// Copyright 2021 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/deoptimizer/translated-state.h"

#include <iomanip>

#include "src/base/memory.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/deoptimizer/materialized-object-store.h"
#include "src/deoptimizer/translation-opcode.h"
#include "src/diagnostics/disasm.h"
#include "src/execution/frames.h"
#include "src/execution/isolate.h"
#include "src/numbers/conversions.h"
#include "src/objects/arguments.h"
#include "src/objects/heap-number-inl.h"
#include "src/objects/oddball.h"

// Has to be the last include (doesn't have include guards)
#include "src/objects/object-macros.h"

namespace v8 {

using base::Memory;
using base::ReadUnalignedValue;

namespace internal {

void TranslationArrayPrintSingleFrame(
    std::ostream& os, TranslationArray translation_array, int translation_index,
    DeoptimizationLiteralArray literal_array) {
  DisallowGarbageCollection gc_oh_noes;
  TranslationArrayIterator iterator(translation_array, translation_index);
  disasm::NameConverter converter;

  TranslationOpcode opcode = TranslationOpcodeFromInt(iterator.Next());
  DCHECK(TranslationOpcode::BEGIN == opcode);
  int frame_count = iterator.Next();
  int jsframe_count = iterator.Next();
  int update_feedback_count = iterator.Next();
  os << "  " << TranslationOpcodeToString(opcode)
     << " {frame count=" << frame_count << ", js frame count=" << jsframe_count
     << ", update_feedback_count=" << update_feedback_count << "}\n";

  while (iterator.HasNext()) {
    opcode = TranslationOpcodeFromInt(iterator.Next());
    if (opcode == TranslationOpcode::BEGIN) break;

    os << std::setw(31) << "    " << TranslationOpcodeToString(opcode) << " ";

    switch (opcode) {
      case TranslationOpcode::BEGIN:
        UNREACHABLE();

      case TranslationOpcode::INTERPRETED_FRAME: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 5);
        int bytecode_offset = iterator.Next();
        int shared_info_id = iterator.Next();
        unsigned height = iterator.Next();
        int return_value_offset = iterator.Next();
        int return_value_count = iterator.Next();
        Object shared_info = literal_array.get(shared_info_id);
        os << "{bytecode_offset=" << bytecode_offset << ", function="
           << SharedFunctionInfo::cast(shared_info).DebugNameCStr().get()
           << ", height=" << height << ", retval=@" << return_value_offset
           << "(#" << return_value_count << ")}";
        break;
      }

      case TranslationOpcode::CONSTRUCT_STUB_FRAME: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 3);
        int bailout_id = iterator.Next();
        int shared_info_id = iterator.Next();
        Object shared_info = literal_array.get(shared_info_id);
        unsigned height = iterator.Next();
        os << "{bailout_id=" << bailout_id << ", function="
           << SharedFunctionInfo::cast(shared_info).DebugNameCStr().get()
           << ", height=" << height << "}";
        break;
      }

      case TranslationOpcode::BUILTIN_CONTINUATION_FRAME:
      case TranslationOpcode::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME:
      case TranslationOpcode::
          JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 3);
        int bailout_id = iterator.Next();
        int shared_info_id = iterator.Next();
        Object shared_info = literal_array.get(shared_info_id);
        unsigned height = iterator.Next();
        os << "{bailout_id=" << bailout_id << ", function="
           << SharedFunctionInfo::cast(shared_info).DebugNameCStr().get()
           << ", height=" << height << "}";
        break;
      }

#if V8_ENABLE_WEBASSEMBLY
      case TranslationOpcode::JS_TO_WASM_BUILTIN_CONTINUATION_FRAME: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 4);
        int bailout_id = iterator.Next();
        int shared_info_id = iterator.Next();
        Object shared_info = literal_array.get(shared_info_id);
        unsigned height = iterator.Next();
        int wasm_return_type = iterator.Next();
        os << "{bailout_id=" << bailout_id << ", function="
           << SharedFunctionInfo::cast(shared_info).DebugNameCStr().get()
           << ", height=" << height << ", wasm_return_type=" << wasm_return_type
           << "}";
        break;
      }
#endif  // V8_ENABLE_WEBASSEMBLY

      case TranslationOpcode::ARGUMENTS_ADAPTOR_FRAME: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 2);
        int shared_info_id = iterator.Next();
        Object shared_info = literal_array.get(shared_info_id);
        unsigned height = iterator.Next();
        os << "{function="
           << SharedFunctionInfo::cast(shared_info).DebugNameCStr().get()
           << ", height=" << height << "}";
        break;
      }

      case TranslationOpcode::REGISTER: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int reg_code = iterator.Next();
        os << "{input=" << converter.NameOfCPURegister(reg_code) << "}";
        break;
      }

      case TranslationOpcode::INT32_REGISTER: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int reg_code = iterator.Next();
        os << "{input=" << converter.NameOfCPURegister(reg_code) << " (int32)}";
        break;
      }

      case TranslationOpcode::INT64_REGISTER: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int reg_code = iterator.Next();
        os << "{input=" << converter.NameOfCPURegister(reg_code) << " (int64)}";
        break;
      }

      case TranslationOpcode::UINT32_REGISTER: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int reg_code = iterator.Next();
        os << "{input=" << converter.NameOfCPURegister(reg_code)
           << " (uint32)}";
        break;
      }

      case TranslationOpcode::BOOL_REGISTER: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int reg_code = iterator.Next();
        os << "{input=" << converter.NameOfCPURegister(reg_code) << " (bool)}";
        break;
      }

      case TranslationOpcode::FLOAT_REGISTER: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int reg_code = iterator.Next();
        os << "{input=" << FloatRegister::from_code(reg_code) << "}";
        break;
      }

      case TranslationOpcode::DOUBLE_REGISTER: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int reg_code = iterator.Next();
        os << "{input=" << DoubleRegister::from_code(reg_code) << "}";
        break;
      }

      case TranslationOpcode::STACK_SLOT: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int input_slot_index = iterator.Next();
        os << "{input=" << input_slot_index << "}";
        break;
      }

      case TranslationOpcode::INT32_STACK_SLOT: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int input_slot_index = iterator.Next();
        os << "{input=" << input_slot_index << " (int32)}";
        break;
      }

      case TranslationOpcode::INT64_STACK_SLOT: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int input_slot_index = iterator.Next();
        os << "{input=" << input_slot_index << " (int64)}";
        break;
      }

      case TranslationOpcode::UINT32_STACK_SLOT: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int input_slot_index = iterator.Next();
        os << "{input=" << input_slot_index << " (uint32)}";
        break;
      }

      case TranslationOpcode::BOOL_STACK_SLOT: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int input_slot_index = iterator.Next();
        os << "{input=" << input_slot_index << " (bool)}";
        break;
      }

      case TranslationOpcode::FLOAT_STACK_SLOT:
      case TranslationOpcode::DOUBLE_STACK_SLOT: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int input_slot_index = iterator.Next();
        os << "{input=" << input_slot_index << "}";
        break;
      }

      case TranslationOpcode::LITERAL: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int literal_index = iterator.Next();
        Object literal_value = literal_array.get(literal_index);
        os << "{literal_id=" << literal_index << " (" << Brief(literal_value)
           << ")}";
        break;
      }

      case TranslationOpcode::DUPLICATED_OBJECT: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int object_index = iterator.Next();
        os << "{object_index=" << object_index << "}";
        break;
      }

      case TranslationOpcode::ARGUMENTS_ELEMENTS: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        CreateArgumentsType arguments_type =
            static_cast<CreateArgumentsType>(iterator.Next());
        os << "{arguments_type=" << arguments_type << "}";
        break;
      }
      case TranslationOpcode::ARGUMENTS_LENGTH: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 0);
        os << "{arguments_length}";
        break;
      }

      case TranslationOpcode::CAPTURED_OBJECT: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 1);
        int args_length = iterator.Next();
        os << "{length=" << args_length << "}";
        break;
      }

      case TranslationOpcode::UPDATE_FEEDBACK: {
        DCHECK_EQ(TranslationOpcodeOperandCount(opcode), 2);
        int literal_index = iterator.Next();
        FeedbackSlot slot(iterator.Next());
        os << "{feedback={vector_index=" << literal_index << ", slot=" << slot
           << "}}";
        break;
      }
    }
    os << "\n";
  }
}

// static
TranslatedValue TranslatedValue::NewDeferredObject(TranslatedState* container,
                                                   int length,
                                                   int object_index) {
  TranslatedValue slot(container, kCapturedObject);
  slot.materialization_info_ = {object_index, length};
  return slot;
}

// static
TranslatedValue TranslatedValue::NewDuplicateObject(TranslatedState* container,
                                                    int id) {
  TranslatedValue slot(container, kDuplicatedObject);
  slot.materialization_info_ = {id, -1};
  return slot;
}

// static
TranslatedValue TranslatedValue::NewFloat(TranslatedState* container,
                                          Float32 value) {
  TranslatedValue slot(container, kFloat);
  slot.float_value_ = value;
  return slot;
}

// static
TranslatedValue TranslatedValue::NewDouble(TranslatedState* container,
                                           Float64 value) {
  TranslatedValue slot(container, kDouble);
  slot.double_value_ = value;
  return slot;
}

// static
TranslatedValue TranslatedValue::NewInt32(TranslatedState* container,
                                          int32_t value) {
  TranslatedValue slot(container, kInt32);
  slot.int32_value_ = value;
  return slot;
}

// static
TranslatedValue TranslatedValue::NewInt64(TranslatedState* container,
                                          int64_t value) {
  TranslatedValue slot(container, kInt64);
  slot.int64_value_ = value;
  return slot;
}

// static
TranslatedValue TranslatedValue::NewInt64ToBigInt(TranslatedState* container,
                                                  int64_t value) {
  TranslatedValue slot(container, kInt64ToBigInt);
  slot.int64_value_ = value;
  return slot;
}

