position(scanner()->location().end_pos); body_scope = body_scope->FinalizeBlockScope(); block->set_scope(body_scope); return block; } } Statement* Parser::ParseForStatement(ZoneList<const AstRawString*>* labels, bool* ok) { int stmt_pos = peek_position(); Statement* init = NULL; ZoneList<const AstRawString*> lexical_bindings(1, zone()); // Create an in-between scope for let-bound iteration variables. Scope* for_scope = NewScope(scope_, BLOCK_SCOPE); BlockState block_state(&scope_, for_scope); Expect(Token::FOR, CHECK_OK); Expect(Token::LPAREN, CHECK_OK); for_scope->set_start_position(scanner()->location().beg_pos); for_scope->set_is_hidden(); DeclarationParsingResult parsing_result; if (peek() != Token::SEMICOLON) { if (peek() == Token::VAR || peek() == Token::CONST || (peek() == Token::LET && IsNextLetKeyword())) { ParseVariableDeclarations(kForStatement, &parsing_result, nullptr, CHECK_OK); ForEachStatement::VisitMode mode = ForEachStatement::ENUMERATE; int each_beg_pos = scanner()->location().beg_pos; int each_end_pos = scanner()->location().end_pos; if (CheckInOrOf(&mode, ok)) { if (!*ok) return nullptr; if (parsing_result.declarations.length() != 1) { ParserTraits::ReportMessageAt( parsing_result.bindings_loc, MessageTemplate::kForInOfLoopMultiBindings, ForEachStatement::VisitModeString(mode)); *ok = false; return nullptr; } DeclarationParsingResult::Declaration& decl = parsing_result.declarations[0]; if (parsing_result.first_initializer_loc.IsValid() && (is_strict(language_mode()) || mode == ForEachStatement::ITERATE || IsLexicalVariableMode(parsing_result.descriptor.mode) || !decl.pattern->IsVariableProxy())) { ParserTraits::ReportMessageAt( parsing_result.first_initializer_loc, MessageTemplate::kForInOfLoopInitializer, ForEachStatement::VisitModeString(mode)); *ok = false; return nullptr; } Block* init_block = nullptr; // special case for legacy for (var/const x =.... in) if (!IsLexicalVariableMode(parsing_result.descriptor.mode) && decl.pattern->IsVariableProxy() && decl.initializer != nullptr) { ++use_counts_[v8::Isolate::kForInInitializer]; if (FLAG_harmony_for_in) { // TODO(rossberg): This error is not currently generated in the // preparser, because that would lose some of the use counts // recorded above. Once either the use counter or the flag is // removed, the preparser should be adjusted. ParserTraits::ReportMessageAt( parsing_result.first_initializer_loc, MessageTemplate::kForInOfLoopInitializer, ForEachStatement::VisitModeString(mode)); *ok = false; return nullptr; } const AstRawString* name = decl.pattern->AsVariableProxy()->raw_name(); VariableProxy* single_var = scope_->NewUnresolved( factory(), name, Variable::NORMAL, each_beg_pos, each_end_pos); init_block = factory()->NewBlock( nullptr, 2, true, parsing_result.descriptor.declaration_pos); init_block->statements()->Add( factory()->NewExpressionStatement( factory()->NewAssignment(Token::ASSIGN, single_var, decl.initializer, RelocInfo::kNoPosition), RelocInfo::kNoPosition), zone()); } // Rewrite a for-in/of statement of the form // // for (let/const/var x in/of e) b // // into // // { // <let x' be a temporary variable> // for (x' in/of e) { // let/const/var x; // x = x'; // b; // } // let x; // for TDZ // } Variable* temp = scope_->NewTemporary(ast_value_factory()->dot_for_string()); ForEachStatement* loop = factory()->NewForEachStatement(mode, labels, stmt_pos); Target target(&this->target_stack_, loop); int each_keyword_position = scanner()->location().beg_pos; Expression* enumerable; if (mode == ForEachStatement::ITERATE) { ExpressionClassifier classifier(this); enumerable = ParseAssignmentExpression(true, &classifier, CHECK_OK); RewriteNonPattern(&classifier, CHECK_OK); } else { enumerable = ParseExpression(true, CHECK_OK); } Expect(Token::RPAREN, CHECK_OK); Scope* body_scope = NewScope(scope_, BLOCK_SCOPE); body_scope->set_start_position(scanner()->location().beg_pos); Block* body_block = factory()->NewBlock(NULL, 3, false, RelocInfo::kNoPosition); { BlockState block_state(&scope_, body_scope); Statement* body = ParseScopedStatement(NULL, true, CHECK_OK); auto each_initialization_block = factory()->NewBlock(nullptr, 1, true, RelocInfo::kNoPosition); { auto descriptor = parsing_result.descriptor; descriptor.declaration_pos = RelocInfo::kNoPosition; descriptor.initialization_pos = RelocInfo::kNoPosition; decl.initializer = factory()->NewVariableProxy(temp); PatternRewriter::DeclareAndInitializeVariables( each_initialization_block, &descriptor, &decl, IsLexicalVariableMode(descriptor.mode) ? &lexical_bindings : nullptr, CHECK_OK); } body_block->statements()->Add(each_initialization_block, zone()); body_block->statements()->Add(body, zone()); VariableProxy* temp_proxy = factory()->NewVariableProxy(temp, each_beg_pos, each_end_pos); InitializeForEachStatement(loop, temp_proxy, enumerable, body_block, each_keyword_position); } body_scope->set_end_position(scanner()->location().end_pos); body_scope = body_scope->FinalizeBlockScope(); body_block->set_scope(body_scope); // Create a TDZ for any lexically-bound names. if (IsLexicalVariableMode(parsing_result.descriptor.mode)) { DCHECK_NULL(init_block); init_block = factory()->NewBlock(nullptr, 1, false, RelocInfo::kNoPosition); for (int i = 0; i < lexical_bindings.length(); ++i) { // TODO(adamk): This needs to be some sort of special // INTERNAL variable that's invisible to the debugger // but visible to everything else. VariableProxy* tdz_proxy = NewUnresolved(lexical_bindings[i], LET); Declaration* tdz_decl = factory()->NewVariableDeclaration( tdz_proxy, LET, scope_, RelocInfo::kNoPosition); Variable* tdz_var = Declare( tdz_decl, DeclarationDescriptor::NORMAL, true, CHECK_OK); tdz_var->set_initializer_position(position()); } } Statement* final_loop = loop->IsForOfStatement() ? FinalizeForOfStatement( loop->AsForOfStatement(), RelocInfo::kNoPosition) : loop; for_scope->set_end_position(scanner()->location().end_pos); for_scope = for_scope->FinalizeBlockScope(); // Parsed for-in loop w/ variable declarations. if (init_block != nullptr) { init_block->statements()->Add(final_loop, zone()); init_block->set_scope(for_scope); return init_block; } else { DCHECK_NULL(for_scope); return final_loop; } } else { init = parsing_result.BuildInitializationBlock( IsLexicalVariableMode(parsing_result.descriptor.mode) ? &lexical_bindings : nullptr, CHECK_OK); } } else { int lhs_beg_pos = peek_position(); ExpressionClassifier classifier(this); Expression* expression = ParseExpression(false, &classifier, CHECK_OK); int lhs_end_pos = scanner()->location().end_pos; ForEachStatement::VisitMode mode = ForEachStatement::ENUMERATE; bool is_for_each = CheckInOrOf(&mode, ok); if (!*ok) return nullptr; bool is_destructuring = is_for_each && (expression->IsArrayLiteral() || expression->IsObjectLiteral()); if (is_destructuring) { ValidateAssignmentPattern(&classifier, CHECK_OK); } else { RewriteNonPattern(&classifier, CHECK_OK); } if (is_for_each) { if (!is_destructuring) { expression = this->CheckAndRewriteReferenceExpression( expression, lhs_beg_pos, lhs_end_pos, MessageTemplate::kInvalidLhsInFor, kSyntaxError, CHECK_OK); } ForEachStatement* loop = factory()->NewForEachStatement(mode, labels, stmt_pos); Target target(&this->target_stack_, loop); int each_keyword_position = scanner()->location().beg_pos; Expression* enumerable; if (mode == ForEachStatement::ITERATE) { ExpressionClassifier classifier(this); enumerable = ParseAssignmentExpression(true, &classifier, CHECK_OK); RewriteNonPattern(&classifier, CHECK_OK); } else { enumerable = ParseExpression(true, CHECK_OK); } Expect(Token::RPAREN, CHECK_OK); // For legacy compat reasons, give for loops similar treatment to // if statements in allowing a function declaration for a body Statement* body = ParseScopedStatement(NULL, true, CHECK_OK); InitializeForEachStatement(loop, expression, enumerable, body, each_keyword_position); Statement* final_loop = loop->IsForOfStatement() ? FinalizeForOfStatement( loop->AsForOfStatement(), RelocInfo::kNoPosition) : loop; for_scope->set_end_position(scanner()->location().end_pos); for_scope = for_scope->FinalizeBlockScope(); DCHECK(for_scope == nullptr); return final_loop; } else { init = factory()->NewExpressionStatement(expression, lhs_beg_pos); } } } // Standard 'for' loop ForStatement* loop = factory()->NewForStatement(labels, stmt_pos); Target target(&this->target_stack_, loop); // Parsed initializer at this point. Expect(Token::SEMICOLON, CHECK_OK); Expression* cond = NULL; Statement* next = NULL; Statement* body = NULL; // If there are let bindings, then condition and the next statement of the // for loop must be parsed in a new scope. Scope* inner_scope = scope_; if (lexical_bindings.length() > 0) { inner_scope = NewScope(for_scope, BLOCK_SCOPE); inner_scope->set_start_position(scanner()->location().beg_pos); } { BlockState block_state(&scope_, inner_scope); if (peek() != Token::SEMICOLON) { cond = ParseExpression(true, CHECK_OK); } Expect(Token::SEMICOLON, CHECK_OK); if (peek() != Token::RPAREN) { Expression* exp = ParseExpression(true, CHECK_OK); next = factory()->NewExpressionStatement(exp, exp->position()); } Expect(Token::RPAREN, CHECK_OK); body = ParseScopedStatement(NULL, true, CHECK_OK); } Statement* result = NULL; if (lexical_bindings.length() > 0) { BlockState block_state(&scope_, for_scope); result = DesugarLexicalBindingsInForStatement( inner_scope, parsing_result.descriptor.mode, &lexical_bindings, loop, init, cond, next, body, CHECK_OK); for_scope->set_end_position(scanner()->location().end_pos); } else { for_scope->set_end_position(scanner()->location().end_pos); for_scope = for_scope->FinalizeBlockScope(); if (for_scope) { // Rewrite a for statement of the form // for (const x = i; c; n) b // // into // // { // const x = i; // for (; c; n) b // } // // or, desugar // for (; c; n) b // into // { // for (; c; n) b // } // just in case b introduces a lexical binding some other way, e.g., if b // is a FunctionDeclaration. Block* block = factory()->NewBlock(NULL, 2, false, RelocInfo::kNoPosition); if (init != nullptr) { block->statements()->Add(init, zone()); } block->statements()->Add(loop, zone()); block->set_scope(for_scope); loop->Initialize(NULL, cond, next, body); result = block; } else { loop->Initialize(init, cond, next, body); result = loop; } } return result; } DebuggerStatement* Parser::ParseDebuggerStatement(bool* ok) { // In ECMA-262 'debugger' is defined as a reserved keyword. In some browser // contexts this is used as a statement which invokes the debugger as i a // break point is present. // DebuggerStatement :: // 'debugger' ';' int pos = peek_position(); Expect(Token::DEBUGGER, CHECK_OK); ExpectSemicolon(CHECK_OK); return factory()->NewDebuggerStatement(pos); } bool CompileTimeValue::IsCompileTimeValue(Expression* expression) { if (expression->IsLiteral()) return true; MaterializedLiteral* lit = expression->AsMaterializedLiteral(); return lit != NULL && lit->is_simple(); } Handle<FixedArray> CompileTimeValue::GetValue(Isolate* isolate, Expression* expression) { Factory* factory = isolate->factory(); DCHECK(IsCompileTimeValue(expression)); Handle<FixedArray> result = factory->NewFixedArray(2, TENURED); ObjectLiteral* object_literal = expression->AsObjectLiteral(); if (object_literal != NULL) { DCHECK(object_literal->is_simple()); if (object_literal->fast_elements()) { result->set(kLiteralTypeSlot, Smi::FromInt(OBJECT_LITERAL_FAST_ELEMENTS)); } else { result->set(kLiteralTypeSlot, Smi::FromInt(OBJECT_LITERAL_SLOW_ELEMENTS)); } result->set(kElementsSlot, *object_literal->constant_properties()); } else { ArrayLiteral* array_literal = expression->AsArrayLiteral(); DCHECK(array_literal != NULL && array_literal->is_simple()); result->set(kLiteralTypeSlot, Smi::FromInt(ARRAY_LITERAL)); result->set(kElementsSlot, *array_literal->constant_elements()); } return result; } CompileTimeValue::LiteralType CompileTimeValue::GetLiteralType( Handle<FixedArray> value) { Smi* literal_type = Smi::cast(value->get(kLiteralTypeSlot)); return static_cast<LiteralType>(literal_type->value()); } Handle<FixedArray> CompileTimeValue::GetElements(Handle<FixedArray> value) { return Handle<FixedArray>(FixedArray::cast(value->get(kElementsSlot))); } void ParserTraits::ParseArrowFunctionFormalParameters( ParserFormalParameters* parameters, Expression* expr, int end_pos, bool* ok) { // ArrowFunctionFormals :: // Binary(Token::COMMA, NonTailArrowFunctionFormals, Tail) // Tail // NonTailArrowFunctionFormals :: // Binary(Token::COMMA, NonTailArrowFunctionFormals, VariableProxy) // VariableProxy // Tail :: // VariableProxy // Spread(VariableProxy) // // As we need to visit the parameters in left-to-right order, we recurse on // the left-hand side of comma expressions. // if (expr->IsBinaryOperation()) { BinaryOperation* binop = expr->AsBinaryOperation(); // The classifier has already run, so we know that the expression is a valid // arrow function formals production. DCHECK_EQ(binop->op(), Token::COMMA); Expression* left = binop->left(); Expression* right = binop->right(); int comma_pos = binop->position(); ParseArrowFunctionFormalParameters(parameters, left, comma_pos, ok); if (!