// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/objects.h" #include <cmath> #include <iomanip> #include <sstream> #include "src/objects-inl.h" #include "src/accessors.h" #include "src/allocation-site-scopes.h" #include "src/api-arguments.h" #include "src/api-natives.h" #include "src/api.h" #include "src/base/bits.h" #include "src/base/utils/random-number-generator.h" #include "src/bootstrapper.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/compilation-dependencies.h" #include "src/compiler.h" #include "src/date.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/elements.h" #include "src/execution.h" #include "src/field-index-inl.h" #include "src/field-index.h" #include "src/field-type.h" #include "src/frames-inl.h" #include "src/full-codegen/full-codegen.h" #include "src/ic/ic.h" #include "src/identity-map.h" #include "src/interpreter/bytecode-array-iterator.h" #include "src/interpreter/interpreter.h" #include "src/interpreter/source-position-table.h" #include "src/isolate-inl.h" #include "src/keys.h" #include "src/list.h" #include "src/log.h" #include "src/lookup.h" #include "src/macro-assembler.h" #include "src/messages.h" #include "src/objects-body-descriptors-inl.h" #include "src/profiler/cpu-profiler.h" #include "src/property-descriptor.h" #include "src/prototype.h" #include "src/regexp/jsregexp.h" #include "src/safepoint-table.h" #include "src/string-builder.h" #include "src/string-search.h" #include "src/string-stream.h" #include "src/utils.h" #include "src/zone.h" #ifdef ENABLE_DISASSEMBLER #include "src/disasm.h" #include "src/disassembler.h" #endif namespace v8 { namespace internal { std::ostream& operator<<(std::ostream& os, InstanceType instance_type) { switch (instance_type) { #define WRITE_TYPE(TYPE) \ case TYPE: \ return os << #TYPE; INSTANCE_TYPE_LIST(WRITE_TYPE) #undef WRITE_TYPE } UNREACHABLE(); return os << "UNKNOWN"; // Keep the compiler happy. } Handle<FieldType> Object::OptimalType(Isolate* isolate, Representation representation) { if (representation.IsNone()) return FieldType::None(isolate); if (FLAG_track_field_types) { if (representation.IsHeapObject() && IsHeapObject()) { // We can track only JavaScript objects with stable maps. Handle<Map> map(HeapObject::cast(this)->map(), isolate); if (map->is_stable() && map->IsJSReceiverMap()) { return FieldType::Class(map, isolate); } } } return FieldType::Any(isolate); } MaybeHandle<JSReceiver> Object::ToObject(Isolate* isolate, Handle<Object> object, Handle<Context> native_context) { if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object); Handle<JSFunction> constructor; if (object->IsSmi()) { constructor = handle(native_context->number_function(), isolate); } else { int constructor_function_index = Handle<HeapObject>::cast(object)->map()->GetConstructorFunctionIndex(); if (constructor_function_index == Map::kNoConstructorFunctionIndex) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kUndefinedOrNullToObject), JSReceiver); } constructor = handle( JSFunction::cast(native_context->get(constructor_function_index)), isolate); } Handle<JSObject> result = isolate->factory()->NewJSObject(constructor); Handle<JSValue>::cast(result)->set_value(*object); return result; } // ES6 section 9.2.1.2, OrdinaryCallBindThis for sloppy callee. // static MaybeHandle<JSReceiver> Object::ConvertReceiver(Isolate* isolate, Handle<Object> object) { if (object->IsJSReceiver()) return Handle<JSReceiver>::cast(object); if (*object == isolate->heap()->null_value() || *object == isolate->heap()->undefined_value()) { return isolate->global_proxy(); } return Object::ToObject(isolate, object); } // static MaybeHandle<Object> Object::ToNumber(Handle<Object> input) { while (true) { if (input->IsNumber()) { return input; } if (input->IsString()) { return String::ToNumber(Handle<String>::cast(input)); } if (input->IsOddball()) { return Oddball::ToNumber(Handle<Oddball>::cast(input)); } Isolate* const isolate = Handle<HeapObject>::cast(input)->GetIsolate(); if (input->IsSymbol()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSymbolToNumber), Object); } if (input->IsSimd128Value()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSimdToNumber), Object); } ASSIGN_RETURN_ON_EXCEPTION( isolate, input, JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input), ToPrimitiveHint::kNumber), Object); } } // static MaybeHandle<Object> Object::ToInteger(Isolate* isolate, Handle<Object> input) { ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object); return isolate->factory()->NewNumber(DoubleToInteger(input->Number())); } // static MaybeHandle<Object> Object::ToInt32(Isolate* isolate, Handle<Object> input) { ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object); return isolate->factory()->NewNumberFromInt(DoubleToInt32(input->Number())); } // static MaybeHandle<Object> Object::ToUint32(Isolate* isolate, Handle<Object> input) { ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object); return isolate->factory()->NewNumberFromUint(DoubleToUint32(input->Number())); } // static MaybeHandle<Name> Object::ConvertToName(Isolate* isolate, Handle<Object> input) { ASSIGN_RETURN_ON_EXCEPTION( isolate, input, Object::ToPrimitive(input, ToPrimitiveHint::kString), Name); if (input->IsName()) return Handle<Name>::cast(input); return ToString(isolate, input); } // static MaybeHandle<String> Object::ToString(Isolate* isolate, Handle<Object> input) { while (true) { if (input->IsString()) { return Handle<String>::cast(input); } if (input->IsOddball()) { return handle(Handle<Oddball>::cast(input)->to_string(), isolate); } if (input->IsNumber()) { return isolate->factory()->NumberToString(input); } if (input->IsSymbol()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSymbolToString), String); } if (input->IsSimd128Value()) { return Simd128Value::ToString(Handle<Simd128Value>::cast(input)); } ASSIGN_RETURN_ON_EXCEPTION( isolate, input, JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(input), ToPrimitiveHint::kString), String); } } // static MaybeHandle<Object> Object::ToLength(Isolate* isolate, Handle<Object> input) { ASSIGN_RETURN_ON_EXCEPTION(isolate, input, ToNumber(input), Object); double len = DoubleToInteger(input->Number()); if (len <= 0.0) { len = 0.0; } else if (len >= kMaxSafeInteger) { len = kMaxSafeInteger; } return isolate->factory()->NewNumber(len); } bool Object::BooleanValue() { if (IsBoolean()) return IsTrue(); if (IsSmi()) return Smi::cast(this)->value() != 0; if (IsUndefined() || IsNull()) return false; if (IsUndetectable()) return false; // Undetectable object is false. if (IsString()) return String::cast(this)->length() != 0; if (IsHeapNumber()) return HeapNumber::cast(this)->HeapNumberBooleanValue(); return true; } namespace { // TODO(bmeurer): Maybe we should introduce a marker interface Number, // where we put all these methods at some point? ComparisonResult NumberCompare(double x, double y) { if (std::isnan(x) || std::isnan(y)) { return ComparisonResult::kUndefined; } else if (x < y) { return ComparisonResult::kLessThan; } else if (x > y) { return ComparisonResult::kGreaterThan; } else { return ComparisonResult::kEqual; } } bool NumberEquals(double x, double y) { // Must check explicitly for NaN's on Windows, but -0 works fine. if (std::isnan(x)) return false; if (std::isnan(y)) return false; return x == y; } bool NumberEquals(const Object* x, const Object* y) { return NumberEquals(x->Number(), y->Number()); } bool NumberEquals(Handle<Object> x, Handle<Object> y) { return NumberEquals(*x, *y); } } // namespace // static Maybe<ComparisonResult> Object::Compare(Handle<Object> x, Handle<Object> y) { // ES6 section 7.2.11 Abstract Relational Comparison step 3 and 4. if (!Object::ToPrimitive(x, ToPrimitiveHint::kNumber).ToHandle(&x) || !Object::ToPrimitive(y, ToPrimitiveHint::kNumber).ToHandle(&y)) { return Nothing<ComparisonResult>(); } if (x->IsString() && y->IsString()) { // ES6 section 7.2.11 Abstract Relational Comparison step 5. return Just( String::Compare(Handle<String>::cast(x), Handle<String>::cast(y))); } // ES6 section 7.2.11 Abstract Relational Comparison step 6. if (!Object::ToNumber(x).ToHandle(&x) || !Object::ToNumber(y).ToHandle(&y)) { return Nothing<ComparisonResult>(); } return Just(NumberCompare(x->Number(), y->Number())); } // static Maybe<bool> Object::Equals(Handle<Object> x, Handle<Object> y) { // This is the generic version of Abstract Equality Comparison; a version in // JavaScript land is available in the EqualStub and NotEqualStub. Whenever // you change something functionality wise in here, remember to update the // TurboFan code stubs as well. while (true) { if (x->IsNumber()) { if (y->IsNumber()) { return Just(NumberEquals(x, y)); } else if (y->IsBoolean()) { return Just(NumberEquals(*x, Handle<Oddball>::cast(y)->to_number())); } else if (y->IsString()) { return Just(NumberEquals(x, String::ToNumber(Handle<String>::cast(y)))); } else if (y->IsJSReceiver()) { if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y)) .ToHandle(&y)) { return Nothing<bool>(); } } else { return Just(false); } } else if (x->IsString()) { if (y->IsString()) { return Just( String::Equals(Handle<String>::cast(x), Handle<String>::cast(y))); } else if (y->IsNumber()) { x = String::ToNumber(Handle<String>::cast(x)); return Just(NumberEquals(x, y)); } else if (y->IsBoolean()) { x = String::ToNumber(Handle<String>::cast(x)); return Just(NumberEquals(*x, Handle<Oddball>::cast(y)->to_number())); } else if (y->IsJSReceiver()) { if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y)) .ToHandle(&y)) { return Nothing<bool>(); } } else { return Just(false); } } else if (x->IsBoolean()) { if (y->IsOddball()) { return Just(x.is_identical_to(y)); } else if (y->IsNumber()) { return Just(NumberEquals(Handle<Oddball>::cast(x)->to_number(), *y)); } else if (y->IsString()) { y = String::ToNumber(Handle<String>::cast(y)); return Just(NumberEquals(Handle<Oddball>::cast(x)->to_number(), *y)); } else if (y->IsJSReceiver()) { if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y)) .ToHandle(&y)) { return Nothing<bool>(); } x = Oddball::ToNumber(Handle<Oddball>::cast(x)); } else { return Just(false); } } else if (x->IsSymbol()) { if (y->IsSymbol()) { return Just(x.is_identical_to(y)); } else if (y->IsJSReceiver()) { if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y)) .ToHandle(&y)) { return Nothing<bool>(); } } else { return Just(false); } } else if (x->IsSimd128Value()) { if (y->IsSimd128Value()) { return Just(Simd128Value::Equals(Handle<Simd128Value>::cast(x), Handle<Simd128Value>::cast(y))); } else if (y->IsJSReceiver()) { if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(y)) .ToHandle(&y)) { return Nothing<bool>(); } } else { return Just(false); } } else if (x->IsJSReceiver()) { if (y->IsJSReceiver()) { return Just(x.is_identical_to(y)); } else if (y->IsUndetectable()) { return Just(x->IsUndetectable()); } else if (y->IsBoolean()) { y = Oddball::ToNumber(Handle<Oddball>::cast(y)); } else if (!JSReceiver::ToPrimitive(Handle<JSReceiver>::cast(x)) .ToHandle(&x)) { return Nothing<bool>(); } } else { return Just(x->IsUndetectable() && y->IsUndetectable()); } } } bool Object::StrictEquals(Object* that) { if (this->IsNumber()) { if (!that->IsNumber()) return false; return NumberEquals(this, that); } else if (this->IsString()) { if (!that->IsString()) return false; return String::cast(this)->Equals(String::cast(that)); } else if (this->IsSimd128Value()) { if (!that->IsSimd128Value()) return false; return Simd128Value::cast(this)->Equals(Simd128Value::cast(that)); } return this == that; } // static Handle<String> Object::TypeOf(Isolate* isolate, Handle<Object> object) { if (object->IsNumber()) return isolate->factory()->number_string(); if (object->IsOddball()) return handle(Oddball::cast(*object)->type_of()); if (object->IsUndetectable()) { return isolate->factory()->undefined_string(); } if (object->IsString()) return isolate->factory()->string_string(); if (object->IsSymbol()) return isolate->factory()->symbol_string(); if (object->IsString()) return isolate->factory()->string_string(); #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ if (object->Is##Type()) return isolate->factory()->type##_string(); SIMD128_TYPES(SIMD128_TYPE) #undef SIMD128_TYPE if (object->IsCallable()) return isolate->factory()->function_string(); return isolate->factory()->object_string(); } // static MaybeHandle<Object> Object::Multiply(Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs) { if (!lhs->IsNumber() || !rhs->IsNumber()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumber(lhs->Number() * rhs->Number()); } // static MaybeHandle<Object> Object::Divide(Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs) { if (!lhs->IsNumber() || !rhs->IsNumber()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumber(lhs->Number() / rhs->Number()); } // static MaybeHandle<Object> Object::Modulus(Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs) { if (!lhs->IsNumber() || !rhs->IsNumber()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumber(modulo(lhs->Number(), rhs->Number())); } // static MaybeHandle<Object> Object::Add(Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs) { if (lhs->IsNumber() && rhs->IsNumber()) { return isolate->factory()->NewNumber(lhs->Number() + rhs->Number()); } else if (lhs->IsString() && rhs->IsString()) { return isolate->factory()->NewConsString(Handle<String>::cast(lhs), Handle<String>::cast(rhs)); } ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToPrimitive(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToPrimitive(rhs), Object); if (lhs->IsString() || rhs->IsString()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToString(isolate, rhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToString(isolate, lhs), Object); return isolate->factory()->NewConsString(Handle<String>::cast(lhs), Handle<String>::cast(rhs)); } ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); return isolate->factory()->NewNumber(lhs->Number() + rhs->Number()); } // static MaybeHandle<Object> Object::Subtract(Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs) { if (!lhs->IsNumber() || !rhs->IsNumber()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumber(lhs->Number() - rhs->Number()); } // static MaybeHandle<Object> Object::ShiftLeft(Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs) { if (!lhs->IsNumber() || !rhs->IsNumber()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) << (NumberToUint32(*rhs) & 0x1F)); } // static MaybeHandle<Object> Object::ShiftRight(Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs) { if (!lhs->IsNumber() || !rhs->IsNumber()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) >> (NumberToUint32(*rhs) & 0x1F)); } // static MaybeHandle<Object> Object::ShiftRightLogical(Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs) { if (!lhs->IsNumber() || !rhs->IsNumber()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumberFromUint(NumberToUint32(*lhs) >> (NumberToUint32(*rhs) & 0x1F)); } // static MaybeHandle<Object> Object::BitwiseAnd(Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs) { if (!lhs->IsNumber() || !rhs->IsNumber()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) & NumberToInt32(*rhs)); } // static MaybeHandle<Object> Object::BitwiseOr(Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs) { if (!lhs->IsNumber() || !rhs->IsNumber()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) | NumberToInt32(*rhs)); } // static MaybeHandle<Object> Object::BitwiseXor(Isolate* isolate, Handle<Object> lhs, Handle<Object> rhs) { if (!lhs->IsNumber() || !rhs->IsNumber()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, lhs, Object::ToNumber(lhs), Object); ASSIGN_RETURN_ON_EXCEPTION(isolate, rhs, Object::ToNumber(rhs), Object); } return isolate->factory()->NewNumberFromInt(NumberToInt32(*lhs) ^ NumberToInt32(*rhs)); } Maybe<bool> Object::IsArray(Handle<Object> object) { if (object->IsJSArray()) return Just(true); if (object->IsJSProxy()) { Handle<JSProxy> proxy = Handle<JSProxy>::cast(object); Isolate* isolate = proxy->GetIsolate(); if (proxy->IsRevoked()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyRevoked, isolate->factory()->NewStringFromAsciiChecked("IsArray"))); return Nothing<bool>(); } return Object::IsArray(handle(proxy->target(), isolate)); } return Just(false); } bool Object::IsPromise(Handle<Object> object) { if (!object->IsJSObject()) return false; auto js_object = Handle<JSObject>::cast(object); // Promises can't have access checks. if (js_object->map()->is_access_check_needed()) return false; auto isolate = js_object->GetIsolate(); // TODO(dcarney): this should just be read from the symbol registry so as not // to be context dependent. auto key = isolate->factory()->promise_status_symbol(); // Shouldn't be possible to throw here. return JSObject::HasRealNamedProperty(js_object, key).FromJust(); } // static MaybeHandle<Object> Object::GetMethod(Handle<JSReceiver> receiver, Handle<Name> name) { Handle<Object> func; Isolate* isolate = receiver->GetIsolate(); ASSIGN_RETURN_ON_EXCEPTION(isolate, func, JSReceiver::GetProperty(receiver, name), Object); if (func->IsNull() || func->IsUndefined()) { return isolate->factory()->undefined_value(); } if (!func->IsCallable()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kPropertyNotFunction, func, name, receiver), Object); } return func; } // static MaybeHandle<FixedArray> Object::CreateListFromArrayLike( Isolate* isolate, Handle<Object> object, ElementTypes element_types) { // 1. ReturnIfAbrupt(object). // 2. (default elementTypes -- not applicable.) // 3. If Type(obj) is not Object, throw a TypeError exception. if (!object->IsJSReceiver()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, isolate->factory()->NewStringFromAsciiChecked( "CreateListFromArrayLike")), FixedArray); } // 4. Let len be ? ToLength(? Get(obj, "length")). Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(object); Handle<Object> raw_length_obj; ASSIGN_RETURN_ON_EXCEPTION( isolate, raw_length_obj, JSReceiver::GetProperty(receiver, isolate->factory()->length_string()), FixedArray); Handle<Object> raw_length_number; ASSIGN_RETURN_ON_EXCEPTION(isolate, raw_length_number, Object::ToLength(isolate, raw_length_obj), FixedArray); uint32_t len; if (!raw_length_number->ToUint32(&len) || len > static_cast<uint32_t>(FixedArray::kMaxLength)) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kInvalidArrayLength), FixedArray); } // 5. Let list be an empty List. Handle<FixedArray> list = isolate->factory()->NewFixedArray(len); // 6. Let index be 0. // 7. Repeat while index < len: for (uint32_t index = 0; index < len; ++index) { // 7a. Let indexName be ToString(index). // 7b. Let next be ? Get(obj, indexName). Handle<Object> next; ASSIGN_RETURN_ON_EXCEPTION(isolate, next, JSReceiver::GetElement(isolate, receiver, index), FixedArray); switch (element_types) { case ElementTypes::kAll: // Nothing to do. break; case ElementTypes::kStringAndSymbol: { // 7c. If Type(next) is not an element of elementTypes, throw a // TypeError exception. if (!next->IsName()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kNotPropertyName, next), FixedArray); } // 7d. Append next as the last element of list. // Internalize on the fly so we can use pointer identity later. next = isolate->factory()->InternalizeName(Handle<Name>::cast(next)); break; } } list->set(index, *next); // 7e. Set index to index + 1. (See loop header.) } // 8. Return list. return list; } // static Maybe<bool> JSReceiver::HasProperty(LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: return JSProxy::HasProperty(it->isolate(), it->GetHolder<JSProxy>(), it->GetName()); case LookupIterator::INTERCEPTOR: { Maybe<PropertyAttributes> result = JSObject::GetPropertyAttributesWithInterceptor(it); if (result.IsNothing()) return Nothing<bool>(); if (result.FromJust() != ABSENT) return Just(true); break; } case LookupIterator::ACCESS_CHECK: { if (it->HasAccess()) break; Maybe<PropertyAttributes> result = JSObject::GetPropertyAttributesWithFailedAccessCheck(it); if (result.IsNothing()) return Nothing<bool>(); return Just(result.FromJust() != ABSENT); } case LookupIterator::INTEGER_INDEXED_EXOTIC: // TypedArray out-of-bounds access. return Just(false); case LookupIterator::ACCESSOR: case LookupIterator::DATA: return Just(true); } } return Just(false); } // static MaybeHandle<Object> Object::GetProperty(LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: { bool was_found; MaybeHandle<Object> result = JSProxy::GetProperty(it->isolate(), it->GetHolder<JSProxy>(), it->GetName(), it->GetReceiver(), &was_found); if (!was_found) it->NotFound(); return result; } case LookupIterator::INTERCEPTOR: { bool done; Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( it->isolate(), result, JSObject::GetPropertyWithInterceptor(it, &done), Object); if (done) return result; break; } case LookupIterator::ACCESS_CHECK: if (it->HasAccess()) break; return JSObject::GetPropertyWithFailedAccessCheck(it); case LookupIterator::ACCESSOR: return GetPropertyWithAccessor(it); case LookupIterator::INTEGER_INDEXED_EXOTIC: return ReadAbsentProperty(it); case LookupIterator::DATA: return it->GetDataValue(); } } return ReadAbsentProperty(it); } #define STACK_CHECK(result_value) \ do { \ StackLimitCheck stack_check(isolate); \ if (stack_check.HasOverflowed()) { \ isolate->Throw(*isolate->factory()->NewRangeError( \ MessageTemplate::kStackOverflow)); \ return result_value; \ } \ } while (false) // static MaybeHandle<Object> JSProxy::GetProperty(Isolate* isolate, Handle<JSProxy> proxy, Handle<Name> name, Handle<Object> receiver, bool* was_found) { *was_found = true; if (receiver->IsJSGlobalObject()) { THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kReadGlobalReferenceThroughProxy, name), Object); } DCHECK(!name->IsPrivate()); STACK_CHECK(MaybeHandle<Object>()); Handle<Name> trap_name = isolate->factory()->get_string(); // 1. Assert: IsPropertyKey(P) is true. // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O. Handle<Object> handler(proxy->handler(), isolate); // 3. If handler is null, throw a TypeError exception. // 4. Assert: Type(handler) is Object. if (proxy->IsRevoked()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyRevoked, trap_name), Object); } // 5. Let target be the value of the [[ProxyTarget]] internal slot of O. Handle<JSReceiver> target(proxy->target(), isolate); // 6. Let trap be ? GetMethod(handler, "get"). Handle<Object> trap; ASSIGN_RETURN_ON_EXCEPTION( isolate, trap, Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name), Object); // 7. If trap is undefined, then if (trap->IsUndefined()) { // 7.a Return target.[[Get]](P, Receiver). LookupIterator it = LookupIterator::PropertyOrElement(isolate, receiver, name, target); MaybeHandle<Object> result = Object::GetProperty(&it); *was_found = it.IsFound(); return result; } // 8. Let trapResult be ? Call(trap, handler, «target, P, Receiver»). Handle<Object> trap_result; Handle<Object> args[] = {target, name, receiver}; ASSIGN_RETURN_ON_EXCEPTION( isolate, trap_result, Execution::Call(isolate, trap, handler, arraysize(args), args), Object); // 9. Let targetDesc be ? target.[[GetOwnProperty]](P). PropertyDescriptor target_desc; Maybe<bool> target_found = JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc); MAYBE_RETURN_NULL(target_found); // 10. If targetDesc is not undefined, then if (target_found.FromJust()) { // 10.a. If IsDataDescriptor(targetDesc) and targetDesc.[[Configurable]] is // false and targetDesc.[[Writable]] is false, then // 10.a.i. If SameValue(trapResult, targetDesc.[[Value]]) is false, // throw a TypeError exception. bool inconsistent = PropertyDescriptor::IsDataDescriptor(&target_desc) && !target_desc.configurable() && !target_desc.writable() && !trap_result->SameValue(*target_desc.value()); if (inconsistent) { THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kProxyGetNonConfigurableData, name, target_desc.value(), trap_result), Object); } // 10.b. If IsAccessorDescriptor(targetDesc) and targetDesc.[[Configurable]] // is false and targetDesc.[[Get]] is undefined, then // 10.b.i. If trapResult is not undefined, throw a TypeError exception. inconsistent = PropertyDescriptor::IsAccessorDescriptor(&target_desc) && !target_desc.configurable() && target_desc.get()->IsUndefined() && !trap_result->IsUndefined(); if (inconsistent) { THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kProxyGetNonConfigurableAccessor, name, trap_result), Object); } } // 11. Return trap_result return trap_result; } Handle<Object> JSReceiver::GetDataProperty(LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::INTERCEPTOR: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: // Support calling this method without an active context, but refuse // access to access-checked objects in that case. if (it->isolate()->context() != nullptr && it->HasAccess()) continue; // Fall through. case LookupIterator::JSPROXY: it->NotFound(); return it->isolate()->factory()->undefined_value(); case LookupIterator::ACCESSOR: // TODO(verwaest): For now this doesn't call into AccessorInfo, since // clients don't need it. Update once relevant. it->NotFound(); return it->isolate()->factory()->undefined_value(); case LookupIterator::INTEGER_INDEXED_EXOTIC: return it->isolate()->factory()->undefined_value(); case LookupIterator::DATA: return it->GetDataValue(); } } return it->isolate()->factory()->undefined_value(); } bool Object::ToInt32(int32_t* value) { if (IsSmi()) { *value = Smi::cast(this)->value(); return true; } if (IsHeapNumber()) { double num = HeapNumber::cast(this)->value(); if (FastI2D(FastD2I(num)) == num) { *value = FastD2I(num); return true; } } return false; } bool FunctionTemplateInfo::IsTemplateFor(Object* object) { if (!object->IsHeapObject()) return false; return IsTemplateFor(HeapObject::cast(object)->map()); } bool FunctionTemplateInfo::IsTemplateFor(Map* map) { // There is a constraint on the object; check. if (!map->IsJSObjectMap()) return false; // Fetch the constructor function of the object. Object* cons_obj = map->GetConstructor(); if (!cons_obj->IsJSFunction()) return false; JSFunction* fun = JSFunction::cast(cons_obj); // Iterate through the chain of inheriting function templates to // see if the required one occurs. for (Object* type = fun->shared()->function_data(); type->IsFunctionTemplateInfo(); type = FunctionTemplateInfo::cast(type)->parent_template()) { if (type == this) return true; } // Didn't find the required type in the inheritance chain. return false; } // TODO(dcarney): CallOptimization duplicates this logic, merge. Object* FunctionTemplateInfo::GetCompatibleReceiver(Isolate* isolate, Object* receiver) { // API calls are only supported with JSObject receivers. if (!receiver->IsJSObject()) return isolate->heap()->null_value(); Object* recv_type = this->signature(); // No signature, return holder. if (recv_type->IsUndefined()) return receiver; FunctionTemplateInfo* signature = FunctionTemplateInfo::cast(recv_type); // Check the receiver. for (PrototypeIterator iter(isolate, JSObject::cast(receiver), PrototypeIterator::START_AT_RECEIVER, PrototypeIterator::END_AT_NON_HIDDEN); !iter.IsAtEnd(); iter.Advance()) { if (signature->IsTemplateFor(iter.GetCurrent())) return iter.GetCurrent(); } return isolate->heap()->null_value(); } // static MaybeHandle<JSObject> JSObject::New(Handle<JSFunction> constructor, Handle<JSReceiver> new_target, Handle<AllocationSite> site) { // If called through new, new.target can be: // - a subclass of constructor, // - a proxy wrapper around constructor, or // - the constructor itself. // If called through Reflect.construct, it's guaranteed to be a constructor. Isolate* const isolate = constructor->GetIsolate(); DCHECK(constructor->IsConstructor()); DCHECK(new_target->IsConstructor()); DCHECK(!constructor->has_initial_map() || constructor->initial_map()->instance_type() != JS_FUNCTION_TYPE); Handle<Map> initial_map; ASSIGN_RETURN_ON_EXCEPTION( isolate, initial_map, JSFunction::GetDerivedMap(isolate, constructor, new_target), JSObject); Handle<JSObject> result = isolate->factory()->NewJSObjectFromMap(initial_map, NOT_TENURED, site); isolate->counters()->constructed_objects()->Increment(); isolate->counters()->constructed_objects_runtime()->Increment(); return result; } void JSObject::EnsureWritableFastElements(Handle<JSObject> object) { DCHECK(object->HasFastSmiOrObjectElements() || object->HasFastStringWrapperElements()); FixedArray* raw_elems = FixedArray::cast(object->elements()); Heap* heap = object->GetHeap(); if (raw_elems->map() != heap->fixed_cow_array_map()) return; Isolate* isolate = heap->isolate(); Handle<FixedArray> elems(raw_elems, isolate); Handle<FixedArray> writable_elems = isolate->factory()->CopyFixedArrayWithMap( elems, isolate->factory()->fixed_array_map()); object->set_elements(*writable_elems); isolate->counters()->cow_arrays_converted()->Increment(); } // ES6 9.5.1 // static MaybeHandle<Object> JSProxy::GetPrototype(Handle<JSProxy> proxy) { Isolate* isolate = proxy->GetIsolate(); Handle<String> trap_name = isolate->factory()->getPrototypeOf_string(); STACK_CHECK(MaybeHandle<Object>()); // 1. Let handler be the value of the [[ProxyHandler]] internal slot. // 2. If handler is null, throw a TypeError exception. // 3. Assert: Type(handler) is Object. // 4. Let target be the value of the [[ProxyTarget]] internal slot. if (proxy->IsRevoked()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyRevoked, trap_name), Object); } Handle<JSReceiver> target(proxy->target(), isolate); Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate); // 5. Let trap be ? GetMethod(handler, "getPrototypeOf"). Handle<Object> trap; ASSIGN_RETURN_ON_EXCEPTION(isolate, trap, GetMethod(handler, trap_name), Object); // 6. If trap is undefined, then return target.[[GetPrototypeOf]](). if (trap->IsUndefined()) { return JSReceiver::GetPrototype(isolate, target); } // 7. Let handlerProto be ? Call(trap, handler, «target»). Handle<Object> argv[] = {target}; Handle<Object> handler_proto; ASSIGN_RETURN_ON_EXCEPTION( isolate, handler_proto, Execution::Call(isolate, trap, handler, arraysize(argv), argv), Object); // 8. If Type(handlerProto) is neither Object nor Null, throw a TypeError. if (!(handler_proto->IsJSReceiver() || handler_proto->IsNull())) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyGetPrototypeOfInvalid), Object); } // 9. Let extensibleTarget be ? IsExtensible(target). Maybe<bool> is_extensible = JSReceiver::IsExtensible(target); MAYBE_RETURN_NULL(is_extensible); // 10. If extensibleTarget is true, return handlerProto. if (is_extensible.FromJust()) return handler_proto; // 11. Let targetProto be ? target.[[GetPrototypeOf]](). Handle<Object> target_proto; ASSIGN_RETURN_ON_EXCEPTION(isolate, target_proto, JSReceiver::GetPrototype(isolate, target), Object); // 12. If SameValue(handlerProto, targetProto) is false, throw a TypeError. if (!handler_proto->SameValue(*target_proto)) { THROW_NEW_ERROR( isolate, NewTypeError(MessageTemplate::kProxyGetPrototypeOfNonExtensible), Object); } // 13. Return handlerProto. return handler_proto; } MaybeHandle<Object> Object::GetPropertyWithAccessor(LookupIterator* it) { Isolate* isolate = it->isolate(); Handle<Object> structure = it->GetAccessors(); Handle<Object> receiver = it->GetReceiver(); // We should never get here to initialize a const with the hole value since a // const declaration would conflict with the getter. DCHECK(!structure->IsForeign()); // API style callbacks. if (structure->IsAccessorInfo()) { Handle<JSObject> holder = it->GetHolder<JSObject>(); Handle<Name> name = it->GetName(); Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(structure); if (!info->IsCompatibleReceiver(*receiver)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kIncompatibleMethodReceiver, name, receiver), Object); } v8::AccessorNameGetterCallback call_fun = v8::ToCData<v8::AccessorNameGetterCallback>(info->getter()); if (call_fun == nullptr) return isolate->factory()->undefined_value(); PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder, Object::DONT_THROW); Handle<Object> result = args.Call(call_fun, name); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); if (result.is_null()) return ReadAbsentProperty(isolate, receiver, name); // Rebox handle before return. return handle(*result, isolate); } // Regular accessor. Handle<Object> getter(AccessorPair::cast(*structure)->getter(), isolate); if (getter->IsFunctionTemplateInfo()) { auto result = Builtins::InvokeApiFunction( Handle<FunctionTemplateInfo>::cast(getter), receiver, 0, nullptr); if (isolate->has_pending_exception()) { return MaybeHandle<Object>(); } Handle<Object> return_value; if (result.ToHandle(&return_value)) { return_value->VerifyApiCallResultType(); return handle(*return_value, isolate); } } else if (getter->IsCallable()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return Object::GetPropertyWithDefinedGetter( receiver, Handle<JSReceiver>::cast(getter)); } // Getter is not a function. return ReadAbsentProperty(isolate, receiver, it->GetName()); } // static Address AccessorInfo::redirect(Isolate* isolate, Address address, AccessorComponent component) { ApiFunction fun(address); DCHECK_EQ(ACCESSOR_GETTER, component); ExternalReference::Type type = ExternalReference::DIRECT_GETTER_CALL; return ExternalReference(&fun, type, isolate).address(); } Address AccessorInfo::redirected_getter() const { Address accessor = v8::ToCData<Address>(getter()); if (accessor == nullptr) return nullptr; return redirect(GetIsolate(), accessor, ACCESSOR_GETTER); } bool AccessorInfo::IsCompatibleReceiverMap(Isolate* isolate, Handle<AccessorInfo> info, Handle<Map> map) { if (!info->HasExpectedReceiverType()) return true; if (!map->IsJSObjectMap()) return false; return FunctionTemplateInfo::cast(info->expected_receiver_type()) ->IsTemplateFor(*map); } Maybe<bool> Object::SetPropertyWithAccessor(LookupIterator* it, Handle<Object> value, ShouldThrow should_throw) { Isolate* isolate = it->isolate(); Handle<Object> structure = it->GetAccessors(); Handle<Object> receiver = it->GetReceiver(); // We should never get here to initialize a const with the hole value since a // const declaration would conflict with the setter. DCHECK(!structure->IsForeign()); // API style callbacks. if (structure->IsAccessorInfo()) { Handle<JSObject> holder = it->GetHolder<JSObject>(); Handle<Name> name = it->GetName(); Handle<AccessorInfo> info = Handle<AccessorInfo>::cast(structure); if (!info->IsCompatibleReceiver(*receiver)) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kIncompatibleMethodReceiver, name, receiver)); return Nothing<bool>(); } v8::AccessorNameSetterCallback call_fun = v8::ToCData<v8::AccessorNameSetterCallback>(info->setter()); // TODO(verwaest): We should not get here anymore once all AccessorInfos are // marked as special_data_property. They cannot both be writable and not // have a setter. if (call_fun == nullptr) return Just(true); PropertyCallbackArguments args(isolate, info->data(), *receiver, *holder, should_throw); args.Call(call_fun, name, value); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>()); return Just(true); } // Regular accessor. Handle<Object> setter(AccessorPair::cast(*structure)->setter(), isolate); if (setter->IsFunctionTemplateInfo()) { Handle<Object> argv[] = {value}; auto result = Builtins::InvokeApiFunction(Handle<FunctionTemplateInfo>::cast(setter), receiver, arraysize(argv), argv); if (isolate->has_pending_exception()) { return Nothing<bool>(); } return Just(true); } else if (setter->IsCallable()) { // TODO(rossberg): nicer would be to cast to some JSCallable here... return SetPropertyWithDefinedSetter( receiver, Handle<JSReceiver>::cast(setter), value, should_throw); } RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kNoSetterInCallback, it->GetName(), it->GetHolder<JSObject>())); } MaybeHandle<Object> Object::GetPropertyWithDefinedGetter( Handle<Object> receiver, Handle<JSReceiver> getter) { Isolate* isolate = getter->GetIsolate(); // Platforms with simulators like arm/arm64 expose a funny issue. If the // simulator has a separate JS stack pointer from the C++ stack pointer, it // can miss C++ stack overflows in the stack guard at the start of JavaScript // functions. It would be very expensive to check the C++ stack pointer at // that location. The best solution seems to be to break the impasse by // adding checks at possible recursion points. What's more, we don't put // this stack check behind the USE_SIMULATOR define in order to keep // behavior the same between hardware and simulators. StackLimitCheck check(isolate); if (check.JsHasOverflowed()) { isolate->StackOverflow(); return MaybeHandle<Object>(); } return Execution::Call(isolate, getter, receiver, 0, NULL); } Maybe<bool> Object::SetPropertyWithDefinedSetter(Handle<Object> receiver, Handle<JSReceiver> setter, Handle<Object> value, ShouldThrow should_throw) { Isolate* isolate = setter->GetIsolate(); Handle<Object> argv[] = { value }; RETURN_ON_EXCEPTION_VALUE(isolate, Execution::Call(isolate, setter, receiver, arraysize(argv), argv), Nothing<bool>()); return Just(true); } // static bool Object::IsErrorObject(Isolate* isolate, Handle<Object> object) { if (!object->IsJSObject()) return false; // Use stack_trace_symbol as proxy for [[ErrorData]]. Handle<Name> symbol = isolate->factory()->stack_trace_symbol(); Maybe<bool> has_stack_trace = JSReceiver::HasOwnProperty(Handle<JSReceiver>::cast(object), symbol); DCHECK(!has_stack_trace.IsNothing()); return has_stack_trace.FromJust(); } // static bool JSObject::AllCanRead(LookupIterator* it) { // Skip current iteration, it's in state ACCESS_CHECK or INTERCEPTOR, both of // which have already been checked. DCHECK(it->state() == LookupIterator::ACCESS_CHECK || it->state() == LookupIterator::INTERCEPTOR); for (it->Next(); it->IsFound(); it->Next()) { if (it->state() == LookupIterator::ACCESSOR) { auto accessors = it->GetAccessors(); if (accessors->IsAccessorInfo()) { if (AccessorInfo::cast(*accessors)->all_can_read()) return true; } } else if (it->state() == LookupIterator::INTERCEPTOR) { if (it->GetInterceptor()->all_can_read()) return true; } else if (it->state() == LookupIterator::JSPROXY) { // Stop lookupiterating. And no, AllCanNotRead. return false; } } return false; } MaybeHandle<Object> JSObject::GetPropertyWithFailedAccessCheck( LookupIterator* it) { Handle<JSObject> checked = it->GetHolder<JSObject>(); while (AllCanRead(it)) { if (it->state() == LookupIterator::ACCESSOR) { return GetPropertyWithAccessor(it); } DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state()); bool done; Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION(it->isolate(), result, GetPropertyWithInterceptor(it, &done), Object); if (done) return result; } // Cross-Origin [[Get]] of Well-Known Symbols does not throw, and returns // undefined. Handle<Name> name = it->GetName(); if (name->IsSymbol() && Symbol::cast(*name)->is_well_known_symbol()) { return it->factory()->undefined_value(); } it->isolate()->ReportFailedAccessCheck(checked); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(it->isolate(), Object); return it->factory()->undefined_value(); } Maybe<PropertyAttributes> JSObject::GetPropertyAttributesWithFailedAccessCheck( LookupIterator* it) { Handle<JSObject> checked = it->GetHolder<JSObject>(); while (AllCanRead(it)) { if (it->state() == LookupIterator::ACCESSOR) { return Just(it->property_attributes()); } DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state()); auto result = GetPropertyAttributesWithInterceptor(it); if (it->isolate()->has_scheduled_exception()) break; if (result.IsJust() && result.FromJust() != ABSENT) return result; } it->isolate()->ReportFailedAccessCheck(checked); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing<PropertyAttributes>()); return Just(ABSENT); } // static bool JSObject::AllCanWrite(LookupIterator* it) { for (; it->IsFound() && it->state() != LookupIterator::JSPROXY; it->Next()) { if (it->state() == LookupIterator::ACCESSOR) { Handle<Object> accessors = it->GetAccessors(); if (accessors->IsAccessorInfo()) { if (AccessorInfo::cast(*accessors)->all_can_write()) return true; } } } return false; } Maybe<bool> JSObject::SetPropertyWithFailedAccessCheck( LookupIterator* it, Handle<Object> value, ShouldThrow should_throw) { Handle<JSObject> checked = it->GetHolder<JSObject>(); if (AllCanWrite(it)) { return SetPropertyWithAccessor(it, value, should_throw); } it->isolate()->ReportFailedAccessCheck(checked); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing<bool>()); return Just(true); } void JSObject::SetNormalizedProperty(Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyDetails details) { DCHECK(!object->HasFastProperties()); if (!name->IsUniqueName()) { name = object->GetIsolate()->factory()->InternalizeString( Handle<String>::cast(name)); } if (object->IsJSGlobalObject()) { Handle<GlobalDictionary> property_dictionary(object->global_dictionary()); int entry = property_dictionary->FindEntry(name); if (entry == GlobalDictionary::kNotFound) { auto cell = object->GetIsolate()->factory()->NewPropertyCell(); cell->set_value(*value); auto cell_type = value->IsUndefined() ? PropertyCellType::kUndefined : PropertyCellType::kConstant; details = details.set_cell_type(cell_type); value = cell; property_dictionary = GlobalDictionary::Add(property_dictionary, name, value, details); object->set_properties(*property_dictionary); } else { PropertyCell::UpdateCell(property_dictionary, entry, value, details); } } else { Handle<NameDictionary> property_dictionary(object->property_dictionary()); int entry = property_dictionary->FindEntry(name); if (entry == NameDictionary::kNotFound) { property_dictionary = NameDictionary::Add(property_dictionary, name, value, details); object->set_properties(*property_dictionary); } else { PropertyDetails original_details = property_dictionary->DetailsAt(entry); int enumeration_index = original_details.dictionary_index(); DCHECK(enumeration_index > 0); details = details.set_index(enumeration_index); property_dictionary->SetEntry(entry, name, value, details); } } } Maybe<bool> JSReceiver::HasInPrototypeChain(Isolate* isolate, Handle<JSReceiver> object, Handle<Object> proto) { PrototypeIterator iter(isolate, object, PrototypeIterator::START_AT_RECEIVER); while (true) { if (!iter.AdvanceFollowingProxies()) return Nothing<bool>(); if (iter.IsAtEnd()) return Just(false); if (PrototypeIterator::GetCurrent(iter).is_identical_to(proto)) { return Just(true); } } } Map* Object::GetRootMap(Isolate* isolate) { DisallowHeapAllocation no_alloc; if (IsSmi()) { Context* native_context = isolate->context()->native_context(); return native_context->number_function()->initial_map(); } // The object is either a number, a string, a symbol, a boolean, a SIMD value, // a real JS object, or a Harmony proxy. HeapObject* heap_object = HeapObject::cast(this); if (heap_object->IsJSReceiver()) { return heap_object->map(); } int constructor_function_index = heap_object->map()->GetConstructorFunctionIndex(); if (constructor_function_index != Map::kNoConstructorFunctionIndex) { Context* native_context = isolate->context()->native_context(); JSFunction* constructor_function = JSFunction::cast(native_context->get(constructor_function_index)); return constructor_function->initial_map(); } return isolate->heap()->null_value()->map(); } Object* Object::GetHash() { Object* hash = GetSimpleHash(); if (hash->IsSmi()) return hash; DisallowHeapAllocation no_gc; DCHECK(IsJSReceiver()); JSReceiver* receiver = JSReceiver::cast(this); Isolate* isolate = receiver->GetIsolate(); return *JSReceiver::GetIdentityHash(isolate, handle(receiver, isolate)); } Object* Object::GetSimpleHash() { // The object is either a Smi, a HeapNumber, a name, an odd-ball, // a SIMD value type, a real JS object, or a Harmony proxy. if (IsSmi()) { uint32_t hash = ComputeIntegerHash(Smi::cast(this)->value(), kZeroHashSeed); return Smi::FromInt(hash & Smi::kMaxValue); } if (IsHeapNumber()) { double num = HeapNumber::cast(this)->value(); if (std::isnan(num)) return Smi::FromInt(Smi::kMaxValue); if (i::IsMinusZero(num)) num = 0; if (IsSmiDouble(num)) { return Smi::FromInt(FastD2I(num))->GetHash(); } uint32_t hash = ComputeLongHash(double_to_uint64(num)); return Smi::FromInt(hash & Smi::kMaxValue); } if (IsName()) { uint32_t hash = Name::cast(this)->Hash(); return Smi::FromInt(hash); } if (IsOddball()) { uint32_t hash = Oddball::cast(this)->to_string()->Hash(); return Smi::FromInt(hash); } if (IsSimd128Value()) { uint32_t hash = Simd128Value::cast(this)->Hash(); return Smi::FromInt(hash & Smi::kMaxValue); } DCHECK(IsJSReceiver()); JSReceiver* receiver = JSReceiver::cast(this); return receiver->GetHeap()->undefined_value(); } Handle<Smi> Object::GetOrCreateHash(Isolate* isolate, Handle<Object> object) { Handle<Object> hash(object->GetSimpleHash(), isolate); if (hash->IsSmi()) return Handle<Smi>::cast(hash); DCHECK(object->IsJSReceiver()); return JSReceiver::GetOrCreateIdentityHash(Handle<JSReceiver>::cast(object)); } bool Object::SameValue(Object* other) { if (other == this) return true; // The object is either a number, a name, an odd-ball, // a real JS object, or a Harmony proxy. if (IsNumber() && other->IsNumber()) { double this_value = Number(); double other_value = other->Number(); // SameValue(NaN, NaN) is true. if (this_value != other_value) { return std::isnan(this_value) && std::isnan(other_value); } // SameValue(0.0, -0.0) is false. return (std::signbit(this_value) == std::signbit(other_value)); } if (IsString() && other->IsString()) { return String::cast(this)->Equals(String::cast(other)); } if (IsFloat32x4() && other->IsFloat32x4()) { Float32x4* a = Float32x4::cast(this); Float32x4* b = Float32x4::cast(other); for (int i = 0; i < 4; i++) { float x = a->get_lane(i); float y = b->get_lane(i); // Implements the ES5 SameValue operation for floating point types. // http://www.ecma-international.org/ecma-262/6.0/#sec-samevalue if (x != y && !