// static
TranslatedValue TranslatedValue::NewUInt32(TranslatedState* container,
                                           uint32_t value) {
  TranslatedValue slot(container, kUInt32);
  slot.uint32_value_ = value;
  return slot;
}

// static
TranslatedValue TranslatedValue::NewBool(TranslatedState* container,
                                         uint32_t value) {
  TranslatedValue slot(container, kBoolBit);
  slot.uint32_value_ = value;
  return slot;
}

// static
TranslatedValue TranslatedValue::NewTagged(TranslatedState* container,
                                           Object literal) {
  TranslatedValue slot(container, kTagged);
  slot.raw_literal_ = literal;
  return slot;
}

// static
TranslatedValue TranslatedValue::NewInvalid(TranslatedState* container) {
  return TranslatedValue(container, kInvalid);
}

Isolate* TranslatedValue::isolate() const { return container_->isolate(); }

Object TranslatedValue::raw_literal() const {
  DCHECK_EQ(kTagged, kind());
  return raw_literal_;
}

int32_t TranslatedValue::int32_value() const {
  DCHECK_EQ(kInt32, kind());
  return int32_value_;
}

int64_t TranslatedValue::int64_value() const {
  DCHECK(kInt64 == kind() || kInt64ToBigInt == kind());
  return int64_value_;
}

uint32_t TranslatedValue::uint32_value() const {
  DCHECK(kind() == kUInt32 || kind() == kBoolBit);
  return uint32_value_;
}

Float32 TranslatedValue::float_value() const {
  DCHECK_EQ(kFloat, kind());
  return float_value_;
}

Float64 TranslatedValue::double_value() const {
  DCHECK_EQ(kDouble, kind());
  return double_value_;
}

int TranslatedValue::object_length() const {
  DCHECK_EQ(kind(), kCapturedObject);
  return materialization_info_.length_;
}

int TranslatedValue::object_index() const {
  DCHECK(kind() == kCapturedObject || kind() == kDuplicatedObject);
  return materialization_info_.id_;
}

Object TranslatedValue::GetRawValue() const {
  // If we have a value, return it.
  if (materialization_state() == kFinished) {
    int smi;
    if (storage_->IsHeapNumber() &&
        DoubleToSmiInteger(storage_->Number(), &smi)) {
      return Smi::FromInt(smi);
    }
    return *storage_;
  }

  // Otherwise, do a best effort to get the value without allocation.
  switch (kind()) {
    case kTagged:
      return raw_literal();

    case kInt32: {
      bool is_smi = Smi::IsValid(int32_value());
      if (is_smi) {
        return Smi::FromInt(int32_value());
      }
      break;
    }

    case kInt64: {
      bool is_smi = (int64_value() >= static_cast<int64_t>(Smi::kMinValue) &&
                     int64_value() <= static_cast<int64_t>(Smi::kMaxValue));
      if (is_smi) {
        return Smi::FromIntptr(static_cast<intptr_t>(int64_value()));
      }
      break;
    }

    case kInt64ToBigInt:
      // Return the arguments marker.
      break;

    case kUInt32: {
      bool is_smi = (uint32_value() <= static_cast<uintptr_t>(Smi::kMaxValue));
      if (is_smi) {
        return Smi::FromInt(static_cast<int32_t>(uint32_value()));
      }
      break;
    }

    case kBoolBit: {
      if (uint32_value() == 0) {
        return ReadOnlyRoots(isolate()).false_value();
      } else {
        CHECK_EQ(1U, uint32_value());
        return ReadOnlyRoots(isolate()).true_value();
      }
    }

    case kFloat: {
      int smi;
      if (DoubleToSmiInteger(float_value().get_scalar(), &smi)) {
        return Smi::FromInt(smi);
      }
      break;
    }

    case kDouble: {
      int smi;
      if (DoubleToSmiInteger(double_value().get_scalar(), &smi)) {
        return Smi::FromInt(smi);
      }
      break;
    }

    default:
      break;
  }

  // If we could not get the value without allocation, return the arguments
  // marker.
  return ReadOnlyRoots(isolate()).arguments_marker();
}

void TranslatedValue::set_initialized_storage(Handle<HeapObject> storage) {
  DCHECK_EQ(kUninitialized, materialization_state());
  storage_ = storage;
  materialization_state_ = kFinished;
}

Handle<Object> TranslatedValue::GetValue() {
  Handle<Object> value(GetRawValue(), isolate());
  if (materialization_state() == kFinished) return value;

  if (value->IsSmi()) {
    // Even though stored as a Smi, this number might instead be needed as a
    // HeapNumber when materializing a JSObject with a field of HeapObject
    // representation. Since we don't have this information available here, we
    // just always allocate a HeapNumber and later extract the Smi again if we
    // don't need a HeapObject.
    set_initialized_storage(
        isolate()->factory()->NewHeapNumber(value->Number()));
    return value;
  }

  if (*value != ReadOnlyRoots(isolate()).arguments_marker()) {
    set_initialized_storage(Handle<HeapObject>::cast(value));
    return storage_;
  }

  // Otherwise we have to materialize.

  if (kind() == TranslatedValue::kCapturedObject ||
      kind() == TranslatedValue::kDuplicatedObject) {
    // We need to materialize the object (or possibly even object graphs).
    // To make the object verifier happy, we materialize in two steps.

    // 1. Allocate storage for reachable objects. This makes sure that for
    //    each object we have allocated space on heap. The space will be
    //    a byte array that will be later initialized, or a fully
    //    initialized object if it is safe to allocate one that will
    //    pass the verifier.
    container_->EnsureObjectAllocatedAt(this);

    // Finish any sweeping so that it becomes safe to overwrite the ByteArray
    // headers.
    // TODO(hpayer): Find a cleaner way to support a group of
    // non-fully-initialized objects.
    isolate()->heap()->mark_compact_collector()->EnsureSweepingCompleted();

    // 2. Initialize the objects. If we have allocated only byte arrays
    //    for some objects, we now overwrite the byte arrays with the
    //    correct object fields. Note that this phase does not allocate
    //    any new objects, so it does not trigger the object verifier.
    return container_->InitializeObjectAt(this);
  }

  double number = 0;
  Handle<HeapObject> heap_object;
  switch (kind()) {
    case TranslatedValue::kInt32:
      number = int32_value();
      heap_object = isolate()->factory()->NewHeapNumber(number);
      break;
    case TranslatedValue::kInt64:
      number = int64_value();
      heap_object = isolate()->factory()->NewHeapNumber(number);
      break;
    case TranslatedValue::kInt64ToBigInt:
      heap_object = BigInt::FromInt64(isolate(), int64_value());
      break;
    case TranslatedValue::kUInt32:
      number = uint32_value();
      heap_object = isolate()->factory()->NewHeapNumber(number);
      break;
    case TranslatedValue::kFloat:
      number = float_value().get_scalar();
      heap_object = isolate()->factory()->NewHeapNumber(number);
      break;
    case TranslatedValue::kDouble:
      number = double_value().get_scalar();
      heap_object = isolate()->factory()->NewHeapNumber(number);
      break;
    default:
      UNREACHABLE();
  }
  DCHECK(!IsSmiDouble(number) || kind() == TranslatedValue::kInt64ToBigInt);
  set_initialized_storage(heap_object);
  return storage_;
}

bool TranslatedValue::IsMaterializedObject() const {
  switch (kind()) {
    case kCapturedObject:
    case kDuplicatedObject:
      return true;
    default:
      return false;
  }
}

bool TranslatedValue::IsMaterializableByDebugger() const {
  // At the moment, we only allow materialization of doubles.
  return (kind() == kDouble);
}

int TranslatedValue::GetChildrenCount() const {
  if (kind() == kCapturedObject) {
    return object_length();
  } else {
    return 0;
  }
}

uint64_t TranslatedState::GetUInt64Slot(Address fp, int slot_offset) {
#if V8_TARGET_ARCH_32_BIT
  return ReadUnalignedValue<uint64_t>(fp + slot_offset);
#else
  return Memory<uint64_t>(fp + slot_offset);
#endif
}

uint32_t TranslatedState::GetUInt32Slot(Address fp, int slot_offset) {
  Address address = fp + slot_offset;
#if V8_TARGET_BIG_ENDIAN && V8_HOST_ARCH_64_BIT
  return Memory<uint32_t>(address + kIntSize);
#else
  return Memory<uint32_t>(address);
#endif
}

Float32 TranslatedState::GetFloatSlot(Address fp, int slot_offset) {
#if !V8_TARGET_ARCH_S390X && !V8_TARGET_ARCH_PPC64
  return Float32::FromBits(GetUInt32Slot(fp, slot_offset));
#else
  return Float32::FromBits(Memory<uint32_t>(fp + slot_offset));
#endif
}

Float64 TranslatedState::GetDoubleSlot(Address fp, int slot_offset) {
  return Float64::FromBits(GetUInt64Slot(fp, slot_offset));
}

void TranslatedValue::Handlify() {
  if (kind() == kTagged && raw_literal().IsHeapObject()) {
    set_initialized_storage(
        Handle<HeapObject>(HeapObject::cast(raw_literal()), isolate()));
    raw_literal_ = Object();
  }
}

TranslatedFrame TranslatedFrame::UnoptimizedFrame(
    BytecodeOffset bytecode_offset, SharedFunctionInfo shared_info, int height,
    int return_value_offset, int return_value_count) {
  TranslatedFrame frame(kUnoptimizedFunction, shared_info, height,
                        return_value_offset, return_value_count);
  frame.bytecode_offset_ = bytecode_offset;
  return frame;
}

TranslatedFrame TranslatedFrame::ArgumentsAdaptorFrame(
    SharedFunctionInfo shared_info, int height) {
  return TranslatedFrame(kArgumentsAdaptor, shared_info, height);
}