*ok) return; // LHS of comma expression should be unparenthesized. expr = right; } // Only the right-most expression may be a rest parameter. DCHECK(!parameters->has_rest); bool is_rest = expr->IsSpread(); if (is_rest) { expr = expr->AsSpread()->expression(); parameters->has_rest = true; } if (parameters->is_simple) { parameters->is_simple = !is_rest && expr->IsVariableProxy(); } Expression* initializer = nullptr; if (expr->IsVariableProxy()) { // When the formal parameter was originally seen, it was parsed as a // VariableProxy and recorded as unresolved in the scope. Here we undo that // parse-time side-effect for parameters that are single-names (not // patterns; for patterns that happens uniformly in // PatternRewriter::VisitVariableProxy). parser_->scope_->RemoveUnresolved(expr->AsVariableProxy()); } else if (expr->IsAssignment()) { Assignment* assignment = expr->AsAssignment(); DCHECK(!assignment->is_compound()); initializer = assignment->value(); expr = assignment->target(); // TODO(adamk): Only call this if necessary. RewriteParameterInitializerScope(parser_->stack_limit(), initializer, parser_->scope_, parameters->scope); } AddFormalParameter(parameters, expr, initializer, end_pos, is_rest); } DoExpression* Parser::ParseDoExpression(bool* ok) { // AssignmentExpression :: // do '{' StatementList '}' int pos = peek_position(); Expect(Token::DO, CHECK_OK); Variable* result = scope_->NewTemporary(ast_value_factory()->dot_result_string()); Block* block = ParseBlock(nullptr, false, CHECK_OK); DoExpression* expr = factory()->NewDoExpression(block, result, pos); if (!Rewriter::Rewrite(this, expr, ast_value_factory())) { *ok = false; return nullptr; } block->set_scope(block->scope()->FinalizeBlockScope()); return expr; } void ParserTraits::ParseArrowFunctionFormalParameterList( ParserFormalParameters* parameters, Expression* expr, const Scanner::Location& params_loc, Scanner::Location* duplicate_loc, bool* ok) { if (expr->IsEmptyParentheses()) return; ParseArrowFunctionFormalParameters(parameters, expr, params_loc.end_pos, ok); if (!*ok) return; if (parameters->Arity() > Code::kMaxArguments) { ReportMessageAt(params_loc, MessageTemplate::kMalformedArrowFunParamList); *ok = false; return; } Type::ExpressionClassifier classifier(parser_); if (!parameters->is_simple) { classifier.RecordNonSimpleParameter(); } for (int i = 0; i < parameters->Arity(); ++i) { auto parameter = parameters->at(i); DeclareFormalParameter(parameters->scope, parameter, &classifier); if (!duplicate_loc->IsValid()) { *duplicate_loc = classifier.duplicate_formal_parameter_error().location; } } DCHECK_EQ(parameters->is_simple, parameters->scope->has_simple_parameters()); } void ParserTraits::ReindexLiterals(const ParserFormalParameters& parameters) { if (parser_->function_state_->materialized_literal_count() > 0) { AstLiteralReindexer reindexer; for (const auto p : parameters.params) { if (p.pattern != nullptr) reindexer.Reindex(p.pattern); if (p.initializer != nullptr) reindexer.Reindex(p.initializer); } DCHECK(reindexer.count() <= parser_->function_state_->materialized_literal_count()); } } FunctionLiteral* Parser::ParseFunctionLiteral( const AstRawString* function_name, Scanner::Location function_name_location, FunctionNameValidity function_name_validity, FunctionKind kind, int function_token_pos, FunctionLiteral::FunctionType function_type, LanguageMode language_mode, bool* ok) { // Function :: // '(' FormalParameterList? ')' '{' FunctionBody '}' // // Getter :: // '(' ')' '{' FunctionBody '}' // // Setter :: // '(' PropertySetParameterList ')' '{' FunctionBody '}' int pos = function_token_pos == RelocInfo::kNoPosition ? peek_position() : function_token_pos; bool is_generator = IsGeneratorFunction(kind); // Anonymous functions were passed either the empty symbol or a null // handle as the function name. Remember if we were passed a non-empty // handle to decide whether to invoke function name inference. bool should_infer_name = function_name == NULL; // We want a non-null handle as the function name. if (should_infer_name) { function_name = ast_value_factory()->empty_string(); } Scope* scope = NewScope(scope_, FUNCTION_SCOPE, kind); SetLanguageMode(scope, language_mode); ZoneList<Statement*>* body = NULL; int arity = -1; int materialized_literal_count = -1; int expected_property_count = -1; DuplicateFinder duplicate_finder(scanner()->unicode_cache()); bool should_be_used_once_hint = false; bool has_duplicate_parameters; FunctionLiteral::EagerCompileHint eager_compile_hint; // Parse function. { AstNodeFactory function_factory(ast_value_factory()); FunctionState function_state(&function_state_, &scope_, scope, kind, &function_factory); scope_->SetScopeName(function_name); ExpressionClassifier formals_classifier(this, &duplicate_finder); eager_compile_hint = function_state_->this_function_is_parenthesized() ? FunctionLiteral::kShouldEagerCompile : FunctionLiteral::kShouldLazyCompile; if (is_generator) { // For generators, allocating variables in contexts is currently a win // because it minimizes the work needed to suspend and resume an // activation. The machine code produced for generators (by full-codegen) // relies on this forced context allocation, but not in an essential way. scope_->ForceContextAllocation(); // Calling a generator returns a generator object. That object is stored // in a temporary variable, a definition that is used by "yield" // expressions. This also marks the FunctionState as a generator. Variable* temp = scope_->NewTemporary( ast_value_factory()->dot_generator_object_string()); function_state.set_generator_object_variable(temp); } Expect(Token::LPAREN, CHECK_OK); int start_position = scanner()->location().beg_pos; scope_->set_start_position(start_position); ParserFormalParameters formals(scope); ParseFormalParameterList(&formals, &formals_classifier, CHECK_OK); arity = formals.Arity(); Expect(Token::RPAREN, CHECK_OK); int formals_end_position = scanner()->location().end_pos; CheckArityRestrictions(arity, kind, formals.has_rest, start_position, formals_end_position, CHECK_OK); Expect(Token::LBRACE, CHECK_OK); // Don't include the rest parameter into the function's formal parameter // count (esp. the SharedFunctionInfo::internal_formal_parameter_count, // which says whether we need to create an arguments adaptor frame). if (formals.has_rest) arity--; // Determine if the function can be parsed lazily. Lazy parsing is different // from lazy compilation; we need to parse more eagerly than we compile. // We can only parse lazily if we also compile lazily. The heuristics for // lazy compilation are: // - It must not have been prohibited by the caller to Parse (some callers // need a full AST). // - The outer scope must allow lazy compilation of inner functions. // - The function mustn't be a function expression with an open parenthesis // before; we consider that a hint that the function will be called // immediately, and it would be a waste of time to make it lazily // compiled. // These are all things we can know at this point, without looking at the // function itself. // In addition, we need to distinguish between these cases: // (function foo() { // bar = function() { return 1; } // })(); // and // (function foo() { // var a = 1; // bar = function() { return a; } // })(); // Now foo will be parsed eagerly and compiled eagerly (optimization: assume // parenthesis before the function means that it will be called // immediately). The inner function *must* be parsed eagerly to resolve the // possible reference to the variable in foo's scope. However, it's possible // that it will be compiled lazily. // To make this additional case work, both Parser and PreParser implement a // logic where only top-level functions will be parsed lazily. bool is_lazily_parsed = mode() == PARSE_LAZILY && scope_->AllowsLazyParsing() && !function_state_->this_function_is_parenthesized(); // Eager or lazy parse? // If is_lazily_parsed, we'll parse lazy. If we can set a bookmark, we'll // pass it to SkipLazyFunctionBody, which may use it to abort lazy // parsing if it suspect that wasn't a good idea. If so, or if we didn't // try to lazy parse in the first place, we'll have to parse eagerly. Scanner::BookmarkScope bookmark(scanner()); if (is_lazily_parsed) { Scanner::BookmarkScope* maybe_bookmark = bookmark.Set() ? &bookmark : nullptr; SkipLazyFunctionBody(&materialized_literal_count, &expected_property_count, /*CHECK_OK*/ ok, maybe_bookmark); materialized_literal_count += formals.materialized_literals_count + function_state.materialized_literal_count(); if (bookmark.HasBeenReset()) { // Trigger eager (re-)parsing, just below this block. is_lazily_parsed = false; // This is probably an initialization function. Inform the compiler it // should also eager-compile this function, and that we expect it to be // used once. eager_compile_hint = FunctionLiteral::kShouldEagerCompile; should_be_used_once_hint = true; } } if (!is_lazily_parsed) { // Determine whether the function body can be discarded after parsing. // The preconditions are: // - Lazy compilation has to be enabled. // - Neither V8 natives nor native function declarations can be allowed, // since parsing one would retroactively force the function to be // eagerly compiled. // - The invoker of this parser can't depend on the AST being eagerly // built (either because the function is about to be compiled, or // because the AST is going to be inspected for some reason). // - Because of the above, we can't be attempting to parse a // FunctionExpression; even without enclosing parentheses it might be // immediately invoked. // - The function literal shouldn't be hinted to eagerly compile. bool use_temp_zone = FLAG_lazy && !allow_natives() && extension_ == NULL && allow_lazy() && function_type == FunctionLiteral::kDeclaration && eager_compile_hint != FunctionLiteral::kShouldEagerCompile; // Open a new BodyScope, which sets our AstNodeFactory to allocate in the // new temporary zone if the preconditions are satisfied, and ensures that // the previous zone is always restored after parsing the body. // For the purpose of scope analysis, some ZoneObjects allocated by the // factory must persist after the function body is thrown away and // temp_zone is deallocated. These objects are instead allocated in a // parser-persistent zone (see parser_zone_ in AstNodeFactory). { Zone temp_zone(zone()->allocator()); AstNodeFactory::BodyScope inner(factory(), &temp_zone, use_temp_zone); body = ParseEagerFunctionBody(function_name, pos, formals, kind, function_type, CHECK_OK); } materialized_literal_count = function_state.materialized_literal_count(); expected_property_count = function_state.expected_property_count(); if (use_temp_zone) { // If the preconditions are correct the function body should never be // accessed, but do this anyway for better behaviour if they're wrong. body = NULL; } } // Parsing the body may change the language mode in our scope. language_mode = scope->language_mode(); // Validate name and parameter names. We can do this only after parsing the // function, since the function can declare itself strict. CheckFunctionName(language_mode, function_name, function_name_validity, function_name_location, CHECK_OK); const bool allow_duplicate_parameters = is_sloppy(language_mode) && formals.is_simple && !IsConciseMethod(kind); ValidateFormalParameters(&formals_classifier, language_mode, allow_duplicate_parameters, CHECK_OK); if (is_strict(language_mode)) { CheckStrictOctalLiteral(scope->start_position(), scope->end_position(), CHECK_OK); } if (is_sloppy(language_mode)) { InsertSloppyBlockFunctionVarBindings(scope, CHECK_OK); } CheckConflictingVarDeclarations(scope, CHECK_OK); if (body) { // If body can be inspected, rewrite queued destructuring assignments ParserTraits::RewriteDestructuringAssignments(); } has_duplicate_parameters = !formals_classifier.is_valid_formal_parameter_list_without_duplicates(); } FunctionLiteral::ParameterFlag duplicate_parameters = has_duplicate_parameters ? FunctionLiteral::kHasDuplicateParameters : FunctionLiteral::kNoDuplicateParameters; FunctionLiteral* function_literal = factory()->NewFunctionLiteral( function_name, scope, body, materialized_literal_count, expected_property_count, arity, duplicate_parameters, function_type, eager_compile_hint, kind, pos); function_literal->set_function_token_position(function_token_pos); if (should_be_used_once_hint) function_literal->set_should_be_used_once_hint(); if (fni_ != NULL && should_infer_name) fni_->AddFunction(function_literal); return function_literal; } void Parser::SkipLazyFunctionBody(int* materialized_literal_count, int* expected_property_count, bool* ok, Scanner::BookmarkScope* bookmark) { DCHECK_IMPLIES(bookmark, bookmark->HasBeenSet()); if (produce_cached_parse_data()) CHECK(log_); int function_block_pos = position(); if (consume_cached_parse_data() && !cached_parse_data_->rejected()) { // If we have cached data, we use it to skip parsing the function body. The // data contains the information we need to construct the lazy function. FunctionEntry entry = cached_parse_data_->GetFunctionEntry(function_block_pos); // Check that cached data is valid. If not, mark it as invalid (the embedder // handles it). Note that end position greater than end of stream is safe, // and hard to check. if (entry.is_valid() && entry.end_pos() > function_block_pos) { scanner()->SeekForward(entry.end_pos() - 1); scope_->set_end_position(entry.end_pos()); Expect(Token::RBRACE, ok); if (!*ok) { return; } total_preparse_skipped_ += scope_->end_position() - function_block_pos; *materialized_literal_count = entry.literal_count(); *expected_property_count = entry.property_count(); SetLanguageMode(scope_, entry.language_mode()); if (entry.uses_super_property()) scope_->RecordSuperPropertyUsage(); if (entry.calls_eval()) scope_->RecordEvalCall(); return; } cached_parse_data_->Reject(); } // With no cached data, we partially parse the function, without building an // AST. This gathers the data needed to build a lazy function. SingletonLogger logger; PreParser::PreParseResult result = ParseLazyFunctionBodyWithPreParser(&logger, bookmark); if (bookmark && bookmark->HasBeenReset()) { return; // Return immediately if pre-parser devided to abort parsing. } if (result == PreParser::kPreParseStackOverflow) { // Propagate stack overflow. set_stack_overflow(); *ok = false; return; } if (logger.has_error()) { ParserTraits::ReportMessageAt( Scanner::Location(logger.start(), logger.end()), logger.message(), logger.argument_opt(), logger.error_type()); *ok = false; return; } scope_->set_end_position(logger.end()); Expect(Token::RBRACE, ok); if (!