(std::isnan(x) && std::isnan(y))) return false; if (std::signbit(x) != std::signbit(y)) return false; } return true; } else if (IsSimd128Value() && other->IsSimd128Value()) { Simd128Value* a = Simd128Value::cast(this); Simd128Value* b = Simd128Value::cast(other); return a->map() == b->map() && a->BitwiseEquals(b); } return false; } bool Object::SameValueZero(Object* other) { if (other == this) return true; // The object is either a number, a name, an odd-ball, // a real JS object, or a Harmony proxy. if (IsNumber() && other->IsNumber()) { double this_value = Number(); double other_value = other->Number(); // +0 == -0 is true return this_value == other_value || (std::isnan(this_value) && std::isnan(other_value)); } if (IsString() && other->IsString()) { return String::cast(this)->Equals(String::cast(other)); } if (IsFloat32x4() && other->IsFloat32x4()) { Float32x4* a = Float32x4::cast(this); Float32x4* b = Float32x4::cast(other); for (int i = 0; i < 4; i++) { float x = a->get_lane(i); float y = b->get_lane(i); // Implements the ES6 SameValueZero operation for floating point types. // http://www.ecma-international.org/ecma-262/6.0/#sec-samevaluezero if (x != y && !(std::isnan(x) && std::isnan(y))) return false; // SameValueZero doesn't distinguish between 0 and -0. } return true; } else if (IsSimd128Value() && other->IsSimd128Value()) { Simd128Value* a = Simd128Value::cast(this); Simd128Value* b = Simd128Value::cast(other); return a->map() == b->map() && a->BitwiseEquals(b); } return false; } MaybeHandle<Object> Object::ArraySpeciesConstructor( Isolate* isolate, Handle<Object> original_array) { Handle<Context> native_context = isolate->native_context(); Handle<Object> default_species = isolate->array_function(); if (!FLAG_harmony_species) { return default_species; } if (original_array->IsJSArray() && Handle<JSReceiver>::cast(original_array)->map()->new_target_is_base() && isolate->IsArraySpeciesLookupChainIntact()) { return default_species; } Handle<Object> constructor = isolate->factory()->undefined_value(); Maybe<bool> is_array = Object::IsArray(original_array); MAYBE_RETURN_NULL(is_array); if (is_array.FromJust()) { ASSIGN_RETURN_ON_EXCEPTION( isolate, constructor, Object::GetProperty(original_array, isolate->factory()->constructor_string()), Object); if (constructor->IsConstructor()) { Handle<Context> constructor_context; ASSIGN_RETURN_ON_EXCEPTION( isolate, constructor_context, JSReceiver::GetFunctionRealm(Handle<JSReceiver>::cast(constructor)), Object); if (*constructor_context != *native_context && *constructor == constructor_context->array_function()) { constructor = isolate->factory()->undefined_value(); } } if (constructor->IsJSReceiver()) { ASSIGN_RETURN_ON_EXCEPTION( isolate, constructor, JSReceiver::GetProperty(Handle<JSReceiver>::cast(constructor), isolate->factory()->species_symbol()), Object); if (constructor->IsNull()) { constructor = isolate->factory()->undefined_value(); } } } if (constructor->IsUndefined()) { return default_species; } else { if (!constructor->IsConstructor()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kSpeciesNotConstructor), Object); } return constructor; } } void Object::ShortPrint(FILE* out) { OFStream os(out); os << Brief(this); } void Object::ShortPrint(StringStream* accumulator) { std::ostringstream os; os << Brief(this); accumulator->Add(os.str().c_str()); } void Object::ShortPrint(std::ostream& os) { os << Brief(this); } std::ostream& operator<<(std::ostream& os, const Brief& v) { if (v.value->IsSmi()) { Smi::cast(v.value)->SmiPrint(os); } else { // TODO(svenpanne) Const-correct HeapObjectShortPrint! HeapObject* obj = const_cast<HeapObject*>(HeapObject::cast(v.value)); obj->HeapObjectShortPrint(os); } return os; } void Smi::SmiPrint(std::ostream& os) const { // NOLINT os << value(); } // Should a word be prefixed by 'a' or 'an' in order to read naturally in // English? Returns false for non-ASCII or words that don't start with // a capital letter. The a/an rule follows pronunciation in English. // We don't use the BBC's overcorrect "an historic occasion" though if // you speak a dialect you may well say "an 'istoric occasion". static bool AnWord(String* str) { if (str->length() == 0) return false; // A nothing. int c0 = str->Get(0); int c1 = str->length() > 1 ? str->Get(1) : 0; if (c0 == 'U') { if (c1 > 'Z') { return true; // An Umpire, but a UTF8String, a U. } } else if (c0 == 'A' || c0 == 'E' || c0 == 'I' || c0 == 'O') { return true; // An Ape, an ABCBook. } else if ((c1 == 0 || (c1 >= 'A' && c1 <= 'Z')) && (c0 == 'F' || c0 == 'H' || c0 == 'M' || c0 == 'N' || c0 == 'R' || c0 == 'S' || c0 == 'X')) { return true; // An MP3File, an M. } return false; } Handle<String> String::SlowFlatten(Handle<ConsString> cons, PretenureFlag pretenure) { DCHECK(AllowHeapAllocation::IsAllowed()); DCHECK(cons->second()->length() != 0); Isolate* isolate = cons->GetIsolate(); int length = cons->length(); PretenureFlag tenure = isolate->heap()->InNewSpace(*cons) ? pretenure : TENURED; Handle<SeqString> result; if (cons->IsOneByteRepresentation()) { Handle<SeqOneByteString> flat = isolate->factory()->NewRawOneByteString( length, tenure).ToHandleChecked(); DisallowHeapAllocation no_gc; WriteToFlat(*cons, flat->GetChars(), 0, length); result = flat; } else { Handle<SeqTwoByteString> flat = isolate->factory()->NewRawTwoByteString( length, tenure).ToHandleChecked(); DisallowHeapAllocation no_gc; WriteToFlat(*cons, flat->GetChars(), 0, length); result = flat; } cons->set_first(*result); cons->set_second(isolate->heap()->empty_string()); DCHECK(result->IsFlat()); return result; } bool String::MakeExternal(v8::String::ExternalStringResource* resource) { // Externalizing twice leaks the external resource, so it's // prohibited by the API. DCHECK(!this->IsExternalString()); DCHECK(!resource->IsCompressible()); #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { // Assert that the resource and the string are equivalent. DCHECK(static_cast<size_t>(this->length()) == resource->length()); ScopedVector<uc16> smart_chars(this->length()); String::WriteToFlat(this, smart_chars.start(), 0, this->length()); DCHECK(memcmp(smart_chars.start(), resource->data(), resource->length() * sizeof(smart_chars[0])) == 0); } #endif // DEBUG int size = this->Size(); // Byte size of the original string. // Abort if size does not allow in-place conversion. if (size < ExternalString::kShortSize) return false; Heap* heap = GetHeap(); bool is_one_byte = this->IsOneByteRepresentation(); bool is_internalized = this->IsInternalizedString(); // Morph the string to an external string by replacing the map and // reinitializing the fields. This won't work if the space the existing // string occupies is too small for a regular external string. // Instead, we resort to a short external string instead, omitting // the field caching the address of the backing store. When we encounter // short external strings in generated code, we need to bailout to runtime. Map* new_map; if (size < ExternalString::kSize) { new_map = is_internalized ? (is_one_byte ? heap->short_external_internalized_string_with_one_byte_data_map() : heap->short_external_internalized_string_map()) : (is_one_byte ? heap->short_external_string_with_one_byte_data_map() : heap->short_external_string_map()); } else { new_map = is_internalized ? (is_one_byte ? heap->external_internalized_string_with_one_byte_data_map() : heap->external_internalized_string_map()) : (is_one_byte ? heap->external_string_with_one_byte_data_map() : heap->external_string_map()); } // Byte size of the external String object. int new_size = this->SizeFromMap(new_map); heap->CreateFillerObjectAt(this->address() + new_size, size - new_size, ClearRecordedSlots::kNo); // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. this->synchronized_set_map(new_map); ExternalTwoByteString* self = ExternalTwoByteString::cast(this); self->set_resource(resource); if (is_internalized) self->Hash(); // Force regeneration of the hash value. heap->AdjustLiveBytes(this, new_size - size, Heap::CONCURRENT_TO_SWEEPER); return true; } bool String::MakeExternal(v8::String::ExternalOneByteStringResource* resource) { // Externalizing twice leaks the external resource, so it's // prohibited by the API. DCHECK(!this->IsExternalString()); DCHECK(!resource->IsCompressible()); #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { // Assert that the resource and the string are equivalent. DCHECK(static_cast<size_t>(this->length()) == resource->length()); if (this->IsTwoByteRepresentation()) { ScopedVector<uint16_t> smart_chars(this->length()); String::WriteToFlat(this, smart_chars.start(), 0, this->length()); DCHECK(String::IsOneByte(smart_chars.start(), this->length())); } ScopedVector<char> smart_chars(this->length()); String::WriteToFlat(this, smart_chars.start(), 0, this->length()); DCHECK(memcmp(smart_chars.start(), resource->data(), resource->length() * sizeof(smart_chars[0])) == 0); } #endif // DEBUG int size = this->Size(); // Byte size of the original string. // Abort if size does not allow in-place conversion. if (size < ExternalString::kShortSize) return false; Heap* heap = GetHeap(); bool is_internalized = this->IsInternalizedString(); // Morph the string to an external string by replacing the map and // reinitializing the fields. This won't work if the space the existing // string occupies is too small for a regular external string. // Instead, we resort to a short external string instead, omitting // the field caching the address of the backing store. When we encounter // short external strings in generated code, we need to bailout to runtime. Map* new_map; if (size < ExternalString::kSize) { new_map = is_internalized ? heap->short_external_one_byte_internalized_string_map() : heap->short_external_one_byte_string_map(); } else { new_map = is_internalized ? heap->external_one_byte_internalized_string_map() : heap->external_one_byte_string_map(); } // Byte size of the external String object. int new_size = this->SizeFromMap(new_map); heap->CreateFillerObjectAt(this->address() + new_size, size - new_size, ClearRecordedSlots::kNo); // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. this->synchronized_set_map(new_map); ExternalOneByteString* self = ExternalOneByteString::cast(this); self->set_resource(resource); if (is_internalized) self->Hash(); // Force regeneration of the hash value. heap->AdjustLiveBytes(this, new_size - size, Heap::CONCURRENT_TO_SWEEPER); return true; } void String::StringShortPrint(StringStream* accumulator) { int len = length(); if (len > kMaxShortPrintLength) { accumulator->Add("<Very long string[%u]>", len); return; } if (!LooksValid()) { accumulator->Add("<Invalid String>"); return; } StringCharacterStream stream(this); bool truncated = false; if (len > kMaxShortPrintLength) { len = kMaxShortPrintLength; truncated = true; } bool one_byte = true; for (int i = 0; i < len; i++) { uint16_t c = stream.GetNext(); if (c < 32 || c >= 127) { one_byte = false; } } stream.Reset(this); if (one_byte) { accumulator->Add("<String[%u]: ", length()); for (int i = 0; i < len; i++) { accumulator->Put(static_cast<char>(stream.GetNext())); } accumulator->Put('>'); } else { // Backslash indicates that the string contains control // characters and that backslashes are therefore escaped. accumulator->Add("<String[%u]\\: ", length()); for (int i = 0; i < len; i++) { uint16_t c = stream.GetNext(); if (c == '\n') { accumulator->Add("\\n"); } else if (c == '\r') { accumulator->Add("\\r"); } else if (c == '\\') { accumulator->Add("\\\\"); } else if (c < 32 || c > 126) { accumulator->Add("\\x%02x", c); } else { accumulator->Put(static_cast<char>(c)); } } if (truncated) { accumulator->Put('.'); accumulator->Put('.'); accumulator->Put('.'); } accumulator->Put('>'); } return; } void String::PrintUC16(std::ostream& os, int start, int end) { // NOLINT if (end < 0) end = length(); StringCharacterStream stream(this, start); for (int i = start; i < end && stream.HasMore(); i++) { os << AsUC16(stream.GetNext()); } } void JSObject::JSObjectShortPrint(StringStream* accumulator) { switch (map()->instance_type()) { case JS_ARRAY_TYPE: { double length = JSArray::cast(this)->length()->IsUndefined() ? 0 : JSArray::cast(this)->length()->Number(); accumulator->Add("<JS Array[%u]>", static_cast<uint32_t>(length)); break; } case JS_BOUND_FUNCTION_TYPE: { JSBoundFunction* bound_function = JSBoundFunction::cast(this); accumulator->Add("<JS BoundFunction"); accumulator->Add( " (BoundTargetFunction %p)>", reinterpret_cast<void*>(bound_function->bound_target_function())); break; } case JS_WEAK_MAP_TYPE: { accumulator->Add("<JS WeakMap>"); break; } case JS_WEAK_SET_TYPE: { accumulator->Add("<JS WeakSet>"); break; } case JS_REGEXP_TYPE: { accumulator->Add("<JS RegExp>"); break; } case JS_FUNCTION_TYPE: { JSFunction* function = JSFunction::cast(this); Object* fun_name = function->shared()->DebugName(); bool printed = false; if (fun_name->IsString()) { String* str = String::cast(fun_name); if (str->length() > 0) { accumulator->Add("<JS Function "); accumulator->Put(str); printed = true; } } if (!printed) { accumulator->Add("<JS Function"); } if (FLAG_trace_file_names) { Object* source_name = Script::cast(function->shared()->script())->name(); if (source_name->IsString()) { String* str = String::cast(source_name); if (str->length() > 0) { accumulator->Add(" <"); accumulator->Put(str); accumulator->Add(">"); } } } accumulator->Add(" (SharedFunctionInfo %p)", reinterpret_cast<void*>(function->shared())); accumulator->Put('>'); break; } case JS_GENERATOR_OBJECT_TYPE: { accumulator->Add("<JS Generator>"); break; } case JS_MODULE_TYPE: { accumulator->Add("<JS Module>"); break; } // All other JSObjects are rather similar to each other (JSObject, // JSGlobalProxy, JSGlobalObject, JSUndetectable, JSValue). default: { Map* map_of_this = map(); Heap* heap = GetHeap(); Object* constructor = map_of_this->GetConstructor(); bool printed = false; if (constructor->IsHeapObject() && !heap->Contains(HeapObject::cast(constructor))) { accumulator->Add("!!!INVALID CONSTRUCTOR!!!"); } else { bool global_object = IsJSGlobalProxy(); if (constructor->IsJSFunction()) { if (!heap->Contains(JSFunction::cast(constructor)->shared())) { accumulator->Add("!!!INVALID SHARED ON CONSTRUCTOR!!!"); } else { Object* constructor_name = JSFunction::cast(constructor)->shared()->name(); if (constructor_name->IsString()) { String* str = String::cast(constructor_name); if (str->length() > 0) { bool vowel = AnWord(str); accumulator->Add("<%sa%s ", global_object ? "Global Object: " : "", vowel ? "n" : ""); accumulator->Put(str); accumulator->Add(" with %smap %p", map_of_this->is_deprecated() ? "deprecated " : "", map_of_this); printed = true; } } } } if (!printed) { accumulator->Add("<JS %sObject", global_object ? "Global " : ""); } } if (IsJSValue()) { accumulator->Add(" value = "); JSValue::cast(this)->value()->ShortPrint(accumulator); } accumulator->Put('>'); break; } } } void JSObject::PrintElementsTransition( FILE* file, Handle<JSObject> object, ElementsKind from_kind, Handle<FixedArrayBase> from_elements, ElementsKind to_kind, Handle<FixedArrayBase> to_elements) { if (from_kind != to_kind) { OFStream os(file); os << "elements transition [" << ElementsKindToString(from_kind) << " -> " << ElementsKindToString(to_kind) << "] in "; JavaScriptFrame::PrintTop(object->GetIsolate(), file, false, true); PrintF(file, " for "); object->ShortPrint(file); PrintF(file, " from "); from_elements->ShortPrint(file); PrintF(file, " to "); to_elements->ShortPrint(file); PrintF(file, "\n"); } } // static MaybeHandle<JSFunction> Map::GetConstructorFunction( Handle<Map> map, Handle<Context> native_context) { if (map->IsPrimitiveMap()) { int const constructor_function_index = map->GetConstructorFunctionIndex(); if (constructor_function_index != kNoConstructorFunctionIndex) { return handle( JSFunction::cast(native_context->get(constructor_function_index))); } } return MaybeHandle<JSFunction>(); } void Map::PrintReconfiguration(FILE* file, int modify_index, PropertyKind kind, PropertyAttributes attributes) { OFStream os(file); os << "[reconfiguring]"; Name* name = instance_descriptors()->GetKey(modify_index); if (name->IsString()) { String::cast(name)->PrintOn(file); } else { os << "{symbol " << static_cast<void*>(name) << "}"; } os << ": " << (kind == kData ? "kData" : "ACCESSORS") << ", attrs: "; os << attributes << " ["; JavaScriptFrame::PrintTop(GetIsolate(), file, false, true); os << "]\n"; } void Map::PrintGeneralization( FILE* file, const char* reason, int modify_index, int split, int descriptors, bool constant_to_field, Representation old_representation, Representation new_representation, MaybeHandle<FieldType> old_field_type, MaybeHandle<Object> old_value, MaybeHandle<FieldType> new_field_type, MaybeHandle<Object> new_value) { OFStream os(file); os << "[generalizing]"; Name* name = instance_descriptors()->GetKey(modify_index); if (name->IsString()) { String::cast(name)->PrintOn(file); } else { os << "{symbol " << static_cast<void*>(name) << "}"; } os << ":"; if (constant_to_field) { os << "c"; } else { os << old_representation.Mnemonic() << "{"; if (old_field_type.is_null()) { os << Brief(*(old_value.ToHandleChecked())); } else { old_field_type.ToHandleChecked()->PrintTo(os); } os << "}"; } os << "->" << new_representation.Mnemonic() << "{"; if (new_field_type.is_null()) { os << Brief(*(new_value.ToHandleChecked())); } else { new_field_type.ToHandleChecked()->PrintTo(os); } os << "} ("; if (strlen(reason) > 0) { os << reason; } else { os << "+" << (descriptors - split) << " maps"; } os << ") ["; JavaScriptFrame::PrintTop(GetIsolate(), file, false, true); os << "]\n"; } void JSObject::PrintInstanceMigration(FILE* file, Map* original_map, Map* new_map) { PrintF(file, "[migrating]"); DescriptorArray* o = original_map->instance_descriptors(); DescriptorArray* n = new_map->instance_descriptors(); for (int i = 0; i < original_map->NumberOfOwnDescriptors(); i++) { Representation o_r = o->GetDetails(i).representation(); Representation n_r = n->GetDetails(i).representation(); if (!o_r.Equals(n_r)) { String::cast(o->GetKey(i))->PrintOn(file); PrintF(file, ":%s->%s ", o_r.Mnemonic(), n_r.Mnemonic()); } else if (o->GetDetails(i).type() == DATA_CONSTANT && n->GetDetails(i).type() == DATA) { Name* name = o->GetKey(i); if (name->IsString()) { String::cast(name)->PrintOn(file); } else { PrintF(file, "{symbol %p}", static_cast<void*>(name)); } PrintF(file, " "); } } PrintF(file, "\n"); } void HeapObject::HeapObjectShortPrint(std::ostream& os) { // NOLINT Heap* heap = GetHeap(); if (!heap->Contains(this)) { os << "!!!INVALID POINTER!!!"; return; } if (!heap->Contains(map())) { os << "!!!INVALID MAP!!!"; return; } os << this << " "; if (IsString()) { HeapStringAllocator allocator; StringStream accumulator(&allocator); String::cast(this)->StringShortPrint(&accumulator); os << accumulator.ToCString().get(); return; } if (IsJSObject()) { HeapStringAllocator allocator; StringStream accumulator(&allocator); JSObject::cast(this)->JSObjectShortPrint(&accumulator); os << accumulator.ToCString().get(); return; } switch (map()->instance_type()) { case MAP_TYPE: os << "<Map(" << ElementsKindToString(Map::cast(this)->elements_kind()) << ")>"; break; case FIXED_ARRAY_TYPE: os << "<FixedArray[" << FixedArray::cast(this)->length() << "]>"; break; case FIXED_DOUBLE_ARRAY_TYPE: os << "<FixedDoubleArray[" << FixedDoubleArray::cast(this)->length() << "]>"; break; case BYTE_ARRAY_TYPE: os << "<ByteArray[" << ByteArray::cast(this)->length() << "]>"; break; case BYTECODE_ARRAY_TYPE: os << "<BytecodeArray[" << BytecodeArray::cast(this)->length() << "]>"; break; case TRANSITION_ARRAY_TYPE: os << "<TransitionArray[" << TransitionArray::cast(this)->length() << "]>"; break; case FREE_SPACE_TYPE: os << "<FreeSpace[" << FreeSpace::cast(this)->size() << "]>"; break; #define TYPED_ARRAY_SHORT_PRINT(Type, type, TYPE, ctype, size) \ case FIXED_##TYPE##_ARRAY_TYPE: \ os << "<Fixed" #Type "Array[" << Fixed##Type##Array::cast(this)->length() \ << "]>"; \ break; TYPED_ARRAYS(TYPED_ARRAY_SHORT_PRINT) #undef TYPED_ARRAY_SHORT_PRINT case SHARED_FUNCTION_INFO_TYPE: { SharedFunctionInfo* shared = SharedFunctionInfo::cast(this); base::SmartArrayPointer<char> debug_name = shared->DebugName()->ToCString(); if (debug_name[0] != 0) { os << "<SharedFunctionInfo " << debug_name.get() << ">"; } else { os << "<SharedFunctionInfo>"; } break; } case JS_MESSAGE_OBJECT_TYPE: os << "<JSMessageObject>"; break; #define MAKE_STRUCT_CASE(NAME, Name, name) \ case NAME##_TYPE: \ os << "<" #Name ">"; \ break; STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE case CODE_TYPE: { Code* code = Code::cast(this); os << "<Code: " << Code::Kind2String(code->kind()) << ">"; break; } case ODDBALL_TYPE: { if (IsUndefined()) { os << "<undefined>"; } else if (IsTheHole()) { os << "<the hole>"; } else if (IsNull()) { os << "<null>"; } else if (IsTrue()) { os << "<true>"; } else if (IsFalse()) { os << "<false>"; } else { os << "<Odd Oddball: "; os << Oddball::cast(this)->to_string()->ToCString().get(); os << ">"; } break; } case SYMBOL_TYPE: { Symbol* symbol = Symbol::cast(this); symbol->SymbolShortPrint(os); break; } case HEAP_NUMBER_TYPE: { os << "<Number: "; HeapNumber::cast(this)->HeapNumberPrint(os); os << ">"; break; } case MUTABLE_HEAP_NUMBER_TYPE: { os << "<MutableNumber: "; HeapNumber::cast(this)->HeapNumberPrint(os); os << '>'; break; } case SIMD128_VALUE_TYPE: { #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ if (Is##Type()) { \ os << "<" #Type ">"; \ break; \ } SIMD128_TYPES(SIMD128_TYPE) #undef SIMD128_TYPE UNREACHABLE(); break; } case JS_PROXY_TYPE: os << "<JSProxy>"; break; case FOREIGN_TYPE: os << "<Foreign>"; break; case CELL_TYPE: { os << "Cell for "; HeapStringAllocator allocator; StringStream accumulator(&allocator); Cell::cast(this)->value()->ShortPrint(&accumulator); os << accumulator.ToCString().get(); break; } case PROPERTY_CELL_TYPE: { os << "PropertyCell for "; HeapStringAllocator allocator; StringStream accumulator(&allocator); PropertyCell* cell = PropertyCell::cast(this); cell->value()->ShortPrint(&accumulator); os << accumulator.ToCString().get(); break; } case WEAK_CELL_TYPE: { os << "WeakCell for "; HeapStringAllocator allocator; StringStream accumulator(&allocator); WeakCell::cast(this)->value()->ShortPrint(&accumulator); os << accumulator.ToCString().get(); break; } default: os << "<Other heap object (" << map()->instance_type() << ")>"; break; } } void HeapObject::Iterate(ObjectVisitor* v) { IterateFast<ObjectVisitor>(v); } void HeapObject::IterateBody(ObjectVisitor* v) { Map* m = map(); IterateBodyFast<ObjectVisitor>(m->instance_type(), SizeFromMap(m), v); } void HeapObject::IterateBody(InstanceType type, int object_size, ObjectVisitor* v) { IterateBodyFast<ObjectVisitor>(type, object_size, v); } struct CallIsValidSlot { template <typename BodyDescriptor> static bool apply(HeapObject* obj, int offset, int) { return BodyDescriptor::IsValidSlot(obj, offset); } }; bool HeapObject::IsValidSlot(int offset) { DCHECK_NE(0, offset); return BodyDescriptorApply<CallIsValidSlot, bool>(map()->instance_type(), this, offset, 0); } bool HeapNumber::HeapNumberBooleanValue() { return DoubleToBoolean(value()); } void HeapNumber::HeapNumberPrint(std::ostream& os) { // NOLINT os << value(); } #define FIELD_ADDR_CONST(p, offset) \ (reinterpret_cast<const byte*>(p) + offset - kHeapObjectTag) #define READ_INT32_FIELD(p, offset) \ (*reinterpret_cast<const int32_t*>(FIELD_ADDR_CONST(p, offset))) #define READ_INT64_FIELD(p, offset) \ (*reinterpret_cast<const int64_t*>(FIELD_ADDR_CONST(p, offset))) #define READ_BYTE_FIELD(p, offset) \ (*reinterpret_cast<const byte*>(FIELD_ADDR_CONST(p, offset))) // static Handle<String> Simd128Value::ToString(Handle<Simd128Value> input) { #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ if (input->Is##Type()) return Type::ToString(Handle<Type>::cast(input)); SIMD128_TYPES(SIMD128_TYPE) #undef SIMD128_TYPE UNREACHABLE(); return Handle<String>::null(); } // static Handle<String> Float32x4::ToString(Handle<Float32x4> input) { Isolate* const isolate = input->GetIsolate(); char arr[100]; Vector<char> buffer(arr, arraysize(arr)); std::ostringstream os; os << "SIMD.Float32x4(" << std::string(DoubleToCString(input->get_lane(0), buffer)) << ", " << std::string(DoubleToCString(input->get_lane(1), buffer)) << ", " << std::string(DoubleToCString(input->get_lane(2), buffer)) << ", " << std::string(DoubleToCString(input->get_lane(3), buffer)) << ")"; return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str()); } #define SIMD128_BOOL_TO_STRING(Type, lane_count) \ Handle<String> Type::ToString(Handle<Type> input) { \ Isolate* const isolate = input->GetIsolate(); \ std::ostringstream os; \ os << "SIMD." #Type "("; \ os << (input->get_lane(0) ? "true" : "false"); \ for (int i = 1; i < lane_count; i++) { \ os << ", " << (input->get_lane(i) ? "true" : "false"); \ } \ os << ")"; \ return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str()); \ } SIMD128_BOOL_TO_STRING(Bool32x4, 4) SIMD128_BOOL_TO_STRING(Bool16x8, 8) SIMD128_BOOL_TO_STRING(Bool8x16, 16) #undef SIMD128_BOOL_TO_STRING #define SIMD128_INT_TO_STRING(Type, lane_count) \ Handle<String> Type::ToString(Handle<Type> input) { \ Isolate* const isolate = input->GetIsolate(); \ char arr[100]; \ Vector<char> buffer(arr, arraysize(arr)); \ std::ostringstream os; \ os << "SIMD." #Type "("; \ os << IntToCString(input->get_lane(0), buffer); \ for (int i = 1; i < lane_count; i++) { \ os << ", " << IntToCString(input->get_lane(i), buffer); \ } \ os << ")"; \ return isolate->factory()->NewStringFromAsciiChecked(os.str().c_str()); \ } SIMD128_INT_TO_STRING(Int32x4, 4) SIMD128_INT_TO_STRING(Uint32x4, 4) SIMD128_INT_TO_STRING(Int16x8, 8) SIMD128_INT_TO_STRING(Uint16x8, 8) SIMD128_INT_TO_STRING(Int8x16, 16) SIMD128_INT_TO_STRING(Uint8x16, 16) #undef SIMD128_INT_TO_STRING bool Simd128Value::BitwiseEquals(const Simd128Value* other) const { return READ_INT64_FIELD(this, kValueOffset) == READ_INT64_FIELD(other, kValueOffset) && READ_INT64_FIELD(this, kValueOffset + kInt64Size) == READ_INT64_FIELD(other, kValueOffset + kInt64Size); } uint32_t Simd128Value::Hash() const { uint32_t seed = v8::internal::kZeroHashSeed; uint32_t hash; hash = ComputeIntegerHash(READ_INT32_FIELD(this, kValueOffset), seed); hash = ComputeIntegerHash( READ_INT32_FIELD(this, kValueOffset + 1 * kInt32Size), hash * 31); hash = ComputeIntegerHash( READ_INT32_FIELD(this, kValueOffset + 2 * kInt32Size), hash * 31); hash = ComputeIntegerHash( READ_INT32_FIELD(this, kValueOffset + 3 * kInt32Size), hash * 31); return hash; } void Simd128Value::CopyBits(void* destination) const { memcpy(destination, &READ_BYTE_FIELD(this, kValueOffset), kSimd128Size); } String* JSReceiver::class_name() { if (IsFunction()) { return GetHeap()->Function_string(); } Object* maybe_constructor = map()->GetConstructor(); if (maybe_constructor->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(maybe_constructor); return String::cast(constructor->shared()->instance_class_name()); } // If the constructor is not present, return "Object". return GetHeap()->Object_string(); } MaybeHandle<String> JSReceiver::BuiltinStringTag(Handle<JSReceiver> object) { Maybe<bool> is_array = Object::IsArray(object); MAYBE_RETURN(is_array, MaybeHandle<String>()); Isolate* const isolate = object->GetIsolate(); if (is_array.FromJust()) { return isolate->factory()->Array_string(); } // TODO(adamk): According to ES2015, we should return "Function" when // object has a [[Call]] internal method (corresponds to IsCallable). // But this is well cemented in layout tests and might cause webbreakage. // if (object->IsCallable()) { // return isolate->factory()->Function_string(); // } // TODO(adamk): class_name() is expensive, replace with instance type // checks where possible. return handle(object->class_name(), isolate); } // static Handle<String> JSReceiver::GetConstructorName(Handle<JSReceiver> receiver) { Isolate* isolate = receiver->GetIsolate(); // If the object was instantiated simply with base == new.target, the // constructor on the map provides the most accurate name. // Don't provide the info for prototypes, since their constructors are // reclaimed and replaced by Object in OptimizeAsPrototype. if (!receiver->IsJSProxy() && receiver->map()->new_target_is_base() && !receiver->map()->is_prototype_map()) { Object* maybe_constructor = receiver->map()->GetConstructor(); if (maybe_constructor->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(maybe_constructor); String* name = String::cast(constructor->shared()->name()); if (name->length() == 0) name = constructor->shared()->inferred_name(); if (name->length() != 0 && !name->Equals(isolate->heap()->Object_string())) { return handle(name, isolate); } } } Handle<Object> maybe_tag = JSReceiver::GetDataProperty( receiver, isolate->factory()->to_string_tag_symbol()); if (maybe_tag->IsString()) return Handle<String>::cast(maybe_tag); PrototypeIterator iter(isolate, receiver); if (iter.IsAtEnd()) return handle(receiver->class_name()); Handle<JSReceiver> start = PrototypeIterator::GetCurrent<JSReceiver>(iter); LookupIterator it(receiver, isolate->factory()->constructor_string(), start, LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); Handle<Object> maybe_constructor = JSReceiver::GetDataProperty(&it); Handle<String> result = isolate->factory()->Object_string(); if (maybe_constructor->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(*maybe_constructor); String* name = String::cast(constructor->shared()->name()); if (name->length() == 0) name = constructor->shared()->inferred_name(); if (name->length() > 0) result = handle(name, isolate); } return result.is_identical_to(isolate->factory()->Object_string()) ? handle(receiver->class_name()) : result; } Context* JSReceiver::GetCreationContext() { JSReceiver* receiver = this; while (receiver->IsJSBoundFunction()) { receiver = JSBoundFunction::cast(receiver)->bound_target_function(); } Object* constructor = receiver->map()->GetConstructor(); JSFunction* function; if (constructor->IsJSFunction()) { function = JSFunction::cast(constructor); } else { // Functions have null as a constructor, // but any JSFunction knows its context immediately. CHECK(receiver->IsJSFunction()); function = JSFunction::cast(receiver); } return function->context()->native_context(); } static Handle<Object> WrapType(Handle<FieldType> type) { if (type->IsClass()) return Map::WeakCellForMap(type->AsClass()); return type; } MaybeHandle<Map> Map::CopyWithField(Handle<Map> map, Handle<Name> name, Handle<FieldType> type, PropertyAttributes attributes, Representation representation, TransitionFlag flag) { DCHECK(DescriptorArray::kNotFound == map->instance_descriptors()->Search( *name, map->NumberOfOwnDescriptors())); // Ensure the descriptor array does not get too big. if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) { return MaybeHandle<Map>(); } Isolate* isolate = map->GetIsolate(); // Compute the new index for new field. int index = map->NextFreePropertyIndex(); if (map->instance_type() == JS_CONTEXT_EXTENSION_OBJECT_TYPE) { representation = Representation::Tagged(); type = FieldType::Any(isolate); } Handle<Object> wrapped_type(WrapType(type)); DataDescriptor new_field_desc(name, index, wrapped_type, attributes, representation); Handle<Map> new_map = Map::CopyAddDescriptor(map, &new_field_desc, flag); int unused_property_fields = new_map->unused_property_fields() - 1; if (unused_property_fields < 0) { unused_property_fields += JSObject::kFieldsAdded; } new_map->set_unused_property_fields(unused_property_fields); return new_map; } MaybeHandle<Map> Map::CopyWithConstant(Handle<Map> map, Handle<Name> name, Handle<Object> constant, PropertyAttributes attributes, TransitionFlag flag) { // Ensure the descriptor array does not get too big. if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors) { return MaybeHandle<Map>(); } // Allocate new instance descriptors with (name, constant) added. DataConstantDescriptor new_constant_desc(name, constant, attributes); return Map::CopyAddDescriptor(map, &new_constant_desc, flag); } void JSObject::AddSlowProperty(Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes) { DCHECK(!object->HasFastProperties()); Isolate* isolate = object->GetIsolate(); if (object->IsJSGlobalObject()) { Handle<GlobalDictionary> dict(object->global_dictionary()); PropertyDetails details(attributes, DATA, 0, PropertyCellType::kNoCell); int entry = dict->FindEntry(name); // If there's a cell there, just invalidate and set the property. if (entry != GlobalDictionary::kNotFound) { PropertyCell::UpdateCell(dict, entry, value, details); // TODO(ishell): move this to UpdateCell. // Need to adjust the details. int index = dict->NextEnumerationIndex(); dict->SetNextEnumerationIndex(index + 1); PropertyCell* cell = PropertyCell::cast(dict->ValueAt(entry)); details = cell->property_details().set_index(index); cell->set_property_details(details); } else { auto cell = isolate->factory()->NewPropertyCell(); cell->set_value(*value); auto cell_type = value->IsUndefined() ? PropertyCellType::kUndefined : PropertyCellType::kConstant; details = details.set_cell_type(cell_type); value = cell; Handle<GlobalDictionary> result = GlobalDictionary::Add(dict, name, value, details); if (*dict != *result) object->set_properties(*result); } } else { Handle<NameDictionary> dict(object->property_dictionary()); PropertyDetails details(attributes, DATA, 0, PropertyCellType::kNoCell); Handle<NameDictionary> result = NameDictionary::Add(dict, name, value, details); if (*dict != *result) object->set_properties(*result); } } const char* Representation::Mnemonic() const { switch (kind_) { case kNone: return "v"; case kTagged: return "t"; case kSmi: return "s"; case kDouble: return "d"; case kInteger32: return "i"; case kHeapObject: return "h"; case kExternal: return "x"; default: UNREACHABLE(); return NULL; } } bool Map::InstancesNeedRewriting(Map* target, int target_number_of_fields, int target_inobject, int target_unused, int* old_number_of_fields) { // If fields were added (or removed), rewrite the instance. *old_number_of_fields = NumberOfFields(); DCHECK(target_number_of_fields >= *old_number_of_fields); if (target_number_of_fields != *old_number_of_fields) return true; // If smi descriptors were replaced by double descriptors, rewrite. DescriptorArray* old_desc = instance_descriptors(); DescriptorArray* new_desc = target->instance_descriptors(); int limit = NumberOfOwnDescriptors(); for (int i = 0; i < limit; i++) { if (new_desc->GetDetails(i).representation().IsDouble() != old_desc->GetDetails(i).representation().IsDouble()) { return true; } } // If no fields were added, and no inobject properties were removed, setting // the map is sufficient. if (target_inobject == GetInObjectProperties()) return false; // In-object slack tracking may have reduced the object size of the new map. // In that case, succeed if all existing fields were inobject, and they still // fit within the new inobject size. DCHECK(target_inobject < GetInObjectProperties()); if (target_number_of_fields <= target_inobject) { DCHECK(target_number_of_fields + target_unused == target_inobject); return false; } // Otherwise, properties will need to be moved to the backing store. return true; } // static void JSObject::UpdatePrototypeUserRegistration(Handle<Map> old_map, Handle<Map> new_map, Isolate* isolate) { if (!FLAG_track_prototype_users) return; if (!old_map->is_prototype_map()) return; DCHECK(new_map->is_prototype_map()); bool was_registered = JSObject::UnregisterPrototypeUser(old_map, isolate); new_map->set_prototype_info(old_map->prototype_info()); old_map->set_prototype_info(Smi::FromInt(0)); if (FLAG_trace_prototype_users) { PrintF("Moving prototype_info %p from map %p to map %p.