TranslatedFrame TranslatedFrame::ConstructStubFrame(
    BytecodeOffset bytecode_offset, SharedFunctionInfo shared_info,
    int height) {
  TranslatedFrame frame(kConstructStub, shared_info, height);
  frame.bytecode_offset_ = bytecode_offset;
  return frame;
}

TranslatedFrame TranslatedFrame::BuiltinContinuationFrame(
    BytecodeOffset bytecode_offset, SharedFunctionInfo shared_info,
    int height) {
  TranslatedFrame frame(kBuiltinContinuation, shared_info, height);
  frame.bytecode_offset_ = bytecode_offset;
  return frame;
}

#if V8_ENABLE_WEBASSEMBLY
TranslatedFrame TranslatedFrame::JSToWasmBuiltinContinuationFrame(
    BytecodeOffset bytecode_offset, SharedFunctionInfo shared_info, int height,
    base::Optional<wasm::ValueKind> return_kind) {
  TranslatedFrame frame(kJSToWasmBuiltinContinuation, shared_info, height);
  frame.bytecode_offset_ = bytecode_offset;
  frame.return_kind_ = return_kind;
  return frame;
}
#endif  // V8_ENABLE_WEBASSEMBLY

TranslatedFrame TranslatedFrame::JavaScriptBuiltinContinuationFrame(
    BytecodeOffset bytecode_offset, SharedFunctionInfo shared_info,
    int height) {
  TranslatedFrame frame(kJavaScriptBuiltinContinuation, shared_info, height);
  frame.bytecode_offset_ = bytecode_offset;
  return frame;
}

TranslatedFrame TranslatedFrame::JavaScriptBuiltinContinuationWithCatchFrame(
    BytecodeOffset bytecode_offset, SharedFunctionInfo shared_info,
    int height) {
  TranslatedFrame frame(kJavaScriptBuiltinContinuationWithCatch, shared_info,
                        height);
  frame.bytecode_offset_ = bytecode_offset;
  return frame;
}

int TranslatedFrame::GetValueCount() {
  // The function is added to all frame state descriptors in
  // InstructionSelector::AddInputsToFrameStateDescriptor.
  static constexpr int kTheFunction = 1;

  switch (kind()) {
    case kUnoptimizedFunction: {
      int parameter_count =
          raw_shared_info_.internal_formal_parameter_count_with_receiver();
      static constexpr int kTheContext = 1;
      static constexpr int kTheAccumulator = 1;
      return height() + parameter_count + kTheContext + kTheFunction +
             kTheAccumulator;
    }

    case kArgumentsAdaptor:
      return height() + kTheFunction;

    case kConstructStub:
    case kBuiltinContinuation:
#if V8_ENABLE_WEBASSEMBLY
    case kJSToWasmBuiltinContinuation:
#endif  // V8_ENABLE_WEBASSEMBLY
    case kJavaScriptBuiltinContinuation:
    case kJavaScriptBuiltinContinuationWithCatch: {
      static constexpr int kTheContext = 1;
      return height() + kTheContext + kTheFunction;
    }

    case kInvalid:
      UNREACHABLE();
  }
  UNREACHABLE();
}

void TranslatedFrame::Handlify() {
  if (!raw_shared_info_.is_null()) {
    shared_info_ = Handle<SharedFunctionInfo>(raw_shared_info_,
                                              raw_shared_info_.GetIsolate());
    raw_shared_info_ = SharedFunctionInfo();
  }
  for (auto& value : values_) {
    value.Handlify();
  }
}

TranslatedFrame TranslatedState::CreateNextTranslatedFrame(
    TranslationArrayIterator* iterator,
    DeoptimizationLiteralArray literal_array, Address fp, FILE* trace_file) {
  TranslationOpcode opcode = TranslationOpcodeFromInt(iterator->Next());
  switch (opcode) {
    case TranslationOpcode::INTERPRETED_FRAME: {
      BytecodeOffset bytecode_offset = BytecodeOffset(iterator->Next());
      SharedFunctionInfo shared_info =
          SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
      int height = iterator->Next();
      int return_value_offset = iterator->Next();
      int return_value_count = iterator->Next();
      if (trace_file != nullptr) {
        std::unique_ptr<char[]> name = shared_info.DebugNameCStr();
        PrintF(trace_file, "  reading input frame %s", name.get());
        int arg_count =
            shared_info.internal_formal_parameter_count_with_receiver();
        PrintF(trace_file,
               " => bytecode_offset=%d, args=%d, height=%d, retval=%i(#%i); "
               "inputs:\n",
               bytecode_offset.ToInt(), arg_count, height, return_value_offset,
               return_value_count);
      }
      return TranslatedFrame::UnoptimizedFrame(bytecode_offset, shared_info,
                                               height, return_value_offset,
                                               return_value_count);
    }

    case TranslationOpcode::ARGUMENTS_ADAPTOR_FRAME: {
      SharedFunctionInfo shared_info =
          SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
      int height = iterator->Next();
      if (trace_file != nullptr) {
        std::unique_ptr<char[]> name = shared_info.DebugNameCStr();
        PrintF(trace_file, "  reading arguments adaptor frame %s", name.get());
        PrintF(trace_file, " => height=%d; inputs:\n", height);
      }
      return TranslatedFrame::ArgumentsAdaptorFrame(shared_info, height);
    }

    case TranslationOpcode::CONSTRUCT_STUB_FRAME: {
      BytecodeOffset bytecode_offset = BytecodeOffset(iterator->Next());
      SharedFunctionInfo shared_info =
          SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
      int height = iterator->Next();
      if (trace_file != nullptr) {
        std::unique_ptr<char[]> name = shared_info.DebugNameCStr();
        PrintF(trace_file, "  reading construct stub frame %s", name.get());
        PrintF(trace_file, " => bytecode_offset=%d, height=%d; inputs:\n",
               bytecode_offset.ToInt(), height);
      }
      return TranslatedFrame::ConstructStubFrame(bytecode_offset, shared_info,
                                                 height);
    }

    case TranslationOpcode::BUILTIN_CONTINUATION_FRAME: {
      BytecodeOffset bytecode_offset = BytecodeOffset(iterator->Next());
      SharedFunctionInfo shared_info =
          SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
      int height = iterator->Next();
      if (trace_file != nullptr) {
        std::unique_ptr<char[]> name = shared_info.DebugNameCStr();
        PrintF(trace_file, "  reading builtin continuation frame %s",
               name.get());
        PrintF(trace_file, " => bytecode_offset=%d, height=%d; inputs:\n",
               bytecode_offset.ToInt(), height);
      }
      return TranslatedFrame::BuiltinContinuationFrame(bytecode_offset,
                                                       shared_info, height);
    }

#if V8_ENABLE_WEBASSEMBLY
    case TranslationOpcode::JS_TO_WASM_BUILTIN_CONTINUATION_FRAME: {
      BytecodeOffset bailout_id = BytecodeOffset(iterator->Next());
      SharedFunctionInfo shared_info =
          SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
      int height = iterator->Next();
      int return_kind_code = iterator->Next();
      base::Optional<wasm::ValueKind> return_kind;
      if (return_kind_code != kNoWasmReturnKind) {
        return_kind = static_cast<wasm::ValueKind>(return_kind_code);
      }
      if (trace_file != nullptr) {
        std::unique_ptr<char[]> name = shared_info.DebugNameCStr();
        PrintF(trace_file, "  reading JS to Wasm builtin continuation frame %s",
               name.get());
        PrintF(trace_file,
               " => bailout_id=%d, height=%d return_type=%d; inputs:\n",
               bailout_id.ToInt(), height,
               return_kind.has_value() ? return_kind.value() : -1);
      }
      return TranslatedFrame::JSToWasmBuiltinContinuationFrame(
          bailout_id, shared_info, height, return_kind);
    }
#endif  // V8_ENABLE_WEBASSEMBLY

    case TranslationOpcode::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME: {
      BytecodeOffset bytecode_offset = BytecodeOffset(iterator->Next());
      SharedFunctionInfo shared_info =
          SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
      int height = iterator->Next();
      if (trace_file != nullptr) {
        std::unique_ptr<char[]> name = shared_info.DebugNameCStr();
        PrintF(trace_file, "  reading JavaScript builtin continuation frame %s",
               name.get());
        PrintF(trace_file, " => bytecode_offset=%d, height=%d; inputs:\n",
               bytecode_offset.ToInt(), height);
      }
      return TranslatedFrame::JavaScriptBuiltinContinuationFrame(
          bytecode_offset, shared_info, height);
    }

    case TranslationOpcode::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME: {
      BytecodeOffset bytecode_offset = BytecodeOffset(iterator->Next());
      SharedFunctionInfo shared_info =
          SharedFunctionInfo::cast(literal_array.get(iterator->Next()));
      int height = iterator->Next();
      if (trace_file != nullptr) {
        std::unique_ptr<char[]> name = shared_info.DebugNameCStr();
        PrintF(trace_file,
               "  reading JavaScript builtin continuation frame with catch %s",
               name.get());
        PrintF(trace_file, " => bytecode_offset=%d, height=%d; inputs:\n",
               bytecode_offset.ToInt(), height);
      }
      return TranslatedFrame::JavaScriptBuiltinContinuationWithCatchFrame(
          bytecode_offset, shared_info, height);
    }
    case TranslationOpcode::UPDATE_FEEDBACK:
    case TranslationOpcode::BEGIN:
    case TranslationOpcode::DUPLICATED_OBJECT:
    case TranslationOpcode::ARGUMENTS_ELEMENTS:
    case TranslationOpcode::ARGUMENTS_LENGTH:
    case TranslationOpcode::CAPTURED_OBJECT:
    case TranslationOpcode::REGISTER:
    case TranslationOpcode::INT32_REGISTER:
    case TranslationOpcode::INT64_REGISTER:
    case TranslationOpcode::UINT32_REGISTER:
    case TranslationOpcode::BOOL_REGISTER:
    case TranslationOpcode::FLOAT_REGISTER:
    case TranslationOpcode::DOUBLE_REGISTER:
    case TranslationOpcode::STACK_SLOT:
    case TranslationOpcode::INT32_STACK_SLOT:
    case TranslationOpcode::INT64_STACK_SLOT:
    case TranslationOpcode::UINT32_STACK_SLOT:
    case TranslationOpcode::BOOL_STACK_SLOT:
    case TranslationOpcode::FLOAT_STACK_SLOT:
    case TranslationOpcode::DOUBLE_STACK_SLOT:
    case TranslationOpcode::LITERAL:
      break;
  }
  UNREACHABLE();
}