*ok) { return; } total_preparse_skipped_ += scope_->end_position() - function_block_pos; *materialized_literal_count = logger.literals(); *expected_property_count = logger.properties(); SetLanguageMode(scope_, logger.language_mode()); if (logger.uses_super_property()) { scope_->RecordSuperPropertyUsage(); } if (logger.calls_eval()) { scope_->RecordEvalCall(); } if (produce_cached_parse_data()) { DCHECK(log_); // Position right after terminal '}'. int body_end = scanner()->location().end_pos; log_->LogFunction(function_block_pos, body_end, *materialized_literal_count, *expected_property_count, scope_->language_mode(), scope_->uses_super_property(), scope_->calls_eval()); } } Statement* Parser::BuildAssertIsCoercible(Variable* var) { // if (var === null || var === undefined) // throw /* type error kNonCoercible) */; Expression* condition = factory()->NewBinaryOperation( Token::OR, factory()->NewCompareOperation( Token::EQ_STRICT, factory()->NewVariableProxy(var), factory()->NewUndefinedLiteral(RelocInfo::kNoPosition), RelocInfo::kNoPosition), factory()->NewCompareOperation( Token::EQ_STRICT, factory()->NewVariableProxy(var), factory()->NewNullLiteral(RelocInfo::kNoPosition), RelocInfo::kNoPosition), RelocInfo::kNoPosition); Expression* throw_type_error = this->NewThrowTypeError( MessageTemplate::kNonCoercible, ast_value_factory()->empty_string(), RelocInfo::kNoPosition); IfStatement* if_statement = factory()->NewIfStatement( condition, factory()->NewExpressionStatement(throw_type_error, RelocInfo::kNoPosition), factory()->NewEmptyStatement(RelocInfo::kNoPosition), RelocInfo::kNoPosition); return if_statement; } class InitializerRewriter : public AstExpressionVisitor { public: InitializerRewriter(uintptr_t stack_limit, Expression* root, Parser* parser, Scope* scope) : AstExpressionVisitor(stack_limit, root), parser_(parser), scope_(scope) {} private: void VisitExpression(Expression* expr) override { RewritableExpression* to_rewrite = expr->AsRewritableExpression(); if (to_rewrite == nullptr || to_rewrite->is_rewritten()) return; Parser::PatternRewriter::RewriteDestructuringAssignment(parser_, to_rewrite, scope_); } // Code in function literals does not need to be eagerly rewritten, it will be // rewritten when scheduled. void VisitFunctionLiteral(FunctionLiteral* expr) override {} private: Parser* parser_; Scope* scope_; }; void Parser::RewriteParameterInitializer(Expression* expr, Scope* scope) { InitializerRewriter rewriter(stack_limit_, expr, this, scope); rewriter.Run(); } Block* Parser::BuildParameterInitializationBlock( const ParserFormalParameters& parameters, bool* ok) { DCHECK(!parameters.is_simple); DCHECK(scope_->is_function_scope()); Block* init_block = factory()->NewBlock(NULL, 1, true, RelocInfo::kNoPosition); for (int i = 0; i < parameters.params.length(); ++i) { auto parameter = parameters.params[i]; if (parameter.is_rest && parameter.pattern->IsVariableProxy()) break; DeclarationDescriptor descriptor; descriptor.declaration_kind = DeclarationDescriptor::PARAMETER; descriptor.parser = this; descriptor.scope = scope_; descriptor.hoist_scope = nullptr; descriptor.mode = LET; descriptor.declaration_pos = parameter.pattern->position(); // The position that will be used by the AssignmentExpression // which copies from the temp parameter to the pattern. // // TODO(adamk): Should this be RelocInfo::kNoPosition, since // it's just copying from a temp var to the real param var? descriptor.initialization_pos = parameter.pattern->position(); // The initializer position which will end up in, // Variable::initializer_position(), used for hole check elimination. int initializer_position = parameter.pattern->position(); Expression* initial_value = factory()->NewVariableProxy(parameters.scope->parameter(i)); if (parameter.initializer != nullptr) { // IS_UNDEFINED($param) ? initializer : $param // Ensure initializer is rewritten RewriteParameterInitializer(parameter.initializer, scope_); auto condition = factory()->NewCompareOperation( Token::EQ_STRICT, factory()->NewVariableProxy(parameters.scope->parameter(i)), factory()->NewUndefinedLiteral(RelocInfo::kNoPosition), RelocInfo::kNoPosition); initial_value = factory()->NewConditional( condition, parameter.initializer, initial_value, RelocInfo::kNoPosition); descriptor.initialization_pos = parameter.initializer->position(); initializer_position = parameter.initializer_end_position; } Scope* param_scope = scope_; Block* param_block = init_block; if (!parameter.is_simple() && scope_->calls_sloppy_eval()) { param_scope = NewScope(scope_, BLOCK_SCOPE); param_scope->set_is_declaration_scope(); param_scope->set_start_position(descriptor.initialization_pos); param_scope->set_end_position(parameter.initializer_end_position); param_scope->RecordEvalCall(); param_block = factory()->NewBlock(NULL, 8, true, RelocInfo::kNoPosition); param_block->set_scope(param_scope); descriptor.hoist_scope = scope_; } { BlockState block_state(&scope_, param_scope); DeclarationParsingResult::Declaration decl( parameter.pattern, initializer_position, initial_value); PatternRewriter::DeclareAndInitializeVariables(param_block, &descriptor, &decl, nullptr, CHECK_OK); } if (!parameter.is_simple() && scope_->calls_sloppy_eval()) { param_scope = param_scope->FinalizeBlockScope(); if (param_scope != nullptr) { CheckConflictingVarDeclarations(param_scope, CHECK_OK); } init_block->statements()->Add(param_block, zone()); } } return init_block; } ZoneList<Statement*>* Parser::ParseEagerFunctionBody( const AstRawString* function_name, int pos, const ParserFormalParameters& parameters, FunctionKind kind, FunctionLiteral::FunctionType function_type, bool* ok) { // Everything inside an eagerly parsed function will be parsed eagerly // (see comment above). ParsingModeScope parsing_mode(this, PARSE_EAGERLY); ZoneList<Statement*>* result = new(zone()) ZoneList<Statement*>(8, zone()); static const int kFunctionNameAssignmentIndex = 0; if (function_type == FunctionLiteral::kNamedExpression) { DCHECK(function_name != NULL); // If we have a named function expression, we add a local variable // declaration to the body of the function with the name of the // function and let it refer to the function itself (closure). // Not having parsed the function body, the language mode may still change, // so we reserve a spot and create the actual const assignment later. DCHECK_EQ(kFunctionNameAssignmentIndex, result->length()); result->Add(NULL, zone()); } ZoneList<Statement*>* body = result; Scope* inner_scope = scope_; Block* inner_block = nullptr; if (!parameters.is_simple) { inner_scope = NewScope(scope_, BLOCK_SCOPE); inner_scope->set_is_declaration_scope(); inner_scope->set_start_position(scanner()->location().beg_pos); inner_block = factory()->NewBlock(NULL, 8, true, RelocInfo::kNoPosition); inner_block->set_scope(inner_scope); body = inner_block->statements(); } { BlockState block_state(&scope_, inner_scope); if (IsGeneratorFunction(kind)) { // We produce: // // try { InitialYield; ...body...; return {value: undefined, done: true} } // finally { %GeneratorClose(generator) } // // - InitialYield yields the actual generator object. // - Any return statement inside the body will have its argument wrapped // in a "done" iterator result object. // - If the generator terminates for whatever reason, we must close it. // Hence the finally clause. Block* try_block = factory()->NewBlock(nullptr, 3, false, RelocInfo::kNoPosition); { ZoneList<Expression*>* arguments = new (zone()) ZoneList<Expression*>(2, zone()); arguments->Add(factory()->NewThisFunction(pos), zone()); arguments->Add( ThisExpression(scope_, factory(), RelocInfo::kNoPosition), zone()); CallRuntime* allocation = factory()->NewCallRuntime( Runtime::kCreateJSGeneratorObject, arguments, pos); VariableProxy* init_proxy = factory()->NewVariableProxy( function_state_->generator_object_variable()); Assignment* assignment = factory()->NewAssignment( Token::INIT, init_proxy, allocation, RelocInfo::kNoPosition); VariableProxy* get_proxy = factory()->NewVariableProxy( function_state_->generator_object_variable()); Yield* yield = factory()->NewYield(get_proxy, assignment, RelocInfo::kNoPosition); try_block->statements()->Add( factory()->NewExpressionStatement(yield, RelocInfo::kNoPosition), zone()); } ParseStatementList(try_block->statements(), Token::RBRACE, CHECK_OK); Statement* final_return = factory()->NewReturnStatement( BuildIteratorResult(nullptr, true), RelocInfo::kNoPosition); try_block->statements()->Add(final_return, zone()); Block* finally_block = factory()->NewBlock(nullptr, 1, false, RelocInfo::kNoPosition); ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(1, zone()); VariableProxy* call_proxy = factory()->NewVariableProxy( function_state_->generator_object_variable()); args->Add(call_proxy, zone()); Expression* call = factory()->NewCallRuntime( Runtime::kGeneratorClose, args, RelocInfo::kNoPosition); finally_block->statements()->Add( factory()->NewExpressionStatement(call, RelocInfo::kNoPosition), zone()); body->Add(factory()->NewTryFinallyStatement(try_block, finally_block, RelocInfo::kNoPosition), zone()); } else { ParseStatementList(body, Token::RBRACE, CHECK_OK); } if (IsSubclassConstructor(kind)) { body->Add( factory()->NewReturnStatement( this->ThisExpression(scope_, factory(), RelocInfo::kNoPosition), RelocInfo::kNoPosition), zone()); } } Expect(Token::RBRACE, CHECK_OK); scope_->set_end_position(scanner()->location().end_pos); if (!parameters.is_simple) { DCHECK_NOT_NULL(inner_scope); DCHECK_EQ(body, inner_block->statements()); SetLanguageMode(scope_, inner_scope->language_mode()); Block* init_block = BuildParameterInitializationBlock(parameters, CHECK_OK); DCHECK_NOT_NULL(init_block); inner_scope->set_end_position(scanner()->location().end_pos); inner_scope = inner_scope->FinalizeBlockScope(); if (inner_scope != nullptr) { CheckConflictingVarDeclarations(inner_scope, CHECK_OK); InsertShadowingVarBindingInitializers(inner_block); } result->Add(init_block, zone()); result->Add(inner_block, zone()); } if (function_type == FunctionLiteral::kNamedExpression) { // Now that we know the language mode, we can create the const assignment // in the previously reserved spot. // NOTE: We create a proxy and resolve it here so that in the // future we can change the AST to only refer to VariableProxies // instead of Variables and Proxies as is the case now. VariableMode fvar_mode = is_strict(language_mode()) ? CONST : CONST_LEGACY; Variable* fvar = new (zone()) Variable(scope_, function_name, fvar_mode, Variable::NORMAL, kCreatedInitialized, kNotAssigned); VariableProxy* proxy = factory()->NewVariableProxy(fvar); VariableDeclaration* fvar_declaration = factory()->NewVariableDeclaration( proxy, fvar_mode, scope_, RelocInfo::kNoPosition); scope_->DeclareFunctionVar(fvar_declaration); VariableProxy* fproxy = factory()->NewVariableProxy(fvar); result->Set(kFunctionNameAssignmentIndex, factory()->NewExpressionStatement( factory()->NewAssignment(Token::INIT, fproxy, factory()->NewThisFunction(pos), RelocInfo::kNoPosition), RelocInfo::kNoPosition)); } // ES6 14.6.1 Static Semantics: IsInTailPosition // Mark collected return expressions that are in tail call position. const List<Expression*>& expressions_in_tail_position = function_state_->expressions_in_tail_position(); for (int i = 0; i < expressions_in_tail_position.length(); ++i) { expressions_in_tail_position[i]->MarkTail(); } return result; } PreParser::PreParseResult Parser::ParseLazyFunctionBodyWithPreParser( SingletonLogger* logger, Scanner::BookmarkScope* bookmark) { // This function may be called on a background thread too; record only the // main thread preparse times. if (pre_parse_timer_ != NULL) { pre_parse_timer_->Start(); } TRACE_EVENT0("v8", "V8.PreParse"); DCHECK_EQ(Token::LBRACE, scanner()->current_token()); if (reusable_preparser_ == NULL) { reusable_preparser_ = new PreParser(zone(), &scanner_, ast_value_factory(), NULL, stack_limit_); reusable_preparser_->set_allow_lazy(true); #define SET_ALLOW(name) reusable_preparser_->set_allow_##name(allow_##name()); SET_ALLOW(natives); SET_ALLOW(harmony_do_expressions); SET_ALLOW(harmony_function_name); SET_ALLOW(harmony_function_sent); SET_ALLOW(harmony_exponentiation_operator); SET_ALLOW(harmony_restrictive_declarations); #undef SET_ALLOW } PreParser::PreParseResult result = reusable_preparser_->PreParseLazyFunction( language_mode(), function_state_->kind(), scope_->has_simple_parameters(), logger, bookmark); if (pre_parse_timer_ != NULL) { pre_parse_timer_->Stop(); } return result; } ClassLiteral* Parser::ParseClassLiteral(const AstRawString* name, Scanner::Location class_name_location, bool name_is_strict_reserved, int pos, bool* ok) { // All parts of a ClassDeclaration and ClassExpression are strict code. if (name_is_strict_reserved) { ReportMessageAt(class_name_location, MessageTemplate::kUnexpectedStrictReserved); *ok = false; return NULL; } if (IsEvalOrArguments(name)) { ReportMessageAt(class_name_location, MessageTemplate::kStrictEvalArguments); *ok = false; return NULL; } Scope* block_scope = NewScope(scope_, BLOCK_SCOPE); BlockState block_state(&scope_, block_scope); RaiseLanguageMode(STRICT); scope_->SetScopeName(name); VariableProxy* proxy = NULL; if (name != NULL) { proxy = NewUnresolved(name, CONST); Declaration* declaration = factory()->NewVariableDeclaration(proxy, CONST, block_scope, pos); Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK); } Expression* extends = NULL; if (Check(Token::EXTENDS)) { block_scope->set_start_position(scanner()->location().end_pos); ExpressionClassifier classifier(this); extends = ParseLeftHandSideExpression(&classifier, CHECK_OK); RewriteNonPattern(&classifier, CHECK_OK); } else { block_scope->set_start_position(scanner()->location().end_pos); } ClassLiteralChecker checker(this); ZoneList<ObjectLiteral::Property*>* properties = NewPropertyList(4, zone()); FunctionLiteral* constructor = NULL; bool has_seen_constructor = false; Expect(Token::LBRACE, CHECK_OK); const bool has_extends = extends != nullptr; while (peek() != Token::RBRACE) { if (Check(Token::SEMICOLON)) continue; FuncNameInferrer::State fni_state(fni_); const bool in_class = true; const bool is_static = false; bool is_computed_name = false; // Classes do not care about computed // property names here. ExpressionClassifier classifier(this); const AstRawString* property_name = nullptr; ObjectLiteral::Property* property = ParsePropertyDefinition( &checker, in_class, has_extends, is_static, &is_computed_name, &has_seen_constructor, &classifier, &property_name, CHECK_OK); RewriteNonPattern(&classifier, CHECK_OK); if (has_seen_constructor && constructor == NULL) { constructor = GetPropertyValue(property)->AsFunctionLiteral(); DCHECK_NOT_NULL(constructor); constructor->set_raw_name( name != nullptr ? name : ast_value_factory()->empty_string()); } else { properties->Add(property, zone()); } if (fni_ != NULL) fni_->Infer(); if (allow_harmony_function_name() && property_name != ast_value_factory()->constructor_string()) { SetFunctionNameFromPropertyName(property, property_name); } } Expect(Token::RBRACE, CHECK_OK); int end_pos = scanner()->location().end_pos; if (constructor == NULL) { constructor = DefaultConstructor(name, extends != NULL, block_scope, pos, end_pos, block_scope->language_mode()); } // Note that we do not finalize this block scope because it is // used as a sentinel value indicating an anonymous class. block_scope->set_end_position(end_pos); if (name != NULL) { DCHECK_NOT_NULL(proxy); proxy->var()->set_initializer_position(end_pos); } return factory()->NewClassLiteral(block_scope, proxy, extends, constructor, properties, pos, end_pos); } Expression* Parser::ParseV8Intrinsic(bool* ok) { // CallRuntime :: // '%' Identifier Arguments int pos = peek_position(); Expect(Token::MOD, CHECK_OK); // Allow "eval" or "arguments" for backward compatibility. const AstRawString* name = ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK); Scanner::Location spread_pos; ExpressionClassifier classifier(this); ZoneList<Expression*>* args = ParseArguments(&spread_pos, &classifier, CHECK_OK); DCHECK(!spread_pos.IsValid()); if (extension_ != NULL) { // The extension structures are only accessible while parsing the // very first time not when reparsing because of lazy compilation. scope_->DeclarationScope()->ForceEagerCompilation(); } const Runtime::Function* function = Runtime::FunctionForName(name->string()); if (function != NULL) { // Check for possible name clash. DCHECK_EQ(Context::kNotFound, Context::IntrinsicIndexForName(name->string())); // Check for built-in IS_VAR macro. if (function->function_id == Runtime::kIS_VAR) { DCHECK_EQ(Runtime::RUNTIME, function->intrinsic_type); // %IS_VAR(x) evaluates to x if x is a variable, // leads to a parse error otherwise. Could be implemented as an // inline function %_IS_VAR(x) to eliminate this special case. if (args->length() == 1 && args->at(0)->AsVariableProxy() != NULL) { return args->at(0); } else { ReportMessage(MessageTemplate::kNotIsvar); *ok = false; return NULL; } } // Check that the expected number of arguments are being passed. if (function->nargs != -1 && function->nargs != args->length()) { ReportMessage(MessageTemplate::kRuntimeWrongNumArgs); *ok = false; return NULL; } return factory()->NewCallRuntime(function, args, pos); } int context_index = Context::IntrinsicIndexForName(name->string()); // Check that the function is defined. if (context_index == Context::kNotFound) { ParserTraits::ReportMessage(MessageTemplate::kNotDefined, name); *ok = false; return NULL; } return factory()->NewCallRuntime(context_index, args, pos); } Literal* Parser::GetLiteralUndefined(int position) { return factory()->NewUndefinedLiteral(position); } void Parser::CheckConflictingVarDeclarations(Scope* scope, bool* ok) { Declaration* decl = scope->CheckConflictingVarDeclarations(); if (decl != NULL) { // In ES6, conflicting variable bindings are early errors. const AstRawString* name = decl->proxy()->raw_name(); int position = decl->proxy()->position(); Scanner::Location location = position == RelocInfo::kNoPosition ? Scanner::Location::invalid() : Scanner::Location(position, position + 1); ParserTraits::ReportMessageAt(location, MessageTemplate::kVarRedeclaration, name); *ok = false; } } void Parser::InsertShadowingVarBindingInitializers(Block* inner_block) { // For each var-binding that shadows a parameter, insert an assignment // initializing the variable with the parameter. Scope* inner_scope = inner_block->scope(); DCHECK(inner_scope->is_declaration_scope()); Scope* function_scope = inner_scope->outer_scope(); DCHECK(function_scope->is_function_scope()); ZoneList<Declaration*>* decls = inner_scope->declarations(); for (int i = 0; i < decls->length(); ++i) { Declaration* decl = decls->at(i); if (decl->mode() != VAR || !decl->IsVariableDeclaration()) continue; const AstRawString* name = decl->proxy()->raw_name(); Variable* parameter = function_scope->LookupLocal(name); if (parameter == nullptr) continue; VariableProxy* to = inner_scope->NewUnresolved(factory(), name); VariableProxy* from = factory()->NewVariableProxy(parameter); Expression* assignment = factory()->NewAssignment( Token::ASSIGN, to, from, RelocInfo::kNoPosition); Statement* statement = factory()->NewExpressionStatement( assignment, RelocInfo::kNoPosition); inner_block->statements()->InsertAt(0, statement, zone()); } } void Parser::InsertSloppyBlockFunctionVarBindings(Scope* scope, bool* ok) { // For each variable which is used as a function declaration in a sloppy // block, DCHECK(scope->is_declaration_scope()); SloppyBlockFunctionMap* map = scope->sloppy_block_function_map(); for (ZoneHashMap::Entry* p = map->Start(); p != nullptr; p = map->Next(p)) { AstRawString* name = static_cast<AstRawString*>(p->key); // If the variable wouldn't conflict with a lexical declaration, Variable* var = scope->LookupLocal(name); if (var == nullptr || !IsLexicalVariableMode(var->mode())) { // Declare a var-style binding for the function in the outer scope VariableProxy* proxy = scope->NewUnresolved(factory(), name); Declaration* declaration = factory()->NewVariableDeclaration( proxy, VAR, scope, RelocInfo::kNoPosition); Declare(declaration, DeclarationDescriptor::NORMAL, true, ok, scope); DCHECK(ok); // Based on the preceding check, this should not fail if (!ok) return; // Write in assignments to var for each block-scoped function declaration auto delegates = static_cast<SloppyBlockFunctionMap::Vector*>(p->value); for (SloppyBlockFunctionStatement* delegate : *delegates) { // Read from the local lexical scope and write to the function scope VariableProxy* to = scope->NewUnresolved(factory(), name); VariableProxy* from = delegate->scope()->NewUnresolved(factory(), name); Expression* assignment = factory()->NewAssignment( Token::ASSIGN, to, from, RelocInfo::kNoPosition); Statement* statement = factory()->NewExpressionStatement( assignment, RelocInfo::kNoPosition); delegate->set_statement(statement); } } } } // ---------------------------------------------------------------------------- // Parser support bool Parser::TargetStackContainsLabel(const AstRawString* label) { for (Target* t = target_stack_; t != NULL; t = t->previous()) { if (ContainsLabel(t->statement()->labels(), label)) return true; } return false; } BreakableStatement* Parser::LookupBreakTarget(const AstRawString* label, bool* ok) { bool anonymous = label == NULL; for (Target* t = target_stack_; t != NULL; t = t->previous()) { BreakableStatement* stat = t->statement(); if ((anonymous && stat->is_target_for_anonymous()) || (!anonymous && ContainsLabel(stat->labels(), label))) { return stat; } } return NULL; } IterationStatement* Parser::LookupContinueTarget(const AstRawString* label, bool* ok) { bool anonymous = label == NULL; for (Target* t = target_stack_; t != NULL; t = t->previous()) { IterationStatement* stat = t->statement()->AsIterationStatement(); if (stat == NULL) continue; DCHECK(stat->is_target_for_anonymous()); if (anonymous || ContainsLabel(stat->labels(), label)) { return stat; } } return NULL; } void Parser::HandleSourceURLComments(Isolate* isolate, Handle<Script> script) { if (scanner_.source_url()->length() > 0) { Handle<String> source_url = scanner_.source_url()->Internalize(isolate); script->set_source_url(*source_url); } if (scanner_.source_mapping_url()->length() > 0) { Handle<String> source_mapping_url = scanner_.source_mapping_url()->Internalize(isolate); script->set_source_mapping_url(*source_mapping_url); } } void Parser::Internalize(Isolate* isolate, Handle<Script> script, bool error) { // Internalize strings. ast_value_factory()->Internalize(isolate); // Error processing. if (error) { if (stack_overflow()) { isolate->StackOverflow(); } else { DCHECK(pending_error_handler_.has_pending_error()); pending_error_handler_.ThrowPendingError(isolate, script); } } // Move statistics to Isolate. for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount; ++feature) { for (int i = 0; i < use_counts_[feature]; ++i) { isolate->CountUsage(v8::Isolate::UseCounterFeature(feature)); } } if (scanner_.FoundHtmlComment()) { isolate->CountUsage(v8::Isolate::kHtmlComment); if (script->line_offset() == 0 && script->column_offset() == 0) { isolate->CountUsage(v8::Isolate::kHtmlCommentInExternalScript); } } isolate->counters()->total_preparse_skipped()->Increment( total_preparse_skipped_); } // ---------------------------------------------------------------------------- // The Parser interface. bool Parser::ParseStatic(ParseInfo* info) { Parser parser(info); if (parser.Parse(info)) { info->set_language_mode(info->literal()->language_mode()); return true; } return false; } bool Parser::Parse(ParseInfo* info) { DCHECK(info->literal() == NULL); FunctionLiteral* result = NULL; // Ok to use Isolate here; this function is only called in the main thread. DCHECK(parsing_on_main_thread_); Isolate* isolate = info->isolate(); pre_parse_timer_ = isolate->counters()->pre_parse(); if (FLAG_trace_parse || allow_natives() || extension_ != NULL) { // If intrinsics are allowed, the Parser cannot operate independent of the // V8 heap because of Runtime. Tell the string table to internalize strings // and values right after they're created. ast_value_factory()->Internalize(isolate); } if (info->is_lazy()) { DCHECK(!info->is_eval()); if (info->shared_info()->is_function()) { result = ParseLazy(isolate, info); } else { result = ParseProgram(isolate, info); } } else { SetCachedData(info); result = ParseProgram(isolate, info); } info->set_literal(result); Internalize(isolate, info->script(), result == NULL); DCHECK(ast_value_factory()->IsInternalized()); return (result != NULL); } void Parser::ParseOnBackground(ParseInfo* info) { parsing_on_main_thread_ = false; DCHECK(info->literal() == NULL); FunctionLiteral* result = NULL; fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone()); CompleteParserRecorder recorder; if (produce_cached_parse_data()) log_ = &recorder; DCHECK(info->source_stream() != NULL); ExternalStreamingStream stream(info->source_stream(), info->source_stream_encoding()); scanner_.Initialize(&stream); DCHECK(info->context().is_null() || info->context()->IsNativeContext()); // When streaming, we don't know the length of the source until we have parsed // it. The raw data can be UTF-8, so we wouldn't know the source length until // we have decoded it anyway even if we knew the raw data length (which we // don't). We work around this by storing all the scopes which need their end // position set at the end of the script (the top scope and possible eval // scopes) and set their end position after we know the script length. result = DoParseProgram(info); info->set_literal(result); // We cannot internalize on a background thread; a foreground task will take // care of calling Parser::Internalize just before compilation. if (produce_cached_parse_data()) { if (result != NULL) *info->cached_data() = recorder.GetScriptData(); log_ = NULL; } } ParserTraits::TemplateLiteralState Parser::OpenTemplateLiteral(int pos) { return new (zone()) ParserTraits::TemplateLiteral(zone(), pos); } void Parser::AddTemplateSpan(TemplateLiteralState* state, bool tail) { int pos = scanner()->location().beg_pos; int end = scanner()->location().end_pos - (tail ? 1 : 2); const AstRawString* tv = scanner()->CurrentSymbol(ast_value_factory()); const AstRawString* trv = scanner()->CurrentRawSymbol(ast_value_factory()); Literal* cooked = factory()->NewStringLiteral(tv, pos); Literal* raw = factory()->NewStringLiteral(trv, pos); (*state)->AddTemplateSpan(cooked, raw, end, zone()); } void Parser::AddTemplateExpression(TemplateLiteralState* state, Expression* expression) { (*state)->AddExpression(expression, zone()); } Expression* Parser::CloseTemplateLiteral(TemplateLiteralState* state, int start, Expression* tag) { TemplateLiteral* lit = *state; int pos = lit->position(); const ZoneList<Expression*>* cooked_strings = lit->cooked(); const ZoneList<Expression*>* raw_strings = lit->raw(); const ZoneList<Expression*>* expressions = lit->expressions(); DCHECK_EQ(cooked_strings->length(), raw_strings->length()); DCHECK_EQ(cooked_strings->length(), expressions->length() + 1); if (!tag) { // Build tree of BinaryOps to simplify code-generation Expression* expr = cooked_strings->at(0); int i = 0; while (i < expressions->length()) { Expression* sub = expressions->at(i++); Expression* cooked_str = cooked_strings->at(i); // Let middle be ToString(sub). ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(1, zone()); args->Add(sub, zone()); Expression* middle = factory()->NewCallRuntime(Runtime::kInlineToString, args, sub->position()); expr = factory()->NewBinaryOperation( Token::ADD, factory()->NewBinaryOperation( Token::ADD, expr, middle, expr->position()), cooked_str, sub->position()); } return expr; } else { uint32_t hash = ComputeTemplateLiteralHash(lit); int cooked_idx = function_state_->NextMaterializedLiteralIndex(); int raw_idx = function_state_->NextMaterializedLiteralIndex(); // $getTemplateCallSite ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(4, zone()); args->Add(factory()->NewArrayLiteral( const_cast<ZoneList<Expression*>*>(cooked_strings), cooked_idx, pos), zone()); args->Add( factory()->NewArrayLiteral( const_cast<ZoneList<Expression*>*>(raw_strings), raw_idx, pos), zone()); // Ensure hash is suitable as a Smi value Smi* hash_obj = Smi::cast(Internals::IntToSmi(static_cast<int>(hash))); args->Add(factory()->NewSmiLiteral(hash_obj->value(), pos), zone()); Expression* call_site = factory()->NewCallRuntime( Context::GET_TEMPLATE_CALL_SITE_INDEX, args, start); // Call TagFn ZoneList<Expression*>* call_args = new (zone()) ZoneList<Expression*>(expressions->length() + 1, zone()); call_args->Add(call_site, zone()); call_args->AddAll(*expressions, zone()); return factory()->NewCall(tag, call_args, pos); } } uint32_t Parser::ComputeTemplateLiteralHash(const TemplateLiteral* lit) { const ZoneList<Expression*>* raw_strings = lit->raw(); int total = raw_strings->length(); DCHECK(total); uint32_t running_hash = 0; for (int index = 0; index < total; ++index) { if (index) { running_hash = StringHasher::ComputeRunningHashOneByte( running_hash, "${}", 3); } const AstRawString* raw_string = raw_strings->at(index)->AsLiteral()->raw_value()->AsString(); if (raw_string->is_one_byte()) { const char* data = reinterpret_cast<const char*>(raw_string->raw_data()); running_hash = StringHasher::ComputeRunningHashOneByte( running_hash, data, raw_string->length()); } else { const uc16* data = reinterpret_cast<const uc16*>(raw_string->raw_data()); running_hash = StringHasher::ComputeRunningHash(running_hash, data, raw_string->length()); } } return running_hash; } ZoneList<v8::internal::Expression*>* Parser::PrepareSpreadArguments( ZoneList<v8::internal::Expression*>* list) { ZoneList<v8::internal::Expression*>* args = new (zone()) ZoneList<v8::internal::Expression*>(1, zone()); if (list->length() == 1) { // Spread-call with single spread argument produces an InternalArray // containing the values from the array. // // Function is called or constructed with the produced array of arguments // // EG: Apply(Func, Spread(spread0)) ZoneList<Expression*>* spread_list = new (zone()) ZoneList<Expression*>(0, zone()); spread_list->Add(list->at(0)->AsSpread()->expression(), zone()); args->Add(factory()->NewCallRuntime(Context::SPREAD_ITERABLE_INDEX, spread_list, RelocInfo::kNoPosition), zone()); return args; } else { // Spread-call with multiple arguments produces array literals for each // sequences of unspread arguments, and converts each spread iterable to // an Internal array. Finally, all of these produced arrays are flattened // into a single InternalArray, containing the arguments for the call. // // EG: Apply(Func, Flatten([unspread0, unspread1], Spread(spread0), // Spread(spread1), [unspread2, unspread3])) int i = 0; int n = list->length(); while (i < n) { if (!list->at(i)->IsSpread()) { ZoneList<v8::internal::Expression*>* unspread = new (zone()) ZoneList<v8::internal::Expression*>(1, zone()); // Push array of unspread parameters while (i < n && !list->at(i)->IsSpread()) { unspread->Add(list->at(i++), zone()); } int literal_index = function_state_->NextMaterializedLiteralIndex(); args->Add(factory()->NewArrayLiteral(unspread, literal_index, RelocInfo::kNoPosition), zone()); if (i == n) break; } // Push eagerly spread argument ZoneList<v8::internal::Expression*>* spread_list = new (zone()) ZoneList<v8::internal::Expression*>(1, zone()); spread_list->Add(list->at(i++)->AsSpread()->expression(), zone()); args->Add(factory()->NewCallRuntime(Context::SPREAD_ITERABLE_INDEX, spread_list, RelocInfo::kNoPosition), zone()); } list = new (zone()) ZoneList<v8::internal::Expression*>(1, zone()); list->Add(factory()->NewCallRuntime(Context::SPREAD_ARGUMENTS_INDEX, args, RelocInfo::kNoPosition), zone()); return list; } UNREACHABLE(); } Expression* Parser::SpreadCall(Expression* function, ZoneList<v8::internal::Expression*>* args, int pos) { if (function->IsSuperCallReference()) { // Super calls // $super_constructor = %_GetSuperConstructor(<this-function>) // %reflect_construct($super_constructor, args, new.target) ZoneList<Expression*>* tmp = new (zone()) ZoneList<Expression*>(1, zone()); tmp->Add(function->AsSuperCallReference()->this_function_var(), zone()); Expression* super_constructor = factory()->NewCallRuntime( Runtime::kInlineGetSuperConstructor, tmp, pos); args->InsertAt(0, super_constructor, zone()); args->Add(function->AsSuperCallReference()->new_target_var(), zone()); return factory()->NewCallRuntime(Context::REFLECT_CONSTRUCT_INDEX, args, pos); } else { if (function->IsProperty()) { // Method calls if (function->AsProperty()->IsSuperAccess()) { Expression* home = ThisExpression(scope_, factory(), RelocInfo::kNoPosition); args->InsertAt(0, function, zone()); args->InsertAt(1, home, zone()); } else { Variable* temp = scope_->NewTemporary(ast_value_factory()->empty_string()); VariableProxy* obj = factory()->NewVariableProxy(temp); Assignment* assign_obj = factory()->NewAssignment( Token::ASSIGN, obj, function->AsProperty()->obj(), RelocInfo::kNoPosition); function = factory()->NewProperty( assign_obj, function->AsProperty()->key(), RelocInfo::kNoPosition); args->InsertAt(0, function, zone()); obj = factory()->NewVariableProxy(temp); args->InsertAt(1, obj, zone()); } } else { // Non-method calls args->InsertAt(0, function, zone()); args->InsertAt(1, factory()->NewUndefinedLiteral(RelocInfo::kNoPosition), zone()); } return factory()->NewCallRuntime(Context::REFLECT_APPLY_INDEX, args, pos); } } Expression* Parser::SpreadCallNew(Expression* function, ZoneList<v8::internal::Expression*>* args, int pos) { args->InsertAt(0, function, zone()); return factory()->NewCallRuntime(Context::REFLECT_CONSTRUCT_INDEX, args, pos); } void Parser::SetLanguageMode(Scope* scope, LanguageMode mode) { v8::Isolate::UseCounterFeature feature; if (is_sloppy(mode)) feature = v8::Isolate::kSloppyMode; else if (is_strict(mode)) feature = v8::Isolate::kStrictMode; else UNREACHABLE(); ++use_counts_[feature]; scope->SetLanguageMode(mode); } void Parser::RaiseLanguageMode(LanguageMode mode) { LanguageMode old = scope_->language_mode(); SetLanguageMode(scope_, old > mode ? old : mode); } void ParserTraits::RewriteDestructuringAssignments() { parser_->RewriteDestructuringAssignments(); } Expression* ParserTraits::RewriteExponentiation(Expression* left, Expression* right, int pos) { return parser_->RewriteExponentiation(left, right, pos); } Expression* ParserTraits::RewriteAssignExponentiation(Expression* left, Expression* right, int pos) { return parser_->RewriteAssignExponentiation(left, right, pos); } void ParserTraits::RewriteNonPattern(Type::ExpressionClassifier* classifier, bool* ok) { parser_->RewriteNonPattern(classifier, ok); } Zone* ParserTraits::zone() const { return parser_->function_state_->scope()->zone(); } ZoneList<Expression*>* ParserTraits::GetNonPatternList() const { return parser_->function_state_->non_patterns_to_rewrite(); } class NonPatternRewriter : public AstExpressionRewriter { public: NonPatternRewriter(uintptr_t stack_limit, Parser* parser) : AstExpressionRewriter(stack_limit), parser_(parser) {} ~NonPatternRewriter() override {} private: bool RewriteExpression(Expression* expr) override { if (expr->IsRewritableExpression()) return true; // Rewrite only what could have been a pattern but is not. if (expr->IsArrayLiteral()) { // Spread rewriting in array literals. ArrayLiteral* lit = expr->AsArrayLiteral(); VisitExpressions(lit->values()); replacement_ = parser_->RewriteSpreads(lit); return false; } if (expr->IsObjectLiteral()) { return true; } if (expr->IsBinaryOperation() && expr->AsBinaryOperation()->op() == Token::COMMA) { return true; } // Everything else does not need rewriting. return false; } void VisitObjectLiteralProperty(ObjectLiteralProperty* property) override { if (property == nullptr) return; // Do not rewrite (computed) key expressions AST_REWRITE_PROPERTY(Expression, property, value); } Parser* parser_; }; void Parser::RewriteNonPattern(ExpressionClassifier* classifier, bool* ok) { ValidateExpression(classifier, ok); if (!*ok) return; auto non_patterns_to_rewrite = function_state_->non_patterns_to_rewrite(); int begin = classifier->GetNonPatternBegin(); int end = non_patterns_to_rewrite->length(); if (begin < end) { NonPatternRewriter rewriter(stack_limit_, this); for (int i = begin; i < end; i++) { DCHECK(non_patterns_to_rewrite->at(i)->IsRewritableExpression()); rewriter.Rewrite(non_patterns_to_rewrite->at(i)); } non_patterns_to_rewrite->Rewind(begin); } } void Parser::RewriteDestructuringAssignments() { const auto& assignments = function_state_->destructuring_assignments_to_rewrite(); for (int i = assignments.length() - 1; i >= 0; --i) { // Rewrite list in reverse, so that nested assignment patterns are rewritten // correctly. const DestructuringAssignment& pair = assignments.at(i); RewritableExpression* to_rewrite = pair.assignment->AsRewritableExpression(); DCHECK_NOT_NULL(to_rewrite); if (!to_rewrite->is_rewritten()) { PatternRewriter::RewriteDestructuringAssignment(this, to_rewrite, pair.scope); } } } Expression* Parser::RewriteExponentiation(Expression* left, Expression* right, int pos) { ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone()); args->Add(left, zone()); args->Add(right, zone()); return factory()->NewCallRuntime(Context::MATH_POW_METHOD_INDEX, args, pos); } Expression* Parser::RewriteAssignExponentiation(Expression* left, Expression* right, int pos) { ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone()); if (left->IsVariableProxy()) { VariableProxy* lhs = left->AsVariableProxy(); Expression* result; DCHECK_NOT_NULL(lhs->raw_name()); result = this->ExpressionFromIdentifier(lhs->raw_name(), lhs->position(), lhs->end_position(), scope_, factory()); args->Add(left, zone()); args->Add(right, zone()); Expression* call = factory()->NewCallRuntime(Context::MATH_POW_METHOD_INDEX, args, pos); return factory()->NewAssignment(Token::ASSIGN, result, call, pos); } else if (left->IsProperty()) { Property* prop = left->AsProperty(); auto temp_obj = scope_->NewTemporary(ast_value_factory()->empty_string()); auto temp_key = scope_->NewTemporary(ast_value_factory()->empty_string()); Expression* assign_obj = factory()->NewAssignment( Token::ASSIGN, factory()->NewVariableProxy(temp_obj), prop->obj(), RelocInfo::kNoPosition); Expression* assign_key = factory()->NewAssignment( Token::ASSIGN, factory()->NewVariableProxy(temp_key), prop->key(), RelocInfo::kNoPosition); args->Add(factory()->NewProperty(factory()->NewVariableProxy(temp_obj), factory()->NewVariableProxy(temp_key), left->position()), zone()); args->Add(right, zone()); Expression* call = factory()->NewCallRuntime(Context::MATH_POW_METHOD_INDEX, args, pos); Expression* target = factory()->NewProperty( factory()->NewVariableProxy(temp_obj), factory()->NewVariableProxy(temp_key), RelocInfo::kNoPosition); Expression* assign = factory()->NewAssignment(Token::ASSIGN, target, call, pos); return factory()->NewBinaryOperation( Token::COMMA, assign_obj, factory()->NewBinaryOperation(Token::COMMA, assign_key, assign, pos), pos); } UNREACHABLE(); return nullptr; } Expression* Parser::RewriteSpreads(ArrayLiteral* lit) { // Array literals containing spreads are rewritten using do expressions, e.g. // [1, 2, 3, ...x, 4, ...y, 5] // is roughly rewritten as: // do { // $R = [1, 2, 3]; // for ($i of x) %AppendElement($R, $i); // %AppendElement($R, 4); // for ($j of y) %AppendElement($R, $j); // %AppendElement($R, 5); // $R // } // where $R, $i and $j are fresh temporary variables. ZoneList<Expression*>::iterator s = lit->FirstSpread(); if (s == lit->EndValue()) return nullptr; // no spread, no rewriting... Variable* result = scope_->NewTemporary(ast_value_factory()->dot_result_string()); // NOTE: The value assigned to R is the whole original array literal, // spreads included. This will be fixed before the rewritten AST is returned. // $R = lit Expression* init_result = factory()->NewAssignment(Token::INIT, factory()->NewVariableProxy(result), lit, RelocInfo::kNoPosition); Block* do_block = factory()->NewBlock(nullptr, 16, false, RelocInfo::kNoPosition); do_block->statements()->Add( factory()->NewExpressionStatement(init_result, RelocInfo::kNoPosition), zone()); // Traverse the array literal starting from the first spread. while (s != lit->EndValue()) { Expression* value = *s++; Spread* spread = value->AsSpread(); if (spread == nullptr) { // If the element is not a spread, we're adding a single: // %AppendElement($R, value) ZoneList<Expression*>* append_element_args = NewExpressionList(2, zone()); append_element_args->Add(factory()->NewVariableProxy(result), zone()); append_element_args->Add(value, zone()); do_block->statements()->Add( factory()->NewExpressionStatement( factory()->NewCallRuntime(Runtime::kAppendElement, append_element_args, RelocInfo::kNoPosition), RelocInfo::kNoPosition), zone()); } else { // If it's a spread, we're adding a for/of loop iterating through it. Variable* each = scope_->NewTemporary(ast_value_factory()->dot_for_string()); Expression* subject = spread->expression(); // %AppendElement($R, each) Statement* append_body; { ZoneList<Expression*>* append_element_args = NewExpressionList(2, zone()); append_element_args->Add(factory()->NewVariableProxy(result), zone()); append_element_args->Add(factory()->NewVariableProxy(each), zone()); append_body = factory()->NewExpressionStatement( factory()->NewCallRuntime(Runtime::kAppendElement, append_element_args, RelocInfo::kNoPosition), RelocInfo::kNoPosition); } // for (each of spread) %AppendElement($R, each) ForEachStatement* loop = factory()->NewForEachStatement( ForEachStatement::ITERATE, nullptr, RelocInfo::kNoPosition); InitializeForOfStatement(loop->AsForOfStatement(), factory()->NewVariableProxy(each), subject, append_body); do_block->statements()->Add(loop, zone()); } } // Now, rewind the original array literal to truncate everything from the // first spread (included) until the end. This fixes $R's initialization. lit->RewindSpreads(); return factory()->NewDoExpression(do_block, result, lit->position()); } void ParserTraits::QueueDestructuringAssignmentForRewriting(Expression* expr) { DCHECK(expr->IsRewritableExpression()); parser_->function_state_->AddDestructuringAssignment( Parser::DestructuringAssignment(expr, parser_->scope_)); } void ParserTraits::QueueNonPatternForRewriting(Expression* expr) { DCHECK(expr->IsRewritableExpression()); parser_->function_state_->AddNonPatternForRewriting(expr); } void ParserTraits::SetFunctionNameFromPropertyName( ObjectLiteralProperty* property, const AstRawString* name) { Expression* value = property->value(); // Computed name setting must happen at runtime. if (property->is_computed_name()) return; // Getter and setter names are handled here because their names // change in ES2015, even though they are not anonymous. auto function = value->AsFunctionLiteral(); if (function != nullptr) { bool is_getter = property->kind() == ObjectLiteralProperty::GETTER; bool is_setter = property->kind() == ObjectLiteralProperty::SETTER; if (is_getter || is_setter) { DCHECK_NOT_NULL(name); const AstRawString* prefix = is_getter ? parser_->ast_value_factory()->get_space_string() : parser_->ast_value_factory()->set_space_string(); function->set_raw_name( parser_->ast_value_factory()->NewConsString(prefix, name)); return; } } if (!value->IsAnonymousFunctionDefinition()) return; DCHECK_NOT_NULL(name); // Ignore "__proto__" as a name when it's being used to set the [[Prototype]] // of an object literal. if (property->kind() == ObjectLiteralProperty::PROTOTYPE) return; if (function != nullptr) { function->set_raw_name(name); DCHECK_EQ(ObjectLiteralProperty::COMPUTED, property->kind()); } else { DCHECK(value->IsClassLiteral()); DCHECK_EQ(ObjectLiteralProperty::COMPUTED, property->kind()); value->AsClassLiteral()->constructor()->set_raw_name(name); } } void ParserTraits::SetFunctionNameFromIdentifierRef(Expression* value, Expression* identifier) { if (!value->IsAnonymousFunctionDefinition()) return; if (!identifier->IsVariableProxy()) return; auto name = identifier->AsVariableProxy()->raw_name(); DCHECK_NOT_NULL(name); auto function = value->AsFunctionLiteral(); if (function != nullptr) { function->set_raw_name(name); } else { DCHECK(value->IsClassLiteral()); value->AsClassLiteral()->constructor()->set_raw_name(name); } } // Desugaring of yield* // ==================== // // With the help of do-expressions and function.sent, we desugar yield* into a // loop containing a "raw" yield (a yield that doesn't wrap an iterator result // object around its argument). Concretely, "yield* iterable" turns into // roughly the following code: // // do { // const kNext = 0; // const kReturn = 1; // const kThrow = 2; // // let input = function.sent; // let mode = kNext; // let output = undefined; // // let iterator = iterable[Symbol.iterator](); // if (!IS_RECEIVER(iterator)) throw MakeTypeError(kSymbolIteratorInvalid); // // while (true) { // // From the generator to the iterator: // // Forward input according to resume mode and obtain output. // switch (mode) { // case kNext: // output = iterator.next(input); // if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output); // break; // case kReturn: // IteratorClose(iterator, input, output); // See below. // break; // case kThrow: // let iteratorThrow = iterator.throw; // if (IS_NULL_OR_UNDEFINED(iteratorThrow)) { // IteratorClose(iterator); // See below. // throw MakeTypeError(kThrowMethodMissing); // } // output = %_Call(iteratorThrow, iterator, input); // if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output); // break; // } // if (output.done) break; // // // From the generator to its user: // // Forward output, receive new input, and determine resume mode. // mode = kReturn; // try { // try { // RawYield(output); // See explanation above. // mode = kNext; // } catch (error) { // mode = kThrow; // } // } finally { // input = function.sent; // continue; // } // } // // output.value; // } // // IteratorClose(iterator) expands to the following: // // let iteratorReturn = iterator.return; // if (IS_NULL_OR_UNDEFINED(iteratorReturn)) return; // let output = %_Call(iteratorReturn, iterator); // if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output); // // IteratorClose(iterator, input, output) expands to the following: // // let iteratorReturn = iterator.return; // if (IS_NULL_OR_UNDEFINED(iteratorReturn)) return input; // output = %_Call(iteratorReturn, iterator, input); // if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output); Expression* ParserTraits::RewriteYieldStar( Expression* generator, Expression* iterable, int pos) { const int nopos = RelocInfo::kNoPosition; auto factory = parser_->factory(); auto avfactory = parser_->ast_value_factory(); auto scope = parser_->scope_; auto zone = parser_->zone(); // Forward definition for break/continue statements. WhileStatement* loop = factory->NewWhileStatement(nullptr, nopos); // let input = undefined; Variable* var_input = scope->NewTemporary(avfactory->empty_string()); Statement* initialize_input; { Expression* input_proxy = factory->NewVariableProxy(var_input); Expression* assignment = factory->NewAssignment( Token::ASSIGN, input_proxy, factory->NewUndefinedLiteral(nopos), nopos); initialize_input = factory->NewExpressionStatement(assignment, nopos); } // let mode = kNext; Variable* var_mode = scope->NewTemporary(avfactory->empty_string()); Statement* initialize_mode; { Expression* mode_proxy = factory->NewVariableProxy(var_mode); Expression* knext = factory->NewSmiLiteral(JSGeneratorObject::kNext, nopos); Expression* assignment = factory->NewAssignment(Token::ASSIGN, mode_proxy, knext, nopos); initialize_mode = factory->NewExpressionStatement(assignment, nopos); } // let output = undefined; Variable* var_output = scope->NewTemporary(avfactory->empty_string()); Statement* initialize_output; { Expression* output_proxy = factory->NewVariableProxy(var_output); Expression* assignment = factory->NewAssignment( Token::ASSIGN, output_proxy, factory->NewUndefinedLiteral(nopos), nopos); initialize_output = factory->NewExpressionStatement(assignment, nopos); } // let iterator = iterable[Symbol.iterator]; Variable* var_iterator = scope->NewTemporary(avfactory->empty_string()); Statement* get_iterator; { Expression* iterator = GetIterator(iterable, factory, nopos); Expression* iterator_proxy = factory->NewVariableProxy(var_iterator); Expression* assignment = factory->NewAssignment( Token::ASSIGN, iterator_proxy, iterator, nopos); get_iterator = factory->NewExpressionStatement(assignment, nopos); } // if (!IS_RECEIVER(iterator)) throw MakeTypeError(kSymbolIteratorInvalid); Statement* validate_iterator; { Expression* is_receiver_call; { auto args = new (zone) ZoneList<Expression*>(1, zone); args->Add(factory->NewVariableProxy(var_iterator), zone); is_receiver_call = factory->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos); } Statement* throw_call; { Expression* call = NewThrowTypeError( MessageTemplate::kSymbolIteratorInvalid, avfactory->empty_string(), nopos); throw_call = factory->NewExpressionStatement(call, nopos); } validate_iterator = factory->NewIfStatement( is_receiver_call, factory->NewEmptyStatement(nopos), throw_call, nopos); } // output = iterator.next(input); Statement* call_next; { Expression* iterator_proxy = factory->NewVariableProxy(var_iterator); Expression* literal = factory->NewStringLiteral(avfactory->next_string(), nopos); Expression* next_property = factory->NewProperty(iterator_proxy, literal, nopos); Expression* input_proxy = factory->NewVariableProxy(var_input); auto args = new (zone) ZoneList<Expression*>(1, zone); args->Add(input_proxy, zone); Expression* call = factory->NewCall(next_property, args, nopos); Expression* output_proxy = factory->NewVariableProxy(var_output); Expression* assignment = factory->NewAssignment(Token::ASSIGN, output_proxy, call, nopos); call_next = factory->NewExpressionStatement(assignment, nopos); } // if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output); Statement* validate_next_output; { Expression* is_receiver_call; { auto args = new (zone) ZoneList<Expression*>(1, zone); args->Add(factory->NewVariableProxy(var_output), zone); is_receiver_call = factory->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos); } Statement* throw_call; { auto args = new (zone) ZoneList<Expression*>(1, zone); args->Add(factory->NewVariableProxy(var_output), zone); Expression* call = factory->NewCallRuntime( Runtime::kThrowIteratorResultNotAnObject, args, nopos); throw_call = factory->NewExpressionStatement(call, nopos); } validate_next_output = factory->NewIfStatement( is_receiver_call, factory->NewEmptyStatement(nopos), throw_call, nopos); } // let iteratorThrow = iterator.throw; Variable* var_throw = scope->NewTemporary(avfactory->empty_string()); Statement* get_throw; { Expression* iterator_proxy = factory->NewVariableProxy(var_iterator); Expression* literal = factory->NewStringLiteral(avfactory->throw_string(), nopos); Expression* property = factory->NewProperty(iterator_proxy, literal, nopos); Expression* throw_proxy = factory->NewVariableProxy(var_throw); Expression* assignment = factory->NewAssignment( Token::ASSIGN, throw_proxy, property, nopos); get_throw = factory->NewExpressionStatement(assignment, nopos); } // if (IS_NULL_OR_UNDEFINED(iteratorThrow) { // IteratorClose(iterator); // throw MakeTypeError(kThrowMethodMissing); // } Statement* check_throw; { Expression* condition = factory->NewCompareOperation( Token::EQ, factory->NewVariableProxy(var_throw), factory->NewNullLiteral(nopos), nopos); Expression* call = NewThrowTypeError( MessageTemplate::kThrowMethodMissing, avfactory->empty_string(), nopos); Statement* throw_call = factory->NewExpressionStatement(call, nopos); Block* then = factory->NewBlock(nullptr, 4+1, false, nopos); Variable* var_tmp = scope->NewTemporary(avfactory->empty_string()); BuildIteratorClose(then->statements(), var_iterator, Nothing<Variable*>(), var_tmp); then->statements()->Add(throw_call, zone); check_throw = factory->NewIfStatement( condition, then, factory->NewEmptyStatement(nopos), nopos); } // output = %_Call(iteratorThrow, iterator, input); Statement* call_throw; { auto args = new (zone) ZoneList<Expression*>(3, zone); args->Add(factory->NewVariableProxy(var_throw), zone); args->Add(factory->NewVariableProxy(var_iterator), zone); args->Add(factory->NewVariableProxy(var_input), zone); Expression* call = factory->NewCallRuntime(Runtime::kInlineCall, args, nopos); Expression* assignment = factory->NewAssignment( Token::ASSIGN, factory->NewVariableProxy(var_output), call, nopos); call_throw = factory->NewExpressionStatement(assignment, nopos); } // if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output); Statement* validate_throw_output; { Expression* is_receiver_call; { auto args = new (zone) ZoneList<Expression*>(1, zone); args->Add(factory->NewVariableProxy(var_output), zone); is_receiver_call = factory->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos); } Statement* throw_call; { auto args = new (zone) ZoneList<Expression*>(1, zone); args->Add(factory->NewVariableProxy(var_output), zone); Expression* call = factory->NewCallRuntime( Runtime::kThrowIteratorResultNotAnObject, args, nopos); throw_call = factory->NewExpressionStatement(call, nopos); } validate_throw_output = factory->NewIfStatement( is_receiver_call, factory->NewEmptyStatement(nopos), throw_call, nopos); } // if (output.done) break; Statement* if_done; { Expression* output_proxy = factory->NewVariableProxy(var_output); Expression* literal = factory->NewStringLiteral(avfactory->done_string(), nopos); Expression* property = factory->NewProperty(output_proxy, literal, nopos); BreakStatement* break_loop = factory->NewBreakStatement(loop, nopos); if_done = factory->NewIfStatement( property, break_loop, factory->NewEmptyStatement(nopos), nopos); } // mode = kReturn; Statement* set_mode_return; { Expression* mode_proxy = factory->NewVariableProxy(var_mode); Expression* kreturn = factory->NewSmiLiteral(JSGeneratorObject::kReturn, nopos); Expression* assignment = factory->NewAssignment(Token::ASSIGN, mode_proxy, kreturn, nopos); set_mode_return = factory->NewExpressionStatement(assignment, nopos); } // Yield(output); Statement* yield_output; { Expression* output_proxy = factory->NewVariableProxy(var_output); Yield* yield = factory->NewYield(generator, output_proxy, nopos); yield_output = factory->NewExpressionStatement(yield, nopos); } // mode = kNext; Statement* set_mode_next; { Expression* mode_proxy = factory->NewVariableProxy(var_mode); Expression* knext = factory->NewSmiLiteral(JSGeneratorObject::kNext, nopos); Expression* assignment = factory->NewAssignment(Token::ASSIGN, mode_proxy, knext, nopos); set_mode_next = factory->NewExpressionStatement(assignment, nopos); } // mode = kThrow; Statement* set_mode_throw; { Expression* mode_proxy = factory->NewVariableProxy(var_mode); Expression* kthrow = factory->NewSmiLiteral(JSGeneratorObject::kThrow, nopos); Expression* assignment = factory->NewAssignment(Token::ASSIGN, mode_proxy, kthrow, nopos); set_mode_throw = factory->NewExpressionStatement(assignment, nopos); } // input = function.sent; Statement* get_input; { Expression* function_sent = FunctionSentExpression(scope, factory, nopos); Expression* input_proxy = factory->NewVariableProxy(var_input); Expression* assignment = factory->NewAssignment( Token::ASSIGN, input_proxy, function_sent, nopos); get_input = factory->NewExpressionStatement(assignment, nopos); } // output.value; Statement* get_value; { Expression* output_proxy = factory->NewVariableProxy(var_output); Expression* literal = factory->NewStringLiteral(avfactory->value_string(), nopos); Expression* property = factory->NewProperty(output_proxy, literal, nopos); get_value = factory->NewExpressionStatement(property, nopos); } // Now put things together. // try { ... } catch(e) { ... } Statement* try_catch; { Block* try_block = factory->NewBlock(nullptr, 2, false, nopos); try_block->statements()->Add(yield_output, zone); try_block->statements()->Add(set_mode_next, zone); Block* catch_block = factory->NewBlock(nullptr, 1, false, nopos); catch_block->statements()->Add(set_mode_throw, zone); Scope* catch_scope = NewScope(scope, CATCH_SCOPE); catch_scope->set_is_hidden(); const AstRawString* name = avfactory->dot_catch_string(); Variable* catch_variable = catch_scope->DeclareLocal(name, VAR, kCreatedInitialized, Variable::NORMAL); try_catch = factory->NewTryCatchStatement( try_block, catch_scope, catch_variable, catch_block, nopos); } // try { ... } finally { ... } Statement* try_finally; { Block* try_block = factory->NewBlock(nullptr, 1, false, nopos); try_block->statements()->Add(try_catch, zone); Block* finally = factory->NewBlock(nullptr, 2, false, nopos); finally->statements()->Add(get_input, zone); finally->statements()->Add( factory->NewContinueStatement(loop, nopos), zone); try_finally = factory->NewTryFinallyStatement(try_block, finally, nopos); } // switch (mode) { ... } SwitchStatement* switch_mode = factory->NewSwitchStatement(nullptr, nopos); { auto case_next = new (zone) ZoneList<Statement*>(3, zone); case_next->Add(call_next, zone); case_next->Add(validate_next_output, zone); case_next->Add(factory->NewBreakStatement(switch_mode, nopos), zone); auto case_return = new (zone) ZoneList<Statement*>(5, zone); BuildIteratorClose(case_return, var_iterator, Just(var_input), var_output); case_return->Add(factory->NewBreakStatement(switch_mode, nopos), zone); auto case_throw = new (zone) ZoneList<Statement*>(5, zone); case_throw->Add(get_throw, zone); case_throw->Add(check_throw, zone); case_throw->Add(call_throw, zone); case_throw->Add(validate_throw_output, zone); case_throw->Add(factory->NewBreakStatement(switch_mode, nopos), zone); auto cases = new (zone) ZoneList<CaseClause*>(3, zone); Expression* knext = factory->NewSmiLiteral(JSGeneratorObject::kNext, nopos); Expression* kreturn = factory->NewSmiLiteral(JSGeneratorObject::kReturn, nopos); Expression* kthrow = factory->NewSmiLiteral(JSGeneratorObject::kThrow, nopos); cases->Add(factory->NewCaseClause(knext, case_next, nopos), zone); cases->Add(factory->NewCaseClause(kreturn, case_return, nopos), zone); cases->Add(factory->NewCaseClause(kthrow, case_throw, nopos), zone); switch_mode->Initialize(factory->NewVariableProxy(var_mode), cases); } // while (true) { ... } // Already defined earlier: WhileStatement* loop = ... { Block* loop_body = factory->NewBlock(nullptr, 4, false, nopos); loop_body->statements()->Add(switch_mode, zone); loop_body->statements()->Add(if_done, zone); loop_body->statements()->Add(set_mode_return, zone); loop_body->statements()->Add(try_finally, zone); loop->Initialize(factory->NewBooleanLiteral(true, nopos), loop_body); } // do { ... } DoExpression* yield_star; { // The rewriter needs to process the get_value statement only, hence we // put the preceding statements into an init block. Block* do_block_ = factory->NewBlock(nullptr, 6, true, nopos); do_block_->statements()->Add(initialize_input, zone); do_block_->statements()->Add(initialize_mode, zone); do_block_->statements()->Add(initialize_output, zone); do_block_->statements()->Add(get_iterator, zone); do_block_->statements()->Add(validate_iterator, zone); do_block_->statements()->Add(loop, zone); Block* do_block = factory->NewBlock(nullptr, 2, false, nopos); do_block->statements()->Add(do_block_, zone); do_block->statements()->Add(get_value, zone); Variable* dot_result = scope->NewTemporary(avfactory->dot_result_string()); yield_star = factory->NewDoExpression(do_block, dot_result, nopos); Rewriter::Rewrite(parser_, yield_star, avfactory); } return yield_star; } // Desugaring of (lhs) instanceof (rhs) // ==================================== // // We desugar instanceof into a load of property @@hasInstance on the rhs. // We end up with roughly the following code (O, C): // // do { // let O = lhs; // let C = rhs; // if (!IS_RECEIVER(C)) throw MakeTypeError(kNonObjectInInstanceOfCheck); // let handler_result = C[Symbol.hasInstance]; // if (handler_result === undefined) { // if (!IS_CALLABLE(C)) { // throw MakeTypeError(kCalledNonCallableInstanceOf); // } // handler_result = %_GetOrdinaryHasInstance() // handler_result = %_Call(handler_result, C, O); // } else { // handler_result = !!(%_Call(handler_result, C, O)); // } // handler_result; // } // Expression* ParserTraits::RewriteInstanceof(Expression* lhs, Expression* rhs, int pos) { const int nopos = RelocInfo::kNoPosition; auto factory = parser_->factory(); auto avfactory = parser_->ast_value_factory(); auto scope = parser_->scope_; auto zone = parser_->zone(); // let O = lhs; Variable* var_O = scope->NewTemporary(avfactory->empty_string()); Statement* get_O; { Expression* O_proxy = factory->NewVariableProxy(var_O); Expression* assignment = factory->NewAssignment(Token::ASSIGN, O_proxy, lhs, nopos); get_O = factory->NewExpressionStatement(assignment, nopos); } // let C = lhs; Variable* var_C = scope->NewTemporary(avfactory->empty_string()); Statement* get_C; { Expression* C_proxy = factory->NewVariableProxy(var_C); Expression* assignment = factory->NewAssignment(Token::ASSIGN, C_proxy, rhs, nopos); get_C = factory->NewExpressionStatement(assignment, nopos); } // if (!IS_RECEIVER(C)) throw MakeTypeError(kNonObjectInInstanceOfCheck); Statement* validate_C; { auto args = new (zone) ZoneList<Expression*>(1, zone); args->Add(factory->NewVariableProxy(var_C), zone); Expression* is_receiver_call = factory->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos); Expression* call = NewThrowTypeError(MessageTemplate::kNonObjectInInstanceOfCheck, avfactory->empty_string(), pos); Statement* throw_call = factory->NewExpressionStatement(call, pos); validate_C = factory->NewIfStatement(is_receiver_call, factory->NewEmptyStatement(nopos), throw_call, nopos); } // let handler_result = C[Symbol.hasInstance]; Variable* var_handler_result = scope->NewTemporary(avfactory->empty_string()); Statement* initialize_handler; { Expression* hasInstance_symbol_literal = factory->NewSymbolLiteral("hasInstance_symbol", RelocInfo::kNoPosition); Expression* prop = factory->NewProperty(factory->NewVariableProxy(var_C), hasInstance_symbol_literal, pos); Expression* handler_proxy = factory->NewVariableProxy(var_handler_result); Expression* assignment = factory->NewAssignment(Token::ASSIGN, handler_proxy, prop, nopos); initialize_handler = factory->NewExpressionStatement(assignment, nopos); } // if (handler_result === undefined) { // if (!IS_CALLABLE(C)) { // throw MakeTypeError(kCalledNonCallableInstanceOf); // } // handler_result = %_GetOrdinaryHasInstance() // handler_result = %_Call(handler_result, C, O); // } else { // handler_result = !!%_Call(handler_result, C, O); // } Statement* call_handler; { Expression* condition = factory->NewCompareOperation( Token::EQ_STRICT, factory->NewVariableProxy(var_handler_result), factory->NewUndefinedLiteral(nopos), nopos); Block* then_side = factory->NewBlock(nullptr, 3, false, nopos); { Expression* throw_expr = NewThrowTypeError(MessageTemplate::kCalledNonCallableInstanceOf, avfactory->empty_string(), pos); Statement* validate_C = CheckCallable(var_C, throw_expr, pos); ZoneList<Expression*>* empty_args = new (zone) ZoneList<Expression*>(0, zone); Expression* ordinary_has_instance = factory->NewCallRuntime( Runtime::kInlineGetOrdinaryHasInstance, empty_args, pos); Expression* handler_proxy = factory->NewVariableProxy(var_handler_result); Expression* assignment_handler = factory->NewAssignment( Token::ASSIGN, handler_proxy, ordinary_has_instance, nopos); Statement* assignment_get_handler = factory->NewExpressionStatement(assignment_handler, nopos); ZoneList<Expression*>* args = new (zone) ZoneList<Expression*>(3, zone); args->Add(factory->NewVariableProxy(var_handler_result), zone); args->Add(factory->NewVariableProxy(var_C), zone); args->Add(factory->NewVariableProxy(var_O), zone); Expression* call = factory->NewCallRuntime(Runtime::kInlineCall, args, pos); Expression* result_proxy = factory->NewVariableProxy(var_handler_result); Expression* assignment = factory->NewAssignment(Token::ASSIGN, result_proxy, call, nopos); Statement* assignment_return = factory->NewExpressionStatement(assignment, nopos); then_side->statements()->Add(validate_C, zone); then_side->statements()->Add(assignment_get_handler, zone); then_side->statements()->Add(assignment_return, zone); } Statement* else_side; { auto args = new (zone) ZoneList<Expression*>(3, zone); args->Add(factory->NewVariableProxy(var_handler_result), zone); args->Add(factory->NewVariableProxy(var_C), zone); args->Add(factory->NewVariableProxy(var_O), zone); Expression* call = factory->NewCallRuntime(Runtime::kInlineCall, args, nopos); Expression* inner_not = factory->NewUnaryOperation(Token::NOT, call, nopos); Expression* outer_not = factory->NewUnaryOperation(Token::NOT, inner_not, nopos); Expression* result_proxy = factory->NewVariableProxy(var_handler_result); Expression* assignment = factory->NewAssignment(Token::ASSIGN, result_proxy, outer_not, nopos); else_side = factory->NewExpressionStatement(assignment, nopos); } call_handler = factory->NewIfStatement(condition, then_side, else_side, nopos); } // do { ... } DoExpression* instanceof; { Block* block = factory->NewBlock(nullptr, 5, true, nopos); block->statements()->Add(get_O, zone); block->statements()->Add(get_C, zone); block->statements()->Add(validate_C, zone); block->statements()->Add(initialize_handler, zone); block->statements()->Add(call_handler, zone); // Here is the desugared instanceof. instanceof = factory->NewDoExpression(block, var_handler_result, nopos); Rewriter::Rewrite(parser_, instanceof, avfactory); } return instanceof; } Statement* ParserTraits::CheckCallable(Variable* var, Expression* error, int pos) { auto factory = parser_->factory(); auto avfactory = parser_->ast_value_factory(); const int nopos = RelocInfo::kNoPosition; Statement* validate_var; { Expression* type_of = factory->NewUnaryOperation( Token::TYPEOF, factory->NewVariableProxy(var), nopos); Expression* function_literal = factory->NewStringLiteral(avfactory->function_string(), nopos); Expression* condition = factory->NewCompareOperation( Token::EQ_STRICT, type_of, function_literal, nopos); Statement* throw_call = factory->NewExpressionStatement(error, pos); validate_var = factory->NewIfStatement( condition, factory->NewEmptyStatement(nopos), throw_call, nopos); } return validate_var; } void ParserTraits::BuildIteratorClose(ZoneList<Statement*>* statements, Variable* iterator, Maybe<Variable*> input, Variable* var_output) { // // This function adds four statements to [statements], corresponding to the // following code: // // let iteratorReturn = iterator.return; // if (IS_NULL_OR_UNDEFINED(iteratorReturn) return |input|; // output = %_Call(iteratorReturn, iterator|, input|); // if (!IS_RECEIVER(output)) %ThrowIterResultNotAnObject(output); // // Here, |...