\n", reinterpret_cast<void*>(new_map->prototype_info()), reinterpret_cast<void*>(*old_map), reinterpret_cast<void*>(*new_map)); } if (was_registered) { if (new_map->prototype_info()->IsPrototypeInfo()) { // The new map isn't registered with its prototype yet; reflect this fact // in the PrototypeInfo it just inherited from the old map. PrototypeInfo::cast(new_map->prototype_info()) ->set_registry_slot(PrototypeInfo::UNREGISTERED); } JSObject::LazyRegisterPrototypeUser(new_map, isolate); } } namespace { // To migrate a fast instance to a fast map: // - First check whether the instance needs to be rewritten. If not, simply // change the map. // - Otherwise, allocate a fixed array large enough to hold all fields, in // addition to unused space. // - Copy all existing properties in, in the following order: backing store // properties, unused fields, inobject properties. // - If all allocation succeeded, commit the state atomically: // * Copy inobject properties from the backing store back into the object. // * Trim the difference in instance size of the object. This also cleanly // frees inobject properties that moved to the backing store. // * If there are properties left in the backing store, trim of the space used // to temporarily store the inobject properties. // * If there are properties left in the backing store, install the backing // store. void MigrateFastToFast(Handle<JSObject> object, Handle<Map> new_map) { Isolate* isolate = object->GetIsolate(); Handle<Map> old_map(object->map()); // In case of a regular transition. if (new_map->GetBackPointer() == *old_map) { // If the map does not add named properties, simply set the map. if (old_map->NumberOfOwnDescriptors() == new_map->NumberOfOwnDescriptors()) { object->synchronized_set_map(*new_map); return; } PropertyDetails details = new_map->GetLastDescriptorDetails(); // Either new_map adds an kDescriptor property, or a kField property for // which there is still space, and which does not require a mutable double // box (an out-of-object double). if (details.location() == kDescriptor || (old_map->unused_property_fields() > 0 && ((FLAG_unbox_double_fields && object->properties()->length() == 0) || !details.representation().IsDouble()))) { object->synchronized_set_map(*new_map); return; } // If there is still space in the object, we need to allocate a mutable // double box. if (old_map->unused_property_fields() > 0) { FieldIndex index = FieldIndex::ForDescriptor(*new_map, new_map->LastAdded()); DCHECK(details.representation().IsDouble()); DCHECK(!new_map->IsUnboxedDoubleField(index)); Handle<Object> value = isolate->factory()->NewHeapNumber(0, MUTABLE); object->RawFastPropertyAtPut(index, *value); object->synchronized_set_map(*new_map); return; } // This migration is a transition from a map that has run out of property // space. Extend the backing store. int grow_by = new_map->unused_property_fields() + 1; Handle<FixedArray> old_storage = handle(object->properties(), isolate); Handle<FixedArray> new_storage = isolate->factory()->CopyFixedArrayAndGrow(old_storage, grow_by); // Properly initialize newly added property. Handle<Object> value; if (details.representation().IsDouble()) { value = isolate->factory()->NewHeapNumber(0, MUTABLE); } else { value = isolate->factory()->uninitialized_value(); } DCHECK_EQ(DATA, details.type()); int target_index = details.field_index() - new_map->GetInObjectProperties(); DCHECK(target_index >= 0); // Must be a backing store index. new_storage->set(target_index, *value); // From here on we cannot fail and we shouldn't GC anymore. DisallowHeapAllocation no_allocation; // Set the new property value and do the map transition. object->set_properties(*new_storage); object->synchronized_set_map(*new_map); return; } int old_number_of_fields; int number_of_fields = new_map->NumberOfFields(); int inobject = new_map->GetInObjectProperties(); int unused = new_map->unused_property_fields(); // Nothing to do if no functions were converted to fields and no smis were // converted to doubles. if (!old_map->InstancesNeedRewriting(*new_map, number_of_fields, inobject, unused, &old_number_of_fields)) { object->synchronized_set_map(*new_map); return; } int total_size = number_of_fields + unused; int external = total_size - inobject; Handle<FixedArray> array = isolate->factory()->NewFixedArray(total_size); Handle<DescriptorArray> old_descriptors(old_map->instance_descriptors()); Handle<DescriptorArray> new_descriptors(new_map->instance_descriptors()); int old_nof = old_map->NumberOfOwnDescriptors(); int new_nof = new_map->NumberOfOwnDescriptors(); // This method only supports generalizing instances to at least the same // number of properties. DCHECK(old_nof <= new_nof); for (int i = 0; i < old_nof; i++) { PropertyDetails details = new_descriptors->GetDetails(i); if (details.type() != DATA) continue; PropertyDetails old_details = old_descriptors->GetDetails(i); Representation old_representation = old_details.representation(); Representation representation = details.representation(); Handle<Object> value; if (old_details.type() == ACCESSOR_CONSTANT) { // In case of kAccessor -> kData property reconfiguration, the property // must already be prepared for data or certain type. DCHECK(!details.representation().IsNone()); if (details.representation().IsDouble()) { value = isolate->factory()->NewHeapNumber(0, MUTABLE); } else { value = isolate->factory()->uninitialized_value(); } } else if (old_details.type() == DATA_CONSTANT) { value = handle(old_descriptors->GetValue(i), isolate); DCHECK(!old_representation.IsDouble() && !representation.IsDouble()); } else { FieldIndex index = FieldIndex::ForDescriptor(*old_map, i); if (object->IsUnboxedDoubleField(index)) { double old = object->RawFastDoublePropertyAt(index); value = isolate->factory()->NewHeapNumber( old, representation.IsDouble() ? MUTABLE : IMMUTABLE); } else { value = handle(object->RawFastPropertyAt(index), isolate); if (!old_representation.IsDouble() && representation.IsDouble()) { if (old_representation.IsNone()) { value = handle(Smi::FromInt(0), isolate); } value = Object::NewStorageFor(isolate, value, representation); } else if (old_representation.IsDouble() && !representation.IsDouble()) { value = Object::WrapForRead(isolate, value, old_representation); } } } DCHECK(!(representation.IsDouble() && value->IsSmi())); int target_index = new_descriptors->GetFieldIndex(i) - inobject; if (target_index < 0) target_index += total_size; array->set(target_index, *value); } for (int i = old_nof; i < new_nof; i++) { PropertyDetails details = new_descriptors->GetDetails(i); if (details.type() != DATA) continue; Handle<Object> value; if (details.representation().IsDouble()) { value = isolate->factory()->NewHeapNumber(0, MUTABLE); } else { value = isolate->factory()->uninitialized_value(); } int target_index = new_descriptors->GetFieldIndex(i) - inobject; if (target_index < 0) target_index += total_size; array->set(target_index, *value); } // From here on we cannot fail and we shouldn't GC anymore. DisallowHeapAllocation no_allocation; Heap* heap = isolate->heap(); // Copy (real) inobject properties. If necessary, stop at number_of_fields to // avoid overwriting |one_pointer_filler_map|. int limit = Min(inobject, number_of_fields); for (int i = 0; i < limit; i++) { FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i); Object* value = array->get(external + i); // Can't use JSObject::FastPropertyAtPut() because proper map was not set // yet. if (new_map->IsUnboxedDoubleField(index)) { DCHECK(value->IsMutableHeapNumber()); object->RawFastDoublePropertyAtPut(index, HeapNumber::cast(value)->value()); if (i < old_number_of_fields && !old_map->IsUnboxedDoubleField(index)) { // Transition from tagged to untagged slot. heap->ClearRecordedSlot(*object, HeapObject::RawField(*object, index.offset())); } } else { object->RawFastPropertyAtPut(index, value); } } // If there are properties in the new backing store, trim it to the correct // size and install the backing store into the object. if (external > 0) { heap->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(*array, inobject); object->set_properties(*array); } // Create filler object past the new instance size. int new_instance_size = new_map->instance_size(); int instance_size_delta = old_map->instance_size() - new_instance_size; DCHECK(instance_size_delta >= 0); if (instance_size_delta > 0) { Address address = object->address(); heap->CreateFillerObjectAt(address + new_instance_size, instance_size_delta, ClearRecordedSlots::kYes); heap->AdjustLiveBytes(*object, -instance_size_delta, Heap::CONCURRENT_TO_SWEEPER); } // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. object->synchronized_set_map(*new_map); } void MigrateFastToSlow(Handle<JSObject> object, Handle<Map> new_map, int expected_additional_properties) { // The global object is always normalized. DCHECK(!object->IsJSGlobalObject()); // JSGlobalProxy must never be normalized DCHECK(!object->IsJSGlobalProxy()); Isolate* isolate = object->GetIsolate(); HandleScope scope(isolate); Handle<Map> map(object->map()); // Allocate new content. int real_size = map->NumberOfOwnDescriptors(); int property_count = real_size; if (expected_additional_properties > 0) { property_count += expected_additional_properties; } else { property_count += 2; // Make space for two more properties. } Handle<NameDictionary> dictionary = NameDictionary::New(isolate, property_count); Handle<DescriptorArray> descs(map->instance_descriptors()); for (int i = 0; i < real_size; i++) { PropertyDetails details = descs->GetDetails(i); Handle<Name> key(descs->GetKey(i)); switch (details.type()) { case DATA_CONSTANT: { Handle<Object> value(descs->GetConstant(i), isolate); PropertyDetails d(details.attributes(), DATA, i + 1, PropertyCellType::kNoCell); dictionary = NameDictionary::Add(dictionary, key, value, d); break; } case DATA: { FieldIndex index = FieldIndex::ForDescriptor(*map, i); Handle<Object> value; if (object->IsUnboxedDoubleField(index)) { double old_value = object->RawFastDoublePropertyAt(index); value = isolate->factory()->NewHeapNumber(old_value); } else { value = handle(object->RawFastPropertyAt(index), isolate); if (details.representation().IsDouble()) { DCHECK(value->IsMutableHeapNumber()); Handle<HeapNumber> old = Handle<HeapNumber>::cast(value); value = isolate->factory()->NewHeapNumber(old->value()); } } PropertyDetails d(details.attributes(), DATA, i + 1, PropertyCellType::kNoCell); dictionary = NameDictionary::Add(dictionary, key, value, d); break; } case ACCESSOR: { FieldIndex index = FieldIndex::ForDescriptor(*map, i); Handle<Object> value(object->RawFastPropertyAt(index), isolate); PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1, PropertyCellType::kNoCell); dictionary = NameDictionary::Add(dictionary, key, value, d); break; } case ACCESSOR_CONSTANT: { Handle<Object> value(descs->GetCallbacksObject(i), isolate); PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1, PropertyCellType::kNoCell); dictionary = NameDictionary::Add(dictionary, key, value, d); break; } } } // Copy the next enumeration index from instance descriptor. dictionary->SetNextEnumerationIndex(real_size + 1); // From here on we cannot fail and we shouldn't GC anymore. DisallowHeapAllocation no_allocation; // Resize the object in the heap if necessary. int new_instance_size = new_map->instance_size(); int instance_size_delta = map->instance_size() - new_instance_size; DCHECK(instance_size_delta >= 0); if (instance_size_delta > 0) { Heap* heap = isolate->heap(); heap->CreateFillerObjectAt(object->address() + new_instance_size, instance_size_delta, ClearRecordedSlots::kYes); heap->AdjustLiveBytes(*object, -instance_size_delta, Heap::CONCURRENT_TO_SWEEPER); } // We are storing the new map using release store after creating a filler for // the left-over space to avoid races with the sweeper thread. object->synchronized_set_map(*new_map); object->set_properties(*dictionary); // Ensure that in-object space of slow-mode object does not contain random // garbage. int inobject_properties = new_map->GetInObjectProperties(); for (int i = 0; i < inobject_properties; i++) { FieldIndex index = FieldIndex::ForPropertyIndex(*new_map, i); object->RawFastPropertyAtPut(index, Smi::FromInt(0)); } isolate->counters()->props_to_dictionary()->Increment(); #ifdef DEBUG if (FLAG_trace_normalization) { OFStream os(stdout); os << "Object properties have been normalized:\n"; object->Print(os); } #endif } } // namespace void JSObject::MigrateToMap(Handle<JSObject> object, Handle<Map> new_map, int expected_additional_properties) { if (object->map() == *new_map) return; Handle<Map> old_map(object->map()); if (old_map->is_prototype_map()) { // If this object is a prototype (the callee will check), invalidate any // prototype chains involving it. InvalidatePrototypeChains(object->map()); // If the map was registered with its prototype before, ensure that it // registers with its new prototype now. This preserves the invariant that // when a map on a prototype chain is registered with its prototype, then // all prototypes further up the chain are also registered with their // respective prototypes. UpdatePrototypeUserRegistration(old_map, new_map, new_map->GetIsolate()); } if (old_map->is_dictionary_map()) { // For slow-to-fast migrations JSObject::MigrateSlowToFast() // must be used instead. CHECK(new_map->is_dictionary_map()); // Slow-to-slow migration is trivial. object->set_map(*new_map); } else if (!new_map->is_dictionary_map()) { MigrateFastToFast(object, new_map); if (old_map->is_prototype_map()) { DCHECK(!old_map->is_stable()); DCHECK(new_map->is_stable()); // Clear out the old descriptor array to avoid problems to sharing // the descriptor array without using an explicit. old_map->InitializeDescriptors( old_map->GetHeap()->empty_descriptor_array(), LayoutDescriptor::FastPointerLayout()); // Ensure that no transition was inserted for prototype migrations. DCHECK_EQ( 0, TransitionArray::NumberOfTransitions(old_map->raw_transitions())); DCHECK(new_map->GetBackPointer()->IsUndefined()); } } else { MigrateFastToSlow(object, new_map, expected_additional_properties); } // Careful: Don't allocate here! // For some callers of this method, |object| might be in an inconsistent // state now: the new map might have a new elements_kind, but the object's // elements pointer hasn't been updated yet. Callers will fix this, but in // the meantime, (indirectly) calling JSObjectVerify() must be avoided. // When adding code here, add a DisallowHeapAllocation too. } int Map::NumberOfFields() { DescriptorArray* descriptors = instance_descriptors(); int result = 0; for (int i = 0; i < NumberOfOwnDescriptors(); i++) { if (descriptors->GetDetails(i).location() == kField) result++; } return result; } Handle<Map> Map::CopyGeneralizeAllRepresentations( Handle<Map> map, int modify_index, StoreMode store_mode, PropertyKind kind, PropertyAttributes attributes, const char* reason) { Isolate* isolate = map->GetIsolate(); Handle<DescriptorArray> old_descriptors(map->instance_descriptors(), isolate); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); Handle<DescriptorArray> descriptors = DescriptorArray::CopyUpTo(old_descriptors, number_of_own_descriptors); for (int i = 0; i < number_of_own_descriptors; i++) { descriptors->SetRepresentation(i, Representation::Tagged()); if (descriptors->GetDetails(i).type() == DATA) { descriptors->SetValue(i, FieldType::Any()); } } Handle<LayoutDescriptor> new_layout_descriptor( LayoutDescriptor::FastPointerLayout(), isolate); Handle<Map> new_map = CopyReplaceDescriptors( map, descriptors, new_layout_descriptor, OMIT_TRANSITION, MaybeHandle<Name>(), reason, SPECIAL_TRANSITION); // Unless the instance is being migrated, ensure that modify_index is a field. if (modify_index >= 0) { PropertyDetails details = descriptors->GetDetails(modify_index); if (store_mode == FORCE_FIELD && (details.type() != DATA || details.attributes() != attributes)) { int field_index = details.type() == DATA ? details.field_index() : new_map->NumberOfFields(); DataDescriptor d(handle(descriptors->GetKey(modify_index), isolate), field_index, attributes, Representation::Tagged()); descriptors->Replace(modify_index, &d); if (details.type() != DATA) { int unused_property_fields = new_map->unused_property_fields() - 1; if (unused_property_fields < 0) { unused_property_fields += JSObject::kFieldsAdded; } new_map->set_unused_property_fields(unused_property_fields); } } else { DCHECK(details.attributes() == attributes); } if (FLAG_trace_generalization) { MaybeHandle<FieldType> field_type = FieldType::None(isolate); if (details.type() == DATA) { field_type = handle( map->instance_descriptors()->GetFieldType(modify_index), isolate); } map->PrintGeneralization( stdout, reason, modify_index, new_map->NumberOfOwnDescriptors(), new_map->NumberOfOwnDescriptors(), details.type() == DATA_CONSTANT && store_mode == FORCE_FIELD, details.representation(), Representation::Tagged(), field_type, MaybeHandle<Object>(), FieldType::Any(isolate), MaybeHandle<Object>()); } } return new_map; } void Map::DeprecateTransitionTree() { if (is_deprecated()) return; Object* transitions = raw_transitions(); int num_transitions = TransitionArray::NumberOfTransitions(transitions); for (int i = 0; i < num_transitions; ++i) { TransitionArray::GetTarget(transitions, i)->DeprecateTransitionTree(); } deprecate(); dependent_code()->DeoptimizeDependentCodeGroup( GetIsolate(), DependentCode::kTransitionGroup); NotifyLeafMapLayoutChange(); } static inline bool EqualImmutableValues(Object* obj1, Object* obj2) { if (obj1 == obj2) return true; // Valid for both kData and kAccessor kinds. // TODO(ishell): compare AccessorPairs. return false; } // Installs |new_descriptors| over the current instance_descriptors to ensure // proper sharing of descriptor arrays. void Map::ReplaceDescriptors(DescriptorArray* new_descriptors, LayoutDescriptor* new_layout_descriptor) { // Don't overwrite the empty descriptor array or initial map's descriptors. if (NumberOfOwnDescriptors() == 0 || GetBackPointer()->IsUndefined()) { return; } DescriptorArray* to_replace = instance_descriptors(); GetHeap()->incremental_marking()->IterateBlackObject(to_replace); Map* current = this; while (current->instance_descriptors() == to_replace) { Object* next = current->GetBackPointer(); if (next->IsUndefined()) break; // Stop overwriting at initial map. current->SetEnumLength(kInvalidEnumCacheSentinel); current->UpdateDescriptors(new_descriptors, new_layout_descriptor); current = Map::cast(next); } set_owns_descriptors(false); } Map* Map::FindRootMap() { Map* result = this; while (true) { Object* back = result->GetBackPointer(); if (back->IsUndefined()) { // Initial map always owns descriptors and doesn't have unused entries // in the descriptor array. DCHECK(result->owns_descriptors()); DCHECK_EQ(result->NumberOfOwnDescriptors(), result->instance_descriptors()->number_of_descriptors()); return result; } result = Map::cast(back); } } Map* Map::FindLastMatchMap(int verbatim, int length, DescriptorArray* descriptors) { DisallowHeapAllocation no_allocation; // This can only be called on roots of transition trees. DCHECK_EQ(verbatim, NumberOfOwnDescriptors()); Map* current = this; for (int i = verbatim; i < length; i++) { Name* name = descriptors->GetKey(i); PropertyDetails details = descriptors->GetDetails(i); Map* next = TransitionArray::SearchTransition(current, details.kind(), name, details.attributes()); if (next == NULL) break; DescriptorArray* next_descriptors = next->instance_descriptors(); PropertyDetails next_details = next_descriptors->GetDetails(i); DCHECK_EQ(details.kind(), next_details.kind()); DCHECK_EQ(details.attributes(), next_details.attributes()); if (details.location() != next_details.location()) break; if (!details.representation().Equals(next_details.representation())) break; if (next_details.location() == kField) { FieldType* next_field_type = next_descriptors->GetFieldType(i); if (!descriptors->GetFieldType(i)->NowIs(next_field_type)) { break; } } else { if (!EqualImmutableValues(descriptors->GetValue(i), next_descriptors->GetValue(i))) { break; } } current = next; } return current; } Map* Map::FindFieldOwner(int descriptor) { DisallowHeapAllocation no_allocation; DCHECK_EQ(DATA, instance_descriptors()->GetDetails(descriptor).type()); Map* result = this; while (true) { Object* back = result->GetBackPointer(); if (back->IsUndefined()) break; Map* parent = Map::cast(back); if (parent->NumberOfOwnDescriptors() <= descriptor) break; result = parent; } return result; } void Map::UpdateFieldType(int descriptor, Handle<Name> name, Representation new_representation, Handle<Object> new_wrapped_type) { DCHECK(new_wrapped_type->IsSmi() || new_wrapped_type->IsWeakCell()); // We store raw pointers in the queue, so no allocations are allowed. DisallowHeapAllocation no_allocation; PropertyDetails details = instance_descriptors()->GetDetails(descriptor); if (details.type() != DATA) return; Zone zone(GetIsolate()->allocator()); ZoneQueue<Map*> backlog(&zone); backlog.push(this); while (!backlog.empty()) { Map* current = backlog.front(); backlog.pop(); Object* transitions = current->raw_transitions(); int num_transitions = TransitionArray::NumberOfTransitions(transitions); for (int i = 0; i < num_transitions; ++i) { Map* target = TransitionArray::GetTarget(transitions, i); backlog.push(target); } DescriptorArray* descriptors = current->instance_descriptors(); PropertyDetails details = descriptors->GetDetails(descriptor); // It is allowed to change representation here only from None to something. DCHECK(details.representation().Equals(new_representation) || details.representation().IsNone()); // Skip if already updated the shared descriptor. if (descriptors->GetValue(descriptor) != *new_wrapped_type) { DataDescriptor d(name, descriptors->GetFieldIndex(descriptor), new_wrapped_type, details.attributes(), new_representation); descriptors->Replace(descriptor, &d); } } } bool FieldTypeIsCleared(Representation rep, FieldType* type) { return type->IsNone() && rep.IsHeapObject(); } // static Handle<FieldType> Map::GeneralizeFieldType(Representation rep1, Handle<FieldType> type1, Representation rep2, Handle<FieldType> type2, Isolate* isolate) { // Cleared field types need special treatment. They represent lost knowledge, // so we must be conservative, so their generalization with any other type // is "Any". if (FieldTypeIsCleared(rep1, *type1) || FieldTypeIsCleared(rep2, *type2)) { return FieldType::Any(isolate); } if (type1->NowIs(type2)) return type2; if (type2->NowIs(type1)) return type1; return FieldType::Any(isolate); } // static void Map::GeneralizeFieldType(Handle<Map> map, int modify_index, Representation new_representation, Handle<FieldType> new_field_type) { Isolate* isolate = map->GetIsolate(); // Check if we actually need to generalize the field type at all. Handle<DescriptorArray> old_descriptors(map->instance_descriptors(), isolate); Representation old_representation = old_descriptors->GetDetails(modify_index).representation(); Handle<FieldType> old_field_type(old_descriptors->GetFieldType(modify_index), isolate); if (old_representation.Equals(new_representation) && !FieldTypeIsCleared(new_representation, *new_field_type) && // Checking old_field_type for being cleared is not necessary because // the NowIs check below would fail anyway in that case. new_field_type->NowIs(old_field_type)) { DCHECK(Map::GeneralizeFieldType(old_representation, old_field_type, new_representation, new_field_type, isolate) ->NowIs(old_field_type)); return; } // Determine the field owner. Handle<Map> field_owner(map->FindFieldOwner(modify_index), isolate); Handle<DescriptorArray> descriptors( field_owner->instance_descriptors(), isolate); DCHECK_EQ(*old_field_type, descriptors->GetFieldType(modify_index)); new_field_type = Map::GeneralizeFieldType(old_representation, old_field_type, new_representation, new_field_type, isolate); PropertyDetails details = descriptors->GetDetails(modify_index); Handle<Name> name(descriptors->GetKey(modify_index)); Handle<Object> wrapped_type(WrapType(new_field_type)); field_owner->UpdateFieldType(modify_index, name, new_representation, wrapped_type); field_owner->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kFieldTypeGroup); if (FLAG_trace_generalization) { map->PrintGeneralization( stdout, "field type generalization", modify_index, map->NumberOfOwnDescriptors(), map->NumberOfOwnDescriptors(), false, details.representation(), details.representation(), old_field_type, MaybeHandle<Object>(), new_field_type, MaybeHandle<Object>()); } } static inline Handle<FieldType> GetFieldType( Isolate* isolate, Handle<DescriptorArray> descriptors, int descriptor, PropertyLocation location, Representation representation) { #ifdef DEBUG PropertyDetails details = descriptors->GetDetails(descriptor); DCHECK_EQ(kData, details.kind()); DCHECK_EQ(details.location(), location); #endif if (location == kField) { return handle(descriptors->GetFieldType(descriptor), isolate); } else { return descriptors->GetValue(descriptor) ->OptimalType(isolate, representation); } } // Reconfigures property at |modify_index| with |new_kind|, |new_attributes|, // |store_mode| and/or |new_representation|/|new_field_type|. // If |modify_index| is negative then no properties are reconfigured but the // map is migrated to the up-to-date non-deprecated state. // // This method rewrites or completes the transition tree to reflect the new // change. To avoid high degrees over polymorphism, and to stabilize quickly, // on every rewrite the new type is deduced by merging the current type with // any potential new (partial) version of the type in the transition tree. // To do this, on each rewrite: // - Search the root of the transition tree using FindRootMap. // - Find |target_map|, the newest matching version of this map using the // virtually "enhanced" |old_map|'s descriptor array (i.e. whose entry at // |modify_index| is considered to be of |new_kind| and having // |new_attributes|) to walk the transition tree. // - Merge/generalize the "enhanced" descriptor array of the |old_map| and // descriptor array of the |target_map|. // - Generalize the |modify_index| descriptor using |new_representation| and // |new_field_type|. // - Walk the tree again starting from the root towards |target_map|. Stop at // |split_map|, the first map who's descriptor array does not match the merged // descriptor array. // - If |target_map| == |split_map|, |target_map| is in the expected state. // Return it. // - Otherwise, invalidate the outdated transition target from |target_map|, and // replace its transition tree with a new branch for the updated descriptors. Handle<Map> Map::ReconfigureProperty(Handle<Map> old_map, int modify_index, PropertyKind new_kind, PropertyAttributes new_attributes, Representation new_representation, Handle<FieldType> new_field_type, StoreMode store_mode) { DCHECK_NE(kAccessor, new_kind); // TODO(ishell): not supported yet. DCHECK(store_mode != FORCE_FIELD || modify_index >= 0); Isolate* isolate = old_map->GetIsolate(); Handle<DescriptorArray> old_descriptors( old_map->instance_descriptors(), isolate); int old_nof = old_map->NumberOfOwnDescriptors(); // If it's just a representation generalization case (i.e. property kind and // attributes stays unchanged) it's fine to transition from None to anything // but double without any modification to the object, because the default // uninitialized value for representation None can be overwritten by both // smi and tagged values. Doubles, however, would require a box allocation. if (modify_index >= 0 && !new_representation.IsNone() && !new_representation.IsDouble()) { PropertyDetails old_details = old_descriptors->GetDetails(modify_index); Representation old_representation = old_details.representation(); if (old_representation.IsNone()) { DCHECK_EQ(new_kind, old_details.kind()); DCHECK_EQ(new_attributes, old_details.attributes()); DCHECK_EQ(DATA, old_details.type()); if (FLAG_trace_generalization) { old_map->PrintGeneralization( stdout, "uninitialized field", modify_index, old_map->NumberOfOwnDescriptors(), old_map->NumberOfOwnDescriptors(), false, old_representation, new_representation, handle(old_descriptors->GetFieldType(modify_index), isolate), MaybeHandle<Object>(), new_field_type, MaybeHandle<Object>()); } Handle<Map> field_owner(old_map->FindFieldOwner(modify_index), isolate); GeneralizeFieldType(field_owner, modify_index, new_representation, new_field_type); DCHECK(old_descriptors->GetDetails(modify_index) .representation() .Equals(new_representation)); DCHECK( old_descriptors->GetFieldType(modify_index)->NowIs(new_field_type)); return old_map; } } // Check the state of the root map. Handle<Map> root_map(old_map->FindRootMap(), isolate); if (!old_map->EquivalentToForTransition(*root_map)) { return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode, new_kind, new_attributes, "GenAll_NotEquivalent"); } ElementsKind from_kind = root_map->elements_kind(); ElementsKind to_kind = old_map->elements_kind(); // TODO(ishell): Add a test for SLOW_SLOPPY_ARGUMENTS_ELEMENTS. if (from_kind != to_kind && to_kind != DICTIONARY_ELEMENTS && to_kind != SLOW_SLOPPY_ARGUMENTS_ELEMENTS && !(IsTransitionableFastElementsKind(from_kind) && IsMoreGeneralElementsKindTransition(from_kind, to_kind))) { return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode, new_kind, new_attributes, "GenAll_InvalidElementsTransition"); } int root_nof = root_map->NumberOfOwnDescriptors(); if (modify_index >= 0 && modify_index < root_nof) { PropertyDetails old_details = old_descriptors->GetDetails(modify_index); if (old_details.kind() != new_kind || old_details.attributes() != new_attributes) { return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode, new_kind, new_attributes, "GenAll_RootModification1"); } if ((old_details.type() != DATA && store_mode == FORCE_FIELD) || (old_details.type() == DATA && (!new_field_type->NowIs(old_descriptors->GetFieldType(modify_index)) || !new_representation.fits_into(old_details.representation())))) { return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode, new_kind, new_attributes, "GenAll_RootModification2"); } } // From here on, use the map with correct elements kind as root map. if (from_kind != to_kind) { root_map = Map::AsElementsKind(root_map, to_kind); } Handle<Map> target_map = root_map; for (int i = root_nof; i < old_nof; ++i) { PropertyDetails old_details = old_descriptors->GetDetails(i); PropertyKind next_kind; PropertyLocation next_location; PropertyAttributes next_attributes; Representation next_representation; bool property_kind_reconfiguration = false; if (modify_index == i) { DCHECK_EQ(FORCE_FIELD, store_mode); property_kind_reconfiguration = old_details.kind() != new_kind; next_kind = new_kind; next_location = kField; next_attributes = new_attributes; // If property kind is not reconfigured merge the result with // representation/field type from the old descriptor. next_representation = new_representation; if (!property_kind_reconfiguration) { next_representation = next_representation.generalize(old_details.representation()); } } else { next_kind = old_details.kind(); next_location = old_details.location(); next_attributes = old_details.attributes(); next_representation = old_details.representation(); } Map* transition = TransitionArray::SearchTransition( *target_map, next_kind, old_descriptors->GetKey(i), next_attributes); if (transition == NULL) break; Handle<Map> tmp_map(transition, isolate); Handle<DescriptorArray> tmp_descriptors = handle( tmp_map->instance_descriptors(), isolate); // Check if target map is incompatible. PropertyDetails tmp_details = tmp_descriptors->GetDetails(i); DCHECK_EQ(next_kind, tmp_details.kind()); DCHECK_EQ(next_attributes, tmp_details.attributes()); if (next_kind == kAccessor && !EqualImmutableValues(old_descriptors->GetValue(i), tmp_descriptors->GetValue(i))) { return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode, new_kind, new_attributes, "GenAll_Incompatible"); } if (next_location == kField && tmp_details.location() == kDescriptor) break; Representation tmp_representation = tmp_details.representation(); if (!next_representation.fits_into(tmp_representation)) break; PropertyLocation old_location = old_details.location(); PropertyLocation tmp_location = tmp_details.location(); if (tmp_location == kField) { if (next_kind == kData) { Handle<FieldType> next_field_type; if (modify_index == i) { next_field_type = new_field_type; if (!property_kind_reconfiguration) { Handle<FieldType> old_field_type = GetFieldType(isolate, old_descriptors, i, old_details.location(), tmp_representation); Representation old_representation = old_details.representation(); next_field_type = GeneralizeFieldType( old_representation, old_field_type, new_representation, next_field_type, isolate); } } else { Handle<FieldType> old_field_type = GetFieldType(isolate, old_descriptors, i, old_details.location(), tmp_representation); next_field_type = old_field_type; } GeneralizeFieldType(tmp_map, i, tmp_representation, next_field_type); } } else if (old_location == kField || !EqualImmutableValues(old_descriptors->GetValue(i), tmp_descriptors->GetValue(i))) { break; } DCHECK(!tmp_map->is_deprecated()); target_map = tmp_map; } // Directly change the map if the target map is more general. Handle<DescriptorArray> target_descriptors( target_map->instance_descriptors(), isolate); int target_nof = target_map->NumberOfOwnDescriptors(); if (target_nof == old_nof && (store_mode != FORCE_FIELD || (modify_index >= 0 && target_descriptors->GetDetails(modify_index).location() == kField))) { #ifdef DEBUG if (modify_index >= 0) { PropertyDetails details = target_descriptors->GetDetails(modify_index); DCHECK_EQ(new_kind, details.kind()); DCHECK_EQ(new_attributes, details.attributes()); DCHECK(new_representation.fits_into(details.representation())); DCHECK(details.location() != kField || new_field_type->NowIs( target_descriptors->GetFieldType(modify_index))); } #endif if (*target_map != *old_map) { old_map->NotifyLeafMapLayoutChange(); } return target_map; } // Find the last compatible target map in the transition tree. for (int i = target_nof; i < old_nof; ++i) { PropertyDetails old_details = old_descriptors->GetDetails(i); PropertyKind next_kind; PropertyAttributes next_attributes; if (modify_index == i) { next_kind = new_kind; next_attributes = new_attributes; } else { next_kind = old_details.kind(); next_attributes = old_details.attributes(); } Map* transition = TransitionArray::SearchTransition( *target_map, next_kind, old_descriptors->GetKey(i), next_attributes); if (transition == NULL) break; Handle<Map> tmp_map(transition, isolate); Handle<DescriptorArray> tmp_descriptors( tmp_map->instance_descriptors(), isolate); // Check if target map is compatible. #ifdef DEBUG PropertyDetails tmp_details = tmp_descriptors->GetDetails(i); DCHECK_EQ(next_kind, tmp_details.kind()); DCHECK_EQ(next_attributes, tmp_details.attributes()); #endif if (next_kind == kAccessor && !EqualImmutableValues(old_descriptors->GetValue(i), tmp_descriptors->GetValue(i))) { return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode, new_kind, new_attributes, "GenAll_Incompatible"); } DCHECK(!tmp_map->is_deprecated()); target_map = tmp_map; } target_nof = target_map->NumberOfOwnDescriptors(); target_descriptors = handle(target_map->instance_descriptors(), isolate); // Allocate a new descriptor array large enough to hold the required // descriptors, with minimally the exact same size as the old descriptor // array. int new_slack = Max( old_nof, old_descriptors->number_of_descriptors()) - old_nof; Handle<DescriptorArray> new_descriptors = DescriptorArray::Allocate( isolate, old_nof, new_slack); DCHECK(new_descriptors->length() > target_descriptors->length() || new_descriptors->NumberOfSlackDescriptors() > 0 || new_descriptors->number_of_descriptors() == old_descriptors->number_of_descriptors()); DCHECK(new_descriptors->number_of_descriptors() == old_nof); // 0 -> |root_nof| int current_offset = 0; for (int i = 0; i < root_nof; ++i) { PropertyDetails old_details = old_descriptors->GetDetails(i); if (old_details.location() == kField) { current_offset += old_details.field_width_in_words(); } Descriptor d(handle(old_descriptors->GetKey(i), isolate), handle(old_descriptors->GetValue(i), isolate), old_details); new_descriptors->Set(i, &d); } // |root_nof| -> |target_nof| for (int i = root_nof; i < target_nof; ++i) { Handle<Name> target_key(target_descriptors->GetKey(i), isolate); PropertyDetails old_details = old_descriptors->GetDetails(i); PropertyDetails target_details = target_descriptors->GetDetails(i); PropertyKind next_kind; PropertyAttributes next_attributes; PropertyLocation next_location; Representation next_representation; bool property_kind_reconfiguration = false; if (modify_index == i) { DCHECK_EQ(FORCE_FIELD, store_mode); property_kind_reconfiguration = old_details.kind() != new_kind; next_kind = new_kind; next_attributes = new_attributes; next_location = kField; // Merge new representation/field type with ones from the target // descriptor. If property kind is not reconfigured merge the result with // representation/field type from the old descriptor. next_representation = new_representation.generalize(target_details.representation()); if (!property_kind_reconfiguration) { next_representation = next_representation.generalize(old_details.representation()); } } else { // Merge old_descriptor and target_descriptor entries. DCHECK_EQ(target_details.kind(), old_details.kind()); next_kind = target_details.kind(); next_attributes = target_details.attributes(); next_location = old_details.location() == kField || target_details.location() == kField || !EqualImmutableValues(target_descriptors->GetValue(i), old_descriptors->GetValue(i)) ? kField : kDescriptor; next_representation = old_details.representation().generalize( target_details.representation()); } DCHECK_EQ(next_kind, target_details.kind()); DCHECK_EQ(next_attributes, target_details.attributes()); if (next_location == kField) { if (next_kind == kData) { Handle<FieldType> target_field_type = GetFieldType(isolate, target_descriptors, i, target_details.location(), next_representation); Handle<FieldType> next_field_type; if (modify_index == i) { next_field_type = GeneralizeFieldType( target_details.representation(), target_field_type, new_representation, new_field_type, isolate); if (!property_kind_reconfiguration) { Handle<FieldType> old_field_type = GetFieldType(isolate, old_descriptors, i, old_details.location(), next_representation); next_field_type = GeneralizeFieldType( old_details.representation(), old_field_type, next_representation, next_field_type, isolate); } } else { Handle<FieldType> old_field_type = GetFieldType(isolate, old_descriptors, i, old_details.location(), next_representation); next_field_type = GeneralizeFieldType( old_details.representation(), old_field_type, next_representation, target_field_type, isolate); } Handle<Object> wrapped_type(WrapType(next_field_type)); DataDescriptor d(target_key, current_offset, wrapped_type, next_attributes, next_representation); current_offset += d.GetDetails().field_width_in_words(); new_descriptors->Set(i, &d); } else { UNIMPLEMENTED(); // TODO(ishell): implement. } } else { PropertyDetails details(next_attributes, next_kind, next_location, next_representation); Descriptor d(target_key, handle(target_descriptors->GetValue(i), isolate), details); new_descriptors->Set(i, &d); } } // |target_nof| -> |old_nof| for (int i = target_nof; i < old_nof; ++i) { PropertyDetails old_details = old_descriptors->GetDetails(i); Handle<Name> old_key(old_descriptors->GetKey(i), isolate); // Merge old_descriptor entry and modified details together. PropertyKind next_kind; PropertyAttributes next_attributes; PropertyLocation next_location; Representation next_representation; bool property_kind_reconfiguration = false; if (modify_index == i) { DCHECK_EQ(FORCE_FIELD, store_mode); // In case of property kind reconfiguration it is not necessary to // take into account representation/field type of the old descriptor. property_kind_reconfiguration = old_details.kind() != new_kind; next_kind = new_kind; next_attributes = new_attributes; next_location = kField; next_representation = new_representation; if (!property_kind_reconfiguration) { next_representation = next_representation.generalize(old_details.representation()); } } else { next_kind = old_details.kind(); next_attributes = old_details.attributes(); next_location = old_details.location(); next_representation = old_details.representation(); } if (next_location == kField) { if (next_kind == kData) { Handle<FieldType> next_field_type; if (modify_index == i) { next_field_type = new_field_type; if (!property_kind_reconfiguration) { Handle<FieldType> old_field_type = GetFieldType(isolate, old_descriptors, i, old_details.location(), next_representation); next_field_type = GeneralizeFieldType( old_details.representation(), old_field_type, next_representation, next_field_type, isolate); } } else { Handle<FieldType> old_field_type = GetFieldType(isolate, old_descriptors, i, old_details.location(), next_representation); next_field_type = old_field_type; } Handle<Object> wrapped_type(WrapType(next_field_type)); DataDescriptor d(old_key, current_offset, wrapped_type, next_attributes, next_representation); current_offset += d.GetDetails().field_width_in_words(); new_descriptors->Set(i, &d); } else { UNIMPLEMENTED(); // TODO(ishell): implement. } } else { PropertyDetails details(next_attributes, next_kind, next_location, next_representation); Descriptor d(old_key, handle(old_descriptors->GetValue(i), isolate), details); new_descriptors->Set(i, &d); } } new_descriptors->Sort(); DCHECK(store_mode != FORCE_FIELD || new_descriptors->GetDetails(modify_index).location() == kField); Handle<Map> split_map(root_map->FindLastMatchMap( root_nof, old_nof, *new_descriptors), isolate); int split_nof = split_map->NumberOfOwnDescriptors(); DCHECK_NE(old_nof, split_nof); PropertyKind split_kind; PropertyAttributes split_attributes; if (modify_index == split_nof) { split_kind = new_kind; split_attributes = new_attributes; } else { PropertyDetails split_prop_details = old_descriptors->GetDetails(split_nof); split_kind = split_prop_details.kind(); split_attributes = split_prop_details.attributes(); } // Invalidate a transition target at |key|. Map* maybe_transition = TransitionArray::SearchTransition( *split_map, split_kind, old_descriptors->GetKey(split_nof), split_attributes); if (maybe_transition != NULL) { maybe_transition->DeprecateTransitionTree(); } // If |maybe_transition| is not NULL then the transition array already // contains entry for given descriptor. This means that the transition // could be inserted regardless of whether transitions array is full or not. if (maybe_transition == NULL && !TransitionArray::CanHaveMoreTransitions(split_map)) { return CopyGeneralizeAllRepresentations(old_map, modify_index, store_mode, new_kind, new_attributes, "GenAll_CantHaveMoreTransitions"); } old_map->NotifyLeafMapLayoutChange(); if (FLAG_trace_generalization && modify_index >= 0) { PropertyDetails old_details = old_descriptors->GetDetails(modify_index); PropertyDetails new_details = new_descriptors->GetDetails(modify_index); MaybeHandle<FieldType> old_field_type; MaybeHandle<FieldType> new_field_type; MaybeHandle<Object> old_value; MaybeHandle<Object> new_value; if (old_details.type() == DATA) { old_field_type = handle(old_descriptors->GetFieldType(modify_index), isolate); } else { old_value = handle(old_descriptors->GetValue(modify_index), isolate); } if (new_details.type() == DATA) { new_field_type = handle(new_descriptors->GetFieldType(modify_index), isolate); } else { new_value = handle(new_descriptors->GetValue(modify_index), isolate); } old_map->PrintGeneralization( stdout, "", modify_index, split_nof, old_nof, old_details.location() == kDescriptor && store_mode == FORCE_FIELD, old_details.representation(), new_details.representation(), old_field_type, old_value, new_field_type, new_value); } Handle<LayoutDescriptor> new_layout_descriptor = LayoutDescriptor::New(split_map, new_descriptors, old_nof); Handle<Map> new_map = AddMissingTransitions(split_map, new_descriptors, new_layout_descriptor); // Deprecated part of the transition tree is no longer reachable, so replace // current instance descriptors in the "survived" part of the tree with // the new descriptors to maintain descriptors sharing invariant. split_map->ReplaceDescriptors(*new_descriptors, *new_layout_descriptor); return new_map; } // Generalize the representation of all DATA descriptors. Handle<Map> Map::GeneralizeAllFieldRepresentations( Handle<Map> map) { Handle<DescriptorArray> descriptors(map->instance_descriptors()); for (int i = 0; i < map->NumberOfOwnDescriptors(); ++i) { PropertyDetails details = descriptors->GetDetails(i); if (details.type() == DATA) { map = ReconfigureProperty(map, i, kData, details.attributes(), Representation::Tagged(), FieldType::Any(map->GetIsolate()), FORCE_FIELD); } } return map; } // static MaybeHandle<Map> Map::TryUpdate(Handle<Map> old_map) { DisallowHeapAllocation no_allocation; DisallowDeoptimization no_deoptimization(old_map->GetIsolate()); if (!old_map->is_deprecated()) return old_map; // Check the state of the root map. Map* root_map = old_map->FindRootMap(); if (!old_map->EquivalentToForTransition(root_map)) return MaybeHandle<Map>(); ElementsKind from_kind = root_map->elements_kind(); ElementsKind to_kind = old_map->elements_kind(); if (from_kind != to_kind) { // Try to follow existing elements kind transitions. root_map = root_map->LookupElementsTransitionMap(to_kind); if (root_map == NULL) return MaybeHandle<Map>(); // From here on, use the map with correct elements kind as root map. } int root_nof = root_map->NumberOfOwnDescriptors(); int old_nof = old_map->NumberOfOwnDescriptors(); DescriptorArray* old_descriptors = old_map->instance_descriptors(); Map* new_map = root_map; for (int i = root_nof; i < old_nof; ++i) { PropertyDetails old_details = old_descriptors->GetDetails(i); Map* transition = TransitionArray::SearchTransition( new_map, old_details.kind(), old_descriptors->GetKey(i), old_details.attributes()); if (transition == NULL) return MaybeHandle<Map>(); new_map = transition; DescriptorArray* new_descriptors = new_map->instance_descriptors(); PropertyDetails new_details = new_descriptors->GetDetails(i); DCHECK_EQ(old_details.kind(), new_details.kind()); DCHECK_EQ(old_details.attributes(), new_details.attributes()); if (!old_details.representation().fits_into(new_details.representation())) { return MaybeHandle<Map>(); } switch (new_details.type()) { case DATA: { FieldType* new_type = new_descriptors->GetFieldType(i); // Cleared field types need special treatment. They represent lost // knowledge, so we must first generalize the new_type to "Any". if (FieldTypeIsCleared(new_details.representation(), new_type)) { return MaybeHandle<Map>(); } PropertyType old_property_type = old_details.type(); if (old_property_type == DATA) { FieldType* old_type = old_descriptors->GetFieldType(i); if (FieldTypeIsCleared(old_details.representation(), old_type) || !old_type->NowIs(new_type)) { return MaybeHandle<Map>(); } } else { DCHECK(old_property_type == DATA_CONSTANT); Object* old_value = old_descriptors->GetValue(i); if (!new_type->NowContains(old_value)) { return MaybeHandle<Map>(); } } break; } case ACCESSOR: { #ifdef DEBUG FieldType* new_type = new_descriptors->GetFieldType(i); DCHECK(new_type->IsAny()); #endif break; } case DATA_CONSTANT: case ACCESSOR_CONSTANT: { Object* old_value = old_descriptors->GetValue(i); Object* new_value = new_descriptors->GetValue(i); if (old_details.location() == kField || old_value != new_value) { return MaybeHandle<Map>(); } break; } } } if (new_map->NumberOfOwnDescriptors() != old_nof) return MaybeHandle<Map>(); return handle(new_map); } // static Handle<Map> Map::Update(Handle<Map> map) { if (!map->is_deprecated()) return map; return ReconfigureProperty(map, -1, kData, NONE, Representation::None(), FieldType::None(map->GetIsolate()), ALLOW_IN_DESCRIPTOR); } Maybe<bool> JSObject::SetPropertyWithInterceptor(LookupIterator* it, ShouldThrow should_throw, Handle<Object> value) { Isolate* isolate = it->isolate(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(isolate); DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state()); Handle<InterceptorInfo> interceptor(it->GetInterceptor()); if (interceptor->setter()->IsUndefined()) return Just(false); Handle<JSObject> holder = it->GetHolder<JSObject>(); bool result; PropertyCallbackArguments args(isolate, interceptor->data(), *it->GetReceiver(), *holder, should_throw); if (it->IsElement()) { uint32_t index = it->index(); v8::IndexedPropertySetterCallback setter = v8::ToCData<v8::IndexedPropertySetterCallback>(interceptor->setter()); // TODO(neis): In the future, we may want to actually return the // interceptor's result, which then should be a boolean. result = !args.Call(setter, index, value).is_null(); } else { Handle<Name> name = it->name(); DCHECK(!name->IsPrivate()); if (name->IsSymbol() && !interceptor->can_intercept_symbols()) { return Just(false); } v8::GenericNamedPropertySetterCallback setter = v8::ToCData<v8::GenericNamedPropertySetterCallback>( interceptor->setter()); result = !args.Call(setter, name, value).is_null(); } RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing<bool>()); return Just(result); } MaybeHandle<Object> Object::SetProperty(Handle<Object> object, Handle<Name> name, Handle<Object> value, LanguageMode language_mode, StoreFromKeyed store_mode) { LookupIterator it(object, name); MAYBE_RETURN_NULL(SetProperty(&it, value, language_mode, store_mode)); return value; } Maybe<bool> Object::SetPropertyInternal(LookupIterator* it, Handle<Object> value, LanguageMode language_mode, StoreFromKeyed store_mode, bool* found) { DCHECK(it->IsFound()); ShouldThrow should_throw = is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR; // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(it->isolate()); do { switch (it->state()) { case LookupIterator::NOT_FOUND: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (it->HasAccess()) break; // Check whether it makes sense to reuse the lookup iterator. Here it // might still call into setters up the prototype chain. return JSObject::SetPropertyWithFailedAccessCheck(it, value, should_throw); case LookupIterator::JSPROXY: return JSProxy::SetProperty(it->GetHolder<JSProxy>(), it->GetName(), value, it->GetReceiver(), language_mode); case LookupIterator::INTERCEPTOR: if (it->HolderIsReceiverOrHiddenPrototype()) { Maybe<bool> result = JSObject::SetPropertyWithInterceptor(it, should_throw, value); if (result.IsNothing() || result.FromJust()) return result; } else { Maybe<PropertyAttributes> maybe_attributes = JSObject::GetPropertyAttributesWithInterceptor(it); if (!maybe_attributes.IsJust()) return Nothing<bool>(); if (maybe_attributes.FromJust() == ABSENT) break; if ((maybe_attributes.FromJust() & READ_ONLY) != 0) { return WriteToReadOnlyProperty(it, value, should_throw); } *found = false; return Nothing<bool>(); } break; case LookupIterator::ACCESSOR: { if (it->IsReadOnly()) { return WriteToReadOnlyProperty(it, value, should_throw); } Handle<Object> accessors = it->GetAccessors(); if (accessors->IsAccessorInfo() && !it->HolderIsReceiverOrHiddenPrototype() && AccessorInfo::cast(*accessors)->is_special_data_property()) { *found = false; return Nothing<bool>(); } return SetPropertyWithAccessor(it, value, should_throw); } case LookupIterator::INTEGER_INDEXED_EXOTIC: // TODO(verwaest): We should throw an exception if holder is receiver. return Just(true); case LookupIterator::DATA: if (it->IsReadOnly()) { return WriteToReadOnlyProperty(it, value, should_throw); } if (it->HolderIsReceiverOrHiddenPrototype()) { return SetDataProperty(it, value); } // Fall through. case LookupIterator::TRANSITION: *found = false; return Nothing<bool>(); } it->Next(); } while (it->IsFound()); *found = false; return Nothing<bool>(); } Maybe<bool> Object::SetProperty(LookupIterator* it, Handle<Object> value, LanguageMode language_mode, StoreFromKeyed store_mode) { it->UpdateProtector(); if (it->IsFound()) { bool found = true; Maybe<bool> result = SetPropertyInternal(it, value, language_mode, store_mode, &found); if (found) return result; } // If the receiver is the JSGlobalObject, the store was contextual. In case // the property did not exist yet on the global object itself, we have to // throw a reference error in strict mode. In sloppy mode, we continue. if (is_strict(language_mode) && it->GetReceiver()->IsJSGlobalObject()) { it->isolate()->Throw(*it->isolate()->factory()->NewReferenceError( MessageTemplate::kNotDefined, it->name())); return Nothing<bool>(); } ShouldThrow should_throw = is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR; return AddDataProperty(it, value, NONE, should_throw, store_mode); } Maybe<bool> Object::SetSuperProperty(LookupIterator* it, Handle<Object> value, LanguageMode language_mode, StoreFromKeyed store_mode) { Isolate* isolate = it->isolate(); it->UpdateProtector(); if (it->IsFound()) { bool found = true; Maybe<bool> result = SetPropertyInternal(it, value, language_mode, store_mode, &found); if (found) return result; } // The property either doesn't exist on the holder or exists there as a data // property. ShouldThrow should_throw = is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR; if (!it->GetReceiver()->IsJSReceiver()) { return WriteToReadOnlyProperty(it, value, should_throw); } Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(it->GetReceiver()); LookupIterator::Configuration c = LookupIterator::HIDDEN; LookupIterator own_lookup = it->IsElement() ? LookupIterator(isolate, receiver, it->index(), c) : LookupIterator(receiver, it->name(), c); for (; own_lookup.IsFound(); own_lookup.Next()) { switch (own_lookup.state()) { case LookupIterator::ACCESS_CHECK: if (!own_lookup.HasAccess()) { return JSObject::SetPropertyWithFailedAccessCheck(&own_lookup, value, should_throw); } break; case LookupIterator::ACCESSOR: if (own_lookup.GetAccessors()->IsAccessorInfo()) { if (own_lookup.IsReadOnly()) { return WriteToReadOnlyProperty(&own_lookup, value, should_throw); } return JSObject::SetPropertyWithAccessor(&own_lookup, value, should_throw); } // Fall through. case LookupIterator::INTEGER_INDEXED_EXOTIC: return RedefineIncompatibleProperty(isolate, it->GetName(), value, should_throw); case LookupIterator::DATA: { if (own_lookup.IsReadOnly()) { return WriteToReadOnlyProperty(&own_lookup, value, should_throw); } return SetDataProperty(&own_lookup, value); } case LookupIterator::INTERCEPTOR: case LookupIterator::JSPROXY: { PropertyDescriptor desc; Maybe<bool> owned = JSReceiver::GetOwnPropertyDescriptor(&own_lookup, &desc); MAYBE_RETURN(owned, Nothing<bool>()); if (!owned.FromJust()) { return JSReceiver::CreateDataProperty(&own_lookup, value, should_throw); } if (PropertyDescriptor::IsAccessorDescriptor(&desc) || !desc.writable()) { return RedefineIncompatibleProperty(isolate, it->GetName(), value, should_throw); } PropertyDescriptor value_desc; value_desc.set_value(value); return JSReceiver::DefineOwnProperty(isolate, receiver, it->GetName(), &value_desc, should_throw); } case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); } } return AddDataProperty(&own_lookup, value, NONE, should_throw, store_mode); } MaybeHandle<Object> Object::ReadAbsentProperty(LookupIterator* it) { return it->isolate()->factory()->undefined_value(); } MaybeHandle<Object> Object::ReadAbsentProperty(Isolate* isolate, Handle<Object> receiver, Handle<Object> name) { return isolate->factory()->undefined_value(); } Maybe<bool> Object::CannotCreateProperty(Isolate* isolate, Handle<Object> receiver, Handle<Object> name, Handle<Object> value, ShouldThrow should_throw) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kStrictCannotCreateProperty, name, Object::TypeOf(isolate, receiver), receiver)); } Maybe<bool> Object::WriteToReadOnlyProperty(LookupIterator* it, Handle<Object> value, ShouldThrow should_throw) { return WriteToReadOnlyProperty(it->isolate(), it->GetReceiver(), it->GetName(), value, should_throw); } Maybe<bool> Object::WriteToReadOnlyProperty(Isolate* isolate, Handle<Object> receiver, Handle<Object> name, Handle<Object> value, ShouldThrow should_throw) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kStrictReadOnlyProperty, name, Object::TypeOf(isolate, receiver), receiver)); } Maybe<bool> Object::RedefineIncompatibleProperty(Isolate* isolate, Handle<Object> name, Handle<Object> value, ShouldThrow should_throw) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, name)); } Maybe<bool> Object::SetDataProperty(LookupIterator* it, Handle<Object> value) { // Proxies are handled elsewhere. Other non-JSObjects cannot have own // properties. Handle<JSObject> receiver = Handle<JSObject>::cast(it->GetReceiver()); // Store on the holder which may be hidden behind the receiver. DCHECK(it->HolderIsReceiverOrHiddenPrototype()); Handle<Object> to_assign = value; // Convert the incoming value to a number for storing into typed arrays. if (it->IsElement() && receiver->HasFixedTypedArrayElements()) { if (!value->IsNumber() && !value->IsUndefined()) { ASSIGN_RETURN_ON_EXCEPTION_VALUE( it->isolate(), to_assign, Object::ToNumber(value), Nothing<bool>()); // We have to recheck the length. However, it can only change if the // underlying buffer was neutered, so just check that. if (Handle<JSArrayBufferView>::cast(receiver)->WasNeutered()) { return Just(true); // TODO(neis): According to the spec, this should throw a TypeError. } } } // Possibly migrate to the most up-to-date map that will be able to store // |value| under it->name(). it->PrepareForDataProperty(to_assign); // Write the property value. it->WriteDataValue(to_assign); #if VERIFY_HEAP if (FLAG_verify_heap) { receiver->JSObjectVerify(); } #endif return Just(true); } Maybe<bool> Object::AddDataProperty(LookupIterator* it, Handle<Object> value, PropertyAttributes attributes, ShouldThrow should_throw, StoreFromKeyed store_mode) { if (!it->GetReceiver()->IsJSObject()) { if (it->GetReceiver()->IsJSProxy() && it->GetName()->IsPrivate()) { RETURN_FAILURE(it->isolate(), should_throw, NewTypeError(MessageTemplate::kProxyPrivate)); } return CannotCreateProperty(it->isolate(), it->GetReceiver(), it->GetName(), value, should_throw); } DCHECK_NE(LookupIterator::INTEGER_INDEXED_EXOTIC, it->state()); Handle<JSObject> receiver = it->GetStoreTarget(); // If the receiver is a JSGlobalProxy, store on the prototype (JSGlobalObject) // instead. If the prototype is Null, the proxy is detached. if (receiver->IsJSGlobalProxy()) return Just(true); Isolate* isolate = it->isolate(); if (it->ExtendingNonExtensible(receiver)) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kObjectNotExtensible, it->GetName())); } if (it->IsElement()) { if (receiver->IsJSArray()) { Handle<JSArray> array = Handle<JSArray>::cast(receiver); if (JSArray::WouldChangeReadOnlyLength(array, it->index())) { RETURN_FAILURE(array->GetIsolate(), should_throw, NewTypeError(MessageTemplate::kStrictReadOnlyProperty, isolate->factory()->length_string(), Object::TypeOf(isolate, array), array)); } if (FLAG_trace_external_array_abuse && array->HasFixedTypedArrayElements()) { CheckArrayAbuse(array, "typed elements write", it->index(), true); } if (FLAG_trace_js_array_abuse && !array->HasFixedTypedArrayElements()) { CheckArrayAbuse(array, "elements write", it->index(), false); } } Maybe<bool> result = JSObject::AddDataElement(receiver, it->index(), value, attributes, should_throw); JSObject::ValidateElements(receiver); return result; } else { // Migrate to the most up-to-date map that will be able to store |value| // under it->name() with |attributes|. it->PrepareTransitionToDataProperty(receiver, value, attributes, store_mode); DCHECK_EQ(LookupIterator::TRANSITION, it->state()); it->ApplyTransitionToDataProperty(receiver); // TODO(verwaest): Encapsulate dictionary handling better. if (receiver->map()->is_dictionary_map()) { // TODO(dcarney): just populate TransitionPropertyCell here? JSObject::AddSlowProperty(receiver, it->name(), value, attributes); } else { // Write the property value. it->WriteDataValue(value); } #if VERIFY_HEAP if (FLAG_verify_heap) { receiver->JSObjectVerify(); } #endif } return Just(true); } void Map::EnsureDescriptorSlack(Handle<Map> map, int slack) { // Only supports adding slack to owned descriptors. DCHECK(map->owns_descriptors()); Handle<DescriptorArray> descriptors(map->instance_descriptors()); int old_size = map->NumberOfOwnDescriptors(); if (slack <= descriptors->NumberOfSlackDescriptors()) return; Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo( descriptors, old_size, slack); DisallowHeapAllocation no_allocation; // The descriptors are still the same, so keep the layout descriptor. LayoutDescriptor* layout_descriptor = map->GetLayoutDescriptor(); if (old_size == 0) { map->UpdateDescriptors(*new_descriptors, layout_descriptor); return; } // If the source descriptors had an enum cache we copy it. This ensures // that the maps to which we push the new descriptor array back can rely // on a cache always being available once it is set. If the map has more // enumerated descriptors than available in the original cache, the cache // will be lazily replaced by the extended cache when needed. if (descriptors->HasEnumCache()) { new_descriptors->CopyEnumCacheFrom(*descriptors); } // Replace descriptors by new_descriptors in all maps that share it. map->GetHeap()->incremental_marking()->IterateBlackObject(*descriptors); Map* current = *map; while (current->instance_descriptors() == *descriptors) { Object* next = current->GetBackPointer(); if (next->IsUndefined()) break; // Stop overwriting at initial map. current->UpdateDescriptors(*new_descriptors, layout_descriptor); current = Map::cast(next); } map->UpdateDescriptors(*new_descriptors, layout_descriptor); } template<class T> static int AppendUniqueCallbacks(NeanderArray* callbacks, Handle<typename T::Array> array, int valid_descriptors) { int nof_callbacks = callbacks->length(); Isolate* isolate = array->GetIsolate(); // Ensure the keys are unique names before writing them into the // instance descriptor. Since it may cause a GC, it has to be done before we // temporarily put the heap in an invalid state while appending descriptors. for (int i = 0; i < nof_callbacks; ++i) { Handle<AccessorInfo> entry(AccessorInfo::cast(callbacks->get(i))); if (entry->name()->IsUniqueName()) continue; Handle<String> key = isolate->factory()->InternalizeString( Handle<String>(String::cast(entry->name()))); entry->set_name(*key); } // Fill in new callback descriptors. Process the callbacks from // back to front so that the last callback with a given name takes // precedence over previously added callbacks with that name. for (int i = nof_callbacks - 1; i >= 0; i--) { Handle<AccessorInfo> entry(AccessorInfo::cast(callbacks->get(i))); Handle<Name> key(Name::cast(entry->name())); // Check if a descriptor with this name already exists before writing. if (!T::Contains(key, entry, valid_descriptors, array)) { T::Insert(key, entry, valid_descriptors, array); valid_descriptors++; } } return valid_descriptors; } struct DescriptorArrayAppender { typedef DescriptorArray Array; static bool Contains(Handle<Name> key, Handle<AccessorInfo> entry, int valid_descriptors, Handle<DescriptorArray> array) { DisallowHeapAllocation no_gc; return array->Search(*key, valid_descriptors) != DescriptorArray::kNotFound; } static void Insert(Handle<Name> key, Handle<AccessorInfo> entry, int valid_descriptors, Handle<DescriptorArray> array) { DisallowHeapAllocation no_gc; AccessorConstantDescriptor desc(key, entry, entry->property_attributes()); array->Append(&desc); } }; struct FixedArrayAppender { typedef FixedArray Array; static bool Contains(Handle<Name> key, Handle<AccessorInfo> entry, int valid_descriptors, Handle<FixedArray> array) { for (int i = 0; i < valid_descriptors; i++) { if (*key == AccessorInfo::cast(array->get(i))->name()) return true; } return false; } static void Insert(Handle<Name> key, Handle<AccessorInfo> entry, int valid_descriptors, Handle<FixedArray> array) { DisallowHeapAllocation no_gc; array->set(valid_descriptors, *entry); } }; void Map::AppendCallbackDescriptors(Handle<Map> map, Handle<Object> descriptors) { int nof = map->NumberOfOwnDescriptors(); Handle<DescriptorArray> array(map->instance_descriptors()); NeanderArray callbacks(descriptors); DCHECK(array->NumberOfSlackDescriptors() >= callbacks.length()); nof = AppendUniqueCallbacks<DescriptorArrayAppender>(&callbacks, array, nof); map->SetNumberOfOwnDescriptors(nof); } int AccessorInfo::AppendUnique(Handle<Object> descriptors, Handle<FixedArray> array, int valid_descriptors) { NeanderArray callbacks(descriptors); DCHECK(array->length() >= callbacks.length() + valid_descriptors); return AppendUniqueCallbacks<FixedArrayAppender>(&callbacks, array, valid_descriptors); } static bool ContainsMap(MapHandleList* maps, Map* map) { DCHECK_NOT_NULL(map); for (int i = 0; i < maps->length(); ++i) { if (!maps->at(i).is_null() && *maps->at(i) == map) return true; } return false; } Handle<Map> Map::FindTransitionedMap(Handle<Map> map, MapHandleList* candidates) { ElementsKind kind = map->elements_kind(); bool packed = IsFastPackedElementsKind(kind); Map* transition = nullptr; if (IsTransitionableFastElementsKind(kind)) { for (Map* current = map->ElementsTransitionMap(); current != nullptr && current->has_fast_elements(); current = current->ElementsTransitionMap()) { if (ContainsMap(candidates, current) && (packed || !IsFastPackedElementsKind(current->elements_kind()))) { transition = current; packed = packed && IsFastPackedElementsKind(current->elements_kind()); } } } return transition == nullptr ? Handle<Map>() : handle(transition); } static Map* FindClosestElementsTransition(Map* map, ElementsKind to_kind) { Map* current_map = map; ElementsKind kind = map->elements_kind(); while (kind != to_kind) { Map* next_map = current_map->ElementsTransitionMap(); if (next_map == nullptr) return current_map; kind = next_map->elements_kind(); current_map = next_map; } DCHECK_EQ(to_kind, current_map->elements_kind()); return current_map; } Map* Map::LookupElementsTransitionMap(ElementsKind to_kind) { Map* to_map = FindClosestElementsTransition(this, to_kind); if (to_map->elements_kind() == to_kind) return to_map; return nullptr; } bool Map::IsMapInArrayPrototypeChain() { Isolate* isolate = GetIsolate(); if (isolate->initial_array_prototype()->map() == this) { return true; } if (isolate->initial_object_prototype()->map() == this) { return true; } return false; } Handle<WeakCell> Map::WeakCellForMap(Handle<Map> map) { Isolate* isolate = map->GetIsolate(); if (map->weak_cell_cache()->IsWeakCell()) { return Handle<WeakCell>(WeakCell::cast(map->weak_cell_cache())); } Handle<WeakCell> weak_cell = isolate->factory()->NewWeakCell(map); map->set_weak_cell_cache(*weak_cell); return weak_cell; } static Handle<Map> AddMissingElementsTransitions(Handle<Map> map, ElementsKind to_kind) { DCHECK(IsTransitionElementsKind(map->elements_kind())); Handle<Map> current_map = map; ElementsKind kind = map->elements_kind(); TransitionFlag flag; if (map->is_prototype_map()) { flag = OMIT_TRANSITION; } else { flag = INSERT_TRANSITION; if (IsFastElementsKind(kind)) { while (kind != to_kind && !IsTerminalElementsKind(kind)) { kind = GetNextTransitionElementsKind(kind); current_map = Map::CopyAsElementsKind(current_map, kind, flag); } } } // In case we are exiting the fast elements kind system, just add the map in // the end. if (kind != to_kind) { current_map = Map::CopyAsElementsKind(current_map, to_kind, flag); } DCHECK(current_map->elements_kind() == to_kind); return current_map; } Handle<Map> Map::TransitionElementsTo(Handle<Map> map, ElementsKind to_kind) { ElementsKind from_kind = map->elements_kind(); if (from_kind == to_kind) return map; Isolate* isolate = map->GetIsolate(); Context* native_context = isolate->context()->native_context(); if (from_kind == FAST_SLOPPY_ARGUMENTS_ELEMENTS) { if (*map == native_context->fast_aliased_arguments_map()) { DCHECK_EQ(SLOW_SLOPPY_ARGUMENTS_ELEMENTS, to_kind); return handle(native_context->slow_aliased_arguments_map()); } } else if (from_kind == SLOW_SLOPPY_ARGUMENTS_ELEMENTS) { if (*map == native_context->slow_aliased_arguments_map()) { DCHECK_EQ(FAST_SLOPPY_ARGUMENTS_ELEMENTS, to_kind); return handle(native_context->fast_aliased_arguments_map()); } } else if (IsFastElementsKind(from_kind) && IsFastElementsKind(to_kind)) { // Reuse map transitions for JSArrays. DisallowHeapAllocation no_gc; if (native_context->get(Context::ArrayMapIndex(from_kind)) == *map) { Object* maybe_transitioned_map = native_context->get(Context::ArrayMapIndex(to_kind)); if (maybe_transitioned_map->IsMap()) { return handle(Map::cast(maybe_transitioned_map), isolate); } } } DCHECK(!map->IsUndefined()); // Check if we can go back in the elements kind transition chain. if (IsHoleyElementsKind(from_kind) && to_kind == GetPackedElementsKind(from_kind) && map->GetBackPointer()->IsMap() && Map::cast(map->GetBackPointer())->elements_kind() == to_kind) { return handle(Map::cast(map->GetBackPointer())); } bool allow_store_transition = IsTransitionElementsKind(from_kind); // Only store fast element maps in ascending generality. if (IsFastElementsKind(to_kind)) { allow_store_transition = allow_store_transition && IsTransitionableFastElementsKind(from_kind) && IsMoreGeneralElementsKindTransition(from_kind, to_kind); } if (!allow_store_transition) { return Map::CopyAsElementsKind(map, to_kind, OMIT_TRANSITION); } return Map::AsElementsKind(map, to_kind); } // static Handle<Map> Map::AsElementsKind(Handle<Map> map, ElementsKind kind) { Handle<Map> closest_map(FindClosestElementsTransition(*map, kind)); if (closest_map->elements_kind() == kind) { return closest_map; } return AddMissingElementsTransitions(closest_map, kind); } Handle<Map> JSObject::GetElementsTransitionMap(Handle<JSObject> object, ElementsKind to_kind) { Handle<Map> map(object->map()); return Map::TransitionElementsTo(map, to_kind); } void JSProxy::Revoke(Handle<JSProxy> proxy) { Isolate* isolate = proxy->GetIsolate(); if (!proxy->IsRevoked()) proxy->set_handler(isolate->heap()->null_value()); DCHECK(proxy->IsRevoked()); } Maybe<bool> JSProxy::HasProperty(Isolate* isolate, Handle<JSProxy> proxy, Handle<Name> name) { DCHECK(!name->IsPrivate()); STACK_CHECK(Nothing<bool>()); // 1. (Assert) // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O. Handle<Object> handler(proxy->handler(), isolate); // 3. If handler is null, throw a TypeError exception. // 4. Assert: Type(handler) is Object. if (proxy->IsRevoked()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyRevoked, isolate->factory()->has_string())); return Nothing<bool>(); } // 5. Let target be the value of the [[ProxyTarget]] internal slot of O. Handle<JSReceiver> target(proxy->target(), isolate); // 6. Let trap be ? GetMethod(handler, "has"). Handle<Object> trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(Handle<JSReceiver>::cast(handler), isolate->factory()->has_string()), Nothing<bool>()); // 7. If trap is undefined, then if (trap->IsUndefined()) { // 7a. Return target.[[HasProperty]](P). return JSReceiver::HasProperty(target, name); } // 8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, «target, P»)). Handle<Object> trap_result_obj; Handle<Object> args[] = {target, name}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result_obj, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing<bool>()); bool boolean_trap_result = trap_result_obj->BooleanValue(); // 9. If booleanTrapResult is false, then: if (!boolean_trap_result) { // 9a. Let targetDesc be ? target.[[GetOwnProperty]](P). PropertyDescriptor target_desc; Maybe<bool> target_found = JSReceiver::GetOwnPropertyDescriptor( isolate, target, name, &target_desc); MAYBE_RETURN(target_found, Nothing<bool>()); // 9b. If targetDesc is not undefined, then: if (target_found.FromJust()) { // 9b i. If targetDesc.[[Configurable]] is false, throw a TypeError // exception. if (!target_desc.configurable()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyHasNonConfigurable, name)); return Nothing<bool>(); } // 9b ii. Let extensibleTarget be ? IsExtensible(target). Maybe<bool> extensible_target = JSReceiver::IsExtensible(target); MAYBE_RETURN(extensible_target, Nothing<bool>()); // 9b iii. If extensibleTarget is false, throw a TypeError exception. if (!extensible_target.FromJust()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyHasNonExtensible, name)); return Nothing<bool>(); } } } // 10. Return booleanTrapResult. return Just(boolean_trap_result); } Maybe<bool> JSProxy::SetProperty(Handle<JSProxy> proxy, Handle<Name> name, Handle<Object> value, Handle<Object> receiver, LanguageMode language_mode) { DCHECK(!name->IsPrivate()); Isolate* isolate = proxy->GetIsolate(); STACK_CHECK(Nothing<bool>()); Factory* factory = isolate->factory(); Handle<String> trap_name = factory->set_string(); ShouldThrow should_throw = is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR; if (proxy->IsRevoked()) { isolate->Throw( *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name)); return Nothing<bool>(); } Handle<JSReceiver> target(proxy->target(), isolate); Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate); Handle<Object> trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>()); if (trap->IsUndefined()) { LookupIterator it = LookupIterator::PropertyOrElement(isolate, receiver, name, target); return Object::SetSuperProperty(&it, value, language_mode, Object::MAY_BE_STORE_FROM_KEYED); } Handle<Object> trap_result; Handle<Object> args[] = {target, name, value, receiver}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing<bool>()); if (!trap_result->BooleanValue()) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor, trap_name, name)); } // Enforce the invariant. PropertyDescriptor target_desc; Maybe<bool> owned = JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc); MAYBE_RETURN(owned, Nothing<bool>()); if (owned.FromJust()) { bool inconsistent = PropertyDescriptor::IsDataDescriptor(&target_desc) && !target_desc.configurable() && !target_desc.writable() && !value->SameValue(*target_desc.value()); if (inconsistent) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxySetFrozenData, name)); return Nothing<bool>(); } inconsistent = PropertyDescriptor::IsAccessorDescriptor(&target_desc) && !target_desc.configurable() && target_desc.set()->IsUndefined(); if (inconsistent) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxySetFrozenAccessor, name)); return Nothing<bool>(); } } return Just(true); } Maybe<bool> JSProxy::DeletePropertyOrElement(Handle<JSProxy> proxy, Handle<Name> name, LanguageMode language_mode) { DCHECK(!name->IsPrivate()); ShouldThrow should_throw = is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR; Isolate* isolate = proxy->GetIsolate(); STACK_CHECK(Nothing<bool>()); Factory* factory = isolate->factory(); Handle<String> trap_name = factory->deleteProperty_string(); if (proxy->IsRevoked()) { isolate->Throw( *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name)); return Nothing<bool>(); } Handle<JSReceiver> target(proxy->target(), isolate); Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate); Handle<Object> trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>()); if (trap->IsUndefined()) { return JSReceiver::DeletePropertyOrElement(target, name, language_mode); } Handle<Object> trap_result; Handle<Object> args[] = {target, name}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing<bool>()); if (!trap_result->BooleanValue()) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor, trap_name, name)); } // Enforce the invariant. PropertyDescriptor target_desc; Maybe<bool> owned = JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc); MAYBE_RETURN(owned, Nothing<bool>()); if (owned.FromJust() && !target_desc.configurable()) { isolate->Throw(*factory->NewTypeError( MessageTemplate::kProxyDeletePropertyNonConfigurable, name)); return Nothing<bool>(); } return Just(true); } // static MaybeHandle<JSProxy> JSProxy::New(Isolate* isolate, Handle<Object> target, Handle<Object> handler) { if (!target->IsJSReceiver()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyNonObject), JSProxy); } if (target->IsJSProxy() && JSProxy::cast(*target)->IsRevoked()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyHandlerOrTargetRevoked), JSProxy); } if (!handler->IsJSReceiver()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyNonObject), JSProxy); } if (handler->IsJSProxy() && JSProxy::cast(*handler)->IsRevoked()) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kProxyHandlerOrTargetRevoked), JSProxy); } return isolate->factory()->NewJSProxy(Handle<JSReceiver>::cast(target), Handle<JSReceiver>::cast(handler)); } // static MaybeHandle<Context> JSProxy::GetFunctionRealm(Handle<JSProxy> proxy) { DCHECK(proxy->map()->is_constructor()); if (proxy->IsRevoked()) { THROW_NEW_ERROR(proxy->GetIsolate(), NewTypeError(MessageTemplate::kProxyRevoked), Context); } Handle<JSReceiver> target(JSReceiver::cast(proxy->target())); return JSReceiver::GetFunctionRealm(target); } // static MaybeHandle<Context> JSBoundFunction::GetFunctionRealm( Handle<JSBoundFunction> function) { DCHECK(function->map()->is_constructor()); return JSReceiver::GetFunctionRealm( handle(function->bound_target_function())); } // static MaybeHandle<String> JSBoundFunction::GetName(Isolate* isolate, Handle<JSBoundFunction> function) { Handle<String> prefix = isolate->factory()->bound__string(); if (!function->bound_target_function()->IsJSFunction()) return prefix; Handle<JSFunction> target(JSFunction::cast(function->bound_target_function()), isolate); Handle<Object> target_name = JSFunction::GetName(isolate, target); if (!target_name->IsString()) return prefix; Factory* factory = isolate->factory(); return factory->NewConsString(prefix, Handle<String>::cast(target_name)); } // static Handle<Object> JSFunction::GetName(Isolate* isolate, Handle<JSFunction> function) { if (function->shared()->name_should_print_as_anonymous()) { return isolate->factory()->anonymous_string(); } return handle(function->shared()->name(), isolate); } // static MaybeHandle<Smi> JSFunction::GetLength(Isolate* isolate, Handle<JSFunction> function) { int length = 0; if (function->shared()->is_compiled()) { length = function->shared()->length(); } else { // If the function isn't compiled yet, the length is not computed // correctly yet. Compile it now and return the right length. if (Compiler::Compile(function, Compiler::KEEP_EXCEPTION)) { length = function->shared()->length(); } if (isolate->has_pending_exception()) return MaybeHandle<Smi>(); } return handle(Smi::FromInt(length), isolate); } // static Handle<Context> JSFunction::GetFunctionRealm(Handle<JSFunction> function) { DCHECK(function->map()->is_constructor()); return handle(function->context()->native_context()); } // static MaybeHandle<Context> JSObject::GetFunctionRealm(Handle<JSObject> object) { DCHECK(object->map()->is_constructor()); DCHECK(!object->IsJSFunction()); return handle(object->GetCreationContext()); } // static MaybeHandle<Context> JSReceiver::GetFunctionRealm(Handle<JSReceiver> receiver) { if (receiver->IsJSProxy()) { return JSProxy::GetFunctionRealm(Handle<JSProxy>::cast(receiver)); } if (receiver->IsJSFunction()) { return JSFunction::GetFunctionRealm(Handle<JSFunction>::cast(receiver)); } if (receiver->IsJSBoundFunction()) { return JSBoundFunction::GetFunctionRealm( Handle<JSBoundFunction>::cast(receiver)); } return JSObject::GetFunctionRealm(Handle<JSObject>::cast(receiver)); } Maybe<PropertyAttributes> JSProxy::GetPropertyAttributes(LookupIterator* it) { PropertyDescriptor desc; Maybe<bool> found = JSProxy::GetOwnPropertyDescriptor( it->isolate(), it->GetHolder<JSProxy>(), it->GetName(), &desc); MAYBE_RETURN(found, Nothing<PropertyAttributes>()); if (!found.FromJust()) return Just(ABSENT); return Just(desc.ToAttributes()); } void JSObject::AllocateStorageForMap(Handle<JSObject> object, Handle<Map> map) { DCHECK(object->map()->GetInObjectProperties() == map->GetInObjectProperties()); ElementsKind obj_kind = object->map()->elements_kind(); ElementsKind map_kind = map->elements_kind(); if (map_kind != obj_kind) { ElementsKind to_kind = GetMoreGeneralElementsKind(map_kind, obj_kind); if (IsDictionaryElementsKind(obj_kind)) { to_kind = obj_kind; } if (IsDictionaryElementsKind(to_kind)) { NormalizeElements(object); } else { TransitionElementsKind(object, to_kind); } map = Map::AsElementsKind(map, to_kind); } JSObject::MigrateToMap(object, map); } void JSObject::MigrateInstance(Handle<JSObject> object) { Handle<Map> original_map(object->map()); Handle<Map> map = Map::Update(original_map); map->set_migration_target(true); MigrateToMap(object, map); if (FLAG_trace_migration) { object->PrintInstanceMigration(stdout, *original_map, *map); } #if VERIFY_HEAP if (FLAG_verify_heap) { object->JSObjectVerify(); } #endif } // static bool JSObject::TryMigrateInstance(Handle<JSObject> object) { Isolate* isolate = object->GetIsolate(); DisallowDeoptimization no_deoptimization(isolate); Handle<Map> original_map(object->map(), isolate); Handle<Map> new_map; if (!Map::TryUpdate(original_map).ToHandle(&new_map)) { return false; } JSObject::MigrateToMap(object, new_map); if (FLAG_trace_migration) { object->PrintInstanceMigration(stdout, *original_map, object->map()); } #if VERIFY_HEAP if (FLAG_verify_heap) { object->JSObjectVerify(); } #endif return true; } void JSObject::AddProperty(Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes) { LookupIterator it(object, name, object, LookupIterator::OWN_SKIP_INTERCEPTOR); CHECK_NE(LookupIterator::ACCESS_CHECK, it.state()); #ifdef DEBUG uint32_t index; DCHECK(!object->IsJSProxy()); DCHECK(!name->AsArrayIndex(&index)); Maybe<PropertyAttributes> maybe = GetPropertyAttributes(&it); DCHECK(maybe.IsJust()); DCHECK(!it.IsFound()); DCHECK(object->map()->is_extensible() || name->IsPrivate()); #endif CHECK(AddDataProperty(&it, value, attributes, THROW_ON_ERROR, CERTAINLY_NOT_STORE_FROM_KEYED) .IsJust()); } // Reconfigures a property to a data property with attributes, even if it is not // reconfigurable. // Requires a LookupIterator that does not look at the prototype chain beyond // hidden prototypes. MaybeHandle<Object> JSObject::DefineOwnPropertyIgnoreAttributes( LookupIterator* it, Handle<Object> value, PropertyAttributes attributes, AccessorInfoHandling handling) { MAYBE_RETURN_NULL(DefineOwnPropertyIgnoreAttributes( it, value, attributes, THROW_ON_ERROR, handling)); return value; } Maybe<bool> JSObject::DefineOwnPropertyIgnoreAttributes( LookupIterator* it, Handle<Object> value, PropertyAttributes attributes, ShouldThrow should_throw, AccessorInfoHandling handling) { it->UpdateProtector(); Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver()); for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (!it->HasAccess()) { it->isolate()->ReportFailedAccessCheck(it->GetHolder<JSObject>()); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(it->isolate(), Nothing<bool>()); return Just(true); } break; // If there's an interceptor, try to store the property with the // interceptor. // In case of success, the attributes will have been reset to the default // attributes of the interceptor, rather than the incoming attributes. // // TODO(verwaest): JSProxy afterwards verify the attributes that the // JSProxy claims it has, and verifies that they are compatible. If not, // they throw. Here we should do the same. case LookupIterator::INTERCEPTOR: if (handling == DONT_FORCE_FIELD) { Maybe<bool> result = JSObject::SetPropertyWithInterceptor(it, should_throw, value); if (result.IsNothing() || result.FromJust()) return result; } break; case LookupIterator::ACCESSOR: { Handle<Object> accessors = it->GetAccessors(); // Special handling for AccessorInfo, which behaves like a data // property. if (accessors->IsAccessorInfo() && handling == DONT_FORCE_FIELD) { PropertyAttributes current_attributes = it->property_attributes(); // Ensure the context isn't changed after calling into accessors. AssertNoContextChange ncc(it->isolate()); // Update the attributes before calling the setter. The setter may // later change the shape of the property. if (current_attributes != attributes) { it->TransitionToAccessorPair(accessors, attributes); } Maybe<bool> result = JSObject::SetPropertyWithAccessor(it, value, should_throw); if (current_attributes == attributes || result.IsNothing()) { return result; } } else { it->ReconfigureDataProperty(value, attributes); } return Just(true); } case LookupIterator::INTEGER_INDEXED_EXOTIC: return RedefineIncompatibleProperty(it->isolate(), it->GetName(), value, should_throw); case LookupIterator::DATA: { // Regular property update if the attributes match. if (it->property_attributes() == attributes) { return SetDataProperty(it, value); } // Special case: properties of typed arrays cannot be reconfigured to // non-writable nor to non-enumerable. if (it->IsElement() && object->HasFixedTypedArrayElements()) { return RedefineIncompatibleProperty(it->isolate(), it->GetName(), value, should_throw); } // Reconfigure the data property if the attributes mismatch. it->ReconfigureDataProperty(value, attributes); return Just(true); } } } return AddDataProperty(it, value, attributes, should_throw, CERTAINLY_NOT_STORE_FROM_KEYED); } MaybeHandle<Object> JSObject::SetOwnPropertyIgnoreAttributes( Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes) { DCHECK(!value->IsTheHole()); LookupIterator it(object, name, object, LookupIterator::OWN); return DefineOwnPropertyIgnoreAttributes(&it, value, attributes); } MaybeHandle<Object> JSObject::SetOwnElementIgnoreAttributes( Handle<JSObject> object, uint32_t index, Handle<Object> value, PropertyAttributes attributes) { Isolate* isolate = object->GetIsolate(); LookupIterator it(isolate, object, index, object, LookupIterator::OWN); return DefineOwnPropertyIgnoreAttributes(&it, value, attributes); } MaybeHandle<Object> JSObject::DefinePropertyOrElementIgnoreAttributes( Handle<JSObject> object, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes) { Isolate* isolate = object->GetIsolate(); LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, name, object, LookupIterator::OWN); return DefineOwnPropertyIgnoreAttributes(&it, value, attributes); } Maybe<PropertyAttributes> JSObject::GetPropertyAttributesWithInterceptor( LookupIterator* it) { Isolate* isolate = it->isolate(); // Make sure that the top context does not change when doing // callbacks or interceptor calls. AssertNoContextChange ncc(isolate); HandleScope scope(isolate); Handle<JSObject> holder = it->GetHolder<JSObject>(); Handle<InterceptorInfo> interceptor(it->GetInterceptor()); if (!it->IsElement() && it->name()->IsSymbol() && !interceptor->can_intercept_symbols()) { return Just(ABSENT); } PropertyCallbackArguments args(isolate, interceptor->data(), *it->GetReceiver(), *holder, Object::DONT_THROW); if (!interceptor->query()->IsUndefined()) { Handle<Object> result; if (it->IsElement()) { uint32_t index = it->index(); v8::IndexedPropertyQueryCallback query = v8::ToCData<v8::IndexedPropertyQueryCallback>(interceptor->query()); result = args.Call(query, index); } else { Handle<Name> name = it->name(); DCHECK(!name->IsPrivate()); v8::GenericNamedPropertyQueryCallback query = v8::ToCData<v8::GenericNamedPropertyQueryCallback>( interceptor->query()); result = args.Call(query, name); } if (!result.is_null()) { int32_t value; CHECK(result->ToInt32(&value)); return Just(static_cast<PropertyAttributes>(value)); } } else if (!interceptor->getter()->IsUndefined()) { // TODO(verwaest): Use GetPropertyWithInterceptor? Handle<Object> result; if (it->IsElement()) { uint32_t index = it->index(); v8::IndexedPropertyGetterCallback getter = v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter()); result = args.Call(getter, index); } else { Handle<Name> name = it->name(); DCHECK(!name->IsPrivate()); v8::GenericNamedPropertyGetterCallback getter = v8::ToCData<v8::GenericNamedPropertyGetterCallback>( interceptor->getter()); result = args.Call(getter, name); } if (!result.is_null()) return Just(DONT_ENUM); } RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<PropertyAttributes>()); return Just(ABSENT); } Maybe<PropertyAttributes> JSReceiver::GetPropertyAttributes( LookupIterator* it) { for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::JSPROXY: return JSProxy::GetPropertyAttributes(it); case LookupIterator::INTERCEPTOR: { Maybe<PropertyAttributes> result = JSObject::GetPropertyAttributesWithInterceptor(it); if (!result.IsJust()) return result; if (result.FromJust() != ABSENT) return result; break; } case LookupIterator::ACCESS_CHECK: if (it->HasAccess()) break; return JSObject::GetPropertyAttributesWithFailedAccessCheck(it); case LookupIterator::INTEGER_INDEXED_EXOTIC: return Just(ABSENT); case LookupIterator::ACCESSOR: case LookupIterator::DATA: return Just(it->property_attributes()); } } return Just(ABSENT); } Handle<NormalizedMapCache> NormalizedMapCache::New(Isolate* isolate) { Handle<FixedArray> array( isolate->factory()->NewFixedArray(kEntries, TENURED)); return Handle<NormalizedMapCache>::cast(array); } MaybeHandle<Map> NormalizedMapCache::Get(Handle<Map> fast_map, PropertyNormalizationMode mode) { DisallowHeapAllocation no_gc; Object* value = FixedArray::get(GetIndex(fast_map)); if (!value->IsMap() || !Map::cast(value)->EquivalentToForNormalization(*fast_map, mode)) { return MaybeHandle<Map>(); } return handle(Map::cast(value)); } void NormalizedMapCache::Set(Handle<Map> fast_map, Handle<Map> normalized_map) { DisallowHeapAllocation no_gc; DCHECK(normalized_map->is_dictionary_map()); FixedArray::set(GetIndex(fast_map), *normalized_map); } void NormalizedMapCache::Clear() { int entries = length(); for (int i = 0; i != entries; i++) { set_undefined(i); } } void HeapObject::UpdateMapCodeCache(Handle<HeapObject> object, Handle<Name> name, Handle<Code> code) { Handle<Map> map(object->map()); Map::UpdateCodeCache(map, name, code); } void JSObject::NormalizeProperties(Handle<JSObject> object, PropertyNormalizationMode mode, int expected_additional_properties, const char* reason) { if (!object->HasFastProperties()) return; Handle<Map> map(object->map()); Handle<Map> new_map = Map::Normalize(map, mode, reason); MigrateToMap(object, new_map, expected_additional_properties); } void JSObject::MigrateSlowToFast(Handle<JSObject> object, int unused_property_fields, const char* reason) { if (object->HasFastProperties()) return; DCHECK(!object->IsJSGlobalObject()); Isolate* isolate = object->GetIsolate(); Factory* factory = isolate->factory(); Handle<NameDictionary> dictionary(object->property_dictionary()); // Make sure we preserve dictionary representation if there are too many // descriptors. int number_of_elements = dictionary->NumberOfElements(); if (number_of_elements > kMaxNumberOfDescriptors) return; Handle<FixedArray> iteration_order; if (number_of_elements != dictionary->NextEnumerationIndex()) { iteration_order = NameDictionary::DoGenerateNewEnumerationIndices(dictionary); } else { iteration_order = NameDictionary::BuildIterationIndicesArray(dictionary); } int instance_descriptor_length = iteration_order->length(); int number_of_fields = 0; // Compute the length of the instance descriptor. for (int i = 0; i < instance_descriptor_length; i++) { int index = Smi::cast(iteration_order->get(i))->value(); DCHECK(dictionary->IsKey(dictionary->KeyAt(index))); Object* value = dictionary->ValueAt(index); PropertyType type = dictionary->DetailsAt(index).type(); if (type == DATA && !value->IsJSFunction()) { number_of_fields += 1; } } Handle<Map> old_map(object->map(), isolate); int inobject_props = old_map->GetInObjectProperties(); // Allocate new map. Handle<Map> new_map = Map::CopyDropDescriptors(old_map); new_map->set_dictionary_map(false); UpdatePrototypeUserRegistration(old_map, new_map, isolate); #if TRACE_MAPS if (FLAG_trace_maps) { PrintF("[TraceMaps: SlowToFast from= %p to= %p reason= %s ]\n", reinterpret_cast<void*>(*old_map), reinterpret_cast<void*>(*new_map), reason); } #endif if (instance_descriptor_length == 0) { DisallowHeapAllocation no_gc; DCHECK_LE(unused_property_fields, inobject_props); // Transform the object. new_map->set_unused_property_fields(inobject_props); object->synchronized_set_map(*new_map); object->set_properties(isolate->heap()->empty_fixed_array()); // Check that it really works. DCHECK(object->HasFastProperties()); return; } // Allocate the instance descriptor. Handle<DescriptorArray> descriptors = DescriptorArray::Allocate( isolate, instance_descriptor_length, 0, TENURED); int number_of_allocated_fields = number_of_fields + unused_property_fields - inobject_props; if (number_of_allocated_fields < 0) { // There is enough inobject space for all fields (including unused). number_of_allocated_fields = 0; unused_property_fields = inobject_props - number_of_fields; } // Allocate the fixed array for the fields. Handle<FixedArray> fields = factory->NewFixedArray( number_of_allocated_fields); // Fill in the instance descriptor and the fields. int current_offset = 0; for (int i = 0; i < instance_descriptor_length; i++) { int index = Smi::cast(iteration_order->get(i))->value(); Object* k = dictionary->KeyAt(index); DCHECK(dictionary->IsKey(k)); // Dictionary keys are internalized upon insertion. // TODO(jkummerow): Turn this into a DCHECK if it's not hit in the wild. CHECK(k->IsUniqueName()); Handle<Name> key(Name::cast(k), isolate); Object* value = dictionary->ValueAt(index); PropertyDetails details = dictionary->DetailsAt(index); int enumeration_index = details.dictionary_index(); PropertyType type = details.type(); if (value->IsJSFunction()) { DataConstantDescriptor d(key, handle(value, isolate), details.attributes()); descriptors->Set(enumeration_index - 1, &d); } else if (type == DATA) { if (current_offset < inobject_props) { object->InObjectPropertyAtPut(current_offset, value, UPDATE_WRITE_BARRIER); } else { int offset = current_offset - inobject_props; fields->set(offset, value); } DataDescriptor d(key, current_offset, details.attributes(), // TODO(verwaest): value->OptimalRepresentation(); Representation::Tagged()); current_offset += d.GetDetails().field_width_in_words(); descriptors->Set(enumeration_index - 1, &d); } else if (type == ACCESSOR_CONSTANT) { AccessorConstantDescriptor d(key, handle(value, isolate), details.attributes()); descriptors->Set(enumeration_index - 1, &d); } else { UNREACHABLE(); } } DCHECK(current_offset == number_of_fields); descriptors->Sort(); Handle<LayoutDescriptor> layout_descriptor = LayoutDescriptor::New( new_map, descriptors, descriptors->number_of_descriptors()); DisallowHeapAllocation no_gc; new_map->InitializeDescriptors(*descriptors, *layout_descriptor); new_map->set_unused_property_fields(unused_property_fields); // Transform the object. object->synchronized_set_map(*new_map); object->set_properties(*fields); DCHECK(object->IsJSObject()); // Check that it really works. DCHECK(object->HasFastProperties()); } void JSObject::ResetElements(Handle<JSObject> object) { Isolate* isolate = object->GetIsolate(); CHECK(object->map() != isolate->heap()->sloppy_arguments_elements_map()); if (object->map()->has_dictionary_elements()) { Handle<SeededNumberDictionary> new_elements = SeededNumberDictionary::New(isolate, 0); object->set_elements(*new_elements); } else { object->set_elements(object->map()->GetInitialElements()); } } void JSObject::RequireSlowElements(SeededNumberDictionary* dictionary) { if (dictionary->requires_slow_elements()) return; dictionary->set_requires_slow_elements(); // TODO(verwaest): Remove this hack. if (map()->is_prototype_map()) { TypeFeedbackVector::ClearAllKeyedStoreICs(GetIsolate()); } } Handle<SeededNumberDictionary> JSObject::NormalizeElements( Handle<JSObject> object) { DCHECK(!object->HasFixedTypedArrayElements()); Isolate* isolate = object->GetIsolate(); bool is_arguments = object->HasSloppyArgumentsElements(); { DisallowHeapAllocation no_gc; FixedArrayBase* elements = object->elements(); if (is_arguments) { FixedArray* parameter_map = FixedArray::cast(elements); elements = FixedArrayBase::cast(parameter_map->get(1)); } if (elements->IsDictionary()) { return handle(SeededNumberDictionary::cast(elements), isolate); } } DCHECK(object->HasFastSmiOrObjectElements() || object->HasFastDoubleElements() || object->HasFastArgumentsElements() || object->HasFastStringWrapperElements()); Handle<SeededNumberDictionary> dictionary = object->GetElementsAccessor()->Normalize(object); // Switch to using the dictionary as the backing storage for elements. ElementsKind target_kind = is_arguments ? SLOW_SLOPPY_ARGUMENTS_ELEMENTS : object->HasFastStringWrapperElements() ? SLOW_STRING_WRAPPER_ELEMENTS : DICTIONARY_ELEMENTS; Handle<Map> new_map = JSObject::GetElementsTransitionMap(object, target_kind); // Set the new map first to satify the elements type assert in set_elements(). JSObject::MigrateToMap(object, new_map); if (is_arguments) { FixedArray::cast(object->elements())->set(1, *dictionary); } else { object->set_elements(*dictionary); } isolate->counters()->elements_to_dictionary()->Increment(); #ifdef DEBUG if (FLAG_trace_normalization) { OFStream os(stdout); os << "Object elements have been normalized:\n"; object->Print(os); } #endif DCHECK(object->HasDictionaryElements() || object->HasSlowArgumentsElements() || object->HasSlowStringWrapperElements()); return dictionary; } static Smi* GenerateIdentityHash(Isolate* isolate) { int hash_value; int attempts = 0; do { // Generate a random 32-bit hash value but limit range to fit // within a smi. hash_value = isolate->random_number_generator()->NextInt() & Smi::kMaxValue; attempts++; } while (hash_value == 0 && attempts < 30); hash_value = hash_value != 0 ? hash_value : 1; // never return 0 return Smi::FromInt(hash_value); } template<typename ProxyType> static Handle<Smi> GetOrCreateIdentityHashHelper(Handle<ProxyType> proxy) { Isolate* isolate = proxy->GetIsolate(); Handle<Object> maybe_hash(proxy->hash(), isolate); if (maybe_hash->IsSmi()) return Handle<Smi>::cast(maybe_hash); Handle<Smi> hash(GenerateIdentityHash(isolate), isolate); proxy->set_hash(*hash); return hash; } // static Handle<Object> JSObject::GetIdentityHash(Isolate* isolate, Handle<JSObject> object) { if (object->IsJSGlobalProxy()) { return handle(JSGlobalProxy::cast(*object)->hash(), isolate); } Handle<Name> hash_code_symbol = isolate->factory()->hash_code_symbol(); return JSReceiver::GetDataProperty(object, hash_code_symbol); } // static Handle<Smi> JSObject::GetOrCreateIdentityHash(Handle<JSObject> object) { if (object->IsJSGlobalProxy()) { return GetOrCreateIdentityHashHelper(Handle<JSGlobalProxy>::cast(object)); } Isolate* isolate = object->GetIsolate(); Handle<Name> hash_code_symbol = isolate->factory()->hash_code_symbol(); LookupIterator it(object, hash_code_symbol, object, LookupIterator::OWN); if (it.IsFound()) { DCHECK_EQ(LookupIterator::DATA, it.state()); Handle<Object> maybe_hash = it.GetDataValue(); if (maybe_hash->IsSmi()) return Handle<Smi>::cast(maybe_hash); } Handle<Smi> hash(GenerateIdentityHash(isolate), isolate); CHECK(AddDataProperty(&it, hash, NONE, THROW_ON_ERROR, CERTAINLY_NOT_STORE_FROM_KEYED) .IsJust()); return hash; } // static Handle<Object> JSProxy::GetIdentityHash(Isolate* isolate, Handle<JSProxy> proxy) { return handle(proxy->hash(), isolate); } Handle<Smi> JSProxy::GetOrCreateIdentityHash(Handle<JSProxy> proxy) { return GetOrCreateIdentityHashHelper(proxy); } Object* JSObject::GetHiddenProperty(Handle<Name> key) { DisallowHeapAllocation no_gc; DCHECK(key->IsUniqueName()); if (IsJSGlobalProxy()) { // For a proxy, use the prototype as target object. PrototypeIterator iter(GetIsolate(), this); // If the proxy is detached, return undefined. if (iter.IsAtEnd()) return GetHeap()->the_hole_value(); DCHECK(iter.GetCurrent()->IsJSGlobalObject()); return iter.GetCurrent<JSObject>()->GetHiddenProperty(key); } DCHECK(!IsJSGlobalProxy()); Object* inline_value = GetHiddenPropertiesHashTable(); if (inline_value->IsUndefined()) return GetHeap()->the_hole_value(); ObjectHashTable* hashtable = ObjectHashTable::cast(inline_value); Object* entry = hashtable->Lookup(key); return entry; } Handle<Object> JSObject::SetHiddenProperty(Handle<JSObject> object, Handle<Name> key, Handle<Object> value) { Isolate* isolate = object->GetIsolate(); DCHECK(key->IsUniqueName()); if (object->IsJSGlobalProxy()) { // For a proxy, use the prototype as target object. PrototypeIterator iter(isolate, object); // If the proxy is detached, return undefined. if (iter.IsAtEnd()) return isolate->factory()->undefined_value(); DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return SetHiddenProperty(PrototypeIterator::GetCurrent<JSObject>(iter), key, value); } DCHECK(!object->IsJSGlobalProxy()); Handle<Object> inline_value(object->GetHiddenPropertiesHashTable(), isolate); Handle<ObjectHashTable> hashtable = GetOrCreateHiddenPropertiesHashtable(object); // If it was found, check if the key is already in the dictionary. Handle<ObjectHashTable> new_table = ObjectHashTable::Put(hashtable, key, value); if (*new_table != *hashtable) { // If adding the key expanded the dictionary (i.e., Add returned a new // dictionary), store it back to the object. SetHiddenPropertiesHashTable(object, new_table); } // Return this to mark success. return object; } void JSObject::DeleteHiddenProperty(Handle<JSObject> object, Handle<Name> key) { Isolate* isolate = object->GetIsolate(); DCHECK(key->IsUniqueName()); if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return; DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return DeleteHiddenProperty(PrototypeIterator::GetCurrent<JSObject>(iter), key); } Object* inline_value = object->GetHiddenPropertiesHashTable(); if (inline_value->IsUndefined()) return; Handle<ObjectHashTable> hashtable(ObjectHashTable::cast(inline_value)); bool was_present = false; ObjectHashTable::Remove(hashtable, key, &was_present); } bool JSObject::HasHiddenProperties(Handle<JSObject> object) { Isolate* isolate = object->GetIsolate(); Handle<Symbol> hidden = isolate->factory()->hidden_properties_symbol(); LookupIterator it(object, hidden, object); Maybe<PropertyAttributes> maybe = GetPropertyAttributes(&it); // Cannot get an exception since the hidden_properties_symbol isn't exposed to // JS. DCHECK(maybe.IsJust()); return maybe.FromJust() != ABSENT; } Object* JSObject::GetHiddenPropertiesHashTable() { DCHECK(!IsJSGlobalProxy()); if (HasFastProperties()) { // If the object has fast properties, check whether the first slot // in the descriptor array matches the hidden string. Since the // hidden strings hash code is zero (and no other name has hash // code zero) it will always occupy the first entry if present. DescriptorArray* descriptors = this->map()->instance_descriptors(); if (descriptors->number_of_descriptors() > 0) { int sorted_index = descriptors->GetSortedKeyIndex(0); if (descriptors->GetKey(sorted_index) == GetHeap()->hidden_properties_symbol() && sorted_index < map()->NumberOfOwnDescriptors()) { DCHECK(descriptors->GetType(sorted_index) == DATA); DCHECK(descriptors->GetDetails(sorted_index).representation(). IsCompatibleForLoad(Representation::Tagged())); FieldIndex index = FieldIndex::ForDescriptor(this->map(), sorted_index); return this->RawFastPropertyAt(index); } else { return GetHeap()->undefined_value(); } } else { return GetHeap()->undefined_value(); } } else { Isolate* isolate = GetIsolate(); Handle<Symbol> hidden = isolate->factory()->hidden_properties_symbol(); Handle<JSObject> receiver(this, isolate); LookupIterator it(receiver, hidden, receiver); // Access check is always skipped for the hidden string anyways. return *GetDataProperty(&it); } } Handle<ObjectHashTable> JSObject::GetOrCreateHiddenPropertiesHashtable( Handle<JSObject> object) { Isolate* isolate = object->GetIsolate(); static const int kInitialCapacity = 4; Handle<Object> inline_value(object->GetHiddenPropertiesHashTable(), isolate); if (inline_value->IsHashTable()) { return Handle<ObjectHashTable>::cast(inline_value); } Handle<ObjectHashTable> hashtable = ObjectHashTable::New( isolate, kInitialCapacity, USE_CUSTOM_MINIMUM_CAPACITY); DCHECK(inline_value->IsUndefined()); SetHiddenPropertiesHashTable(object, hashtable); return hashtable; } Handle<Object> JSObject::SetHiddenPropertiesHashTable(Handle<JSObject> object, Handle<Object> value) { DCHECK(!object->IsJSGlobalProxy()); Isolate* isolate = object->GetIsolate(); Handle<Symbol> name = isolate->factory()->hidden_properties_symbol(); SetOwnPropertyIgnoreAttributes(object, name, value, DONT_ENUM).Assert(); return object; } Maybe<bool> JSObject::DeletePropertyWithInterceptor(LookupIterator* it, ShouldThrow should_throw) { Isolate* isolate = it->isolate(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(isolate); DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state()); Handle<InterceptorInfo> interceptor(it->GetInterceptor()); if (interceptor->deleter()->IsUndefined()) return Nothing<bool>(); Handle<JSObject> holder = it->GetHolder<JSObject>(); PropertyCallbackArguments args(isolate, interceptor->data(), *it->GetReceiver(), *holder, should_throw); Handle<Object> result; if (it->IsElement()) { uint32_t index = it->index(); v8::IndexedPropertyDeleterCallback deleter = v8::ToCData<v8::IndexedPropertyDeleterCallback>(interceptor->deleter()); result = args.Call(deleter, index); } else if (it->name()->IsSymbol() && !interceptor->can_intercept_symbols()) { return Nothing<bool>(); } else { Handle<Name> name = it->name(); DCHECK(!name->IsPrivate()); v8::GenericNamedPropertyDeleterCallback deleter = v8::ToCData<v8::GenericNamedPropertyDeleterCallback>( interceptor->deleter()); result = args.Call(deleter, name); } RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>()); if (result.is_null()) return Nothing<bool>(); DCHECK(result->IsBoolean()); // Rebox CustomArguments::kReturnValueOffset before returning. return Just(result->IsTrue()); } void JSReceiver::DeleteNormalizedProperty(Handle<JSReceiver> object, Handle<Name> name, int entry) { DCHECK(!object->HasFastProperties()); Isolate* isolate = object->GetIsolate(); if (object->IsJSGlobalObject()) { // If we have a global object, invalidate the cell and swap in a new one. Handle<GlobalDictionary> dictionary( JSObject::cast(*object)->global_dictionary()); DCHECK_NE(GlobalDictionary::kNotFound, entry); auto cell = PropertyCell::InvalidateEntry(dictionary, entry); cell->set_value(isolate->heap()->the_hole_value()); // TODO(ishell): InvalidateForDelete cell->set_property_details( cell->property_details().set_cell_type(PropertyCellType::kInvalidated)); } else { Handle<NameDictionary> dictionary(object->property_dictionary()); DCHECK_NE(NameDictionary::kNotFound, entry); NameDictionary::DeleteProperty(dictionary, entry); Handle<NameDictionary> new_properties = NameDictionary::Shrink(dictionary, name); object->set_properties(*new_properties); } } Maybe<bool> JSReceiver::DeleteProperty(LookupIterator* it, LanguageMode language_mode) { it->UpdateProtector(); Isolate* isolate = it->isolate(); if (it->state() == LookupIterator::JSPROXY) { return JSProxy::DeletePropertyOrElement(it->GetHolder<JSProxy>(), it->GetName(), language_mode); } if (it->GetReceiver()->IsJSProxy()) { if (it->state() != LookupIterator::NOT_FOUND) { DCHECK_EQ(LookupIterator::DATA, it->state()); DCHECK(it->name()->IsPrivate()); it->Delete(); } return Just(true); } Handle<JSObject> receiver = Handle<JSObject>::cast(it->GetReceiver()); for (; it->IsFound(); it->Next()) { switch (it->state()) { case LookupIterator::JSPROXY: case LookupIterator::NOT_FOUND: case LookupIterator::TRANSITION: UNREACHABLE(); case LookupIterator::ACCESS_CHECK: if (it->HasAccess()) break; isolate->ReportFailedAccessCheck(it->GetHolder<JSObject>()); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>()); return Just(false); case LookupIterator::INTERCEPTOR: { ShouldThrow should_throw = is_sloppy(language_mode) ? DONT_THROW : THROW_ON_ERROR; Maybe<bool> result = JSObject::DeletePropertyWithInterceptor(it, should_throw); // An exception was thrown in the interceptor. Propagate. if (isolate->has_pending_exception()) return Nothing<bool>(); // Delete with interceptor succeeded. Return result. // TODO(neis): In strict mode, we should probably throw if the // interceptor returns false. if (result.IsJust()) return result; break; } case LookupIterator::INTEGER_INDEXED_EXOTIC: return Just(true); case LookupIterator::DATA: case LookupIterator::ACCESSOR: { if (!it->IsConfigurable()) { // Fail if the property is not configurable. if (is_strict(language_mode)) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kStrictDeleteProperty, it->GetName(), receiver)); return Nothing<bool>(); } return Just(false); } it->Delete(); return Just(true); } } } return Just(true); } Maybe<bool> JSReceiver::DeleteElement(Handle<JSReceiver> object, uint32_t index, LanguageMode language_mode) { LookupIterator it(object->GetIsolate(), object, index, object, LookupIterator::HIDDEN); return DeleteProperty(&it, language_mode); } Maybe<bool> JSReceiver::DeleteProperty(Handle<JSReceiver> object, Handle<Name> name, LanguageMode language_mode) { LookupIterator it(object, name, object, LookupIterator::HIDDEN); return DeleteProperty(&it, language_mode); } Maybe<bool> JSReceiver::DeletePropertyOrElement(Handle<JSReceiver> object, Handle<Name> name, LanguageMode language_mode) { LookupIterator it = LookupIterator::PropertyOrElement( name->GetIsolate(), object, name, object, LookupIterator::HIDDEN); return DeleteProperty(&it, language_mode); } // ES6 7.1.14 // static MaybeHandle<Object> Object::ToPropertyKey(Isolate* isolate, Handle<Object> value) { // 1. Let key be ToPrimitive(argument, hint String). MaybeHandle<Object> maybe_key = Object::ToPrimitive(value, ToPrimitiveHint::kString); // 2. ReturnIfAbrupt(key). Handle<Object> key; if (!maybe_key.ToHandle(&key)) return key; // 3. If Type(key) is Symbol, then return key. if (key->IsSymbol()) return key; // 4. Return ToString(key). // Extending spec'ed behavior, we'd be happy to return an element index. if (key->IsSmi()) return key; if (key->IsHeapNumber()) { uint32_t uint_value; if (value->ToArrayLength(&uint_value) && uint_value <= static_cast<uint32_t>(Smi::kMaxValue)) { return handle(Smi::FromInt(static_cast<int>(uint_value)), isolate); } } return Object::ToString(isolate, key); } // ES6 19.1.2.4 // static Object* JSReceiver::DefineProperty(Isolate* isolate, Handle<Object> object, Handle<Object> key, Handle<Object> attributes) { // 1. If Type(O) is not Object, throw a TypeError exception. if (!object->IsJSReceiver()) { Handle<String> fun_name = isolate->factory()->InternalizeUtf8String("Object.defineProperty"); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, fun_name)); } // 2. Let key be ToPropertyKey(P). // 3. ReturnIfAbrupt(key). ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, key, ToPropertyKey(isolate, key)); // 4. Let desc be ToPropertyDescriptor(Attributes). // 5. ReturnIfAbrupt(desc). PropertyDescriptor desc; if (!PropertyDescriptor::ToPropertyDescriptor(isolate, attributes, &desc)) { return isolate->heap()->exception(); } // 6. Let success be DefinePropertyOrThrow(O,key, desc). Maybe<bool> success = DefineOwnProperty( isolate, Handle<JSReceiver>::cast(object), key, &desc, THROW_ON_ERROR); // 7. ReturnIfAbrupt(success). MAYBE_RETURN(success, isolate->heap()->exception()); CHECK(success.FromJust()); // 8. Return O. return *object; } // ES6 19.1.2.3.1 // static MaybeHandle<Object> JSReceiver::DefineProperties(Isolate* isolate, Handle<Object> object, Handle<Object> properties) { // 1. If Type(O) is not Object, throw a TypeError exception. if (!object->IsJSReceiver()) { Handle<String> fun_name = isolate->factory()->InternalizeUtf8String("Object.defineProperties"); THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kCalledOnNonObject, fun_name), Object); } // 2. Let props be ToObject(Properties). // 3. ReturnIfAbrupt(props). Handle<JSReceiver> props; if (!Object::ToObject(isolate, properties).ToHandle(&props)) { THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kUndefinedOrNullToObject), Object); } // 4. Let keys be props.[[OwnPropertyKeys]](). // 5. ReturnIfAbrupt(keys). Handle<FixedArray> keys; ASSIGN_RETURN_ON_EXCEPTION( isolate, keys, JSReceiver::GetKeys(props, OWN_ONLY, ALL_PROPERTIES), Object); // 6. Let descriptors be an empty List. int capacity = keys->length(); std::vector<PropertyDescriptor> descriptors(capacity); size_t descriptors_index = 0; // 7. Repeat for each element nextKey of keys in List order, for (int i = 0; i < keys->length(); ++i) { Handle<Object> next_key(keys->get(i), isolate); // 7a. Let propDesc be props.[[GetOwnProperty]](nextKey). // 7b. ReturnIfAbrupt(propDesc). bool success = false; LookupIterator it = LookupIterator::PropertyOrElement( isolate, props, next_key, &success, LookupIterator::HIDDEN); DCHECK(success); Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it); if (!maybe.IsJust()) return MaybeHandle<Object>(); PropertyAttributes attrs = maybe.FromJust(); // 7c. If propDesc is not undefined and propDesc.[[Enumerable]] is true: if (attrs == ABSENT) continue; if (attrs & DONT_ENUM) continue; // 7c i. Let descObj be Get(props, nextKey). // 7c ii. ReturnIfAbrupt(descObj). Handle<Object> desc_obj; ASSIGN_RETURN_ON_EXCEPTION(isolate, desc_obj, Object::GetProperty(&it), Object); // 7c iii. Let desc be ToPropertyDescriptor(descObj). success = PropertyDescriptor::ToPropertyDescriptor( isolate, desc_obj, &descriptors[descriptors_index]); // 7c iv. ReturnIfAbrupt(desc). if (!success) return MaybeHandle<Object>(); // 7c v. Append the pair (a two element List) consisting of nextKey and // desc to the end of descriptors. descriptors[descriptors_index].set_name(next_key); descriptors_index++; } // 8. For each pair from descriptors in list order, for (size_t i = 0; i < descriptors_index; ++i) { PropertyDescriptor* desc = &descriptors[i]; // 8a. Let P be the first element of pair. // 8b. Let desc be the second element of pair. // 8c. Let status be DefinePropertyOrThrow(O, P, desc). Maybe<bool> status = DefineOwnProperty(isolate, Handle<JSReceiver>::cast(object), desc->name(), desc, THROW_ON_ERROR); // 8d. ReturnIfAbrupt(status). if (!status.IsJust()) return MaybeHandle<Object>(); CHECK(status.FromJust()); } // 9. Return o. return object; } // static Maybe<bool> JSReceiver::DefineOwnProperty(Isolate* isolate, Handle<JSReceiver> object, Handle<Object> key, PropertyDescriptor* desc, ShouldThrow should_throw) { if (object->IsJSArray()) { return JSArray::DefineOwnProperty(isolate, Handle<JSArray>::cast(object), key, desc, should_throw); } if (object->IsJSProxy()) { return JSProxy::DefineOwnProperty(isolate, Handle<JSProxy>::cast(object), key, desc, should_throw); } // TODO(jkummerow): Support Modules (ES6 9.4.6.6) // OrdinaryDefineOwnProperty, by virtue of calling // DefineOwnPropertyIgnoreAttributes, can handle arguments (ES6 9.4.4.2) // and IntegerIndexedExotics (ES6 9.4.5.3), with one exception: // TODO(jkummerow): Setting an indexed accessor on a typed array should throw. return OrdinaryDefineOwnProperty(isolate, Handle<JSObject>::cast(object), key, desc, should_throw); } // static Maybe<bool> JSReceiver::OrdinaryDefineOwnProperty(Isolate* isolate, Handle<JSObject> object, Handle<Object> key, PropertyDescriptor* desc, ShouldThrow should_throw) { bool success = false; DCHECK(key->IsName() || key->IsNumber()); // |key| is a PropertyKey... LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, key, &success, LookupIterator::HIDDEN); DCHECK(success); // ...so creating a LookupIterator can't fail. // Deal with access checks first. if (it.state() == LookupIterator::ACCESS_CHECK) { if (!it.HasAccess()) { isolate->ReportFailedAccessCheck(it.GetHolder<JSObject>()); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>()); return Just(true); } it.Next(); } return OrdinaryDefineOwnProperty(&it, desc, should_throw); } // ES6 9.1.6.1 // static Maybe<bool> JSReceiver::OrdinaryDefineOwnProperty(LookupIterator* it, PropertyDescriptor* desc, ShouldThrow should_throw) { Isolate* isolate = it->isolate(); // 1. Let current be O.[[GetOwnProperty]](P). // 2. ReturnIfAbrupt(current). PropertyDescriptor current; MAYBE_RETURN(GetOwnPropertyDescriptor(it, ¤t), Nothing<bool>()); // TODO(jkummerow/verwaest): It would be nice if we didn't have to reset // the iterator every time. Currently, the reasons why we need it are: // - handle interceptors correctly // - handle accessors correctly (which might change the holder's map) it->Restart(); // 3. Let extensible be the value of the [[Extensible]] internal slot of O. Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver()); bool extensible = JSObject::IsExtensible(object); return ValidateAndApplyPropertyDescriptor(isolate, it, extensible, desc, ¤t, should_throw); } // ES6 9.1.6.2 // static Maybe<bool> JSReceiver::IsCompatiblePropertyDescriptor( Isolate* isolate, bool extensible, PropertyDescriptor* desc, PropertyDescriptor* current, Handle<Name> property_name, ShouldThrow should_throw) { // 1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined, // Extensible, Desc, Current). return ValidateAndApplyPropertyDescriptor( isolate, NULL, extensible, desc, current, should_throw, property_name); } // ES6 9.1.6.3 // static Maybe<bool> JSReceiver::ValidateAndApplyPropertyDescriptor( Isolate* isolate, LookupIterator* it, bool extensible, PropertyDescriptor* desc, PropertyDescriptor* current, ShouldThrow should_throw, Handle<Name> property_name) { // We either need a LookupIterator, or a property name. DCHECK((it == NULL) != property_name.is_null()); Handle<JSObject> object; if (it != NULL) object = Handle<JSObject>::cast(it->GetReceiver()); bool desc_is_data_descriptor = PropertyDescriptor::IsDataDescriptor(desc); bool desc_is_accessor_descriptor = PropertyDescriptor::IsAccessorDescriptor(desc); bool desc_is_generic_descriptor = PropertyDescriptor::IsGenericDescriptor(desc); // 1. (Assert) // 2. If current is undefined, then if (current->is_empty()) { // 2a. If extensible is false, return false. if (!extensible) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kDefineDisallowed, it != NULL ? it->GetName() : property_name)); } // 2c. If IsGenericDescriptor(Desc) or IsDataDescriptor(Desc) is true, then: // (This is equivalent to !IsAccessorDescriptor(desc).) DCHECK((desc_is_generic_descriptor || desc_is_data_descriptor) == !desc_is_accessor_descriptor); if (!desc_is_accessor_descriptor) { // 2c i. If O is not undefined, create an own data property named P of // object O whose [[Value]], [[Writable]], [[Enumerable]] and // [[Configurable]] attribute values are described by Desc. If the value // of an attribute field of Desc is absent, the attribute of the newly // created property is set to its default value. if (it != NULL) { if (!desc->has_writable()) desc->set_writable(false); if (!desc->has_enumerable()) desc->set_enumerable(false); if (!desc->has_configurable()) desc->set_configurable(false); Handle<Object> value( desc->has_value() ? desc->value() : Handle<Object>::cast(isolate->factory()->undefined_value())); MaybeHandle<Object> result = JSObject::DefineOwnPropertyIgnoreAttributes(it, value, desc->ToAttributes()); if (result.is_null()) return Nothing<bool>(); } } else { // 2d. Else Desc must be an accessor Property Descriptor, DCHECK(desc_is_accessor_descriptor); // 2d i. If O is not undefined, create an own accessor property named P // of object O whose [[Get]], [[Set]], [[Enumerable]] and // [[Configurable]] attribute values are described by Desc. If the value // of an attribute field of Desc is absent, the attribute of the newly // created property is set to its default value. if (it != NULL) { if (!desc->has_enumerable()) desc->set_enumerable(false); if (!desc->has_configurable()) desc->set_configurable(false); Handle<Object> getter( desc->has_get() ? desc->get() : Handle<Object>::cast(isolate->factory()->null_value())); Handle<Object> setter( desc->has_set() ? desc->set() : Handle<Object>::cast(isolate->factory()->null_value())); MaybeHandle<Object> result = JSObject::DefineAccessor(it, getter, setter, desc->ToAttributes()); if (result.is_null()) return Nothing<bool>(); } } // 2e. Return true. return Just(true); } // 3. Return true, if every field in Desc is absent. // 4. Return true, if every field in Desc also occurs in current and the // value of every field in Desc is the same value as the corresponding field // in current when compared using the SameValue algorithm. if ((!desc->has_enumerable() || desc->enumerable() == current->enumerable()) && (!desc->has_configurable() || desc->configurable() == current->configurable()) && (!desc->has_value() || (current->has_value() && current->value()->SameValue(*desc->value()))) && (!desc->has_writable() || (current->has_writable() && current->writable() == desc->writable())) && (!desc->has_get() || (current->has_get() && current->get()->SameValue(*desc->get()))) && (!desc->has_set() || (current->has_set() && current->set()->SameValue(*desc->set())))) { return Just(true); } // 5. If the [[Configurable]] field of current is false, then if (!current->configurable()) { // 5a. Return false, if the [[Configurable]] field of Desc is true. if (desc->has_configurable() && desc->configurable()) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it != NULL ? it->GetName() : property_name)); } // 5b. Return false, if the [[Enumerable]] field of Desc is present and the // [[Enumerable]] fields of current and Desc are the Boolean negation of // each other. if (desc->has_enumerable() && desc->enumerable() != current->enumerable()) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it != NULL ? it->GetName() : property_name)); } } bool current_is_data_descriptor = PropertyDescriptor::IsDataDescriptor(current); // 6. If IsGenericDescriptor(Desc) is true, no further validation is required. if (desc_is_generic_descriptor) { // Nothing to see here. // 7. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) have // different results, then: } else if (current_is_data_descriptor != desc_is_data_descriptor) { // 7a. Return false, if the [[Configurable]] field of current is false. if (!current->configurable()) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it != NULL ? it->GetName() : property_name)); } // 7b. If IsDataDescriptor(current) is true, then: if (current_is_data_descriptor) { // 7b i. If O is not undefined, convert the property named P of object O // from a data property to an accessor property. Preserve the existing // values of the converted property's [[Configurable]] and [[Enumerable]] // attributes and set the rest of the property's attributes to their // default values. // --> Folded into step 10. } else { // 7c i. If O is not undefined, convert the property named P of object O // from an accessor property to a data property. Preserve the existing // values of the converted property’s [[Configurable]] and [[Enumerable]] // attributes and set the rest of the property’s attributes to their // default values. // --> Folded into step 10. } // 8. Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both // true, then: } else if (current_is_data_descriptor && desc_is_data_descriptor) { // 8a. If the [[Configurable]] field of current is false, then: if (!current->configurable()) { // 8a i. Return false, if the [[Writable]] field of current is false and // the [[Writable]] field of Desc is true. if (!current->writable() && desc->has_writable() && desc->writable()) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it != NULL ? it->GetName() : property_name)); } // 8a ii. If the [[Writable]] field of current is false, then: if (!current->writable()) { // 8a ii 1. Return false, if the [[Value]] field of Desc is present and // SameValue(Desc.[[Value]], current.[[Value]]) is false. if (desc->has_value() && !desc->value()->SameValue(*current->value())) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it != NULL ? it->GetName() : property_name)); } } } } else { // 9. Else IsAccessorDescriptor(current) and IsAccessorDescriptor(Desc) // are both true, DCHECK(PropertyDescriptor::IsAccessorDescriptor(current) && desc_is_accessor_descriptor); // 9a. If the [[Configurable]] field of current is false, then: if (!current->configurable()) { // 9a i. Return false, if the [[Set]] field of Desc is present and // SameValue(Desc.[[Set]], current.[[Set]]) is false. if (desc->has_set() && !desc->set()->SameValue(*current->set())) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it != NULL ? it->GetName() : property_name)); } // 9a ii. Return false, if the [[Get]] field of Desc is present and // SameValue(Desc.[[Get]], current.[[Get]]) is false. if (desc->has_get() && !desc->get()->SameValue(*current->get())) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it != NULL ? it->GetName() : property_name)); } } } // 10. If O is not undefined, then: if (it != NULL) { // 10a. For each field of Desc that is present, set the corresponding // attribute of the property named P of object O to the value of the field. PropertyAttributes attrs = NONE; if (desc->has_enumerable()) { attrs = static_cast<PropertyAttributes>( attrs | (desc->enumerable() ? NONE : DONT_ENUM)); } else { attrs = static_cast<PropertyAttributes>( attrs | (current->enumerable() ? NONE : DONT_ENUM)); } if (desc->has_configurable()) { attrs = static_cast<PropertyAttributes>( attrs | (desc->configurable() ? NONE : DONT_DELETE)); } else { attrs = static_cast<PropertyAttributes>( attrs | (current->configurable() ? NONE : DONT_DELETE)); } if (desc_is_data_descriptor || (desc_is_generic_descriptor && current_is_data_descriptor)) { if (desc->has_writable()) { attrs = static_cast<PropertyAttributes>( attrs | (desc->writable() ? NONE : READ_ONLY)); } else { attrs = static_cast<PropertyAttributes>( attrs | (current->writable() ? NONE : READ_ONLY)); } Handle<Object> value( desc->has_value() ? desc->value() : current->has_value() ? current->value() : Handle<Object>::cast( isolate->factory()->undefined_value())); MaybeHandle<Object> result = JSObject::DefineOwnPropertyIgnoreAttributes(it, value, attrs); if (result.is_null()) return Nothing<bool>(); } else { DCHECK(desc_is_accessor_descriptor || (desc_is_generic_descriptor && PropertyDescriptor::IsAccessorDescriptor(current))); Handle<Object> getter( desc->has_get() ? desc->get() : current->has_get() ? current->get() : Handle<Object>::cast(isolate->factory()->null_value())); Handle<Object> setter( desc->has_set() ? desc->set() : current->has_set() ? current->set() : Handle<Object>::cast(isolate->factory()->null_value())); MaybeHandle<Object> result = JSObject::DefineAccessor(it, getter, setter, attrs); if (result.is_null()) return Nothing<bool>(); } } // 11. Return true. return Just(true); } // static Maybe<bool> JSReceiver::CreateDataProperty(LookupIterator* it, Handle<Object> value, ShouldThrow should_throw) { DCHECK(!it->check_prototype_chain()); Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(it->GetReceiver()); Isolate* isolate = receiver->GetIsolate(); if (receiver->IsJSObject()) { return JSObject::CreateDataProperty(it, value, should_throw); // Shortcut. } PropertyDescriptor new_desc; new_desc.set_value(value); new_desc.set_writable(true); new_desc.set_enumerable(true); new_desc.set_configurable(true); return JSReceiver::DefineOwnProperty(isolate, receiver, it->GetName(), &new_desc, should_throw); } Maybe<bool> JSObject::CreateDataProperty(LookupIterator* it, Handle<Object> value, ShouldThrow should_throw) { DCHECK(it->GetReceiver()->IsJSObject()); MAYBE_RETURN(JSReceiver::GetPropertyAttributes(it), Nothing<bool>()); Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(it->GetReceiver()); Isolate* isolate = receiver->GetIsolate(); if (it->IsFound()) { Maybe<PropertyAttributes> attributes = GetPropertyAttributes(it); MAYBE_RETURN(attributes, Nothing<bool>()); if ((attributes.FromJust() & DONT_DELETE) != 0) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, it->GetName())); } } else { if (!JSObject::IsExtensible(Handle<JSObject>::cast(it->GetReceiver()))) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kDefineDisallowed, it->GetName())); } } RETURN_ON_EXCEPTION_VALUE(it->isolate(), DefineOwnPropertyIgnoreAttributes(it, value, NONE), Nothing<bool>()); return Just(true); } // TODO(jkummerow): Consider unification with FastAsArrayLength() in // accessors.cc. bool PropertyKeyToArrayLength(Handle<Object> value, uint32_t* length) { DCHECK(value->IsNumber() || value->IsName()); if (value->ToArrayLength(length)) return true; if (value->IsString()) return String::cast(*value)->AsArrayIndex(length); return false; } bool PropertyKeyToArrayIndex(Handle<Object> index_obj, uint32_t* output) { return PropertyKeyToArrayLength(index_obj, output) && *output != kMaxUInt32; } // ES6 9.4.2.1 // static Maybe<bool> JSArray::DefineOwnProperty(Isolate* isolate, Handle<JSArray> o, Handle<Object> name, PropertyDescriptor* desc, ShouldThrow should_throw) { // 1. Assert: IsPropertyKey(P) is true. ("P" is |name|.) // 2. If P is "length", then: // TODO(jkummerow): Check if we need slow string comparison. if (*name == isolate->heap()->length_string()) { // 2a. Return ArraySetLength(A, Desc). return ArraySetLength(isolate, o, desc, should_throw); } // 3. Else if P is an array index, then: uint32_t index = 0; if (PropertyKeyToArrayIndex(name, &index)) { // 3a. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length"). PropertyDescriptor old_len_desc; Maybe<bool> success = GetOwnPropertyDescriptor( isolate, o, isolate->factory()->length_string(), &old_len_desc); // 3b. (Assert) DCHECK(success.FromJust()); USE(success); // 3c. Let oldLen be oldLenDesc.[[Value]]. uint32_t old_len = 0; CHECK(old_len_desc.value()->ToArrayLength(&old_len)); // 3d. Let index be ToUint32(P). // (Already done above.) // 3e. (Assert) // 3f. If index >= oldLen and oldLenDesc.[[Writable]] is false, // return false. if (index >= old_len && old_len_desc.has_writable() && !old_len_desc.writable()) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kDefineDisallowed, name)); } // 3g. Let succeeded be OrdinaryDefineOwnProperty(A, P, Desc). Maybe<bool> succeeded = OrdinaryDefineOwnProperty(isolate, o, name, desc, should_throw); // 3h. Assert: succeeded is not an abrupt completion. // In our case, if should_throw == THROW_ON_ERROR, it can be! // 3i. If succeeded is false, return false. if (succeeded.IsNothing() || !succeeded.FromJust()) return succeeded; // 3j. If index >= oldLen, then: if (index >= old_len) { // 3j i. Set oldLenDesc.[[Value]] to index + 1. old_len_desc.set_value(isolate->factory()->NewNumberFromUint(index + 1)); // 3j ii. Let succeeded be // OrdinaryDefineOwnProperty(A, "length", oldLenDesc). succeeded = OrdinaryDefineOwnProperty(isolate, o, isolate->factory()->length_string(), &old_len_desc, should_throw); // 3j iii. Assert: succeeded is true. DCHECK(succeeded.FromJust()); USE(succeeded); } // 3k. Return true. return Just(true); } // 4. Return OrdinaryDefineOwnProperty(A, P, Desc). return OrdinaryDefineOwnProperty(isolate, o, name, desc, should_throw); } // Part of ES6 9.4.2.4 ArraySetLength. // static bool JSArray::AnythingToArrayLength(Isolate* isolate, Handle<Object> length_object, uint32_t* output) { // Fast path: check numbers and strings that can be converted directly // and unobservably. if (length_object->ToArrayLength(output)) return true; if (length_object->IsString() && Handle<String>::cast(length_object)->AsArrayIndex(output)) { return true; } // Slow path: follow steps in ES6 9.4.2.4 "ArraySetLength". // 3. Let newLen be ToUint32(Desc.[[Value]]). Handle<Object> uint32_v; if (!Object::ToUint32(isolate, length_object).ToHandle(&uint32_v)) { // 4. ReturnIfAbrupt(newLen). return false; } // 5. Let numberLen be ToNumber(Desc.[[Value]]). Handle<Object> number_v; if (!Object::ToNumber(length_object).ToHandle(&number_v)) { // 6. ReturnIfAbrupt(newLen). return false; } // 7. If newLen != numberLen, throw a RangeError exception. if (uint32_v->Number() != number_v->Number()) { Handle<Object> exception = isolate->factory()->NewRangeError(MessageTemplate::kInvalidArrayLength); isolate->Throw(*exception); return false; } CHECK(uint32_v->ToArrayLength(output)); return true; } // ES6 9.4.2.4 // static Maybe<bool> JSArray::ArraySetLength(Isolate* isolate, Handle<JSArray> a, PropertyDescriptor* desc, ShouldThrow should_throw) { // 1. If the [[Value]] field of Desc is absent, then if (!desc->has_value()) { // 1a. Return OrdinaryDefineOwnProperty(A, "length", Desc). return OrdinaryDefineOwnProperty( isolate, a, isolate->factory()->length_string(), desc, should_throw); } // 2. Let newLenDesc be a copy of Desc. // (Actual copying is not necessary.) PropertyDescriptor* new_len_desc = desc; // 3. - 7. Convert Desc.[[Value]] to newLen. uint32_t new_len = 0; if (!AnythingToArrayLength(isolate, desc->value(), &new_len)) { DCHECK(isolate->has_pending_exception()); return Nothing<bool>(); } // 8. Set newLenDesc.[[Value]] to newLen. // (Done below, if needed.) // 9. Let oldLenDesc be OrdinaryGetOwnProperty(A, "length"). PropertyDescriptor old_len_desc; Maybe<bool> success = GetOwnPropertyDescriptor( isolate, a, isolate->factory()->length_string(), &old_len_desc); // 10. (Assert) DCHECK(success.FromJust()); USE(success); // 11. Let oldLen be oldLenDesc.[[Value]]. uint32_t old_len = 0; CHECK(old_len_desc.value()->ToArrayLength(&old_len)); // 12. If newLen >= oldLen, then if (new_len >= old_len) { // 8. Set newLenDesc.[[Value]] to newLen. // 12a. Return OrdinaryDefineOwnProperty(A, "length", newLenDesc). new_len_desc->set_value(isolate->factory()->NewNumberFromUint(new_len)); return OrdinaryDefineOwnProperty(isolate, a, isolate->factory()->length_string(), new_len_desc, should_throw); } // 13. If oldLenDesc.[[Writable]] is false, return false. if (!old_len_desc.writable()) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kRedefineDisallowed, isolate->factory()->length_string())); } // 14. If newLenDesc.[[Writable]] is absent or has the value true, // let newWritable be true. bool new_writable = false; if (!new_len_desc->has_writable() || new_len_desc->writable()) { new_writable = true; } else { // 15. Else, // 15a. Need to defer setting the [[Writable]] attribute to false in case // any elements cannot be deleted. // 15b. Let newWritable be false. (It's initialized as "false" anyway.) // 15c. Set newLenDesc.[[Writable]] to true. // (Not needed.) } // Most of steps 16 through 19 is implemented by JSArray::SetLength. JSArray::SetLength(a, new_len); // Steps 19d-ii, 20. if (!new_writable) { PropertyDescriptor readonly; readonly.set_writable(false); Maybe<bool> success = OrdinaryDefineOwnProperty( isolate, a, isolate->factory()->length_string(), &readonly, should_throw); DCHECK(success.FromJust()); USE(success); } uint32_t actual_new_len = 0; CHECK(a->length()->ToArrayLength(&actual_new_len)); // Steps 19d-v, 21. Return false if there were non-deletable elements. bool result = actual_new_len == new_len; if (!result) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kStrictDeleteProperty, isolate->factory()->NewNumberFromUint(actual_new_len - 1), a)); } return Just(result); } // ES6 9.5.6 // static Maybe<bool> JSProxy::DefineOwnProperty(Isolate* isolate, Handle<JSProxy> proxy, Handle<Object> key, PropertyDescriptor* desc, ShouldThrow should_throw) { STACK_CHECK(Nothing<bool>()); if (key->IsSymbol() && Handle<Symbol>::cast(key)->IsPrivate()) { return SetPrivateProperty(isolate, proxy, Handle<Symbol>::cast(key), desc, should_throw); } Handle<String> trap_name = isolate->factory()->defineProperty_string(); // 1. Assert: IsPropertyKey(P) is true. DCHECK(key->IsName() || key->IsNumber()); // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O. Handle<Object> handler(proxy->handler(), isolate); // 3. If handler is null, throw a TypeError exception. // 4. Assert: Type(handler) is Object. if (proxy->IsRevoked()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyRevoked, trap_name)); return Nothing<bool>(); } // 5. Let target be the value of the [[ProxyTarget]] internal slot of O. Handle<JSReceiver> target(proxy->target(), isolate); // 6. Let trap be ? GetMethod(handler, "defineProperty"). Handle<Object> trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name), Nothing<bool>()); // 7. If trap is undefined, then: if (trap->IsUndefined()) { // 7a. Return target.[[DefineOwnProperty]](P, Desc). return JSReceiver::DefineOwnProperty(isolate, target, key, desc, should_throw); } // 8. Let descObj be FromPropertyDescriptor(Desc). Handle<Object> desc_obj = desc->ToObject(isolate); // 9. Let booleanTrapResult be // ToBoolean(? Call(trap, handler, «target, P, descObj»)). Handle<Name> property_name = key->IsName() ? Handle<Name>::cast(key) : Handle<Name>::cast(isolate->factory()->NumberToString(key)); // Do not leak private property names. DCHECK(!property_name->IsPrivate()); Handle<Object> trap_result_obj; Handle<Object> args[] = {target, property_name, desc_obj}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result_obj, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing<bool>()); // 10. If booleanTrapResult is false, return false. if (!trap_result_obj->BooleanValue()) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kProxyTrapReturnedFalsishFor, trap_name, property_name)); } // 11. Let targetDesc be ? target.[[GetOwnProperty]](P). PropertyDescriptor target_desc; Maybe<bool> target_found = JSReceiver::GetOwnPropertyDescriptor(isolate, target, key, &target_desc); MAYBE_RETURN(target_found, Nothing<bool>()); // 12. Let extensibleTarget be ? IsExtensible(target). Maybe<bool> maybe_extensible = JSReceiver::IsExtensible(target); MAYBE_RETURN(maybe_extensible, Nothing<bool>()); bool extensible_target = maybe_extensible.FromJust(); // 13. If Desc has a [[Configurable]] field and if Desc.[[Configurable]] // is false, then: // 13a. Let settingConfigFalse be true. // 14. Else let settingConfigFalse be false. bool setting_config_false = desc->has_configurable() && !desc->configurable(); // 15. If targetDesc is undefined, then if (!target_found.FromJust()) { // 15a. If extensibleTarget is false, throw a TypeError exception. if (!extensible_target) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyDefinePropertyNonExtensible, property_name)); return Nothing<bool>(); } // 15b. If settingConfigFalse is true, throw a TypeError exception. if (setting_config_false) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyDefinePropertyNonConfigurable, property_name)); return Nothing<bool>(); } } else { // 16. Else targetDesc is not undefined, // 16a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc, // targetDesc) is false, throw a TypeError exception. Maybe<bool> valid = IsCompatiblePropertyDescriptor(isolate, extensible_target, desc, &target_desc, property_name, DONT_THROW); MAYBE_RETURN(valid, Nothing<bool>()); if (!valid.FromJust()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyDefinePropertyIncompatible, property_name)); return Nothing<bool>(); } // 16b. If settingConfigFalse is true and targetDesc.[[Configurable]] is // true, throw a TypeError exception. if (setting_config_false && target_desc.configurable()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyDefinePropertyNonConfigurable, property_name)); return Nothing<bool>(); } } // 17. Return true. return Just(true); } // static Maybe<bool> JSProxy::SetPrivateProperty(Isolate* isolate, Handle<JSProxy> proxy, Handle<Symbol> private_name, PropertyDescriptor* desc, ShouldThrow should_throw) { // Despite the generic name, this can only add private data properties. if (!PropertyDescriptor::IsDataDescriptor(desc) || desc->ToAttributes() != DONT_ENUM) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kProxyPrivate)); } DCHECK(proxy->map()->is_dictionary_map()); Handle<Object> value = desc->has_value() ? desc->value() : Handle<Object>::cast(isolate->factory()->undefined_value()); LookupIterator it(proxy, private_name, proxy); if (it.IsFound()) { DCHECK_EQ(LookupIterator::DATA, it.state()); DCHECK_EQ(DONT_ENUM, it.property_attributes()); it.WriteDataValue(value); return Just(true); } Handle<NameDictionary> dict(proxy->property_dictionary()); PropertyDetails details(DONT_ENUM, DATA, 0, PropertyCellType::kNoCell); Handle<NameDictionary> result = NameDictionary::Add(dict, private_name, value, details); if (!dict.is_identical_to(result)) proxy->set_properties(*result); return Just(true); } // static Maybe<bool> JSReceiver::GetOwnPropertyDescriptor(Isolate* isolate, Handle<JSReceiver> object, Handle<Object> key, PropertyDescriptor* desc) { bool success = false; DCHECK(key->IsName() || key->IsNumber()); // |key| is a PropertyKey... LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, key, &success, LookupIterator::HIDDEN); DCHECK(success); // ...so creating a LookupIterator can't fail. return GetOwnPropertyDescriptor(&it, desc); } // ES6 9.1.5.1 // Returns true on success, false if the property didn't exist, nothing if // an exception was thrown. // static Maybe<bool> JSReceiver::GetOwnPropertyDescriptor(LookupIterator* it, PropertyDescriptor* desc) { Isolate* isolate = it->isolate(); // "Virtual" dispatch. if (it->IsFound() && it->GetHolder<JSReceiver>()->IsJSProxy()) { return JSProxy::GetOwnPropertyDescriptor(isolate, it->GetHolder<JSProxy>(), it->GetName(), desc); } // 1. (Assert) // 2. If O does not have an own property with key P, return undefined. Maybe<PropertyAttributes> maybe = JSObject::GetPropertyAttributes(it); MAYBE_RETURN(maybe, Nothing<bool>()); PropertyAttributes attrs = maybe.FromJust(); if (attrs == ABSENT) return Just(false); DCHECK(!isolate->has_pending_exception()); // 3. Let D be a newly created Property Descriptor with no fields. DCHECK(desc->is_empty()); // 4. Let X be O's own property whose key is P. // 5. If X is a data property, then bool is_accessor_pair = it->state() == LookupIterator::ACCESSOR && it->GetAccessors()->IsAccessorPair(); if (!is_accessor_pair) { // 5a. Set D.[[Value]] to the value of X's [[Value]] attribute. Handle<Object> value; if (!Object::GetProperty(it).ToHandle(&value)) { DCHECK(isolate->has_pending_exception()); return Nothing<bool>(); } desc->set_value(value); // 5b. Set D.[[Writable]] to the value of X's [[Writable]] attribute desc->set_writable((attrs & READ_ONLY) == 0); } else { // 6. Else X is an accessor property, so Handle<AccessorPair> accessors = Handle<AccessorPair>::cast(it->GetAccessors()); // 6a. Set D.[[Get]] to the value of X's [[Get]] attribute. desc->set_get(AccessorPair::GetComponent(accessors, ACCESSOR_GETTER)); // 6b. Set D.[[Set]] to the value of X's [[Set]] attribute. desc->set_set(AccessorPair::GetComponent(accessors, ACCESSOR_SETTER)); } // 7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute. desc->set_enumerable((attrs & DONT_ENUM) == 0); // 8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute. desc->set_configurable((attrs & DONT_DELETE) == 0); // 9. Return D. DCHECK(PropertyDescriptor::IsAccessorDescriptor(desc) != PropertyDescriptor::IsDataDescriptor(desc)); return Just(true); } // ES6 9.5.5 // static Maybe<bool> JSProxy::GetOwnPropertyDescriptor(Isolate* isolate, Handle<JSProxy> proxy, Handle<Name> name, PropertyDescriptor* desc) { DCHECK(!name->IsPrivate()); STACK_CHECK(Nothing<bool>()); Handle<String> trap_name = isolate->factory()->getOwnPropertyDescriptor_string(); // 1. (Assert) // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O. Handle<Object> handler(proxy->handler(), isolate); // 3. If handler is null, throw a TypeError exception. // 4. Assert: Type(handler) is Object. if (proxy->IsRevoked()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyRevoked, trap_name)); return Nothing<bool>(); } // 5. Let target be the value of the [[ProxyTarget]] internal slot of O. Handle<JSReceiver> target(proxy->target(), isolate); // 6. Let trap be ? GetMethod(handler, "getOwnPropertyDescriptor"). Handle<Object> trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name), Nothing<bool>()); // 7. If trap is undefined, then if (trap->IsUndefined()) { // 7a. Return target.[[GetOwnProperty]](P). return JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, desc); } // 8. Let trapResultObj be ? Call(trap, handler, «target, P»). Handle<Object> trap_result_obj; Handle<Object> args[] = {target, name}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result_obj, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing<bool>()); // 9. If Type(trapResultObj) is neither Object nor Undefined, throw a // TypeError exception. if (!trap_result_obj->IsJSReceiver() && !trap_result_obj->IsUndefined()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyGetOwnPropertyDescriptorInvalid, name)); return Nothing<bool>(); } // 10. Let targetDesc be ? target.[[GetOwnProperty]](P). PropertyDescriptor target_desc; Maybe<bool> found = JSReceiver::GetOwnPropertyDescriptor(isolate, target, name, &target_desc); MAYBE_RETURN(found, Nothing<bool>()); // 11. If trapResultObj is undefined, then if (trap_result_obj->IsUndefined()) { // 11a. If targetDesc is undefined, return undefined. if (!found.FromJust()) return Just(false); // 11b. If targetDesc.[[Configurable]] is false, throw a TypeError // exception. if (!target_desc.configurable()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyGetOwnPropertyDescriptorUndefined, name)); return Nothing<bool>(); } // 11c. Let extensibleTarget be ? IsExtensible(target). Maybe<bool> extensible_target = JSReceiver::IsExtensible(target); MAYBE_RETURN(extensible_target, Nothing<bool>()); // 11d. (Assert) // 11e. If extensibleTarget is false, throw a TypeError exception. if (!extensible_target.FromJust()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyGetOwnPropertyDescriptorNonExtensible, name)); return Nothing<bool>(); } // 11f. Return undefined. return Just(false); } // 12. Let extensibleTarget be ? IsExtensible(target). Maybe<bool> extensible_target = JSReceiver::IsExtensible(target); MAYBE_RETURN(extensible_target, Nothing<bool>()); // 13. Let resultDesc be ? ToPropertyDescriptor(trapResultObj). if (!PropertyDescriptor::ToPropertyDescriptor(isolate, trap_result_obj, desc)) { DCHECK(isolate->has_pending_exception()); return Nothing<bool>(); } // 14. Call CompletePropertyDescriptor(resultDesc). PropertyDescriptor::CompletePropertyDescriptor(isolate, desc); // 15. Let valid be IsCompatiblePropertyDescriptor (extensibleTarget, // resultDesc, targetDesc). Maybe<bool> valid = IsCompatiblePropertyDescriptor(isolate, extensible_target.FromJust(), desc, &target_desc, name, DONT_THROW); MAYBE_RETURN(valid, Nothing<bool>()); // 16. If valid is false, throw a TypeError exception. if (!valid.FromJust()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyGetOwnPropertyDescriptorIncompatible, name)); return Nothing<bool>(); } // 17. If resultDesc.[[Configurable]] is false, then if (!desc->configurable()) { // 17a. If targetDesc is undefined or targetDesc.[[Configurable]] is true: if (target_desc.is_empty() || target_desc.configurable()) { // 17a i. Throw a TypeError exception. isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyGetOwnPropertyDescriptorNonConfigurable, name)); return Nothing<bool>(); } } // 18. Return resultDesc. return Just(true); } bool JSObject::ReferencesObjectFromElements(FixedArray* elements, ElementsKind kind, Object* object) { if (IsFastObjectElementsKind(kind) || kind == FAST_STRING_WRAPPER_ELEMENTS) { int length = IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value() : elements->length(); for (int i = 0; i < length; ++i) { Object* element = elements->get(i); if (!element->IsTheHole() && element == object) return true; } } else { DCHECK(kind == DICTIONARY_ELEMENTS || kind == SLOW_STRING_WRAPPER_ELEMENTS); Object* key = SeededNumberDictionary::cast(elements)->SlowReverseLookup(object); if (!key->IsUndefined()) return true; } return false; } // Check whether this object references another object. bool JSObject::ReferencesObject(Object* obj) { Map* map_of_this = map(); Heap* heap = GetHeap(); DisallowHeapAllocation no_allocation; // Is the object the constructor for this object? if (map_of_this->GetConstructor() == obj) { return true; } // Is the object the prototype for this object? if (map_of_this->prototype() == obj) { return true; } // Check if the object is among the named properties. Object* key = SlowReverseLookup(obj); if (!key->IsUndefined()) { return true; } // Check if the object is among the indexed properties. ElementsKind kind = GetElementsKind(); switch (kind) { // Raw pixels and external arrays do not reference other // objects. #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: \ break; TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: break; case FAST_SMI_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: break; case FAST_ELEMENTS: case FAST_HOLEY_ELEMENTS: case DICTIONARY_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: { FixedArray* elements = FixedArray::cast(this->elements()); if (ReferencesObjectFromElements(elements, kind, obj)) return true; break; } case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { FixedArray* parameter_map = FixedArray::cast(elements()); // Check the mapped parameters. int length = parameter_map->length(); for (int i = 2; i < length; ++i) { Object* value = parameter_map->get(i); if (!value->IsTheHole() && value == obj) return true; } // Check the arguments. FixedArray* arguments = FixedArray::cast(parameter_map->get(1)); kind = arguments->IsDictionary() ? DICTIONARY_ELEMENTS : FAST_HOLEY_ELEMENTS; if (ReferencesObjectFromElements(arguments, kind, obj)) return true; break; } case NO_ELEMENTS: break; } // For functions check the context. if (IsJSFunction()) { // Get the constructor function for arguments array. Map* arguments_map = heap->isolate()->context()->native_context()->sloppy_arguments_map(); JSFunction* arguments_function = JSFunction::cast(arguments_map->GetConstructor()); // Get the context and don't check if it is the native context. JSFunction* f = JSFunction::cast(this); Context* context = f->context(); if (context->IsNativeContext()) { return false; } // Check the non-special context slots. for (int i = Context::MIN_CONTEXT_SLOTS; i < context->length(); i++) { // Only check JS objects. if (context->get(i)->IsJSObject()) { JSObject* ctxobj = JSObject::cast(context->get(i)); // If it is an arguments array check the content. if (ctxobj->map()->GetConstructor() == arguments_function) { if (ctxobj->ReferencesObject(obj)) { return true; } } else if (ctxobj == obj) { return true; } } } // Check the context extension (if any) if it can have references. if (context->has_extension() && !context->IsCatchContext()) { // With harmony scoping, a JSFunction may have a script context. // TODO(mvstanton): walk into the ScopeInfo. if (context->IsScriptContext()) { return false; } return context->extension_object()->ReferencesObject(obj); } } // No references to object. return false; } Maybe<bool> JSReceiver::SetIntegrityLevel(Handle<JSReceiver> receiver, IntegrityLevel level, ShouldThrow should_throw) { DCHECK(level == SEALED || level == FROZEN); if (receiver->IsJSObject()) { Handle<JSObject> object = Handle<JSObject>::cast(receiver); if (!object->HasSloppyArgumentsElements()) { // Fast path. if (level == SEALED) { return JSObject::PreventExtensionsWithTransition<SEALED>(object, should_throw); } else { return JSObject::PreventExtensionsWithTransition<FROZEN>(object, should_throw); } } } Isolate* isolate = receiver->GetIsolate(); MAYBE_RETURN(JSReceiver::PreventExtensions(receiver, should_throw), Nothing<bool>()); Handle<FixedArray> keys; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, keys, JSReceiver::OwnPropertyKeys(receiver), Nothing<bool>()); PropertyDescriptor no_conf; no_conf.set_configurable(false); PropertyDescriptor no_conf_no_write; no_conf_no_write.set_configurable(false); no_conf_no_write.set_writable(false); if (level == SEALED) { for (int i = 0; i < keys->length(); ++i) { Handle<Object> key(keys->get(i), isolate); MAYBE_RETURN( DefineOwnProperty(isolate, receiver, key, &no_conf, THROW_ON_ERROR), Nothing<bool>()); } return Just(true); } for (int i = 0; i < keys->length(); ++i) { Handle<Object> key(keys->get(i), isolate); PropertyDescriptor current_desc; Maybe<bool> owned = JSReceiver::GetOwnPropertyDescriptor( isolate, receiver, key, ¤t_desc); MAYBE_RETURN(owned, Nothing<bool>()); if (owned.FromJust()) { PropertyDescriptor desc = PropertyDescriptor::IsAccessorDescriptor(¤t_desc) ? no_conf : no_conf_no_write; MAYBE_RETURN( DefineOwnProperty(isolate, receiver, key, &desc, THROW_ON_ERROR), Nothing<bool>()); } } return Just(true); } Maybe<bool> JSReceiver::TestIntegrityLevel(Handle<JSReceiver> object, IntegrityLevel level) { DCHECK(level == SEALED || level == FROZEN); Isolate* isolate = object->GetIsolate(); Maybe<bool> extensible = JSReceiver::IsExtensible(object); MAYBE_RETURN(extensible, Nothing<bool>()); if (extensible.FromJust()) return Just(false); Handle<FixedArray> keys; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, keys, JSReceiver::OwnPropertyKeys(object), Nothing<bool>()); for (int i = 0; i < keys->length(); ++i) { Handle<Object> key(keys->get(i), isolate); PropertyDescriptor current_desc; Maybe<bool> owned = JSReceiver::GetOwnPropertyDescriptor( isolate, object, key, ¤t_desc); MAYBE_RETURN(owned, Nothing<bool>()); if (owned.FromJust()) { if (current_desc.configurable()) return Just(false); if (level == FROZEN && PropertyDescriptor::IsDataDescriptor(¤t_desc) && current_desc.writable()) { return Just(false); } } } return Just(true); } Maybe<bool> JSReceiver::PreventExtensions(Handle<JSReceiver> object, ShouldThrow should_throw) { if (object->IsJSProxy()) { return JSProxy::PreventExtensions(Handle<JSProxy>::cast(object), should_throw); } DCHECK(object->IsJSObject()); return JSObject::PreventExtensions(Handle<JSObject>::cast(object), should_throw); } Maybe<bool> JSProxy::PreventExtensions(Handle<JSProxy> proxy, ShouldThrow should_throw) { Isolate* isolate = proxy->GetIsolate(); STACK_CHECK(Nothing<bool>()); Factory* factory = isolate->factory(); Handle<String> trap_name = factory->preventExtensions_string(); if (proxy->IsRevoked()) { isolate->Throw( *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name)); return Nothing<bool>(); } Handle<JSReceiver> target(proxy->target(), isolate); Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate); Handle<Object> trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>()); if (trap->IsUndefined()) { return JSReceiver::PreventExtensions(target, should_throw); } Handle<Object> trap_result; Handle<Object> args[] = {target}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing<bool>()); if (!trap_result->BooleanValue()) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name)); } // Enforce the invariant. Maybe<bool> target_result = JSReceiver::IsExtensible(target); MAYBE_RETURN(target_result, Nothing<bool>()); if (target_result.FromJust()) { isolate->Throw(*factory->NewTypeError( MessageTemplate::kProxyPreventExtensionsExtensible)); return Nothing<bool>(); } return Just(true); } Maybe<bool> JSObject::PreventExtensions(Handle<JSObject> object, ShouldThrow should_throw) { Isolate* isolate = object->GetIsolate(); if (!object->HasSloppyArgumentsElements()) { return PreventExtensionsWithTransition<NONE>(object, should_throw); } if (object->IsAccessCheckNeeded() && !isolate->MayAccess(handle(isolate->context()), object)) { isolate->ReportFailedAccessCheck(object); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>()); RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kNoAccess)); } if (!object->map()->is_extensible()) return Just(true); if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return Just(true); DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return PreventExtensions(PrototypeIterator::GetCurrent<JSObject>(iter), should_throw); } if (!object->HasFixedTypedArrayElements()) { // If there are fast elements we normalize. Handle<SeededNumberDictionary> dictionary = NormalizeElements(object); DCHECK(object->HasDictionaryElements() || object->HasSlowArgumentsElements()); // Make sure that we never go back to fast case. object->RequireSlowElements(*dictionary); } // Do a map transition, other objects with this map may still // be extensible. // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps. Handle<Map> new_map = Map::Copy(handle(object->map()), "PreventExtensions"); new_map->set_is_extensible(false); JSObject::MigrateToMap(object, new_map); DCHECK(!object->map()->is_extensible()); return Just(true); } Maybe<bool> JSReceiver::IsExtensible(Handle<JSReceiver> object) { if (object->IsJSProxy()) { return JSProxy::IsExtensible(Handle<JSProxy>::cast(object)); } return Just(JSObject::IsExtensible(Handle<JSObject>::cast(object))); } Maybe<bool> JSProxy::IsExtensible(Handle<JSProxy> proxy) { Isolate* isolate = proxy->GetIsolate(); STACK_CHECK(Nothing<bool>()); Factory* factory = isolate->factory(); Handle<String> trap_name = factory->isExtensible_string(); if (proxy->IsRevoked()) { isolate->Throw( *factory->NewTypeError(MessageTemplate::kProxyRevoked, trap_name)); return Nothing<bool>(); } Handle<JSReceiver> target(proxy->target(), isolate); Handle<JSReceiver> handler(JSReceiver::cast(proxy->handler()), isolate); Handle<Object> trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(handler, trap_name), Nothing<bool>()); if (trap->IsUndefined()) { return JSReceiver::IsExtensible(target); } Handle<Object> trap_result; Handle<Object> args[] = {target}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing<bool>()); // Enforce the invariant. Maybe<bool> target_result = JSReceiver::IsExtensible(target); MAYBE_RETURN(target_result, Nothing<bool>()); if (target_result.FromJust() != trap_result->BooleanValue()) { isolate->Throw( *factory->NewTypeError(MessageTemplate::kProxyIsExtensibleInconsistent, factory->ToBoolean(target_result.FromJust()))); return Nothing<bool>(); } return target_result; } bool JSObject::IsExtensible(Handle<JSObject> object) { Isolate* isolate = object->GetIsolate(); if (object->IsAccessCheckNeeded() && !isolate->MayAccess(handle(isolate->context()), object)) { return true; } if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, *object); if (iter.IsAtEnd()) return false; DCHECK(iter.GetCurrent()->IsJSGlobalObject()); return iter.GetCurrent<JSObject>()->map()->is_extensible(); } return object->map()->is_extensible(); } template <typename Dictionary> static void ApplyAttributesToDictionary(Dictionary* dictionary, const PropertyAttributes attributes) { int capacity = dictionary->Capacity(); for (int i = 0; i < capacity; i++) { Object* k = dictionary->KeyAt(i); if (dictionary->IsKey(k) && !