// static
void TranslatedFrame::AdvanceIterator(
    std::deque<TranslatedValue>::iterator* iter) {
  int values_to_skip = 1;
  while (values_to_skip > 0) {
    // Consume the current element.
    values_to_skip--;
    // Add all the children.
    values_to_skip += (*iter)->GetChildrenCount();

    (*iter)++;
  }
}

// Creates translated values for an arguments backing store, or the backing
// store for rest parameters depending on the given {type}. The TranslatedValue
// objects for the fields are not read from the TranslationArrayIterator, but
// instead created on-the-fly based on dynamic information in the optimized
// frame.
void TranslatedState::CreateArgumentsElementsTranslatedValues(
    int frame_index, Address input_frame_pointer, CreateArgumentsType type,
    FILE* trace_file) {
  TranslatedFrame& frame = frames_[frame_index];
  int length =
      type == CreateArgumentsType::kRestParameter
          ? std::max(0, actual_argument_count_ - formal_parameter_count_)
          : actual_argument_count_;
  int object_index = static_cast<int>(object_positions_.size());
  int value_index = static_cast<int>(frame.values_.size());
  if (trace_file != nullptr) {
    PrintF(trace_file, "arguments elements object #%d (type = %d, length = %d)",
           object_index, static_cast<uint8_t>(type), length);
  }

  object_positions_.push_back({frame_index, value_index});
  frame.Add(TranslatedValue::NewDeferredObject(
      this, length + FixedArray::kHeaderSize / kTaggedSize, object_index));

  ReadOnlyRoots roots(isolate_);
  frame.Add(TranslatedValue::NewTagged(this, roots.fixed_array_map()));
  frame.Add(TranslatedValue::NewInt32(this, length));

  int number_of_holes = 0;
  if (type == CreateArgumentsType::kMappedArguments) {
    // If the actual number of arguments is less than the number of formal
    // parameters, we have fewer holes to fill to not overshoot the length.
    number_of_holes = std::min(formal_parameter_count_, length);
  }
  for (int i = 0; i < number_of_holes; ++i) {
    frame.Add(TranslatedValue::NewTagged(this, roots.the_hole_value()));
  }
  int argc = length - number_of_holes;
  int start_index = number_of_holes;
  if (type == CreateArgumentsType::kRestParameter) {
    start_index = std::max(0, formal_parameter_count_);
  }
  for (int i = 0; i < argc; i++) {
    // Skip the receiver.
    int offset = i + start_index + 1;
    Address arguments_frame = offset > formal_parameter_count_
                                  ? stack_frame_pointer_
                                  : input_frame_pointer;
    Address argument_slot = arguments_frame +
                            CommonFrameConstants::kFixedFrameSizeAboveFp +
                            offset * kSystemPointerSize;

    frame.Add(TranslatedValue::NewTagged(this, *FullObjectSlot(argument_slot)));
  }
}

// We can't intermix stack decoding and allocations because the deoptimization
// infrastracture is not GC safe.
// Thus we build a temporary structure in malloced space.
// The TranslatedValue objects created correspond to the static translation
// instructions from the TranslationArrayIterator, except for
// TranslationOpcode::ARGUMENTS_ELEMENTS, where the number and values of the
// FixedArray elements depend on dynamic information from the optimized frame.
// Returns the number of expected nested translations from the
// TranslationArrayIterator.
int TranslatedState::CreateNextTranslatedValue(
    int frame_index, TranslationArrayIterator* iterator,
    DeoptimizationLiteralArray literal_array, Address fp,
    RegisterValues* registers, FILE* trace_file) {
  disasm::NameConverter converter;

  TranslatedFrame& frame = frames_[frame_index];
  int value_index = static_cast<int>(frame.values_.size());

  TranslationOpcode opcode = TranslationOpcodeFromInt(iterator->Next());
  switch (opcode) {
    case TranslationOpcode::BEGIN:
    case TranslationOpcode::INTERPRETED_FRAME:
    case TranslationOpcode::ARGUMENTS_ADAPTOR_FRAME:
    case TranslationOpcode::CONSTRUCT_STUB_FRAME:
    case TranslationOpcode::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME:
    case TranslationOpcode::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH_FRAME:
    case TranslationOpcode::BUILTIN_CONTINUATION_FRAME:
#if V8_ENABLE_WEBASSEMBLY
    case TranslationOpcode::JS_TO_WASM_BUILTIN_CONTINUATION_FRAME:
#endif  // V8_ENABLE_WEBASSEMBLY
    case TranslationOpcode::UPDATE_FEEDBACK:
      // Peeled off before getting here.
      break;

    case TranslationOpcode::DUPLICATED_OBJECT: {
      int object_id = iterator->Next();
      if (trace_file != nullptr) {
        PrintF(trace_file, "duplicated object #%d", object_id);
      }
      object_positions_.push_back(object_positions_[object_id]);
      TranslatedValue translated_value =
          TranslatedValue::NewDuplicateObject(this, object_id);
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::ARGUMENTS_ELEMENTS: {
      CreateArgumentsType arguments_type =
          static_cast<CreateArgumentsType>(iterator->Next());
      CreateArgumentsElementsTranslatedValues(frame_index, fp, arguments_type,
                                              trace_file);
      return 0;
    }

    case TranslationOpcode::ARGUMENTS_LENGTH: {
      if (trace_file != nullptr) {
        PrintF(trace_file, "arguments length field (length = %d)",
               actual_argument_count_);
      }
      frame.Add(TranslatedValue::NewInt32(this, actual_argument_count_));
      return 0;
    }