| denotes optional parts, depending on the presence of the // input variable. The reason for allowing input is that BuildIteratorClose // can then be reused to handle the return case in yield*. // const int nopos = RelocInfo::kNoPosition; auto factory = parser_->factory(); auto avfactory = parser_->ast_value_factory(); auto zone = parser_->zone(); // let iteratorReturn = iterator.return; Variable* var_return = var_output; // Reusing the output variable. Statement* get_return; { Expression* iterator_proxy = factory->NewVariableProxy(iterator); Expression* literal = factory->NewStringLiteral(avfactory->return_string(), nopos); Expression* property = factory->NewProperty(iterator_proxy, literal, nopos); Expression* return_proxy = factory->NewVariableProxy(var_return); Expression* assignment = factory->NewAssignment( Token::ASSIGN, return_proxy, property, nopos); get_return = factory->NewExpressionStatement(assignment, nopos); } // if (IS_NULL_OR_UNDEFINED(iteratorReturn) return |input|; Statement* check_return; { Expression* condition = factory->NewCompareOperation( Token::EQ, factory->NewVariableProxy(var_return), factory->NewNullLiteral(nopos), nopos); Expression* value = input.IsJust() ? static_cast<Expression*>( factory->NewVariableProxy(input.FromJust())) : factory->NewUndefinedLiteral(nopos); Statement* return_input = factory->NewReturnStatement(value, nopos); check_return = factory->NewIfStatement( condition, return_input, factory->NewEmptyStatement(nopos), nopos); } // output = %_Call(iteratorReturn, iterator, |input|); Statement* call_return; { auto args = new (zone) ZoneList<Expression*>(3, zone); args->Add(factory->NewVariableProxy(var_return), zone); args->Add(factory->NewVariableProxy(iterator), zone); if (input.IsJust()) { args->Add(factory->NewVariableProxy(input.FromJust()), zone); } Expression* call = factory->NewCallRuntime(Runtime::kInlineCall, args, nopos); Expression* output_proxy = factory->NewVariableProxy(var_output); Expression* assignment = factory->NewAssignment( Token::ASSIGN, output_proxy, call, nopos); call_return = factory->NewExpressionStatement(assignment, nopos); } // if (!IS_RECEIVER(output)) %ThrowIteratorResultNotAnObject(output); Statement* validate_output; { Expression* is_receiver_call; { auto args = new (zone) ZoneList<Expression*>(1, zone); args->Add(factory->NewVariableProxy(var_output), zone); is_receiver_call = factory->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos); } Statement* throw_call; { auto args = new (zone) ZoneList<Expression*>(1, zone); args->Add(factory->NewVariableProxy(var_output), zone); Expression* call = factory->NewCallRuntime( Runtime::kThrowIteratorResultNotAnObject, args, nopos); throw_call = factory->NewExpressionStatement(call, nopos); } validate_output = factory->NewIfStatement( is_receiver_call, factory->NewEmptyStatement(nopos), throw_call, nopos); } statements->Add(get_return, zone); statements->Add(check_return, zone); statements->Add(call_return, zone); statements->Add(validate_output, zone); } void ParserTraits::FinalizeIteratorUse(Variable* completion, Expression* condition, Variable* iter, Block* iterator_use, Block* target) { if (!FLAG_harmony_iterator_close) return; // // This function adds two statements to [target], corresponding to the // following code: // // completion = kNormalCompletion; // try { // try { // iterator_use // } catch(e) { // if (completion === kAbruptCompletion) completion = kThrowCompletion; // %ReThrow(e); // } // } finally { // if (condition) { // #BuildIteratorCloseForCompletion(iter, completion) // } // } // const int nopos = RelocInfo::kNoPosition; auto factory = parser_->factory(); auto avfactory = parser_->ast_value_factory(); auto scope = parser_->scope_; auto zone = parser_->zone(); // completion = kNormalCompletion; Statement* initialize_completion; { Expression* proxy = factory->NewVariableProxy(completion); Expression* assignment = factory->NewAssignment( Token::ASSIGN, proxy, factory->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos); initialize_completion = factory->NewExpressionStatement(assignment, nopos); } // if (completion === kAbruptCompletion) completion = kThrowCompletion; Statement* set_completion_throw; { Expression* condition = factory->NewCompareOperation( Token::EQ_STRICT, factory->NewVariableProxy(completion), factory->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos); Expression* proxy = factory->NewVariableProxy(completion); Expression* assignment = factory->NewAssignment( Token::ASSIGN, proxy, factory->NewSmiLiteral(Parser::kThrowCompletion, nopos), nopos); Statement* statement = factory->NewExpressionStatement(assignment, nopos); set_completion_throw = factory->NewIfStatement( condition, statement, factory->NewEmptyStatement(nopos), nopos); } // if (condition) { // #BuildIteratorCloseForCompletion(iter, completion) // } Block* maybe_close; { Block* block = factory->NewBlock(nullptr, 2, true, nopos); parser_->BuildIteratorCloseForCompletion(block->statements(), iter, completion); DCHECK(block->statements()->length() == 2); maybe_close = factory->NewBlock(nullptr, 1, true, nopos); maybe_close->statements()->Add( factory->NewIfStatement(condition, block, factory->NewEmptyStatement(nopos), nopos), zone); } // try { #try_block } // catch(e) { // #set_completion_throw; // %ReThrow(e); // } Statement* try_catch; { Scope* catch_scope = parser_->NewScope(scope, CATCH_SCOPE); Variable* catch_variable = catch_scope->DeclareLocal(avfactory->dot_catch_string(), VAR, kCreatedInitialized, Variable::NORMAL); catch_scope->set_is_hidden(); Statement* rethrow; // We use %ReThrow rather than the ordinary throw because we want to // preserve the original exception message. This is also why we create a // TryCatchStatementForReThrow below (which does not clear the pending // message), rather than a TryCatchStatement. { auto args = new (zone) ZoneList<Expression*>(1, zone); args->Add(factory->NewVariableProxy(catch_variable), zone); rethrow = factory->NewExpressionStatement( factory->NewCallRuntime(Runtime::kReThrow, args, nopos), nopos); } Block* catch_block = factory->NewBlock(nullptr, 2, false, nopos); catch_block->statements()->Add(set_completion_throw, zone); catch_block->statements()->Add(rethrow, zone); try_catch = factory->NewTryCatchStatementForReThrow( iterator_use, catch_scope, catch_variable, catch_block, nopos); } // try { #try_catch } finally { #maybe_close } Statement* try_finally; { Block* try_block = factory->NewBlock(nullptr, 1, false, nopos); try_block->statements()->Add(try_catch, zone); try_finally = factory->NewTryFinallyStatement(try_block, maybe_close, nopos); } target->statements()->Add(initialize_completion, zone); target->statements()->Add(try_finally, zone); } void ParserTraits::BuildIteratorCloseForCompletion( ZoneList<Statement*>* statements, Variable* iterator, Variable* completion) { // // This function adds two statements to [statements], corresponding to the // following code: // // let iteratorReturn = iterator.return; // if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) { // if (completion === kThrowCompletion) { // if (!IS_CALLABLE(iteratorReturn)) { // throw MakeTypeError(kReturnMethodNotCallable); // } // try { %_Call(iteratorReturn, iterator) } catch (_) { } // } else { // let output = %_Call(iteratorReturn, iterator); // if (!IS_RECEIVER(output)) { // %ThrowIterResultNotAnObject(output); // } // } // } // const int nopos = RelocInfo::kNoPosition; auto factory = parser_->factory(); auto avfactory = parser_->ast_value_factory(); auto scope = parser_->scope_; auto zone = parser_->zone(); // let iteratorReturn = iterator.return; Variable* var_return = scope->NewTemporary(avfactory->empty_string()); Statement* get_return; { Expression* iterator_proxy = factory->NewVariableProxy(iterator); Expression* literal = factory->NewStringLiteral(avfactory->return_string(), nopos); Expression* property = factory->NewProperty(iterator_proxy, literal, nopos); Expression* return_proxy = factory->NewVariableProxy(var_return); Expression* assignment = factory->NewAssignment( Token::ASSIGN, return_proxy, property, nopos); get_return = factory->NewExpressionStatement(assignment, nopos); } // if (!IS_CALLABLE(iteratorReturn)) { // throw MakeTypeError(kReturnMethodNotCallable); // } Statement* check_return_callable; { Expression* throw_expr = NewThrowTypeError( MessageTemplate::kReturnMethodNotCallable, avfactory->empty_string(), nopos); check_return_callable = CheckCallable(var_return, throw_expr, nopos); } // try { %_Call(iteratorReturn, iterator) } catch (_) { } Statement* try_call_return; { auto args = new (zone) ZoneList<Expression*>(2, zone); args->Add(factory->NewVariableProxy(var_return), zone); args->Add(factory->NewVariableProxy(iterator), zone); Expression* call = factory->NewCallRuntime(Runtime::kInlineCall, args, nopos); Block* try_block = factory->NewBlock(nullptr, 1, false, nopos); try_block->statements()->Add(factory->NewExpressionStatement(call, nopos), zone); Block* catch_block = factory->NewBlock(nullptr, 0, false, nopos); Scope* catch_scope = NewScope(scope, CATCH_SCOPE); Variable* catch_variable = catch_scope->DeclareLocal( avfactory->dot_catch_string(), VAR, kCreatedInitialized, Variable::NORMAL); catch_scope->set_is_hidden(); try_call_return = factory->NewTryCatchStatement( try_block, catch_scope, catch_variable, catch_block, nopos); } // let output = %_Call(iteratorReturn, iterator); // if (!IS_RECEIVER(output)) { // %ThrowIteratorResultNotAnObject(output); // } Block* validate_return; { Variable* var_output = scope->NewTemporary(avfactory->empty_string()); Statement* call_return; { auto args = new (zone) ZoneList<Expression*>(2, zone); args->Add(factory->NewVariableProxy(var_return), zone); args->Add(factory->NewVariableProxy(iterator), zone); Expression* call = factory->NewCallRuntime(Runtime::kInlineCall, args, nopos); Expression* output_proxy = factory->NewVariableProxy(var_output); Expression* assignment = factory->NewAssignment(Token::ASSIGN, output_proxy, call, nopos); call_return = factory->NewExpressionStatement(assignment, nopos); } Expression* is_receiver_call; { auto args = new (zone) ZoneList<Expression*>(1, zone); args->Add(factory->NewVariableProxy(var_output), zone); is_receiver_call = factory->NewCallRuntime(Runtime::kInlineIsJSReceiver, args, nopos); } Statement* throw_call; { auto args = new (zone) ZoneList<Expression*>(1, zone); args->Add(factory->NewVariableProxy(var_output), zone); Expression* call = factory->NewCallRuntime( Runtime::kThrowIteratorResultNotAnObject, args, nopos); throw_call = factory->NewExpressionStatement(call, nopos); } Statement* check_return = factory->NewIfStatement( is_receiver_call, factory->NewEmptyStatement(nopos), throw_call, nopos); validate_return = factory->NewBlock(nullptr, 2, false, nopos); validate_return->statements()->Add(call_return, zone); validate_return->statements()->Add(check_return, zone); } // if (completion === kThrowCompletion) { // #check_return_callable; // #try_call_return; // } else { // #validate_return; // } Statement* call_return_carefully; { Expression* condition = factory->NewCompareOperation( Token::EQ_STRICT, factory->NewVariableProxy(completion), factory->NewSmiLiteral(Parser::kThrowCompletion, nopos), nopos); Block* then_block = factory->NewBlock(nullptr, 2, false, nopos); then_block->statements()->Add(check_return_callable, zone); then_block->statements()->Add(try_call_return, zone); call_return_carefully = factory->NewIfStatement(condition, then_block, validate_return, nopos); } // if (!IS_NULL_OR_UNDEFINED(iteratorReturn)) { ... } Statement* maybe_call_return; { Expression* condition = factory->NewCompareOperation( Token::EQ, factory->NewVariableProxy(var_return), factory->NewNullLiteral(nopos), nopos); maybe_call_return = factory->NewIfStatement(condition, factory->NewEmptyStatement(nopos), call_return_carefully, nopos); } statements->Add(get_return, zone); statements->Add(maybe_call_return, zone); } Statement* ParserTraits::FinalizeForOfStatement(ForOfStatement* loop, int pos) { if (!FLAG_harmony_iterator_close) return loop; // // This function replaces the loop with the following wrapping: // // let each; // let completion = kNormalCompletion; // try { // try { // #loop; // } catch(e) { // if (completion === kAbruptCompletion) completion = kThrowCompletion; // %ReThrow(e); // } // } finally { // if (!(completion === kNormalCompletion || IS_UNDEFINED(#iterator))) { // #BuildIteratorCloseForCompletion(#iterator, completion) // } // } // // where the loop's body is wrapped as follows: // // { // #loop-body // {{completion = kNormalCompletion;}} // } // // and the loop's assign_each is wrapped as follows // // do { // {{completion = kAbruptCompletion;}} // #assign-each // } // const int nopos = RelocInfo::kNoPosition; auto factory = parser_->factory(); auto avfactory = parser_->ast_value_factory(); auto scope = parser_->scope_; auto zone = parser_->zone(); Variable* var_completion = scope->NewTemporary(avfactory->empty_string()); // let each; Variable* var_each = scope->NewTemporary(avfactory->empty_string()); Statement* initialize_each; { Expression* proxy = factory->NewVariableProxy(var_each); Expression* assignment = factory->NewAssignment( Token::ASSIGN, proxy, factory->NewUndefinedLiteral(nopos), nopos); initialize_each = factory->NewExpressionStatement(assignment, nopos); } // !(completion === kNormalCompletion || IS_UNDEFINED(#iterator)) Expression* closing_condition; { Expression* lhs = factory->NewCompareOperation( Token::EQ_STRICT, factory->NewVariableProxy(var_completion), factory->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos); Expression* rhs = factory->NewCompareOperation( Token::EQ_STRICT, factory->NewVariableProxy(loop->iterator()), factory->NewUndefinedLiteral(nopos), nopos); closing_condition = factory->NewUnaryOperation( Token::NOT, factory->NewBinaryOperation(Token::OR, lhs, rhs, nopos), nopos); } // {{completion = kNormalCompletion;}} Statement* set_completion_normal; { Expression* proxy = factory->NewVariableProxy(var_completion); Expression* assignment = factory->NewAssignment( Token::ASSIGN, proxy, factory->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos); Block* block = factory->NewBlock(nullptr, 1, true, nopos); block->statements()->Add( factory->NewExpressionStatement(assignment, nopos), zone); set_completion_normal = block; } // {{completion = kAbruptCompletion;}} Statement* set_completion_abrupt; { Expression* proxy = factory->NewVariableProxy(var_completion); Expression* assignment = factory->NewAssignment( Token::ASSIGN, proxy, factory->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos); Block* block = factory->NewBlock(nullptr, 1, true, nopos); block->statements()->Add(factory->NewExpressionStatement(assignment, nopos), zone); set_completion_abrupt = block; } // { #loop-body; #set_completion_normal } Block* new_body = factory->NewBlock(nullptr, 2, false, nopos); { new_body->statements()->Add(loop->body(), zone); new_body->statements()->Add(set_completion_normal, zone); } // { #set_completion_abrupt; #assign-each } Block* new_assign_each = factory->NewBlock(nullptr, 2, false, nopos); { new_assign_each->statements()->Add(set_completion_abrupt, zone); new_assign_each->statements()->Add( factory->NewExpressionStatement(loop->assign_each(), nopos), zone); } // Now put things together. loop->set_body(new_body); loop->set_assign_each( factory->NewDoExpression(new_assign_each, var_each, nopos)); Statement* final_loop; { Block* target = factory->NewBlock(nullptr, 3, false, nopos); target->statements()->Add(initialize_each, zone); Block* try_block = factory->NewBlock(nullptr, 1, false, nopos); try_block->statements()->Add(loop, zone); FinalizeIteratorUse(var_completion, closing_condition, loop->iterator(), try_block, target); final_loop = target; } return final_loop; } } // namespace internal } // namespace v8