(k->IsSymbol() && Symbol::cast(k)->is_private())) { PropertyDetails details = dictionary->DetailsAt(i); int attrs = attributes; // READ_ONLY is an invalid attribute for JS setters/getters. if ((attributes & READ_ONLY) && details.type() == ACCESSOR_CONSTANT) { Object* v = dictionary->ValueAt(i); if (v->IsPropertyCell()) v = PropertyCell::cast(v)->value(); if (v->IsAccessorPair()) attrs &= ~READ_ONLY; } details = details.CopyAddAttributes( static_cast<PropertyAttributes>(attrs)); dictionary->DetailsAtPut(i, details); } } } template <PropertyAttributes attrs> Maybe<bool> JSObject::PreventExtensionsWithTransition( Handle<JSObject> object, ShouldThrow should_throw) { STATIC_ASSERT(attrs == NONE || attrs == SEALED || attrs == FROZEN); // Sealing/freezing sloppy arguments should be handled elsewhere. DCHECK(!object->HasSloppyArgumentsElements()); Isolate* isolate = object->GetIsolate(); if (object->IsAccessCheckNeeded() && !isolate->MayAccess(handle(isolate->context()), object)) { isolate->ReportFailedAccessCheck(object); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>()); RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kNoAccess)); } if (attrs == NONE && !object->map()->is_extensible()) return Just(true); if (object->IsJSGlobalProxy()) { PrototypeIterator iter(isolate, object); if (iter.IsAtEnd()) return Just(true); DCHECK(PrototypeIterator::GetCurrent(iter)->IsJSGlobalObject()); return PreventExtensionsWithTransition<attrs>( PrototypeIterator::GetCurrent<JSObject>(iter), should_throw); } Handle<SeededNumberDictionary> new_element_dictionary; if (!object->HasFixedTypedArrayElements() && !object->HasDictionaryElements() && !object->HasSlowStringWrapperElements()) { int length = object->IsJSArray() ? Smi::cast(Handle<JSArray>::cast(object)->length())->value() : object->elements()->length(); new_element_dictionary = length == 0 ? isolate->factory()->empty_slow_element_dictionary() : object->GetElementsAccessor()->Normalize(object); } Handle<Symbol> transition_marker; if (attrs == NONE) { transition_marker = isolate->factory()->nonextensible_symbol(); } else if (attrs == SEALED) { transition_marker = isolate->factory()->sealed_symbol(); } else { DCHECK(attrs == FROZEN); transition_marker = isolate->factory()->frozen_symbol(); } Handle<Map> old_map(object->map(), isolate); Map* transition = TransitionArray::SearchSpecial(*old_map, *transition_marker); if (transition != NULL) { Handle<Map> transition_map(transition, isolate); DCHECK(transition_map->has_dictionary_elements() || transition_map->has_fixed_typed_array_elements() || transition_map->elements_kind() == SLOW_STRING_WRAPPER_ELEMENTS); DCHECK(!transition_map->is_extensible()); JSObject::MigrateToMap(object, transition_map); } else if (TransitionArray::CanHaveMoreTransitions(old_map)) { // Create a new descriptor array with the appropriate property attributes Handle<Map> new_map = Map::CopyForPreventExtensions( old_map, attrs, transition_marker, "CopyForPreventExtensions"); JSObject::MigrateToMap(object, new_map); } else { DCHECK(old_map->is_dictionary_map() || !old_map->is_prototype_map()); // Slow path: need to normalize properties for safety NormalizeProperties(object, CLEAR_INOBJECT_PROPERTIES, 0, "SlowPreventExtensions"); // Create a new map, since other objects with this map may be extensible. // TODO(adamk): Extend the NormalizedMapCache to handle non-extensible maps. Handle<Map> new_map = Map::Copy(handle(object->map()), "SlowCopyForPreventExtensions"); new_map->set_is_extensible(false); if (!new_element_dictionary.is_null()) { ElementsKind new_kind = IsStringWrapperElementsKind(old_map->elements_kind()) ? SLOW_STRING_WRAPPER_ELEMENTS : DICTIONARY_ELEMENTS; new_map->set_elements_kind(new_kind); } JSObject::MigrateToMap(object, new_map); if (attrs != NONE) { if (object->IsJSGlobalObject()) { ApplyAttributesToDictionary(object->global_dictionary(), attrs); } else { ApplyAttributesToDictionary(object->property_dictionary(), attrs); } } } // Both seal and preventExtensions always go through without modifications to // typed array elements. Freeze works only if there are no actual elements. if (object->HasFixedTypedArrayElements()) { if (attrs == FROZEN && JSArrayBufferView::cast(*object)->byte_length()->Number() > 0) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kCannotFreezeArrayBufferView)); return Nothing<bool>(); } return Just(true); } DCHECK(object->map()->has_dictionary_elements() || object->map()->elements_kind() == SLOW_STRING_WRAPPER_ELEMENTS); if (!new_element_dictionary.is_null()) { object->set_elements(*new_element_dictionary); } if (object->elements() != isolate->heap()->empty_slow_element_dictionary()) { SeededNumberDictionary* dictionary = object->element_dictionary(); // Make sure we never go back to the fast case object->RequireSlowElements(dictionary); if (attrs != NONE) { ApplyAttributesToDictionary(dictionary, attrs); } } return Just(true); } Handle<Object> JSObject::FastPropertyAt(Handle<JSObject> object, Representation representation, FieldIndex index) { Isolate* isolate = object->GetIsolate(); if (object->IsUnboxedDoubleField(index)) { double value = object->RawFastDoublePropertyAt(index); return isolate->factory()->NewHeapNumber(value); } Handle<Object> raw_value(object->RawFastPropertyAt(index), isolate); return Object::WrapForRead(isolate, raw_value, representation); } template <class ContextObject> class JSObjectWalkVisitor { public: JSObjectWalkVisitor(ContextObject* site_context, bool copying, JSObject::DeepCopyHints hints) : site_context_(site_context), copying_(copying), hints_(hints) {} MUST_USE_RESULT MaybeHandle<JSObject> StructureWalk(Handle<JSObject> object); protected: MUST_USE_RESULT inline MaybeHandle<JSObject> VisitElementOrProperty( Handle<JSObject> object, Handle<JSObject> value) { Handle<AllocationSite> current_site = site_context()->EnterNewScope(); MaybeHandle<JSObject> copy_of_value = StructureWalk(value); site_context()->ExitScope(current_site, value); return copy_of_value; } inline ContextObject* site_context() { return site_context_; } inline Isolate* isolate() { return site_context()->isolate(); } inline bool copying() const { return copying_; } private: ContextObject* site_context_; const bool copying_; const JSObject::DeepCopyHints hints_; }; template <class ContextObject> MaybeHandle<JSObject> JSObjectWalkVisitor<ContextObject>::StructureWalk( Handle<JSObject> object) { Isolate* isolate = this->isolate(); bool copying = this->copying(); bool shallow = hints_ == JSObject::kObjectIsShallow; if (!shallow) { StackLimitCheck check(isolate); if (check.HasOverflowed()) { isolate->StackOverflow(); return MaybeHandle<JSObject>(); } } if (object->map()->is_deprecated()) { JSObject::MigrateInstance(object); } Handle<JSObject> copy; if (copying) { // JSFunction objects are not allowed to be in normal boilerplates at all. DCHECK(!object->IsJSFunction()); Handle<AllocationSite> site_to_pass; if (site_context()->ShouldCreateMemento(object)) { site_to_pass = site_context()->current(); } copy = isolate->factory()->CopyJSObjectWithAllocationSite( object, site_to_pass); } else { copy = object; } DCHECK(copying || copy.is_identical_to(object)); ElementsKind kind = copy->GetElementsKind(); if (copying && IsFastSmiOrObjectElementsKind(kind) && FixedArray::cast(copy->elements())->map() == isolate->heap()->fixed_cow_array_map()) { isolate->counters()->cow_arrays_created_runtime()->Increment(); } if (!shallow) { HandleScope scope(isolate); // Deep copy own properties. if (copy->HasFastProperties()) { Handle<DescriptorArray> descriptors(copy->map()->instance_descriptors()); int limit = copy->map()->NumberOfOwnDescriptors(); for (int i = 0; i < limit; i++) { PropertyDetails details = descriptors->GetDetails(i); if (details.type() != DATA) continue; FieldIndex index = FieldIndex::ForDescriptor(copy->map(), i); if (object->IsUnboxedDoubleField(index)) { if (copying) { double value = object->RawFastDoublePropertyAt(index); copy->RawFastDoublePropertyAtPut(index, value); } } else { Handle<Object> value(object->RawFastPropertyAt(index), isolate); if (value->IsJSObject()) { ASSIGN_RETURN_ON_EXCEPTION( isolate, value, VisitElementOrProperty(copy, Handle<JSObject>::cast(value)), JSObject); if (copying) { copy->FastPropertyAtPut(index, *value); } } else { if (copying) { Representation representation = details.representation(); value = Object::NewStorageFor(isolate, value, representation); copy->FastPropertyAtPut(index, *value); } } } } } else { // Only deep copy fields from the object literal expression. // In particular, don't try to copy the length attribute of // an array. PropertyFilter filter = static_cast<PropertyFilter>( ONLY_WRITABLE | ONLY_ENUMERABLE | ONLY_CONFIGURABLE); KeyAccumulator accumulator(isolate, OWN_ONLY, filter); accumulator.NextPrototype(); copy->CollectOwnPropertyNames(&accumulator, filter); Handle<FixedArray> names = accumulator.GetKeys(); for (int i = 0; i < names->length(); i++) { DCHECK(names->get(i)->IsName()); Handle<Name> name(Name::cast(names->get(i))); Handle<Object> value = JSObject::GetProperty(copy, name).ToHandleChecked(); if (value->IsJSObject()) { Handle<JSObject> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, VisitElementOrProperty(copy, Handle<JSObject>::cast(value)), JSObject); if (copying) { // Creating object copy for literals. No strict mode needed. JSObject::SetProperty(copy, name, result, SLOPPY).Assert(); } } } } // Deep copy own elements. switch (kind) { case FAST_ELEMENTS: case FAST_HOLEY_ELEMENTS: { Handle<FixedArray> elements(FixedArray::cast(copy->elements())); if (elements->map() == isolate->heap()->fixed_cow_array_map()) { #ifdef DEBUG for (int i = 0; i < elements->length(); i++) { DCHECK(!elements->get(i)->IsJSObject()); } #endif } else { for (int i = 0; i < elements->length(); i++) { Handle<Object> value(elements->get(i), isolate); if (value->IsJSObject()) { Handle<JSObject> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, VisitElementOrProperty(copy, Handle<JSObject>::cast(value)), JSObject); if (copying) { elements->set(i, *result); } } } } break; } case DICTIONARY_ELEMENTS: { Handle<SeededNumberDictionary> element_dictionary( copy->element_dictionary()); int capacity = element_dictionary->Capacity(); for (int i = 0; i < capacity; i++) { Object* k = element_dictionary->KeyAt(i); if (element_dictionary->IsKey(k)) { Handle<Object> value(element_dictionary->ValueAt(i), isolate); if (value->IsJSObject()) { Handle<JSObject> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, VisitElementOrProperty(copy, Handle<JSObject>::cast(value)), JSObject); if (copying) { element_dictionary->ValueAtPut(i, *result); } } } } break; } case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: UNIMPLEMENTED(); break; case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: UNREACHABLE(); break; #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: \ TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE // Typed elements cannot be created using an object literal. UNREACHABLE(); break; case FAST_SMI_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case NO_ELEMENTS: // No contained objects, nothing to do. break; } } return copy; } MaybeHandle<JSObject> JSObject::DeepWalk( Handle<JSObject> object, AllocationSiteCreationContext* site_context) { JSObjectWalkVisitor<AllocationSiteCreationContext> v(site_context, false, kNoHints); MaybeHandle<JSObject> result = v.StructureWalk(object); Handle<JSObject> for_assert; DCHECK(!result.ToHandle(&for_assert) || for_assert.is_identical_to(object)); return result; } MaybeHandle<JSObject> JSObject::DeepCopy( Handle<JSObject> object, AllocationSiteUsageContext* site_context, DeepCopyHints hints) { JSObjectWalkVisitor<AllocationSiteUsageContext> v(site_context, true, hints); MaybeHandle<JSObject> copy = v.StructureWalk(object); Handle<JSObject> for_assert; DCHECK(!copy.ToHandle(&for_assert) || !for_assert.is_identical_to(object)); return copy; } // static MaybeHandle<Object> JSReceiver::ToPrimitive(Handle<JSReceiver> receiver, ToPrimitiveHint hint) { Isolate* const isolate = receiver->GetIsolate(); Handle<Object> exotic_to_prim; ASSIGN_RETURN_ON_EXCEPTION( isolate, exotic_to_prim, GetMethod(receiver, isolate->factory()->to_primitive_symbol()), Object); if (!exotic_to_prim->IsUndefined()) { Handle<Object> hint_string; switch (hint) { case ToPrimitiveHint::kDefault: hint_string = isolate->factory()->default_string(); break; case ToPrimitiveHint::kNumber: hint_string = isolate->factory()->number_string(); break; case ToPrimitiveHint::kString: hint_string = isolate->factory()->string_string(); break; } Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, Execution::Call(isolate, exotic_to_prim, receiver, 1, &hint_string), Object); if (result->IsPrimitive()) return result; THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kCannotConvertToPrimitive), Object); } return OrdinaryToPrimitive(receiver, (hint == ToPrimitiveHint::kString) ? OrdinaryToPrimitiveHint::kString : OrdinaryToPrimitiveHint::kNumber); } // static MaybeHandle<Object> JSReceiver::OrdinaryToPrimitive( Handle<JSReceiver> receiver, OrdinaryToPrimitiveHint hint) { Isolate* const isolate = receiver->GetIsolate(); Handle<String> method_names[2]; switch (hint) { case OrdinaryToPrimitiveHint::kNumber: method_names[0] = isolate->factory()->valueOf_string(); method_names[1] = isolate->factory()->toString_string(); break; case OrdinaryToPrimitiveHint::kString: method_names[0] = isolate->factory()->toString_string(); method_names[1] = isolate->factory()->valueOf_string(); break; } for (Handle<String> name : method_names) { Handle<Object> method; ASSIGN_RETURN_ON_EXCEPTION(isolate, method, JSReceiver::GetProperty(receiver, name), Object); if (method->IsCallable()) { Handle<Object> result; ASSIGN_RETURN_ON_EXCEPTION( isolate, result, Execution::Call(isolate, method, receiver, 0, NULL), Object); if (result->IsPrimitive()) return result; } } THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kCannotConvertToPrimitive), Object); } // TODO(cbruni/jkummerow): Consider moving this into elements.cc. bool JSObject::HasEnumerableElements() { // TODO(cbruni): cleanup JSObject* object = this; switch (object->GetElementsKind()) { case FAST_SMI_ELEMENTS: case FAST_ELEMENTS: case FAST_DOUBLE_ELEMENTS: { int length = object->IsJSArray() ? Smi::cast(JSArray::cast(object)->length())->value() : object->elements()->length(); return length > 0; } case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: { FixedArray* elements = FixedArray::cast(object->elements()); int length = object->IsJSArray() ? Smi::cast(JSArray::cast(object)->length())->value() : elements->length(); for (int i = 0; i < length; i++) { if (!elements->is_the_hole(i)) return true; } return false; } case FAST_HOLEY_DOUBLE_ELEMENTS: { int length = object->IsJSArray() ? Smi::cast(JSArray::cast(object)->length())->value() : object->elements()->length(); // Zero-length arrays would use the empty FixedArray... if (length == 0) return false; // ...so only cast to FixedDoubleArray otherwise. FixedDoubleArray* elements = FixedDoubleArray::cast(object->elements()); for (int i = 0; i < length; i++) { if (!elements->is_the_hole(i)) return true; } return false; } #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE { int length = object->elements()->length(); return length > 0; } case DICTIONARY_ELEMENTS: { SeededNumberDictionary* elements = SeededNumberDictionary::cast(object->elements()); return elements->NumberOfElementsFilterAttributes(ONLY_ENUMERABLE) > 0; } case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: // We're approximating non-empty arguments objects here. return true; case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: if (String::cast(JSValue::cast(object)->value())->length() > 0) { return true; } return object->elements()->length() > 0; case NO_ELEMENTS: return false; } UNREACHABLE(); return true; } // Tests for the fast common case for property enumeration: // - This object and all prototypes has an enum cache (which means that // it is no proxy, has no interceptors and needs no access checks). // - This object has no elements. // - No prototype has enumerable properties/elements. bool JSReceiver::IsSimpleEnum() { for (PrototypeIterator iter(GetIsolate(), this, PrototypeIterator::START_AT_RECEIVER); !iter.IsAtEnd(); iter.Advance()) { if (!iter.GetCurrent()->IsJSObject()) return false; JSObject* current = iter.GetCurrent<JSObject>(); int enum_length = current->map()->EnumLength(); if (enum_length == kInvalidEnumCacheSentinel) return false; if (current->IsAccessCheckNeeded()) return false; DCHECK(!current->HasNamedInterceptor()); DCHECK(!current->HasIndexedInterceptor()); if (current->HasEnumerableElements()) return false; if (current != this && enum_length != 0) return false; } return true; } int Map::NumberOfDescribedProperties(DescriptorFlag which, PropertyFilter filter) { int result = 0; DescriptorArray* descs = instance_descriptors(); int limit = which == ALL_DESCRIPTORS ? descs->number_of_descriptors() : NumberOfOwnDescriptors(); for (int i = 0; i < limit; i++) { if ((descs->GetDetails(i).attributes() & filter) == 0 && !descs->GetKey(i)->FilterKey(filter)) { result++; } } return result; } int Map::NextFreePropertyIndex() { int free_index = 0; int number_of_own_descriptors = NumberOfOwnDescriptors(); DescriptorArray* descs = instance_descriptors(); for (int i = 0; i < number_of_own_descriptors; i++) { PropertyDetails details = descs->GetDetails(i); if (details.location() == kField) { int candidate = details.field_index() + details.field_width_in_words(); if (candidate > free_index) free_index = candidate; } } return free_index; } static bool ContainsOnlyValidKeys(Handle<FixedArray> array) { int len = array->length(); for (int i = 0; i < len; i++) { Object* e = array->get(i); if (!(e->IsName() || e->IsNumber())) return false; } return true; } static Handle<FixedArray> ReduceFixedArrayTo( Handle<FixedArray> array, int length) { DCHECK_LE(length, array->length()); if (array->length() == length) return array; return array->GetIsolate()->factory()->CopyFixedArrayUpTo(array, length); } bool Map::OnlyHasSimpleProperties() { // Wrapped string elements aren't explicitly stored in the elements backing // store, but are loaded indirectly from the underlying string. return !IsStringWrapperElementsKind(elements_kind()) && instance_type() > LAST_SPECIAL_RECEIVER_TYPE && !has_hidden_prototype() && !is_dictionary_map(); } // static Handle<FixedArray> JSObject::GetFastEnumPropertyKeys(Isolate* isolate, Handle<JSObject> object) { Handle<Map> map(object->map()); bool cache_enum_length = map->OnlyHasSimpleProperties(); Handle<DescriptorArray> descs = Handle<DescriptorArray>(map->instance_descriptors(), isolate); int own_property_count = map->EnumLength(); // If the enum length of the given map is set to kInvalidEnumCache, this // means that the map itself has never used the present enum cache. The // first step to using the cache is to set the enum length of the map by // counting the number of own descriptors that are ENUMERABLE_STRINGS. if (own_property_count == kInvalidEnumCacheSentinel) { own_property_count = map->NumberOfDescribedProperties(OWN_DESCRIPTORS, ENUMERABLE_STRINGS); } else { DCHECK( own_property_count == map->NumberOfDescribedProperties(OWN_DESCRIPTORS, ENUMERABLE_STRINGS)); } if (descs->HasEnumCache()) { Handle<FixedArray> keys(descs->GetEnumCache(), isolate); // In case the number of properties required in the enum are actually // present, we can reuse the enum cache. Otherwise, this means that the // enum cache was generated for a previous (smaller) version of the // Descriptor Array. In that case we regenerate the enum cache. if (own_property_count <= keys->length()) { isolate->counters()->enum_cache_hits()->Increment(); if (cache_enum_length) map->SetEnumLength(own_property_count); return ReduceFixedArrayTo(keys, own_property_count); } } if (descs->IsEmpty()) { isolate->counters()->enum_cache_hits()->Increment(); if (cache_enum_length) map->SetEnumLength(0); return isolate->factory()->empty_fixed_array(); } isolate->counters()->enum_cache_misses()->Increment(); Handle<FixedArray> storage = isolate->factory()->NewFixedArray(own_property_count); Handle<FixedArray> indices = isolate->factory()->NewFixedArray(own_property_count); int size = map->NumberOfOwnDescriptors(); int index = 0; for (int i = 0; i < size; i++) { PropertyDetails details = descs->GetDetails(i); if (details.IsDontEnum()) continue; Object* key = descs->GetKey(i); if (key->IsSymbol()) continue; storage->set(index, key); if (!indices.is_null()) { if (details.type() != DATA) { indices = Handle<FixedArray>(); } else { FieldIndex field_index = FieldIndex::ForDescriptor(*map, i); int load_by_field_index = field_index.GetLoadByFieldIndex(); indices->set(index, Smi::FromInt(load_by_field_index)); } } index++; } DCHECK(index == storage->length()); DescriptorArray::SetEnumCache(descs, isolate, storage, indices); if (cache_enum_length) { map->SetEnumLength(own_property_count); } return storage; } Handle<FixedArray> JSObject::GetEnumPropertyKeys(Handle<JSObject> object) { Isolate* isolate = object->GetIsolate(); if (object->HasFastProperties()) { return GetFastEnumPropertyKeys(isolate, object); } else if (object->IsJSGlobalObject()) { Handle<GlobalDictionary> dictionary(object->global_dictionary()); int length = dictionary->NumberOfEnumElements(); if (length == 0) { return isolate->factory()->empty_fixed_array(); } Handle<FixedArray> storage = isolate->factory()->NewFixedArray(length); dictionary->CopyEnumKeysTo(*storage); return storage; } else { Handle<NameDictionary> dictionary(object->property_dictionary()); int length = dictionary->NumberOfEnumElements(); if (length == 0) { return isolate->factory()->empty_fixed_array(); } Handle<FixedArray> storage = isolate->factory()->NewFixedArray(length); dictionary->CopyEnumKeysTo(*storage); return storage; } } enum IndexedOrNamed { kIndexed, kNamed }; // Returns |true| on success, |nothing| on exception. template <class Callback, IndexedOrNamed type> static Maybe<bool> GetKeysFromInterceptor(Isolate* isolate, Handle<JSReceiver> receiver, Handle<JSObject> object, PropertyFilter filter, KeyAccumulator* accumulator) { if (type == kIndexed) { if (!object->HasIndexedInterceptor()) return Just(true); } else { if (!object->HasNamedInterceptor()) return Just(true); } Handle<InterceptorInfo> interceptor(type == kIndexed ? object->GetIndexedInterceptor() : object->GetNamedInterceptor(), isolate); if ((filter & ONLY_ALL_CAN_READ) && !interceptor->all_can_read()) { return Just(true); } PropertyCallbackArguments args(isolate, interceptor->data(), *receiver, *object, Object::DONT_THROW); Handle<JSObject> result; if (!interceptor->enumerator()->IsUndefined()) { Callback enum_fun = v8::ToCData<Callback>(interceptor->enumerator()); const char* log_tag = type == kIndexed ? "interceptor-indexed-enum" : "interceptor-named-enum"; LOG(isolate, ApiObjectAccess(log_tag, *object)); result = args.Call(enum_fun); } RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>()); if (result.is_null()) return Just(true); DCHECK(result->IsJSArray() || result->HasSloppyArgumentsElements()); // The accumulator takes care of string/symbol filtering. if (type == kIndexed) { accumulator->AddElementKeysFromInterceptor(result); } else { accumulator->AddKeys(result, DO_NOT_CONVERT); } return Just(true); } // Returns |true| on success, |false| if prototype walking should be stopped, // |nothing| if an exception was thrown. static Maybe<bool> GetKeysFromJSObject(Isolate* isolate, Handle<JSReceiver> receiver, Handle<JSObject> object, PropertyFilter* filter, KeyCollectionType type, KeyAccumulator* accumulator) { accumulator->NextPrototype(); // Check access rights if required. if (object->IsAccessCheckNeeded() && !isolate->MayAccess(handle(isolate->context()), object)) { // The cross-origin spec says that [[Enumerate]] shall return an empty // iterator when it doesn't have access... if (type == INCLUDE_PROTOS) { return Just(false); } // ...whereas [[OwnPropertyKeys]] shall return whitelisted properties. DCHECK_EQ(OWN_ONLY, type); *filter = static_cast<PropertyFilter>(*filter | ONLY_ALL_CAN_READ); } JSObject::CollectOwnElementKeys(object, accumulator, *filter); // Add the element keys from the interceptor. Maybe<bool> success = GetKeysFromInterceptor<v8::IndexedPropertyEnumeratorCallback, kIndexed>( isolate, receiver, object, *filter, accumulator); MAYBE_RETURN(success, Nothing<bool>()); if (*filter == ENUMERABLE_STRINGS) { Handle<FixedArray> enum_keys = JSObject::GetEnumPropertyKeys(object); accumulator->AddKeys(enum_keys, DO_NOT_CONVERT); } else { object->CollectOwnPropertyNames(accumulator, *filter); } // Add the property keys from the interceptor. success = GetKeysFromInterceptor<v8::GenericNamedPropertyEnumeratorCallback, kNamed>(isolate, receiver, object, *filter, accumulator); MAYBE_RETURN(success, Nothing<bool>()); return Just(true); } // Helper function for JSReceiver::GetKeys() below. Can be called recursively. // Returns |true| or |nothing|. static Maybe<bool> GetKeys_Internal(Isolate* isolate, Handle<JSReceiver> receiver, Handle<JSReceiver> object, KeyCollectionType type, PropertyFilter filter, KeyAccumulator* accumulator) { // Proxies have no hidden prototype and we should not trigger the // [[GetPrototypeOf]] trap on the last iteration when using // AdvanceFollowingProxies. if (type == OWN_ONLY && object->IsJSProxy()) { MAYBE_RETURN(JSProxy::OwnPropertyKeys(isolate, receiver, Handle<JSProxy>::cast(object), filter, accumulator), Nothing<bool>()); return Just(true); } PrototypeIterator::WhereToEnd end = type == OWN_ONLY ? PrototypeIterator::END_AT_NON_HIDDEN : PrototypeIterator::END_AT_NULL; for (PrototypeIterator iter(isolate, object, PrototypeIterator::START_AT_RECEIVER, end); !iter.IsAtEnd();) { Handle<JSReceiver> current = PrototypeIterator::GetCurrent<JSReceiver>(iter); Maybe<bool> result = Just(false); // Dummy initialization. if (current->IsJSProxy()) { result = JSProxy::OwnPropertyKeys(isolate, receiver, Handle<JSProxy>::cast(current), filter, accumulator); } else { DCHECK(current->IsJSObject()); result = GetKeysFromJSObject(isolate, receiver, Handle<JSObject>::cast(current), &filter, type, accumulator); } MAYBE_RETURN(result, Nothing<bool>()); if (!result.FromJust()) break; // |false| means "stop iterating". // Iterate through proxies but ignore access checks for the ALL_CAN_READ // case on API objects for OWN_ONLY keys handlede in GgetKeysFromJSObject. if (!iter.AdvanceFollowingProxiesIgnoringAccessChecks()) { return Nothing<bool>(); } } return Just(true); } // ES6 9.5.12 // Returns |true| on success, |nothing| in case of exception. // static Maybe<bool> JSProxy::OwnPropertyKeys(Isolate* isolate, Handle<JSReceiver> receiver, Handle<JSProxy> proxy, PropertyFilter filter, KeyAccumulator* accumulator) { STACK_CHECK(Nothing<bool>()); // 1. Let handler be the value of the [[ProxyHandler]] internal slot of O. Handle<Object> handler(proxy->handler(), isolate); // 2. If handler is null, throw a TypeError exception. // 3. Assert: Type(handler) is Object. if (proxy->IsRevoked()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyRevoked, isolate->factory()->ownKeys_string())); return Nothing<bool>(); } // 4. Let target be the value of the [[ProxyTarget]] internal slot of O. Handle<JSReceiver> target(proxy->target(), isolate); // 5. Let trap be ? GetMethod(handler, "ownKeys"). Handle<Object> trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(Handle<JSReceiver>::cast(handler), isolate->factory()->ownKeys_string()), Nothing<bool>()); // 6. If trap is undefined, then if (trap->IsUndefined()) { // 6a. Return target.[[OwnPropertyKeys]](). return GetKeys_Internal(isolate, receiver, target, OWN_ONLY, filter, accumulator); } // 7. Let trapResultArray be Call(trap, handler, «target»). Handle<Object> trap_result_array; Handle<Object> args[] = {target}; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result_array, Execution::Call(isolate, trap, handler, arraysize(args), args), Nothing<bool>()); // 8. Let trapResult be ? CreateListFromArrayLike(trapResultArray, // «String, Symbol»). Handle<FixedArray> trap_result; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result, Object::CreateListFromArrayLike(isolate, trap_result_array, ElementTypes::kStringAndSymbol), Nothing<bool>()); // 9. Let extensibleTarget be ? IsExtensible(target). Maybe<bool> maybe_extensible = JSReceiver::IsExtensible(target); MAYBE_RETURN(maybe_extensible, Nothing<bool>()); bool extensible_target = maybe_extensible.FromJust(); // 10. Let targetKeys be ? target.[[OwnPropertyKeys]](). Handle<FixedArray> target_keys; ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, target_keys, JSReceiver::OwnPropertyKeys(target), Nothing<bool>()); // 11. (Assert) // 12. Let targetConfigurableKeys be an empty List. // To save memory, we're re-using target_keys and will modify it in-place. Handle<FixedArray> target_configurable_keys = target_keys; // 13. Let targetNonconfigurableKeys be an empty List. Handle<FixedArray> target_nonconfigurable_keys = isolate->factory()->NewFixedArray(target_keys->length()); int nonconfigurable_keys_length = 0; // 14. Repeat, for each element key of targetKeys: for (int i = 0; i < target_keys->length(); ++i) { // 14a. Let desc be ? target.[[GetOwnProperty]](key). PropertyDescriptor desc; Maybe<bool> found = JSReceiver::GetOwnPropertyDescriptor( isolate, target, handle(target_keys->get(i), isolate), &desc); MAYBE_RETURN(found, Nothing<bool>()); // 14b. If desc is not undefined and desc.[[Configurable]] is false, then if (found.FromJust() && !desc.configurable()) { // 14b i. Append key as an element of targetNonconfigurableKeys. target_nonconfigurable_keys->set(nonconfigurable_keys_length, target_keys->get(i)); nonconfigurable_keys_length++; // The key was moved, null it out in the original list. target_keys->set(i, Smi::FromInt(0)); } else { // 14c. Else, // 14c i. Append key as an element of targetConfigurableKeys. // (No-op, just keep it in |target_keys|.) } } accumulator->NextPrototype(); // Prepare for accumulating keys. // 15. If extensibleTarget is true and targetNonconfigurableKeys is empty, // then: if (extensible_target && nonconfigurable_keys_length == 0) { // 15a. Return trapResult. return accumulator->AddKeysFromProxy(proxy, trap_result); } // 16. Let uncheckedResultKeys be a new List which is a copy of trapResult. Zone set_zone(isolate->allocator()); const int kPresent = 1; const int kGone = 0; IdentityMap<int> unchecked_result_keys(isolate->heap(), &set_zone); int unchecked_result_keys_size = 0; for (int i = 0; i < trap_result->length(); ++i) { DCHECK(trap_result->get(i)->IsUniqueName()); Object* key = trap_result->get(i); int* entry = unchecked_result_keys.Get(key); if (*entry != kPresent) { *entry = kPresent; unchecked_result_keys_size++; } } // 17. Repeat, for each key that is an element of targetNonconfigurableKeys: for (int i = 0; i < nonconfigurable_keys_length; ++i) { Object* key = target_nonconfigurable_keys->get(i); // 17a. If key is not an element of uncheckedResultKeys, throw a // TypeError exception. int* found = unchecked_result_keys.Find(key); if (found == nullptr || *found == kGone) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyOwnKeysMissing, handle(key, isolate))); return Nothing<bool>(); } // 17b. Remove key from uncheckedResultKeys. *found = kGone; unchecked_result_keys_size--; } // 18. If extensibleTarget is true, return trapResult. if (extensible_target) { return accumulator->AddKeysFromProxy(proxy, trap_result); } // 19. Repeat, for each key that is an element of targetConfigurableKeys: for (int i = 0; i < target_configurable_keys->length(); ++i) { Object* key = target_configurable_keys->get(i); if (key->IsSmi()) continue; // Zapped entry, was nonconfigurable. // 19a. If key is not an element of uncheckedResultKeys, throw a // TypeError exception. int* found = unchecked_result_keys.Find(key); if (found == nullptr || *found == kGone) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyOwnKeysMissing, handle(key, isolate))); return Nothing<bool>(); } // 19b. Remove key from uncheckedResultKeys. *found = kGone; unchecked_result_keys_size--; } // 20. If uncheckedResultKeys is not empty, throw a TypeError exception. if (unchecked_result_keys_size != 0) { DCHECK_GT(unchecked_result_keys_size, 0); isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyOwnKeysNonExtensible)); return Nothing<bool>(); } // 21. Return trapResult. return accumulator->AddKeysFromProxy(proxy, trap_result); } MaybeHandle<FixedArray> JSReceiver::GetKeys(Handle<JSReceiver> object, KeyCollectionType type, PropertyFilter filter, GetKeysConversion keys_conversion, bool filter_proxy_keys) { USE(ContainsOnlyValidKeys); Isolate* isolate = object->GetIsolate(); KeyAccumulator accumulator(isolate, type, filter); accumulator.set_filter_proxy_keys(filter_proxy_keys); MAYBE_RETURN( GetKeys_Internal(isolate, object, object, type, filter, &accumulator), MaybeHandle<FixedArray>()); Handle<FixedArray> keys = accumulator.GetKeys(keys_conversion); DCHECK(ContainsOnlyValidKeys(keys)); return keys; } MUST_USE_RESULT Maybe<bool> FastGetOwnValuesOrEntries( Isolate* isolate, Handle<JSReceiver> receiver, bool get_entries, Handle<FixedArray>* result) { Handle<Map> map(JSReceiver::cast(*receiver)->map(), isolate); if (!map->IsJSObjectMap()) return Just(false); if (!map->OnlyHasSimpleProperties()) return Just(false); Handle<JSObject> object(JSObject::cast(*receiver)); Handle<DescriptorArray> descriptors(map->instance_descriptors(), isolate); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); int number_of_own_elements = object->GetElementsAccessor()->GetCapacity(*object, object->elements()); Handle<FixedArray> values_or_entries = isolate->factory()->NewFixedArray( number_of_own_descriptors + number_of_own_elements); int count = 0; if (object->elements() != isolate->heap()->empty_fixed_array()) { MAYBE_RETURN(object->GetElementsAccessor()->CollectValuesOrEntries( isolate, object, values_or_entries, get_entries, &count, ENUMERABLE_STRINGS), Nothing<bool>()); } bool stable = object->map() == *map; for (int index = 0; index < number_of_own_descriptors; index++) { Handle<Name> next_key(descriptors->GetKey(index), isolate); if (!next_key->IsString()) continue; Handle<Object> prop_value; // Directly decode from the descriptor array if |from| did not change shape. if (stable) { PropertyDetails details = descriptors->GetDetails(index); if (!details.IsEnumerable()) continue; if (details.kind() == kData) { if (details.location() == kDescriptor) { prop_value = handle(descriptors->GetValue(index), isolate); } else { Representation representation = details.representation(); FieldIndex field_index = FieldIndex::ForDescriptor(*map, index); prop_value = JSObject::FastPropertyAt(object, representation, field_index); } } else { ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, prop_value, JSReceiver::GetProperty(object, next_key), Nothing<bool>()); stable = object->map() == *map; } } else { // If the map did change, do a slower lookup. We are still guaranteed that // the object has a simple shape, and that the key is a name. LookupIterator it(object, next_key, LookupIterator::OWN_SKIP_INTERCEPTOR); if (!it.IsFound()) continue; DCHECK(it.state() == LookupIterator::DATA || it.state() == LookupIterator::ACCESSOR); if (!it.IsEnumerable()) continue; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, prop_value, Object::GetProperty(&it), Nothing<bool>()); } if (get_entries) { prop_value = MakeEntryPair(isolate, next_key, prop_value); } values_or_entries->set(count, *prop_value); count++; } if (count < values_or_entries->length()) values_or_entries->Shrink(count); *result = values_or_entries; return Just(true); } MaybeHandle<FixedArray> GetOwnValuesOrEntries(Isolate* isolate, Handle<JSReceiver> object, PropertyFilter filter, bool get_entries) { Handle<FixedArray> values_or_entries; if (filter == ENUMERABLE_STRINGS) { Maybe<bool> fast_values_or_entries = FastGetOwnValuesOrEntries( isolate, object, get_entries, &values_or_entries); if (fast_values_or_entries.IsNothing()) return MaybeHandle<FixedArray>(); if (fast_values_or_entries.FromJust()) return values_or_entries; } PropertyFilter key_filter = static_cast<PropertyFilter>(filter & ~ONLY_ENUMERABLE); KeyAccumulator accumulator(isolate, OWN_ONLY, key_filter); MAYBE_RETURN(GetKeys_Internal(isolate, object, object, OWN_ONLY, key_filter, &accumulator), MaybeHandle<FixedArray>()); Handle<FixedArray> keys = accumulator.GetKeys(CONVERT_TO_STRING); DCHECK(ContainsOnlyValidKeys(keys)); values_or_entries = isolate->factory()->NewFixedArray(keys->length()); int length = 0; for (int i = 0; i < keys->length(); ++i) { Handle<Name> key = Handle<Name>::cast(handle(keys->get(i), isolate)); if (filter & ONLY_ENUMERABLE) { PropertyDescriptor descriptor; Maybe<bool> did_get_descriptor = JSReceiver::GetOwnPropertyDescriptor( isolate, object, key, &descriptor); MAYBE_RETURN(did_get_descriptor, MaybeHandle<FixedArray>()); if (!did_get_descriptor.FromJust() || !descriptor.enumerable()) continue; } Handle<Object> value; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, value, JSReceiver::GetPropertyOrElement(object, key), MaybeHandle<FixedArray>()); if (get_entries) { Handle<FixedArray> entry_storage = isolate->factory()->NewUninitializedFixedArray(2); entry_storage->set(0, *key); entry_storage->set(1, *value); value = isolate->factory()->NewJSArrayWithElements(entry_storage, FAST_ELEMENTS, 2); } values_or_entries->set(length, *value); length++; } if (length < values_or_entries->length()) values_or_entries->Shrink(length); return values_or_entries; } MaybeHandle<FixedArray> JSReceiver::GetOwnValues(Handle<JSReceiver> object, PropertyFilter filter) { return GetOwnValuesOrEntries(object->GetIsolate(), object, filter, false); } MaybeHandle<FixedArray> JSReceiver::GetOwnEntries(Handle<JSReceiver> object, PropertyFilter filter) { return GetOwnValuesOrEntries(object->GetIsolate(), object, filter, true); } bool Map::DictionaryElementsInPrototypeChainOnly() { if (IsDictionaryElementsKind(elements_kind())) { return false; } for (PrototypeIterator iter(this); !iter.IsAtEnd(); iter.Advance()) { // Be conservative, don't walk into proxies. if (iter.GetCurrent()->IsJSProxy()) return true; // String wrappers have non-configurable, non-writable elements. if (iter.GetCurrent()->IsStringWrapper()) return true; JSObject* current = iter.GetCurrent<JSObject>(); if (current->HasDictionaryElements() && current->element_dictionary()->requires_slow_elements()) { return true; } if (current->HasSlowArgumentsElements()) { FixedArray* parameter_map = FixedArray::cast(current->elements()); Object* arguments = parameter_map->get(1); if (SeededNumberDictionary::cast(arguments)->requires_slow_elements()) { return true; } } } return false; } MaybeHandle<Object> JSObject::DefineAccessor(Handle<JSObject> object, Handle<Name> name, Handle<Object> getter, Handle<Object> setter, PropertyAttributes attributes) { Isolate* isolate = object->GetIsolate(); LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR); return DefineAccessor(&it, getter, setter, attributes); } MaybeHandle<Object> JSObject::DefineAccessor(LookupIterator* it, Handle<Object> getter, Handle<Object> setter, PropertyAttributes attributes) { Isolate* isolate = it->isolate(); it->UpdateProtector(); if (it->state() == LookupIterator::ACCESS_CHECK) { if (!it->HasAccess()) { isolate->ReportFailedAccessCheck(it->GetHolder<JSObject>()); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return isolate->factory()->undefined_value(); } it->Next(); } Handle<JSObject> object = Handle<JSObject>::cast(it->GetReceiver()); // Ignore accessors on typed arrays. if (it->IsElement() && object->HasFixedTypedArrayElements()) { return it->factory()->undefined_value(); } DCHECK(getter->IsCallable() || getter->IsUndefined() || getter->IsNull() || getter->IsFunctionTemplateInfo()); DCHECK(setter->IsCallable() || setter->IsUndefined() || setter->IsNull() || getter->IsFunctionTemplateInfo()); // At least one of the accessors needs to be a new value. DCHECK(!getter->IsNull() || !setter->IsNull()); if (!getter->IsNull()) { it->TransitionToAccessorProperty(ACCESSOR_GETTER, getter, attributes); } if (!setter->IsNull()) { it->TransitionToAccessorProperty(ACCESSOR_SETTER, setter, attributes); } return isolate->factory()->undefined_value(); } MaybeHandle<Object> JSObject::SetAccessor(Handle<JSObject> object, Handle<AccessorInfo> info) { Isolate* isolate = object->GetIsolate(); Handle<Name> name(Name::cast(info->name()), isolate); LookupIterator it = LookupIterator::PropertyOrElement( isolate, object, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR); // Duplicate ACCESS_CHECK outside of GetPropertyAttributes for the case that // the FailedAccessCheckCallbackFunction doesn't throw an exception. // // TODO(verwaest): Force throw an exception if the callback doesn't, so we can // remove reliance on default return values. if (it.state() == LookupIterator::ACCESS_CHECK) { if (!it.HasAccess()) { isolate->ReportFailedAccessCheck(object); RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); return it.factory()->undefined_value(); } it.Next(); } // Ignore accessors on typed arrays. if (it.IsElement() && object->HasFixedTypedArrayElements()) { return it.factory()->undefined_value(); } CHECK(GetPropertyAttributes(&it).IsJust()); // ES5 forbids turning a property into an accessor if it's not // configurable. See 8.6.1 (Table 5). if (it.IsFound() && !it.IsConfigurable()) { return it.factory()->undefined_value(); } it.TransitionToAccessorPair(info, info->property_attributes()); return object; } Object* JSObject::SlowReverseLookup(Object* value) { if (HasFastProperties()) { int number_of_own_descriptors = map()->NumberOfOwnDescriptors(); DescriptorArray* descs = map()->instance_descriptors(); bool value_is_number = value->IsNumber(); for (int i = 0; i < number_of_own_descriptors; i++) { if (descs->GetType(i) == DATA) { FieldIndex field_index = FieldIndex::ForDescriptor(map(), i); if (IsUnboxedDoubleField(field_index)) { if (value_is_number) { double property = RawFastDoublePropertyAt(field_index); if (property == value->Number()) { return descs->GetKey(i); } } } else { Object* property = RawFastPropertyAt(field_index); if (field_index.is_double()) { DCHECK(property->IsMutableHeapNumber()); if (value_is_number && property->Number() == value->Number()) { return descs->GetKey(i); } } else if (property == value) { return descs->GetKey(i); } } } else if (descs->GetType(i) == DATA_CONSTANT) { if (descs->GetConstant(i) == value) { return descs->GetKey(i); } } } return GetHeap()->undefined_value(); } else if (IsJSGlobalObject()) { return global_dictionary()->SlowReverseLookup(value); } else { return property_dictionary()->SlowReverseLookup(value); } } Handle<Map> Map::RawCopy(Handle<Map> map, int instance_size) { Isolate* isolate = map->GetIsolate(); Handle<Map> result = isolate->factory()->NewMap(map->instance_type(), instance_size); Handle<Object> prototype(map->prototype(), isolate); Map::SetPrototype(result, prototype); result->set_constructor_or_backpointer(map->GetConstructor()); result->set_bit_field(map->bit_field()); result->set_bit_field2(map->bit_field2()); int new_bit_field3 = map->bit_field3(); new_bit_field3 = OwnsDescriptors::update(new_bit_field3, true); new_bit_field3 = NumberOfOwnDescriptorsBits::update(new_bit_field3, 0); new_bit_field3 = EnumLengthBits::update(new_bit_field3, kInvalidEnumCacheSentinel); new_bit_field3 = Deprecated::update(new_bit_field3, false); if (!map->is_dictionary_map()) { new_bit_field3 = IsUnstable::update(new_bit_field3, false); } result->set_bit_field3(new_bit_field3); return result; } Handle<Map> Map::Normalize(Handle<Map> fast_map, PropertyNormalizationMode mode, const char* reason) { DCHECK(!fast_map->is_dictionary_map()); Isolate* isolate = fast_map->GetIsolate(); Handle<Object> maybe_cache(isolate->native_context()->normalized_map_cache(), isolate); bool use_cache = !fast_map->is_prototype_map() && !maybe_cache->IsUndefined(); Handle<NormalizedMapCache> cache; if (use_cache) cache = Handle<NormalizedMapCache>::cast(maybe_cache); Handle<Map> new_map; if (use_cache && cache->Get(fast_map, mode).ToHandle(&new_map)) { #ifdef VERIFY_HEAP if (FLAG_verify_heap) new_map->DictionaryMapVerify(); #endif #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { // The cached map should match newly created normalized map bit-by-bit, // except for the code cache, which can contain some ics which can be // applied to the