    case TranslationOpcode::CAPTURED_OBJECT: {
      int field_count = iterator->Next();
      int object_index = static_cast<int>(object_positions_.size());
      if (trace_file != nullptr) {
        PrintF(trace_file, "captured object #%d (length = %d)", object_index,
               field_count);
      }
      object_positions_.push_back({frame_index, value_index});
      TranslatedValue translated_value =
          TranslatedValue::NewDeferredObject(this, field_count, object_index);
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::REGISTER: {
      int input_reg = iterator->Next();
      if (registers == nullptr) {
        TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
        frame.Add(translated_value);
        return translated_value.GetChildrenCount();
      }
      intptr_t value = registers->GetRegister(input_reg);
      Address uncompressed_value = DecompressIfNeeded(value);
      if (trace_file != nullptr) {
        PrintF(trace_file, V8PRIxPTR_FMT " ; %s ", uncompressed_value,
               converter.NameOfCPURegister(input_reg));
        Object(uncompressed_value).ShortPrint(trace_file);
      }
      TranslatedValue translated_value =
          TranslatedValue::NewTagged(this, Object(uncompressed_value));
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::INT32_REGISTER: {
      int input_reg = iterator->Next();
      if (registers == nullptr) {
        TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
        frame.Add(translated_value);
        return translated_value.GetChildrenCount();
      }
      intptr_t value = registers->GetRegister(input_reg);
      if (trace_file != nullptr) {
        PrintF(trace_file, "%" V8PRIdPTR " ; %s (int32)", value,
               converter.NameOfCPURegister(input_reg));
      }
      TranslatedValue translated_value =
          TranslatedValue::NewInt32(this, static_cast<int32_t>(value));
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::INT64_REGISTER: {
      int input_reg = iterator->Next();
      if (registers == nullptr) {
        TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
        frame.Add(translated_value);
        return translated_value.GetChildrenCount();
      }
      intptr_t value = registers->GetRegister(input_reg);
      if (trace_file != nullptr) {
        PrintF(trace_file, "%" V8PRIdPTR " ; %s (int64)", value,
               converter.NameOfCPURegister(input_reg));
      }
      TranslatedValue translated_value =
          TranslatedValue::NewInt64(this, static_cast<int64_t>(value));
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::UINT32_REGISTER: {
      int input_reg = iterator->Next();
      if (registers == nullptr) {
        TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
        frame.Add(translated_value);
        return translated_value.GetChildrenCount();
      }
      intptr_t value = registers->GetRegister(input_reg);
      if (trace_file != nullptr) {
        PrintF(trace_file, "%" V8PRIuPTR " ; %s (uint32)", value,
               converter.NameOfCPURegister(input_reg));
      }
      TranslatedValue translated_value =
          TranslatedValue::NewUInt32(this, static_cast<uint32_t>(value));
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::BOOL_REGISTER: {
      int input_reg = iterator->Next();
      if (registers == nullptr) {
        TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
        frame.Add(translated_value);
        return translated_value.GetChildrenCount();
      }
      intptr_t value = registers->GetRegister(input_reg);
      if (trace_file != nullptr) {
        PrintF(trace_file, "%" V8PRIdPTR " ; %s (bool)", value,
               converter.NameOfCPURegister(input_reg));
      }
      TranslatedValue translated_value =
          TranslatedValue::NewBool(this, static_cast<uint32_t>(value));
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::FLOAT_REGISTER: {
      int input_reg = iterator->Next();
      if (registers == nullptr) {
        TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
        frame.Add(translated_value);
        return translated_value.GetChildrenCount();
      }
      Float32 value = registers->GetFloatRegister(input_reg);
      if (trace_file != nullptr) {
        PrintF(trace_file, "%e ; %s (float)", value.get_scalar(),
               RegisterName(FloatRegister::from_code(input_reg)));
      }
      TranslatedValue translated_value = TranslatedValue::NewFloat(this, value);
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::DOUBLE_REGISTER: {
      int input_reg = iterator->Next();
      if (registers == nullptr) {
        TranslatedValue translated_value = TranslatedValue::NewInvalid(this);
        frame.Add(translated_value);
        return translated_value.GetChildrenCount();
      }
      Float64 value = registers->GetDoubleRegister(input_reg);
      if (trace_file != nullptr) {
        PrintF(trace_file, "%e ; %s (double)", value.get_scalar(),
               RegisterName(DoubleRegister::from_code(input_reg)));
      }
      TranslatedValue translated_value =
          TranslatedValue::NewDouble(this, value);
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::STACK_SLOT: {
      int slot_offset =
          OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
      intptr_t value = *(reinterpret_cast<intptr_t*>(fp + slot_offset));
      Address uncompressed_value = DecompressIfNeeded(value);
      if (trace_file != nullptr) {
        PrintF(trace_file, V8PRIxPTR_FMT " ;  [fp %c %3d]  ",
               uncompressed_value, slot_offset < 0 ? '-' : '+',
               std::abs(slot_offset));
        Object(uncompressed_value).ShortPrint(trace_file);
      }
      TranslatedValue translated_value =
          TranslatedValue::NewTagged(this, Object(uncompressed_value));
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::INT32_STACK_SLOT: {
      int slot_offset =
          OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
      uint32_t value = GetUInt32Slot(fp, slot_offset);
      if (trace_file != nullptr) {
        PrintF(trace_file, "%d ; (int32) [fp %c %3d] ",
               static_cast<int32_t>(value), slot_offset < 0 ? '-' : '+',
               std::abs(slot_offset));
      }
      TranslatedValue translated_value = TranslatedValue::NewInt32(this, value);
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::INT64_STACK_SLOT: {
      int slot_offset =
          OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
      uint64_t value = GetUInt64Slot(fp, slot_offset);
      if (trace_file != nullptr) {
        PrintF(trace_file, "%" V8PRIdPTR " ; (int64) [fp %c %3d] ",
               static_cast<intptr_t>(value), slot_offset < 0 ? '-' : '+',
               std::abs(slot_offset));
      }
      TranslatedValue translated_value = TranslatedValue::NewInt64(this, value);
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::UINT32_STACK_SLOT: {
      int slot_offset =
          OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
      uint32_t value = GetUInt32Slot(fp, slot_offset);
      if (trace_file != nullptr) {
        PrintF(trace_file, "%u ; (uint32) [fp %c %3d] ", value,
               slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
      }
      TranslatedValue translated_value =
          TranslatedValue::NewUInt32(this, value);
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::BOOL_STACK_SLOT: {
      int slot_offset =
          OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
      uint32_t value = GetUInt32Slot(fp, slot_offset);
      if (trace_file != nullptr) {
        PrintF(trace_file, "%u ; (bool) [fp %c %3d] ", value,
               slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
      }
      TranslatedValue translated_value = TranslatedValue::NewBool(this, value);
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::FLOAT_STACK_SLOT: {
      int slot_offset =
          OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
      Float32 value = GetFloatSlot(fp, slot_offset);
      if (trace_file != nullptr) {
        PrintF(trace_file, "%e ; (float) [fp %c %3d] ", value.get_scalar(),
               slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
      }
      TranslatedValue translated_value = TranslatedValue::NewFloat(this, value);
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::DOUBLE_STACK_SLOT: {
      int slot_offset =
          OptimizedFrame::StackSlotOffsetRelativeToFp(iterator->Next());
      Float64 value = GetDoubleSlot(fp, slot_offset);
      if (trace_file != nullptr) {
        PrintF(trace_file, "%e ; (double) [fp %c %d] ", value.get_scalar(),
               slot_offset < 0 ? '-' : '+', std::abs(slot_offset));
      }
      TranslatedValue translated_value =
          TranslatedValue::NewDouble(this, value);
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }

    case TranslationOpcode::LITERAL: {
      int literal_index = iterator->Next();
      Object value = literal_array.get(literal_index);
      if (trace_file != nullptr) {
        PrintF(trace_file, V8PRIxPTR_FMT " ; (literal %2d) ", value.ptr(),
               literal_index);
        value.ShortPrint(trace_file);
      }

      TranslatedValue translated_value =
          TranslatedValue::NewTagged(this, value);
      frame.Add(translated_value);
      return translated_value.GetChildrenCount();
    }
  }

  FATAL("We should never get here - unexpected deopt info.");
}

Address TranslatedState::DecompressIfNeeded(intptr_t value) {
  if (COMPRESS_POINTERS_BOOL) {
    return DecompressTaggedAny(isolate(), static_cast<uint32_t>(value));
  } else {
    return value;
  }
}

TranslatedState::TranslatedState(const JavaScriptFrame* frame)
    : purpose_(kFrameInspection) {
  int deopt_index = SafepointEntry::kNoDeoptIndex;
  DeoptimizationData data =
      static_cast<const OptimizedFrame*>(frame)->GetDeoptimizationData(
          &deopt_index);
  DCHECK(!data.is_null() && deopt_index != SafepointEntry::kNoDeoptIndex);
  TranslationArrayIterator it(data.TranslationByteArray(),
                              data.TranslationIndex(deopt_index).value());
  int actual_argc = frame->GetActualArgumentCount();
  Init(frame->isolate(), frame->fp(), frame->fp(), &it, data.LiteralArray(),
       nullptr /* registers */, nullptr /* trace file */,
       frame->function()
           .shared()
           .internal_formal_parameter_count_without_receiver(),
       actual_argc);
}

void TranslatedState::Init(Isolate* isolate, Address input_frame_pointer,
                           Address stack_frame_pointer,
                           TranslationArrayIterator* iterator,
                           DeoptimizationLiteralArray literal_array,
                           RegisterValues* registers, FILE* trace_file,
                           int formal_parameter_count,
                           int actual_argument_count) {
  DCHECK(frames_.empty());

  stack_frame_pointer_ = stack_frame_pointer;
  formal_parameter_count_ = formal_parameter_count;
  actual_argument_count_ = actual_argument_count;
  isolate_ = isolate;

  // Read out the 'header' translation.
  TranslationOpcode opcode = TranslationOpcodeFromInt(iterator->Next());
  CHECK(opcode == TranslationOpcode::BEGIN);

  int count = iterator->Next();
  frames_.reserve(count);
  iterator->Next();  // Drop JS frames count.
  int update_feedback_count = iterator->Next();
  CHECK_GE(update_feedback_count, 0);
  CHECK_LE(update_feedback_count, 1);

  if (update_feedback_count == 1) {
    ReadUpdateFeedback(iterator, literal_array, trace_file);
  }

  std::stack<int> nested_counts;

  // Read the frames
  for (int frame_index = 0; frame_index < count; frame_index++) {
    // Read the frame descriptor.
    frames_.push_back(CreateNextTranslatedFrame(
        iterator, literal_array, input_frame_pointer, trace_file));
    TranslatedFrame& frame = frames_.back();

    // Read the values.
    int values_to_process = frame.GetValueCount();
    while (values_to_process > 0 || !nested_counts.empty()) {
      if (trace_file != nullptr) {
        if (nested_counts.empty()) {
          // For top level values, print the value number.
          PrintF(trace_file,
                 "    %3i: ", frame.GetValueCount() - values_to_process);
        } else {
          // Take care of indenting for nested values.
          PrintF(trace_file, "         ");
          for (size_t j = 0; j < nested_counts.size(); j++) {
            PrintF(trace_file, "  ");
          }
        }
      }

      int nested_count =
          CreateNextTranslatedValue(frame_index, iterator, literal_array,
                                    input_frame_pointer, registers, trace_file);

      if (trace_file != nullptr) {
        PrintF(trace_file, "\n");
      }

      // Update the value count and resolve the nesting.
      values_to_process--;
      if (nested_count > 0) {
        nested_counts.push(values_to_process);
        values_to_process = nested_count;
      } else {
        while (values_to_process == 0 && !nested_counts.empty()) {
          values_to_process = nested_counts.top();
          nested_counts.pop();
        }
      }
    }
  }

  CHECK(!iterator->HasNext() ||
        TranslationOpcodeFromInt(iterator->Next()) == TranslationOpcode::BEGIN);
}

void TranslatedState::Prepare(Address stack_frame_pointer) {
  for (auto& frame : frames_) frame.Handlify();

  if (!feedback_vector_.is_null()) {
    feedback_vector_handle_ =
        Handle<FeedbackVector>(feedback_vector_, isolate());
    feedback_vector_ = FeedbackVector();
  }
  stack_frame_pointer_ = stack_frame_pointer;

  UpdateFromPreviouslyMaterializedObjects();
}

TranslatedValue* TranslatedState::GetValueByObjectIndex(int object_index) {
  CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
  TranslatedState::ObjectPosition pos = object_positions_[object_index];
  return &(frames_[pos.frame_index_].values_[pos.value_index_]);
}

Handle<HeapObject> TranslatedState::InitializeObjectAt(TranslatedValue* slot) {
  DisallowGarbageCollection no_gc;

  slot = ResolveCapturedObject(slot);
  if (slot->materialization_state() != TranslatedValue::kFinished) {
    std::stack<int> worklist;
    worklist.push(slot->object_index());
    slot->mark_finished();

    while (!worklist.empty()) {
      int index = worklist.top();
      worklist.pop();
      InitializeCapturedObjectAt(index, &worklist, no_gc);
    }
  }
  return slot->storage();
}

void TranslatedState::InitializeCapturedObjectAt(
    int object_index, std::stack<int>* worklist,
    const DisallowGarbageCollection& no_gc) {
  CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
  TranslatedState::ObjectPosition pos = object_positions_[object_index];
  int value_index = pos.value_index_;

