// Copyright 2009 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_REGEXP_REGEXP_STACK_H_ #define V8_REGEXP_REGEXP_STACK_H_ #include "src/base/logging.h" #include "src/base/macros.h" #include "src/common/globals.h" namespace v8 { namespace internal { class RegExpStack; // Maintains a per-v8thread stack area that can be used by irregexp // implementation for its backtracking stack. // Since there is only one stack area, the Irregexp implementation is not // re-entrant. I.e., no regular expressions may be executed in the same thread // during a preempted Irregexp execution. class V8_NODISCARD RegExpStackScope { public: // Create and delete an instance to control the life-time of a growing stack. // Initializes the stack memory area if necessary. explicit RegExpStackScope(Isolate* isolate); ~RegExpStackScope(); // Releases the stack if it has grown. RegExpStackScope(const RegExpStackScope&) = delete; RegExpStackScope& operator=(const RegExpStackScope&) = delete; RegExpStack* stack() const { return regexp_stack_; } private: RegExpStack* regexp_stack_; }; class RegExpStack { public: RegExpStack(); ~RegExpStack(); RegExpStack(const RegExpStack&) = delete; RegExpStack& operator=(const RegExpStack&) = delete; // Number of allocated locations on the stack below the limit. // No sequence of pushes must be longer that this without doing a stack-limit // check. static constexpr int kStackLimitSlack = 32; // Gives the top of the memory used as stack. Address stack_base() { DCHECK_NE(0, thread_local_.memory_size_); DCHECK_EQ(thread_local_.memory_top_, thread_local_.memory_ + thread_local_.memory_size_); return reinterpret_cast<Address>(thread_local_.memory_top_); } // The total size of the memory allocated for the stack. size_t stack_capacity() { return thread_local_.memory_size_; } // If the stack pointer gets below the limit, we should react and // either grow the stack or report an out-of-stack exception. // There is only a limited number of locations below the stack limit, // so users of the stack should check the stack limit during any // sequence of pushes longer that this. Address* limit_address_address() { return &(thread_local_.limit_); } // Ensures that there is a memory area with at least the specified size. // If passing zero, the default/minimum size buffer is allocated. Address EnsureCapacity(size_t size); bool is_in_use() const { return thread_local_.is_in_use_; } void set_is_in_use(bool v) { thread_local_.is_in_use_ = v; } // Thread local archiving. static constexpr int ArchiveSpacePerThread() { return static_cast<int>(kThreadLocalSize); } char* ArchiveStack(char* to); char* RestoreStack(char* from); void FreeThreadResources() { thread_local_.ResetToStaticStack(this); } // Maximal size of allocated stack area. static constexpr size_t kMaximumStackSize = 64 * MB; private: // Artificial limit used when the thread-local state has been destroyed. static const Address kMemoryTop = static_cast<Address>(static_cast<uintptr_t>(-1)); // Minimal size of dynamically-allocated stack area. static constexpr size_t kMinimumDynamicStackSize = 1 * KB; // In addition to dynamically-allocated, variable-sized stacks, we also have // a statically allocated and sized area that is used whenever no dynamic // stack is allocated. This guarantees that a stack is always available and // we can skip availability-checks later on. // It's double the slack size to ensure that we have a bit of breathing room // before NativeRegExpMacroAssembler::GrowStack must be called. static constexpr size_t kStaticStackSize = 2 * kStackLimitSlack * kSystemPointerSize; byte static_stack_[kStaticStackSize] = {0}; STATIC_ASSERT(kStaticStackSize <= kMaximumStackSize); // Structure holding the allocated memory, size and limit. struct ThreadLocal { explicit ThreadLocal(RegExpStack* regexp_stack) { ResetToStaticStack(regexp_stack); } // If memory_size_ > 0 then memory_ and memory_top_ must be non-nullptr // and memory_top_ = memory_ + memory_size_ byte* memory_ = nullptr; byte* memory_top_ = nullptr; size_t memory_size_ = 0; Address limit_ = kNullAddress; bool owns_memory_ = false; // Whether memory_ is owned and must be freed. bool is_in_use_ = false; // To guard against reentrancy. void ResetToStaticStack(RegExpStack* regexp_stack); void FreeAndInvalidate(); }; static constexpr size_t kThreadLocalSize = sizeof(ThreadLocal); // Address of top of memory used as stack. Address memory_top_address_address() { return reinterpret_cast<Address>(&thread_local_.memory_top_); } // Resets the buffer if it has grown beyond the default/minimum size. // After this, the buffer is either the default size, or it is empty, so // you have to call EnsureCapacity before using it again. void Reset(); ThreadLocal thread_local_; Isolate* isolate_; friend class ExternalReference; friend class Isolate; friend class RegExpStackScope; }; } // namespace internal } // namespace v8 #endif // V8_REGEXP_REGEXP_STACK_H_