  TranslatedFrame* frame = &(frames_[pos.frame_index_]);
  TranslatedValue* slot = &(frame->values_[value_index]);
  value_index++;

  CHECK_EQ(TranslatedValue::kFinished, slot->materialization_state());
  CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());

  // Ensure all fields are initialized.
  int children_init_index = value_index;
  for (int i = 0; i < slot->GetChildrenCount(); i++) {
    // If the field is an object that has not been initialized yet, queue it
    // for initialization (and mark it as such).
    TranslatedValue* child_slot = frame->ValueAt(children_init_index);
    if (child_slot->kind() == TranslatedValue::kCapturedObject ||
        child_slot->kind() == TranslatedValue::kDuplicatedObject) {
      child_slot = ResolveCapturedObject(child_slot);
      if (child_slot->materialization_state() != TranslatedValue::kFinished) {
        DCHECK_EQ(TranslatedValue::kAllocated,
                  child_slot->materialization_state());
        worklist->push(child_slot->object_index());
        child_slot->mark_finished();
      }
    }
    SkipSlots(1, frame, &children_init_index);
  }

  // Read the map.
  // The map should never be materialized, so let us check we already have
  // an existing object here.
  CHECK_EQ(frame->values_[value_index].kind(), TranslatedValue::kTagged);
  Handle<Map> map = Handle<Map>::cast(frame->values_[value_index].GetValue());
  CHECK(map->IsMap());
  value_index++;

  // Handle the special cases.
  switch (map->instance_type()) {
    case HEAP_NUMBER_TYPE:
    case FIXED_DOUBLE_ARRAY_TYPE:
      return;

    case FIXED_ARRAY_TYPE:
    case AWAIT_CONTEXT_TYPE:
    case BLOCK_CONTEXT_TYPE:
    case CATCH_CONTEXT_TYPE:
    case DEBUG_EVALUATE_CONTEXT_TYPE:
    case EVAL_CONTEXT_TYPE:
    case FUNCTION_CONTEXT_TYPE:
    case MODULE_CONTEXT_TYPE:
    case NATIVE_CONTEXT_TYPE:
    case SCRIPT_CONTEXT_TYPE:
    case WITH_CONTEXT_TYPE:
    case OBJECT_BOILERPLATE_DESCRIPTION_TYPE:
    case HASH_TABLE_TYPE:
    case ORDERED_HASH_MAP_TYPE:
    case ORDERED_HASH_SET_TYPE:
    case NAME_DICTIONARY_TYPE:
    case GLOBAL_DICTIONARY_TYPE:
    case NUMBER_DICTIONARY_TYPE:
    case SIMPLE_NUMBER_DICTIONARY_TYPE:
    case PROPERTY_ARRAY_TYPE:
    case SCRIPT_CONTEXT_TABLE_TYPE:
    case SLOPPY_ARGUMENTS_ELEMENTS_TYPE:
      InitializeObjectWithTaggedFieldsAt(frame, &value_index, slot, map, no_gc);
      break;

    default:
      CHECK(map->IsJSObjectMap());
      InitializeJSObjectAt(frame, &value_index, slot, map, no_gc);
      break;
  }
  CHECK_EQ(value_index, children_init_index);
}

void TranslatedState::EnsureObjectAllocatedAt(TranslatedValue* slot) {
  slot = ResolveCapturedObject(slot);

  if (slot->materialization_state() == TranslatedValue::kUninitialized) {
    std::stack<int> worklist;
    worklist.push(slot->object_index());
    slot->mark_allocated();

    while (!worklist.empty()) {
      int index = worklist.top();
      worklist.pop();
      EnsureCapturedObjectAllocatedAt(index, &worklist);
    }
  }
}

int TranslatedValue::GetSmiValue() const {
  Object value = GetRawValue();
  CHECK(value.IsSmi());
  return Smi::cast(value).value();
}

void TranslatedState::MaterializeFixedDoubleArray(TranslatedFrame* frame,
                                                  int* value_index,
                                                  TranslatedValue* slot,
                                                  Handle<Map> map) {
  int length = frame->values_[*value_index].GetSmiValue();
  (*value_index)++;
  Handle<FixedDoubleArray> array = Handle<FixedDoubleArray>::cast(
      isolate()->factory()->NewFixedDoubleArray(length));
  CHECK_GT(length, 0);
  for (int i = 0; i < length; i++) {
    CHECK_NE(TranslatedValue::kCapturedObject,
             frame->values_[*value_index].kind());
    Handle<Object> value = frame->values_[*value_index].GetValue();
    if (value->IsNumber()) {
      array->set(i, value->Number());
    } else {
      CHECK(value.is_identical_to(isolate()->factory()->the_hole_value()));
      array->set_the_hole(isolate(), i);
    }
    (*value_index)++;
  }
  slot->set_storage(array);
}

void TranslatedState::MaterializeHeapNumber(TranslatedFrame* frame,
                                            int* value_index,
                                            TranslatedValue* slot) {
  CHECK_NE(TranslatedValue::kCapturedObject,
           frame->values_[*value_index].kind());
  Handle<Object> value = frame->values_[*value_index].GetValue();
  CHECK(value->IsNumber());
  Handle<HeapNumber> box = isolate()->factory()->NewHeapNumber(value->Number());
  (*value_index)++;
  slot->set_storage(box);
}

namespace {

enum StorageKind : uint8_t {
  kStoreTagged,
  kStoreHeapObject
};

}  // namespace

void TranslatedState::SkipSlots(int slots_to_skip, TranslatedFrame* frame,
                                int* value_index) {
  while (slots_to_skip > 0) {
    TranslatedValue* slot = &(frame->values_[*value_index]);
    (*value_index)++;
    slots_to_skip--;

    if (slot->kind() == TranslatedValue::kCapturedObject) {
      slots_to_skip += slot->GetChildrenCount();
    }
  }
}

void TranslatedState::EnsureCapturedObjectAllocatedAt(
    int object_index, std::stack<int>* worklist) {
  CHECK_LT(static_cast<size_t>(object_index), object_positions_.size());
  TranslatedState::ObjectPosition pos = object_positions_[object_index];
  int value_index = pos.value_index_;

  TranslatedFrame* frame = &(frames_[pos.frame_index_]);
  TranslatedValue* slot = &(frame->values_[value_index]);
  value_index++;

  CHECK_EQ(TranslatedValue::kAllocated, slot->materialization_state());
  CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());

  // Read the map.
  // The map should never be materialized, so let us check we already have
  // an existing object here.
  CHECK_EQ(frame->values_[value_index].kind(), TranslatedValue::kTagged);
  Handle<Map> map = Handle<Map>::cast(frame->values_[value_index].GetValue());
  CHECK(map->IsMap());
  value_index++;

  // Handle the special cases.
  switch (map->instance_type()) {
    case FIXED_DOUBLE_ARRAY_TYPE:
      // Materialize (i.e. allocate&initialize) the array and return since
      // there is no need to process the children.
      return MaterializeFixedDoubleArray(frame, &value_index, slot, map);

    case HEAP_NUMBER_TYPE:
      // Materialize (i.e. allocate&initialize) the heap number and return.
      // There is no need to process the children.
      return MaterializeHeapNumber(frame, &value_index, slot);

    case FIXED_ARRAY_TYPE:
    case SCRIPT_CONTEXT_TABLE_TYPE:
    case AWAIT_CONTEXT_TYPE:
    case BLOCK_CONTEXT_TYPE:
    case CATCH_CONTEXT_TYPE:
    case DEBUG_EVALUATE_CONTEXT_TYPE:
    case EVAL_CONTEXT_TYPE:
    case FUNCTION_CONTEXT_TYPE:
    case MODULE_CONTEXT_TYPE:
    case NATIVE_CONTEXT_TYPE:
    case SCRIPT_CONTEXT_TYPE:
    case WITH_CONTEXT_TYPE:
    case HASH_TABLE_TYPE:
    case ORDERED_HASH_MAP_TYPE:
    case ORDERED_HASH_SET_TYPE:
    case NAME_DICTIONARY_TYPE:
    case GLOBAL_DICTIONARY_TYPE:
    case NUMBER_DICTIONARY_TYPE:
    case SIMPLE_NUMBER_DICTIONARY_TYPE: {
      // Check we have the right size.
      int array_length = frame->values_[value_index].GetSmiValue();
      int instance_size = FixedArray::SizeFor(array_length);
      CHECK_EQ(instance_size, slot->GetChildrenCount() * kTaggedSize);

      // Canonicalize empty fixed array.
      if (*map == ReadOnlyRoots(isolate()).empty_fixed_array().map() &&
          array_length == 0) {
        slot->set_storage(isolate()->factory()->empty_fixed_array());
      } else {
        slot->set_storage(AllocateStorageFor(slot));
      }

      // Make sure all the remaining children (after the map) are allocated.
      return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
                                     &value_index, worklist);
    }

    case SLOPPY_ARGUMENTS_ELEMENTS_TYPE: {
      // Verify that the arguments size is correct.
      int args_length = frame->values_[value_index].GetSmiValue();
      int args_size = SloppyArgumentsElements::SizeFor(args_length);
      CHECK_EQ(args_size, slot->GetChildrenCount() * kTaggedSize);

      slot->set_storage(AllocateStorageFor(slot));

      // Make sure all the remaining children (after the map) are allocated.
      return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
                                     &value_index, worklist);
    }

    case PROPERTY_ARRAY_TYPE: {
      // Check we have the right size.
      int length_or_hash = frame->values_[value_index].GetSmiValue();
      int array_length = PropertyArray::LengthField::decode(length_or_hash);
      int instance_size = PropertyArray::SizeFor(array_length);
      CHECK_EQ(instance_size, slot->GetChildrenCount() * kTaggedSize);

      slot->set_storage(AllocateStorageFor(slot));

      // Make sure all the remaining children (after the map) are allocated.
      return EnsureChildrenAllocated(slot->GetChildrenCount() - 1, frame,
                                     &value_index, worklist);
    }

    default:
      EnsureJSObjectAllocated(slot, map);
      int remaining_children_count = slot->GetChildrenCount() - 1;

      TranslatedValue* properties_slot = frame->ValueAt(value_index);
      value_index++, remaining_children_count--;
      if (properties_slot->kind() == TranslatedValue::kCapturedObject) {
        // We are materializing the property array, so make sure we put the
        // mutable heap numbers at the right places.
        EnsurePropertiesAllocatedAndMarked(properties_slot, map);
        EnsureChildrenAllocated(properties_slot->GetChildrenCount(), frame,
                                &value_index, worklist);
      } else {
        CHECK_EQ(properties_slot->kind(), TranslatedValue::kTagged);
      }

      TranslatedValue* elements_slot = frame->ValueAt(value_index);
      value_index++, remaining_children_count--;
      if (elements_slot->kind() == TranslatedValue::kCapturedObject ||
          !map->IsJSArrayMap()) {
        // Handle this case with the other remaining children below.
        value_index--, remaining_children_count++;
      } else {
        CHECK_EQ(elements_slot->kind(), TranslatedValue::kTagged);
        elements_slot->GetValue();
        if (purpose_ == kFrameInspection) {
          // We are materializing a JSArray for the purpose of frame inspection.
          // If we were to construct it with the above elements value then an
          // actual deopt later on might create another JSArray instance with
          // the same elements store. That would violate the key assumption
          // behind left-trimming.
          elements_slot->ReplaceElementsArrayWithCopy();
        }
      }

      // Make sure all the remaining children (after the map, properties store,
      // and possibly elements store) are allocated.
      return EnsureChildrenAllocated(remaining_children_count, frame,
                                     &value_index, worklist);
  }
  UNREACHABLE();
}

void TranslatedValue::ReplaceElementsArrayWithCopy() {
  DCHECK_EQ(kind(), TranslatedValue::kTagged);
  DCHECK_EQ(materialization_state(), TranslatedValue::kFinished);
  auto elements = Handle<FixedArrayBase>::cast(GetValue());
  DCHECK(elements->IsFixedArray() || elements->IsFixedDoubleArray());
  if (elements->IsFixedDoubleArray()) {
    DCHECK(!elements->IsCowArray());
    set_storage(isolate()->factory()->CopyFixedDoubleArray(
        Handle<FixedDoubleArray>::cast(elements)));
  } else if (!elements->IsCowArray()) {
    set_storage(isolate()->factory()->CopyFixedArray(
        Handle<FixedArray>::cast(elements)));
  }
}

void TranslatedState::EnsureChildrenAllocated(int count, TranslatedFrame* frame,
                                              int* value_index,
                                              std::stack<int>* worklist) {
  // Ensure all children are allocated.
  for (int i = 0; i < count; i++) {
    // If the field is an object that has not been allocated yet, queue it
    // for initialization (and mark it as such).
    TranslatedValue* child_slot = frame->ValueAt(*value_index);
    if (child_slot->kind() == TranslatedValue::kCapturedObject ||
        child_slot->kind() == TranslatedValue::kDuplicatedObject) {
      child_slot = ResolveCapturedObject(child_slot);
      if (child_slot->materialization_state() ==
          TranslatedValue::kUninitialized) {
        worklist->push(child_slot->object_index());
        child_slot->mark_allocated();
      }
    } else {
      // Make sure the simple values (heap numbers, etc.) are properly
      // initialized.
      child_slot->GetValue();
    }
    SkipSlots(1, frame, value_index);
  }
}

void TranslatedState::EnsurePropertiesAllocatedAndMarked(
    TranslatedValue* properties_slot, Handle<Map> map) {
  CHECK_EQ(TranslatedValue::kUninitialized,
           properties_slot->materialization_state());

  Handle<ByteArray> object_storage = AllocateStorageFor(properties_slot);
  properties_slot->mark_allocated();
  properties_slot->set_storage(object_storage);

  // Set markers for out-of-object properties.
  Handle<DescriptorArray> descriptors(map->instance_descriptors(isolate()),
                                      isolate());
  for (InternalIndex i : map->IterateOwnDescriptors()) {
    FieldIndex index = FieldIndex::ForDescriptor(*map, i);
    Representation representation = descriptors->GetDetails(i).representation();
    if (!index.is_inobject() &&
        (representation.IsDouble() || representation.IsHeapObject())) {
      int outobject_index = index.outobject_array_index();
      int array_index = outobject_index * kTaggedSize;
      object_storage->set(array_index, kStoreHeapObject);
    }
  }
}

Handle<ByteArray> TranslatedState::AllocateStorageFor(TranslatedValue* slot) {
  int allocate_size =
      ByteArray::LengthFor(slot->GetChildrenCount() * kTaggedSize);
  // It is important to allocate all the objects tenured so that the marker
  // does not visit them.
  Handle<ByteArray> object_storage =
      isolate()->factory()->NewByteArray(allocate_size, AllocationType::kOld);
  for (int i = 0; i < object_storage->length(); i++) {
    object_storage->set(i, kStoreTagged);
  }
  return object_storage;
}

void TranslatedState::EnsureJSObjectAllocated(TranslatedValue* slot,
                                              Handle<Map> map) {
  CHECK(map->IsJSObjectMap());
  CHECK_EQ(map->instance_size(), slot->GetChildrenCount() * kTaggedSize);

  Handle<ByteArray> object_storage = AllocateStorageFor(slot);
  // Now we handle the interesting (JSObject) case.
  Handle<DescriptorArray> descriptors(map->instance_descriptors(isolate()),
                                      isolate());

  // Set markers for in-object properties.
  for (InternalIndex i : map->IterateOwnDescriptors()) {
    FieldIndex index = FieldIndex::ForDescriptor(*map, i);
    Representation representation = descriptors->GetDetails(i).representation();
    if (index.is_inobject() &&
        (representation.IsDouble() || representation.IsHeapObject())) {
      CHECK_GE(index.index(), FixedArray::kHeaderSize / kTaggedSize);
      int array_index = index.index() * kTaggedSize - FixedArray::kHeaderSize;
      object_storage->set(array_index, kStoreHeapObject);
    }
  }
  slot->set_storage(object_storage);
}

TranslatedValue* TranslatedState::GetResolvedSlot(TranslatedFrame* frame,
                                                  int value_index) {
  TranslatedValue* slot = frame->ValueAt(value_index);
  if (slot->kind() == TranslatedValue::kDuplicatedObject) {
    slot = ResolveCapturedObject(slot);
  }
  CHECK_NE(slot->materialization_state(), TranslatedValue::kUninitialized);
  return slot;
}

TranslatedValue* TranslatedState::GetResolvedSlotAndAdvance(
    TranslatedFrame* frame, int* value_index) {
  TranslatedValue* slot = GetResolvedSlot(frame, *value_index);
  SkipSlots(1, frame, value_index);
  return slot;
}

Handle<Object> TranslatedState::GetValueAndAdvance(TranslatedFrame* frame,
                                                   int* value_index) {
  TranslatedValue* slot = GetResolvedSlot(frame, *value_index);
  SkipSlots(1, frame, value_index);
  return slot->GetValue();
}

void TranslatedState::InitializeJSObjectAt(
    TranslatedFrame* frame, int* value_index, TranslatedValue* slot,
    Handle<Map> map, const DisallowGarbageCollection& no_gc) {
  Handle<HeapObject> object_storage = Handle<HeapObject>::cast(slot->storage_);
  DCHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
  int children_count = slot->GetChildrenCount();

  // The object should have at least a map and some payload.
  CHECK_GE(children_count, 2);

  // Notify the concurrent marker about the layout change.
  isolate()->heap()->NotifyObjectLayoutChange(*object_storage, no_gc);

  // Fill the property array field.
  {
    Handle<Object> properties = GetValueAndAdvance(frame, value_index);
    WRITE_FIELD(*object_storage, JSObject::kPropertiesOrHashOffset,
                *properties);
    WRITE_BARRIER(*object_storage, JSObject::kPropertiesOrHashOffset,
                  *properties);
  }

  // For all the other fields we first look at the fixed array and check the
  // marker to see if we store an unboxed double.
  DCHECK_EQ(kTaggedSize, JSObject::kPropertiesOrHashOffset);
  for (int i = 2; i < children_count; i++) {
    slot = GetResolvedSlotAndAdvance(frame, value_index);
    // Read out the marker and ensure the field is consistent with
    // what the markers in the storage say (note that all heap numbers
    // should be fully initialized by now).
    int offset = i * kTaggedSize;
    uint8_t marker = object_storage->ReadField<uint8_t>(offset);
    if (marker == kStoreHeapObject) {
      Handle<HeapObject> field_value = slot->storage();
      WRITE_FIELD(*object_storage, offset, *field_value);
      WRITE_BARRIER(*object_storage, offset, *field_value);
    } else {
      CHECK_EQ(kStoreTagged, marker);
      Handle<Object> field_value = slot->GetValue();
      DCHECK_IMPLIES(field_value->IsHeapNumber(),
                     !IsSmiDouble(field_value->Number()));
      WRITE_FIELD(*object_storage, offset, *field_value);
      WRITE_BARRIER(*object_storage, offset, *field_value);
    }
  }
  object_storage->set_map(*map, kReleaseStore);
}

void TranslatedState::InitializeObjectWithTaggedFieldsAt(
    TranslatedFrame* frame, int* value_index, TranslatedValue* slot,
    Handle<Map> map, const DisallowGarbageCollection& no_gc) {
  Handle<HeapObject> object_storage = Handle<HeapObject>::cast(slot->storage_);
  int children_count = slot->GetChildrenCount();

  // Skip the writes if we already have the canonical empty fixed array.
  if (*object_storage == ReadOnlyRoots(isolate()).empty_fixed_array()) {
    CHECK_EQ(2, children_count);
    Handle<Object> length_value = GetValueAndAdvance(frame, value_index);
    CHECK_EQ(*length_value, Smi::FromInt(0));
    return;
  }

  // Notify the concurrent marker about the layout change.
  isolate()->heap()->NotifyObjectLayoutChange(*object_storage, no_gc);

  // Write the fields to the object.
  for (int i = 1; i < children_count; i++) {
    slot = GetResolvedSlotAndAdvance(frame, value_index);
    int offset = i * kTaggedSize;
    uint8_t marker = object_storage->ReadField<uint8_t>(offset);
    Handle<Object> field_value;
    if (i > 1 && marker == kStoreHeapObject) {
      field_value = slot->storage();
    } else {
      CHECK(marker == kStoreTagged || i == 1);
      field_value = slot->GetValue();
      DCHECK_IMPLIES(field_value->IsHeapNumber(),
                     !IsSmiDouble(field_value->Number()));
    }
    WRITE_FIELD(*object_storage, offset, *field_value);
    WRITE_BARRIER(*object_storage, offset, *field_value);
  }

  object_storage->set_map(*map, kReleaseStore);
}

TranslatedValue* TranslatedState::ResolveCapturedObject(TranslatedValue* slot) {
  while (slot->kind() == TranslatedValue::kDuplicatedObject) {
    slot = GetValueByObjectIndex(slot->object_index());
  }
  CHECK_EQ(TranslatedValue::kCapturedObject, slot->kind());
  return slot;
}

TranslatedFrame* TranslatedState::GetFrameFromJSFrameIndex(int jsframe_index) {
  for (size_t i = 0; i < frames_.size(); i++) {
    if (frames_[i].kind() == TranslatedFrame::kUnoptimizedFunction ||
        frames_[i].kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
        frames_[i].kind() ==
            TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
      if (jsframe_index > 0) {
        jsframe_index--;
      } else {
        return &(frames_[i]);
      }
    }
  }
  return nullptr;
}

TranslatedFrame* TranslatedState::GetArgumentsInfoFromJSFrameIndex(
    int jsframe_index, int* args_count) {
  for (size_t i = 0; i < frames_.size(); i++) {
    if (frames_[i].kind() == TranslatedFrame::kUnoptimizedFunction ||
        frames_[i].kind() == TranslatedFrame::kJavaScriptBuiltinContinuation ||
        frames_[i].kind() ==
            TranslatedFrame::kJavaScriptBuiltinContinuationWithCatch) {
      if (jsframe_index > 0) {
        jsframe_index--;
      } else {
        // We have the JS function frame, now check if it has arguments
        // adaptor.
        if (i > 0 &&
            frames_[i - 1].kind() == TranslatedFrame::kArgumentsAdaptor) {
          *args_count = frames_[i - 1].height();
          return &(frames_[i - 1]);
        }

        // JavaScriptBuiltinContinuation frames that are not preceeded by
        // a arguments adapter frame are currently only used by C++ API calls
        // from TurboFan. Calls to C++ API functions from TurboFan need
        // a special marker frame state, otherwise the API call wouldn't
        // be shown in a stack trace.
        if (frames_[i].kind() ==
                TranslatedFrame::kJavaScriptBuiltinContinuation &&
            frames_[i].shared_info()->IsDontAdaptArguments()) {
          DCHECK(frames_[i].shared_info()->IsApiFunction());

          // The argument count for this special case is always the second
          // to last value in the TranslatedFrame. It should also always be
          // {1}, as the GenericLazyDeoptContinuation builtin has one explicit
          // argument (the result).
          static constexpr int kTheContext = 1;
          const int height = frames_[i].height() + kTheContext;
          *args_count = frames_[i].ValueAt(height - 1)->GetSmiValue();
          DCHECK_EQ(*args_count, JSParameterCount(1));
        } else {
          *args_count = frames_[i]
                            .shared_info()
                            ->internal_formal_parameter_count_with_receiver();
        }
        return &(frames_[i]);
      }
    }
  }
  return nullptr;
}

void TranslatedState::StoreMaterializedValuesAndDeopt(JavaScriptFrame* frame) {
  MaterializedObjectStore* materialized_store =
      isolate_->materialized_object_store();
  Handle<FixedArray> previously_materialized_objects =
      materialized_store->Get(stack_frame_pointer_);

  Handle<Object> marker = isolate_->factory()->arguments_marker();

  int length = static_cast<int>(object_positions_.size());
  bool new_store = false;
  if (previously_materialized_objects.is_null()) {
    previously_materialized_objects =
        isolate_->factory()->NewFixedArray(length, AllocationType::kOld);
    for (int i = 0; i < length; i++) {
      previously_materialized_objects->set(i, *marker);
    }
    new_store = true;
  }

  CHECK_EQ(length, previously_materialized_objects->length());

  bool value_changed = false;
  for (int i = 0; i < length; i++) {
    TranslatedState::ObjectPosition pos = object_positions_[i];
    TranslatedValue* value_info =
        &(frames_[pos.frame_index_].values_[pos.value_index_]);

    CHECK(value_info->IsMaterializedObject());

    // Skip duplicate objects (i.e., those that point to some other object id).
    if (value_info->object_index() != i) continue;

    Handle<Object> previous_value(previously_materialized_objects->get(i),
                                  isolate_);
    Handle<Object> value(value_info->GetRawValue(), isolate_);

    if (value.is_identical_to(marker)) {
      DCHECK_EQ(*previous_value, *marker);
    } else {
      if (*previous_value == *marker) {
        if (value->IsSmi()) {
          value = isolate()->factory()->NewHeapNumber(value->Number());
        }
        previously_materialized_objects->set(i, *value);
        value_changed = true;
      } else {
        CHECK(*previous_value == *value ||
              (previous_value->IsHeapNumber() && value->IsSmi() &&
               previous_value->Number() == value->Number()));
      }
    }
  }

  if (new_store && value_changed) {
    materialized_store->Set(stack_frame_pointer_,
                            previously_materialized_objects);
    CHECK_EQ(frames_[0].kind(), TranslatedFrame::kUnoptimizedFunction);
    CHECK_EQ(frame->function(), frames_[0].front().GetRawValue());
    Deoptimizer::DeoptimizeFunction(frame->function(), frame->LookupCode());
  }
}

void TranslatedState::UpdateFromPreviouslyMaterializedObjects() {
  MaterializedObjectStore* materialized_store =
      isolate_->materialized_object_store();
  Handle<FixedArray> previously_materialized_objects =
      materialized_store->Get(stack_frame_pointer_);

  // If we have no previously materialized objects, there is nothing to do.
  if (previously_materialized_objects.is_null()) return;

  Handle<Object> marker = isolate_->factory()->arguments_marker();

  int length = static_cast<int>(object_positions_.size());
  CHECK_EQ(length, previously_materialized_objects->length());

  for (int i = 0; i < length; i++) {
    // For a previously materialized objects, inject their value into the
    // translated values.
    if (previously_materialized_objects->get(i) != *marker) {
      TranslatedState::ObjectPosition pos = object_positions_[i];
      TranslatedValue* value_info =
          &(frames_[pos.frame_index_].values_[pos.value_index_]);
      CHECK(value_info->IsMaterializedObject());

      if (value_info->kind() == TranslatedValue::kCapturedObject) {
        Handle<Object> object(previously_materialized_objects->get(i),
                              isolate_);
        CHECK(object->IsHeapObject());
        value_info->set_initialized_storage(Handle<HeapObject>::cast(object));
      }
    }
  }
}

void TranslatedState::VerifyMaterializedObjects() {
#if VERIFY_HEAP
  int length = static_cast<int>(object_positions_.size());
  for (int i = 0; i < length; i++) {
    TranslatedValue* slot = GetValueByObjectIndex(i);
    if (slot->kind() == TranslatedValue::kCapturedObject) {
      CHECK_EQ(slot, GetValueByObjectIndex(slot->object_index()));
      if (slot->materialization_state() == TranslatedValue::kFinished) {
        slot->storage()->ObjectVerify(isolate());
      } else {
        CHECK_EQ(slot->materialization_state(),
                 TranslatedValue::kUninitialized);
      }
    }
  }
#endif
}

bool TranslatedState::DoUpdateFeedback() {
  if (!feedback_vector_handle_.is_null()) {
    CHECK(!feedback_slot_.IsInvalid());
    isolate()->CountUsage(v8::Isolate::kDeoptimizerDisableSpeculation);
    FeedbackNexus nexus(feedback_vector_handle_, feedback_slot_);
    nexus.SetSpeculationMode(SpeculationMode::kDisallowSpeculation);
    return true;
  }
  return false;
}

void TranslatedState::ReadUpdateFeedback(
    TranslationArrayIterator* iterator,
    DeoptimizationLiteralArray literal_array, FILE* trace_file) {
  CHECK_EQ(TranslationOpcode::UPDATE_FEEDBACK,
           TranslationOpcodeFromInt(iterator->Next()));
  feedback_vector_ = FeedbackVector::cast(literal_array.get(iterator->Next()));
  feedback_slot_ = FeedbackSlot(iterator->Next());
  if (trace_file != nullptr) {
    PrintF(trace_file, "  reading FeedbackVector (slot %d)\n",
           feedback_slot_.ToInt());
  }
}

}  // namespace internal
}  // namespace v8

// Undefine the heap manipulation macros.
#include "src/objects/object-macros-undef.h"