shared map, dependent code and weak cell cache. Handle<Map> fresh = Map::CopyNormalized(fast_map, mode); if (new_map->is_prototype_map()) { // For prototype maps, the PrototypeInfo is not copied. DCHECK(memcmp(fresh->address(), new_map->address(), kTransitionsOrPrototypeInfoOffset) == 0); DCHECK(fresh->raw_transitions() == Smi::FromInt(0)); STATIC_ASSERT(kDescriptorsOffset == kTransitionsOrPrototypeInfoOffset + kPointerSize); DCHECK(memcmp(HeapObject::RawField(*fresh, kDescriptorsOffset), HeapObject::RawField(*new_map, kDescriptorsOffset), kCodeCacheOffset - kDescriptorsOffset) == 0); } else { DCHECK(memcmp(fresh->address(), new_map->address(), Map::kCodeCacheOffset) == 0); } STATIC_ASSERT(Map::kDependentCodeOffset == Map::kCodeCacheOffset + kPointerSize); STATIC_ASSERT(Map::kWeakCellCacheOffset == Map::kDependentCodeOffset + kPointerSize); int offset = Map::kWeakCellCacheOffset + kPointerSize; DCHECK(memcmp(fresh->address() + offset, new_map->address() + offset, Map::kSize - offset) == 0); } #endif } else { new_map = Map::CopyNormalized(fast_map, mode); if (use_cache) { cache->Set(fast_map, new_map); isolate->counters()->maps_normalized()->Increment(); } #if TRACE_MAPS if (FLAG_trace_maps) { PrintF("[TraceMaps: Normalize from= %p to= %p reason= %s ]\n", reinterpret_cast<void*>(*fast_map), reinterpret_cast<void*>(*new_map), reason); } #endif } fast_map->NotifyLeafMapLayoutChange(); return new_map; } Handle<Map> Map::CopyNormalized(Handle<Map> map, PropertyNormalizationMode mode) { int new_instance_size = map->instance_size(); if (mode == CLEAR_INOBJECT_PROPERTIES) { new_instance_size -= map->GetInObjectProperties() * kPointerSize; } Handle<Map> result = RawCopy(map, new_instance_size); if (mode != CLEAR_INOBJECT_PROPERTIES) { result->SetInObjectProperties(map->GetInObjectProperties()); } result->set_dictionary_map(true); result->set_migration_target(false); result->set_construction_counter(kNoSlackTracking); #ifdef VERIFY_HEAP if (FLAG_verify_heap) result->DictionaryMapVerify(); #endif return result; } Handle<Map> Map::CopyInitialMap(Handle<Map> map, int instance_size, int in_object_properties, int unused_property_fields) { #ifdef DEBUG Isolate* isolate = map->GetIsolate(); // Strict function maps have Function as a constructor but the // Function's initial map is a sloppy function map. Same holds for // GeneratorFunction and its initial map. Object* constructor = map->GetConstructor(); DCHECK(constructor->IsJSFunction()); DCHECK(*map == JSFunction::cast(constructor)->initial_map() || *map == *isolate->strict_function_map() || *map == *isolate->strict_generator_function_map()); #endif // Initial maps must always own their descriptors and it's descriptor array // does not contain descriptors that do not belong to the map. DCHECK(map->owns_descriptors()); DCHECK_EQ(map->NumberOfOwnDescriptors(), map->instance_descriptors()->number_of_descriptors()); Handle<Map> result = RawCopy(map, instance_size); // Please note instance_type and instance_size are set when allocated. result->SetInObjectProperties(in_object_properties); result->set_unused_property_fields(unused_property_fields); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); if (number_of_own_descriptors > 0) { // The copy will use the same descriptors array. result->UpdateDescriptors(map->instance_descriptors(), map->GetLayoutDescriptor()); result->SetNumberOfOwnDescriptors(number_of_own_descriptors); DCHECK_EQ(result->NumberOfFields(), in_object_properties - unused_property_fields); } return result; } Handle<Map> Map::CopyDropDescriptors(Handle<Map> map) { Handle<Map> result = RawCopy(map, map->instance_size()); // Please note instance_type and instance_size are set when allocated. if (map->IsJSObjectMap()) { result->SetInObjectProperties(map->GetInObjectProperties()); result->set_unused_property_fields(map->unused_property_fields()); } result->ClearCodeCache(map->GetHeap()); map->NotifyLeafMapLayoutChange(); return result; } Handle<Map> Map::ShareDescriptor(Handle<Map> map, Handle<DescriptorArray> descriptors, Descriptor* descriptor) { // Sanity check. This path is only to be taken if the map owns its descriptor // array, implying that its NumberOfOwnDescriptors equals the number of // descriptors in the descriptor array. DCHECK_EQ(map->NumberOfOwnDescriptors(), map->instance_descriptors()->number_of_descriptors()); Handle<Map> result = CopyDropDescriptors(map); Handle<Name> name = descriptor->GetKey(); // Ensure there's space for the new descriptor in the shared descriptor array. if (descriptors->NumberOfSlackDescriptors() == 0) { int old_size = descriptors->number_of_descriptors(); if (old_size == 0) { descriptors = DescriptorArray::Allocate(map->GetIsolate(), 0, 1); } else { int slack = SlackForArraySize(old_size, kMaxNumberOfDescriptors); EnsureDescriptorSlack(map, slack); descriptors = handle(map->instance_descriptors()); } } Handle<LayoutDescriptor> layout_descriptor = FLAG_unbox_double_fields ? LayoutDescriptor::ShareAppend(map, descriptor->GetDetails()) : handle(LayoutDescriptor::FastPointerLayout(), map->GetIsolate()); { DisallowHeapAllocation no_gc; descriptors->Append(descriptor); result->InitializeDescriptors(*descriptors, *layout_descriptor); } DCHECK(result->NumberOfOwnDescriptors() == map->NumberOfOwnDescriptors() + 1); ConnectTransition(map, result, name, SIMPLE_PROPERTY_TRANSITION); return result; } #if TRACE_MAPS // static void Map::TraceTransition(const char* what, Map* from, Map* to, Name* name) { if (FLAG_trace_maps) { PrintF("[TraceMaps: %s from= %p to= %p name= ", what, reinterpret_cast<void*>(from), reinterpret_cast<void*>(to)); name->NameShortPrint(); PrintF(" ]\n"); } } // static void Map::TraceAllTransitions(Map* map) { Object* transitions = map->raw_transitions(); int num_transitions = TransitionArray::NumberOfTransitions(transitions); for (int i = -0; i < num_transitions; ++i) { Map* target = TransitionArray::GetTarget(transitions, i); Name* key = TransitionArray::GetKey(transitions, i); Map::TraceTransition("Transition", map, target, key); Map::TraceAllTransitions(target); } } #endif // TRACE_MAPS void Map::ConnectTransition(Handle<Map> parent, Handle<Map> child, Handle<Name> name, SimpleTransitionFlag flag) { if (!parent->GetBackPointer()->IsUndefined()) { parent->set_owns_descriptors(false); } else { // |parent| is initial map and it must keep the ownership, there must be no // descriptors in the descriptors array that do not belong to the map. DCHECK(parent->owns_descriptors()); DCHECK_EQ(parent->NumberOfOwnDescriptors(), parent->instance_descriptors()->number_of_descriptors()); } if (parent->is_prototype_map()) { DCHECK(child->is_prototype_map()); #if TRACE_MAPS Map::TraceTransition("NoTransition", *parent, *child, *name); #endif } else { TransitionArray::Insert(parent, name, child, flag); #if TRACE_MAPS Map::TraceTransition("Transition", *parent, *child, *name); #endif } } Handle<Map> Map::CopyReplaceDescriptors( Handle<Map> map, Handle<DescriptorArray> descriptors, Handle<LayoutDescriptor> layout_descriptor, TransitionFlag flag, MaybeHandle<Name> maybe_name, const char* reason, SimpleTransitionFlag simple_flag) { DCHECK(descriptors->IsSortedNoDuplicates()); Handle<Map> result = CopyDropDescriptors(map); if (!map->is_prototype_map()) { if (flag == INSERT_TRANSITION && TransitionArray::CanHaveMoreTransitions(map)) { result->InitializeDescriptors(*descriptors, *layout_descriptor); Handle<Name> name; CHECK(maybe_name.ToHandle(&name)); ConnectTransition(map, result, name, simple_flag); } else { int length = descriptors->number_of_descriptors(); for (int i = 0; i < length; i++) { descriptors->SetRepresentation(i, Representation::Tagged()); if (descriptors->GetDetails(i).type() == DATA) { descriptors->SetValue(i, FieldType::Any()); } } result->InitializeDescriptors(*descriptors, LayoutDescriptor::FastPointerLayout()); } } else { result->InitializeDescriptors(*descriptors, *layout_descriptor); } #if TRACE_MAPS if (FLAG_trace_maps && // Mirror conditions above that did not call ConnectTransition(). (map->is_prototype_map() || !(flag == INSERT_TRANSITION && TransitionArray::CanHaveMoreTransitions(map)))) { PrintF("[TraceMaps: ReplaceDescriptors from= %p to= %p reason= %s ]\n", reinterpret_cast<void*>(*map), reinterpret_cast<void*>(*result), reason); } #endif return result; } // Creates transition tree starting from |split_map| and adding all descriptors // starting from descriptor with index |split_map|.NumberOfOwnDescriptors(). // The way how it is done is tricky because of GC and special descriptors // marking logic. Handle<Map> Map::AddMissingTransitions( Handle<Map> split_map, Handle<DescriptorArray> descriptors, Handle<LayoutDescriptor> full_layout_descriptor) { DCHECK(descriptors->IsSortedNoDuplicates()); int split_nof = split_map->NumberOfOwnDescriptors(); int nof_descriptors = descriptors->number_of_descriptors(); DCHECK_LT(split_nof, nof_descriptors); // Start with creating last map which will own full descriptors array. // This is necessary to guarantee that GC will mark the whole descriptor // array if any of the allocations happening below fail. // Number of unused properties is temporarily incorrect and the layout // descriptor could unnecessarily be in slow mode but we will fix after // all the other intermediate maps are created. Handle<Map> last_map = CopyDropDescriptors(split_map); last_map->InitializeDescriptors(*descriptors, *full_layout_descriptor); last_map->set_unused_property_fields(0); // During creation of intermediate maps we violate descriptors sharing // invariant since the last map is not yet connected to the transition tree // we create here. But it is safe because GC never trims map's descriptors // if there are no dead transitions from that map and this is exactly the // case for all the intermediate maps we create here. Handle<Map> map = split_map; for (int i = split_nof; i < nof_descriptors - 1; ++i) { Handle<Map> new_map = CopyDropDescriptors(map); InstallDescriptors(map, new_map, i, descriptors, full_layout_descriptor); map = new_map; } map->NotifyLeafMapLayoutChange(); InstallDescriptors(map, last_map, nof_descriptors - 1, descriptors, full_layout_descriptor); return last_map; } // Since this method is used to rewrite an existing transition tree, it can // always insert transitions without checking. void Map::InstallDescriptors(Handle<Map> parent, Handle<Map> child, int new_descriptor, Handle<DescriptorArray> descriptors, Handle<LayoutDescriptor> full_layout_descriptor) { DCHECK(descriptors->IsSortedNoDuplicates()); child->set_instance_descriptors(*descriptors); child->SetNumberOfOwnDescriptors(new_descriptor + 1); int unused_property_fields = parent->unused_property_fields(); PropertyDetails details = descriptors->GetDetails(new_descriptor); if (details.location() == kField) { unused_property_fields = parent->unused_property_fields() - 1; if (unused_property_fields < 0) { unused_property_fields += JSObject::kFieldsAdded; } } child->set_unused_property_fields(unused_property_fields); if (FLAG_unbox_double_fields) { Handle<LayoutDescriptor> layout_descriptor = LayoutDescriptor::AppendIfFastOrUseFull(parent, details, full_layout_descriptor); child->set_layout_descriptor(*layout_descriptor); #ifdef VERIFY_HEAP // TODO(ishell): remove these checks from VERIFY_HEAP mode. if (FLAG_verify_heap) { CHECK(child->layout_descriptor()->IsConsistentWithMap(*child)); } #else SLOW_DCHECK(child->layout_descriptor()->IsConsistentWithMap(*child)); #endif child->set_visitor_id(Heap::GetStaticVisitorIdForMap(*child)); } Handle<Name> name = handle(descriptors->GetKey(new_descriptor)); ConnectTransition(parent, child, name, SIMPLE_PROPERTY_TRANSITION); } Handle<Map> Map::CopyAsElementsKind(Handle<Map> map, ElementsKind kind, TransitionFlag flag) { Map* maybe_elements_transition_map = NULL; if (flag == INSERT_TRANSITION) { maybe_elements_transition_map = map->ElementsTransitionMap(); DCHECK(maybe_elements_transition_map == NULL || (maybe_elements_transition_map->elements_kind() == DICTIONARY_ELEMENTS && kind == DICTIONARY_ELEMENTS)); DCHECK(!IsFastElementsKind(kind) || IsMoreGeneralElementsKindTransition(map->elements_kind(), kind)); DCHECK(kind != map->elements_kind()); } bool insert_transition = flag == INSERT_TRANSITION && TransitionArray::CanHaveMoreTransitions(map) && maybe_elements_transition_map == NULL; if (insert_transition) { Handle<Map> new_map = CopyForTransition(map, "CopyAsElementsKind"); new_map->set_elements_kind(kind); Isolate* isolate = map->GetIsolate(); Handle<Name> name = isolate->factory()->elements_transition_symbol(); ConnectTransition(map, new_map, name, SPECIAL_TRANSITION); return new_map; } // Create a new free-floating map only if we are not allowed to store it. Handle<Map> new_map = Copy(map, "CopyAsElementsKind"); new_map->set_elements_kind(kind); return new_map; } Handle<Map> Map::AsLanguageMode(Handle<Map> initial_map, LanguageMode language_mode, FunctionKind kind) { DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type()); // Initial map for sloppy mode function is stored in the function // constructor. Initial maps for strict mode are cached as special transitions // using |strict_function_transition_symbol| as a key. if (language_mode == SLOPPY) return initial_map; Isolate* isolate = initial_map->GetIsolate(); Factory* factory = isolate->factory(); Handle<Symbol> transition_symbol; int map_index = Context::FunctionMapIndex(language_mode, kind); Handle<Map> function_map( Map::cast(isolate->native_context()->get(map_index))); STATIC_ASSERT(LANGUAGE_END == 3); switch (language_mode) { case STRICT: transition_symbol = factory->strict_function_transition_symbol(); break; default: UNREACHABLE(); break; } Map* maybe_transition = TransitionArray::SearchSpecial(*initial_map, *transition_symbol); if (maybe_transition != NULL) { return handle(maybe_transition, isolate); } initial_map->NotifyLeafMapLayoutChange(); // Create new map taking descriptors from the |function_map| and all // the other details from the |initial_map|. Handle<Map> map = Map::CopyInitialMap(function_map, initial_map->instance_size(), initial_map->GetInObjectProperties(), initial_map->unused_property_fields()); map->SetConstructor(initial_map->GetConstructor()); map->set_prototype(initial_map->prototype()); if (TransitionArray::CanHaveMoreTransitions(initial_map)) { Map::ConnectTransition(initial_map, map, transition_symbol, SPECIAL_TRANSITION); } return map; } Handle<Map> Map::CopyForTransition(Handle<Map> map, const char* reason) { DCHECK(!map->is_prototype_map()); Handle<Map> new_map = CopyDropDescriptors(map); if (map->owns_descriptors()) { // In case the map owned its own descriptors, share the descriptors and // transfer ownership to the new map. // The properties did not change, so reuse descriptors. new_map->InitializeDescriptors(map->instance_descriptors(), map->GetLayoutDescriptor()); } else { // In case the map did not own its own descriptors, a split is forced by // copying the map; creating a new descriptor array cell. Handle<DescriptorArray> descriptors(map->instance_descriptors()); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo(descriptors, number_of_own_descriptors); Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(), map->GetIsolate()); new_map->InitializeDescriptors(*new_descriptors, *new_layout_descriptor); } #if TRACE_MAPS if (FLAG_trace_maps) { PrintF("[TraceMaps: CopyForTransition from= %p to= %p reason= %s ]\n", reinterpret_cast<void*>(*map), reinterpret_cast<void*>(*new_map), reason); } #endif return new_map; } Handle<Map> Map::Copy(Handle<Map> map, const char* reason) { Handle<DescriptorArray> descriptors(map->instance_descriptors()); int number_of_own_descriptors = map->NumberOfOwnDescriptors(); Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo(descriptors, number_of_own_descriptors); Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(), map->GetIsolate()); return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor, OMIT_TRANSITION, MaybeHandle<Name>(), reason, SPECIAL_TRANSITION); } Handle<Map> Map::Create(Isolate* isolate, int inobject_properties) { Handle<Map> copy = Copy(handle(isolate->object_function()->initial_map()), "MapCreate"); // Check that we do not overflow the instance size when adding the extra // inobject properties. If the instance size overflows, we allocate as many // properties as we can as inobject properties. int max_extra_properties = (JSObject::kMaxInstanceSize - JSObject::kHeaderSize) >> kPointerSizeLog2; if (inobject_properties > max_extra_properties) { inobject_properties = max_extra_properties; } int new_instance_size = JSObject::kHeaderSize + kPointerSize * inobject_properties; // Adjust the map with the extra inobject properties. copy->SetInObjectProperties(inobject_properties); copy->set_unused_property_fields(inobject_properties); copy->set_instance_size(new_instance_size); copy->set_visitor_id(Heap::GetStaticVisitorIdForMap(*copy)); return copy; } Handle<Map> Map::CopyForPreventExtensions(Handle<Map> map, PropertyAttributes attrs_to_add, Handle<Symbol> transition_marker, const char* reason) { int num_descriptors = map->NumberOfOwnDescriptors(); Isolate* isolate = map->GetIsolate(); Handle<DescriptorArray> new_desc = DescriptorArray::CopyUpToAddAttributes( handle(map->instance_descriptors(), isolate), num_descriptors, attrs_to_add); Handle<LayoutDescriptor> new_layout_descriptor(map->GetLayoutDescriptor(), isolate); Handle<Map> new_map = CopyReplaceDescriptors( map, new_desc, new_layout_descriptor, INSERT_TRANSITION, transition_marker, reason, SPECIAL_TRANSITION); new_map->set_is_extensible(false); if (!IsFixedTypedArrayElementsKind(map->elements_kind())) { ElementsKind new_kind = IsStringWrapperElementsKind(map->elements_kind()) ? SLOW_STRING_WRAPPER_ELEMENTS : DICTIONARY_ELEMENTS; new_map->set_elements_kind(new_kind); } return new_map; } FieldType* DescriptorArray::GetFieldType(int descriptor_number) { DCHECK(GetDetails(descriptor_number).location() == kField); Object* value = GetValue(descriptor_number); if (value->IsWeakCell()) { if (WeakCell::cast(value)->cleared()) return FieldType::None(); value = WeakCell::cast(value)->value(); } return FieldType::cast(value); } namespace { bool CanHoldValue(DescriptorArray* descriptors, int descriptor, Object* value) { PropertyDetails details = descriptors->GetDetails(descriptor); switch (details.type()) { case DATA: return value->FitsRepresentation(details.representation()) && descriptors->GetFieldType(descriptor)->NowContains(value); case DATA_CONSTANT: DCHECK(descriptors->GetConstant(descriptor) != value || value->FitsRepresentation(details.representation())); return descriptors->GetConstant(descriptor) == value; case ACCESSOR: case ACCESSOR_CONSTANT: return false; } UNREACHABLE(); return false; } Handle<Map> UpdateDescriptorForValue(Handle<Map> map, int descriptor, Handle<Object> value) { if (CanHoldValue(map->instance_descriptors(), descriptor, *value)) return map; Isolate* isolate = map->GetIsolate(); PropertyAttributes attributes = map->instance_descriptors()->GetDetails(descriptor).attributes(); Representation representation = value->OptimalRepresentation(); Handle<FieldType> type = value->OptimalType(isolate, representation); return Map::ReconfigureProperty(map, descriptor, kData, attributes, representation, type, FORCE_FIELD); } } // namespace // static Handle<Map> Map::PrepareForDataProperty(Handle<Map> map, int descriptor, Handle<Object> value) { // Dictionaries can store any property value. DCHECK(!map->is_dictionary_map()); // Update to the newest map before storing the property. return UpdateDescriptorForValue(Update(map), descriptor, value); } Handle<Map> Map::TransitionToDataProperty(Handle<Map> map, Handle<Name> name, Handle<Object> value, PropertyAttributes attributes, StoreFromKeyed store_mode) { DCHECK(name->IsUniqueName()); DCHECK(!map->is_dictionary_map()); // Migrate to the newest map before storing the property. map = Update(map); Map* maybe_transition = TransitionArray::SearchTransition(*map, kData, *name, attributes); if (maybe_transition != NULL) { Handle<Map> transition(maybe_transition); int descriptor = transition->LastAdded(); DCHECK_EQ(attributes, transition->instance_descriptors() ->GetDetails(descriptor) .attributes()); return UpdateDescriptorForValue(transition, descriptor, value); } TransitionFlag flag = INSERT_TRANSITION; MaybeHandle<Map> maybe_map; if (value->IsJSFunction()) { maybe_map = Map::CopyWithConstant(map, name, value, attributes, flag); } else if (!map->TooManyFastProperties(store_mode)) { Isolate* isolate = name->GetIsolate(); Representation representation = value->OptimalRepresentation(); Handle<FieldType> type = value->OptimalType(isolate, representation); maybe_map = Map::CopyWithField(map, name, type, attributes, representation, flag); } Handle<Map> result; if (!maybe_map.ToHandle(&result)) { #if TRACE_MAPS if (FLAG_trace_maps) { Vector<char> name_buffer = Vector<char>::New(100); name->NameShortPrint(name_buffer); Vector<char> buffer = Vector<char>::New(128); SNPrintF(buffer, "TooManyFastProperties %s", name_buffer.start()); return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES, buffer.start()); } #endif return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES, "TooManyFastProperties"); } return result; } Handle<Map> Map::ReconfigureExistingProperty(Handle<Map> map, int descriptor, PropertyKind kind, PropertyAttributes attributes) { // Dictionaries have to be reconfigured in-place. DCHECK(!map->is_dictionary_map()); if (!map->GetBackPointer()->IsMap()) { // There is no benefit from reconstructing transition tree for maps without // back pointers. return CopyGeneralizeAllRepresentations( map, descriptor, FORCE_FIELD, kind, attributes, "GenAll_AttributesMismatchProtoMap"); } if (FLAG_trace_generalization) { map->PrintReconfiguration(stdout, descriptor, kind, attributes); } Isolate* isolate = map->GetIsolate(); Handle<Map> new_map = ReconfigureProperty( map, descriptor, kind, attributes, Representation::None(), FieldType::None(isolate), FORCE_FIELD); return new_map; } Handle<Map> Map::TransitionToAccessorProperty(Handle<Map> map, Handle<Name> name, int descriptor, AccessorComponent component, Handle<Object> accessor, PropertyAttributes attributes) { DCHECK(name->IsUniqueName()); Isolate* isolate = name->GetIsolate(); // Dictionary maps can always have additional data properties. if (map->is_dictionary_map()) return map; // Migrate to the newest map before transitioning to the new property. map = Update(map); PropertyNormalizationMode mode = map->is_prototype_map() ? KEEP_INOBJECT_PROPERTIES : CLEAR_INOBJECT_PROPERTIES; Map* maybe_transition = TransitionArray::SearchTransition(*map, kAccessor, *name, attributes); if (maybe_transition != NULL) { Handle<Map> transition(maybe_transition, isolate); DescriptorArray* descriptors = transition->instance_descriptors(); int descriptor = transition->LastAdded(); DCHECK(descriptors->GetKey(descriptor)->Equals(*name)); DCHECK_EQ(kAccessor, descriptors->GetDetails(descriptor).kind()); DCHECK_EQ(attributes, descriptors->GetDetails(descriptor).attributes()); Handle<Object> maybe_pair(descriptors->GetValue(descriptor), isolate); if (!maybe_pair->IsAccessorPair()) { return Map::Normalize(map, mode, "TransitionToAccessorFromNonPair"); } Handle<AccessorPair> pair = Handle<AccessorPair>::cast(maybe_pair); if (pair->get(component) != *accessor) { return Map::Normalize(map, mode, "TransitionToDifferentAccessor"); } return transition; } Handle<AccessorPair> pair; DescriptorArray* old_descriptors = map->instance_descriptors(); if (descriptor != DescriptorArray::kNotFound) { if (descriptor != map->LastAdded()) { return Map::Normalize(map, mode, "AccessorsOverwritingNonLast"); } PropertyDetails old_details = old_descriptors->GetDetails(descriptor); if (old_details.type() != ACCESSOR_CONSTANT) { return Map::Normalize(map, mode, "AccessorsOverwritingNonAccessors"); } if (old_details.attributes() != attributes) { return Map::Normalize(map, mode, "AccessorsWithAttributes"); } Handle<Object> maybe_pair(old_descriptors->GetValue(descriptor), isolate); if (!maybe_pair->IsAccessorPair()) { return Map::Normalize(map, mode, "AccessorsOverwritingNonPair"); } Object* current = Handle<AccessorPair>::cast(maybe_pair)->get(component); if (current == *accessor) return map; if (!current->IsTheHole()) { return Map::Normalize(map, mode, "AccessorsOverwritingAccessors"); } pair = AccessorPair::Copy(Handle<AccessorPair>::cast(maybe_pair)); } else if (map->NumberOfOwnDescriptors() >= kMaxNumberOfDescriptors || map->TooManyFastProperties(CERTAINLY_NOT_STORE_FROM_KEYED)) { return Map::Normalize(map, CLEAR_INOBJECT_PROPERTIES, "TooManyAccessors"); } else { pair = isolate->factory()->NewAccessorPair(); } pair->set(component, *accessor); TransitionFlag flag = INSERT_TRANSITION; AccessorConstantDescriptor new_desc(name, pair, attributes); return Map::CopyInsertDescriptor(map, &new_desc, flag); } Handle<Map> Map::CopyAddDescriptor(Handle<Map> map, Descriptor* descriptor, TransitionFlag flag) { Handle<DescriptorArray> descriptors(map->instance_descriptors()); // Share descriptors only if map owns descriptors and it not an initial map. if (flag == INSERT_TRANSITION && map->owns_descriptors() && !map->GetBackPointer()->IsUndefined() && TransitionArray::CanHaveMoreTransitions(map)) { return ShareDescriptor(map, descriptors, descriptor); } int nof = map->NumberOfOwnDescriptors(); Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo(descriptors, nof, 1); new_descriptors->Append(descriptor); Handle<LayoutDescriptor> new_layout_descriptor = FLAG_unbox_double_fields ? LayoutDescriptor::New(map, new_descriptors, nof + 1) : handle(LayoutDescriptor::FastPointerLayout(), map->GetIsolate()); return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor, flag, descriptor->GetKey(), "CopyAddDescriptor", SIMPLE_PROPERTY_TRANSITION); } Handle<Map> Map::CopyInsertDescriptor(Handle<Map> map, Descriptor* descriptor, TransitionFlag flag) { Handle<DescriptorArray> old_descriptors(map->instance_descriptors()); // We replace the key if it is already present. int index = old_descriptors->SearchWithCache(map->GetIsolate(), *descriptor->GetKey(), *map); if (index != DescriptorArray::kNotFound) { return CopyReplaceDescriptor(map, old_descriptors, descriptor, index, flag); } return CopyAddDescriptor(map, descriptor, flag); } Handle<DescriptorArray> DescriptorArray::CopyUpTo( Handle<DescriptorArray> desc, int enumeration_index, int slack) { return DescriptorArray::CopyUpToAddAttributes( desc, enumeration_index, NONE, slack); } Handle<DescriptorArray> DescriptorArray::CopyUpToAddAttributes( Handle<DescriptorArray> desc, int enumeration_index, PropertyAttributes attributes, int slack) { if (enumeration_index + slack == 0) { return desc->GetIsolate()->factory()->empty_descriptor_array(); } int size = enumeration_index; Handle<DescriptorArray> descriptors = DescriptorArray::Allocate(desc->GetIsolate(), size, slack); if (attributes != NONE) { for (int i = 0; i < size; ++i) { Object* value = desc->GetValue(i); Name* key = desc->GetKey(i); PropertyDetails details = desc->GetDetails(i); // Bulk attribute changes never affect private properties. if (!key->IsPrivate()) { int mask = DONT_DELETE | DONT_ENUM; // READ_ONLY is an invalid attribute for JS setters/getters. if (details.type() != ACCESSOR_CONSTANT || !value->IsAccessorPair()) { mask |= READ_ONLY; } details = details.CopyAddAttributes( static_cast<PropertyAttributes>(attributes & mask)); } Descriptor inner_desc( handle(key), handle(value, desc->GetIsolate()), details); descriptors->SetDescriptor(i, &inner_desc); } } else { for (int i = 0; i < size; ++i) { descriptors->CopyFrom(i, *desc); } } if (desc->number_of_descriptors() != enumeration_index) descriptors->Sort(); return descriptors; } bool DescriptorArray::IsEqualUpTo(DescriptorArray* desc, int nof_descriptors) { for (int i = 0; i < nof_descriptors; i++) { if (GetKey(i) != desc->GetKey(i) || GetValue(i) != desc->GetValue(i)) { return false; } PropertyDetails details = GetDetails(i); PropertyDetails other_details = desc->GetDetails(i); if (details.type() != other_details.type() || !details.representation().Equals(other_details.representation())) { return false; } } return true; } Handle<Map> Map::CopyReplaceDescriptor(Handle<Map> map, Handle<DescriptorArray> descriptors, Descriptor* descriptor, int insertion_index, TransitionFlag flag) { Handle<Name> key = descriptor->GetKey(); DCHECK(*key == descriptors->GetKey(insertion_index)); Handle<DescriptorArray> new_descriptors = DescriptorArray::CopyUpTo( descriptors, map->NumberOfOwnDescriptors()); new_descriptors->Replace(insertion_index, descriptor); Handle<LayoutDescriptor> new_layout_descriptor = LayoutDescriptor::New( map, new_descriptors, new_descriptors->number_of_descriptors()); SimpleTransitionFlag simple_flag = (insertion_index == descriptors->number_of_descriptors() - 1) ? SIMPLE_PROPERTY_TRANSITION : PROPERTY_TRANSITION; return CopyReplaceDescriptors(map, new_descriptors, new_layout_descriptor, flag, key, "CopyReplaceDescriptor", simple_flag); } void Map::UpdateCodeCache(Handle<Map> map, Handle<Name> name, Handle<Code> code) { Isolate* isolate = map->GetIsolate(); HandleScope scope(isolate); // Allocate the code cache if not present. if (!map->has_code_cache()) { Handle<Object> result = CodeCacheHashTable::New(isolate, CodeCacheHashTable::kInitialSize); map->set_code_cache(*result); } // Update the code cache. Handle<CodeCacheHashTable> cache(CodeCacheHashTable::cast(map->code_cache()), isolate); Handle<Object> new_cache = CodeCacheHashTable::Put(cache, name, code); map->set_code_cache(*new_cache); } Code* Map::LookupInCodeCache(Name* name, Code::Flags flags) { if (!has_code_cache()) return nullptr; return CodeCacheHashTable::cast(code_cache())->Lookup(name, flags); } // The key in the code cache hash table consists of the property name and the // code object. The actual match is on the name and the code flags. If a key // is created using the flags and not a code object it can only be used for // lookup not to create a new entry. class CodeCacheHashTableKey : public HashTableKey { public: CodeCacheHashTableKey(Handle<Name> name, Code::Flags flags) : name_(name), flags_(flags), code_() { DCHECK(name_->IsUniqueName()); } CodeCacheHashTableKey(Handle<Name> name, Handle<Code> code) : name_(name), flags_(code->flags()), code_(code) { DCHECK(name_->IsUniqueName()); } bool IsMatch(Object* other) override { DCHECK(other->IsFixedArray()); FixedArray* pair = FixedArray::cast(other); Name* name = Name::cast(pair->get(0)); Code::Flags flags = Code::cast(pair->get(1))->flags(); if (flags != flags_) return false; DCHECK(name->IsUniqueName()); return *name_ == name; } static uint32_t NameFlagsHashHelper(Name* name, Code::Flags flags) { return name->Hash() ^ flags; } uint32_t Hash() override { return NameFlagsHashHelper(*name_, flags_); } uint32_t HashForObject(Object* obj) override { FixedArray* pair = FixedArray::cast(obj); Name* name = Name::cast(pair->get(0)); Code* code = Code::cast(pair->get(1)); return NameFlagsHashHelper(name, code->flags()); } MUST_USE_RESULT Handle<Object> AsHandle(Isolate* isolate) override { Handle<Code> code = code_.ToHandleChecked(); Handle<FixedArray> pair = isolate->factory()->NewFixedArray(2); pair->set(0, *name_); pair->set(1, *code); return pair; } private: Handle<Name> name_; Code::Flags flags_; // TODO(jkummerow): We should be able to get by without this. MaybeHandle<Code> code_; }; Handle<CodeCacheHashTable> CodeCacheHashTable::Put( Handle<CodeCacheHashTable> cache, Handle<Name> name, Handle<Code> code) { CodeCacheHashTableKey key(name, code); Handle<CodeCacheHashTable> new_cache = EnsureCapacity(cache, 1, &key); int entry = new_cache->FindInsertionEntry(key.Hash()); Handle<Object> k = key.AsHandle(cache->GetIsolate()); new_cache->set(EntryToIndex(entry), *k); new_cache->ElementAdded(); return new_cache; } Code* CodeCacheHashTable::Lookup(Name* name, Code::Flags flags) { DisallowHeapAllocation no_alloc; CodeCacheHashTableKey key(handle(name), flags); int entry = FindEntry(&key); if (entry == kNotFound) return nullptr; return Code::cast(FixedArray::cast(get(EntryToIndex(entry)))->get(1)); } void FixedArray::Shrink(int new_length) { DCHECK(0 <= new_length && new_length <= length()); if (new_length < length()) { GetHeap()->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>( this, length() - new_length); } } void FixedArray::CopyTo(int pos, FixedArray* dest, int dest_pos, int len) { DisallowHeapAllocation no_gc; WriteBarrierMode mode = dest->GetWriteBarrierMode(no_gc); for (int index = 0; index < len; index++) { dest->set(dest_pos+index, get(pos+index), mode); } } #ifdef DEBUG bool FixedArray::IsEqualTo(FixedArray* other) { if (length() != other->length()) return false; for (int i = 0 ; i < length(); ++i) { if (get(i) != other->get(i)) return false; } return true; } #endif // static void WeakFixedArray::Set(Handle<WeakFixedArray> array, int index, Handle<HeapObject> value) { DCHECK(array->IsEmptySlot(index)); // Don't overwrite anything. Handle<WeakCell> cell = value->IsMap() ? Map::WeakCellForMap(Handle<Map>::cast(value)) : array->GetIsolate()->factory()->NewWeakCell(value); Handle<FixedArray>::cast(array)->set(index + kFirstIndex, *cell); if (FLAG_trace_weak_arrays) { PrintF("[WeakFixedArray: storing at index %d ]\n", index); } array->set_last_used_index(index); } // static Handle<WeakFixedArray> WeakFixedArray::Add(Handle<Object> maybe_array, Handle<HeapObject> value, int* assigned_index) { Handle<WeakFixedArray> array = (maybe_array.is_null() || !maybe_array->IsWeakFixedArray()) ? Allocate(value->GetIsolate(), 1, Handle<WeakFixedArray>::null()) : Handle<WeakFixedArray>::cast(maybe_array); // Try to store the new entry if there's room. Optimize for consecutive // accesses. int first_index = array->last_used_index(); int length = array->Length(); if (length > 0) { for (int i = first_index;;) { if (array->IsEmptySlot((i))) { WeakFixedArray::Set(array, i, value); if (assigned_index != NULL) *assigned_index = i; return array; } if (FLAG_trace_weak_arrays) { PrintF("[WeakFixedArray: searching for free slot]\n"); } i = (i + 1) % length; if (i == first_index) break; } } // No usable slot found, grow the array. int new_length = length == 0 ? 1 : length + (length >> 1) + 4; Handle<WeakFixedArray> new_array = Allocate(array->GetIsolate(), new_length, array); if (FLAG_trace_weak_arrays) { PrintF("[WeakFixedArray: growing to size %d ]\n", new_length); } WeakFixedArray::Set(new_array, length, value); if (assigned_index != NULL) *assigned_index = length; return new_array; } template <class CompactionCallback> void WeakFixedArray::Compact() { FixedArray* array = FixedArray::cast(this); int new_length = kFirstIndex; for (int i = kFirstIndex; i < array->length(); i++) { Object* element = array->get(i); if (element->IsSmi()) continue; if (WeakCell::cast(element)->cleared()) continue; Object* value = WeakCell::cast(element)->value(); CompactionCallback::Callback(value, i - kFirstIndex, new_length - kFirstIndex); array->set(new_length++, element); } array->Shrink(new_length); set_last_used_index(0); } void WeakFixedArray::Iterator::Reset(Object* maybe_array) { if (maybe_array->IsWeakFixedArray()) { list_ = WeakFixedArray::cast(maybe_array); index_ = 0; #ifdef DEBUG last_used_index_ = list_->last_used_index(); #endif // DEBUG } } void JSObject::PrototypeRegistryCompactionCallback::Callback(Object* value, int old_index, int new_index) { DCHECK(value->IsMap() && Map::cast(value)->is_prototype_map()); Map* map = Map::cast(value); DCHECK(map->prototype_info()->IsPrototypeInfo()); PrototypeInfo* proto_info = PrototypeInfo::cast(map->prototype_info()); DCHECK_EQ(old_index, proto_info->registry_slot()); proto_info->set_registry_slot(new_index); } template void WeakFixedArray::Compact<WeakFixedArray::NullCallback>(); template void WeakFixedArray::Compact<JSObject::PrototypeRegistryCompactionCallback>(); bool WeakFixedArray::Remove(Handle<HeapObject> value) { if (Length() == 0) return false; // Optimize for the most recently added element to be removed again. int first_index = last_used_index(); for (int i = first_index;;) { if (Get(i) == *value) { Clear(i); // Users of WeakFixedArray should make sure that there are no duplicates. return true; } i = (i + 1) % Length(); if (i == first_index) return false; } UNREACHABLE(); } // static Handle<WeakFixedArray> WeakFixedArray::Allocate( Isolate* isolate, int size, Handle<WeakFixedArray> initialize_from) { DCHECK(0 <= size); Handle<FixedArray> result = isolate->factory()->NewUninitializedFixedArray(size + kFirstIndex); int index = 0; if (!initialize_from.is_null()) { DCHECK(initialize_from->Length() <= size); Handle<FixedArray> raw_source = Handle<FixedArray>::cast(initialize_from); // Copy the entries without compacting, since the PrototypeInfo relies on // the index of the entries not to change. while (index < raw_source->length()) { result->set(index, raw_source->get(index)); index++; } } while (index < result->length()) { result->set(index, Smi::FromInt(0)); index++; } return Handle<WeakFixedArray>::cast(result); } Handle<ArrayList> ArrayList::Add(Handle<ArrayList> array, Handle<Object> obj, AddMode mode) { int length = array->Length(); array = EnsureSpace(array, length + 1); if (mode == kReloadLengthAfterAllocation) { DCHECK(array->Length() <= length); length = array->Length(); } array->Set(length, *obj); array->SetLength(length + 1); return array; } Handle<ArrayList> ArrayList::Add(Handle<ArrayList> array, Handle<Object> obj1, Handle<Object> obj2, AddMode mode) { int length = array->Length(); array = EnsureSpace(array, length + 2); if (mode == kReloadLengthAfterAllocation) { length = array->Length(); } array->Set(length, *obj1); array->Set(length + 1, *obj2); array->SetLength(length + 2); return array; } bool ArrayList::IsFull() { int capacity = length(); return kFirstIndex + Length() == capacity; } Handle<ArrayList> ArrayList::EnsureSpace(Handle<ArrayList> array, int length) { int capacity = array->length(); bool empty = (capacity == 0); if (capacity < kFirstIndex + length) { Isolate* isolate = array->GetIsolate(); int new_capacity = kFirstIndex + length; new_capacity = new_capacity + Max(new_capacity / 2, 2); int grow_by = new_capacity - capacity; array = Handle<ArrayList>::cast( isolate->factory()->CopyFixedArrayAndGrow(array, grow_by)); if (empty) array->SetLength(0); } return array; } Handle<DescriptorArray> DescriptorArray::Allocate(Isolate* isolate, int number_of_descriptors, int slack, PretenureFlag pretenure) { DCHECK(0 <= number_of_descriptors); Factory* factory = isolate->factory(); // Do not use DescriptorArray::cast on incomplete object. int size = number_of_descriptors + slack; if (size == 0) return factory->empty_descriptor_array(); // Allocate the array of keys. Handle<FixedArray> result = factory->NewFixedArray(LengthFor(size), pretenure); result->set(kDescriptorLengthIndex, Smi::FromInt(number_of_descriptors)); result->set(kEnumCacheIndex, Smi::FromInt(0)); return Handle<DescriptorArray>::cast(result); } void DescriptorArray::ClearEnumCache() { set(kEnumCacheIndex, Smi::FromInt(0)); } void DescriptorArray::Replace(int index, Descriptor* descriptor) { descriptor->SetSortedKeyIndex(GetSortedKeyIndex(index)); Set(index, descriptor); } // static void DescriptorArray::SetEnumCache(Handle<DescriptorArray> descriptors, Isolate* isolate, Handle<FixedArray> new_cache, Handle<FixedArray> new_index_cache) { DCHECK(!descriptors->IsEmpty()); FixedArray* bridge_storage; bool needs_new_enum_cache = !descriptors->HasEnumCache(); if (needs_new_enum_cache) { bridge_storage = *isolate->factory()->NewFixedArray( DescriptorArray::kEnumCacheBridgeLength); } else { bridge_storage = FixedArray::cast(descriptors->get(kEnumCacheIndex)); } bridge_storage->set(kEnumCacheBridgeCacheIndex, *new_cache); bridge_storage->set(kEnumCacheBridgeIndicesCacheIndex, new_index_cache.is_null() ? Object::cast(Smi::FromInt(0)) : *new_index_cache); if (needs_new_enum_cache) { descriptors->set(kEnumCacheIndex, bridge_storage); } } void DescriptorArray::CopyFrom(int index, DescriptorArray* src) { Object* value = src->GetValue(index); PropertyDetails details = src->GetDetails(index); Descriptor desc(handle(src->GetKey(index)), handle(value, src->GetIsolate()), details); SetDescriptor(index, &desc); } void DescriptorArray::Sort() { // In-place heap sort. int len = number_of_descriptors(); // Reset sorting since the descriptor array might contain invalid pointers. for (int i = 0; i < len; ++i) SetSortedKey(i, i); // Bottom-up max-heap construction. // Index of the last node with children const int max_parent_index = (len / 2) - 1; for (int i = max_parent_index; i >= 0; --i) { int parent_index = i; const uint32_t parent_hash = GetSortedKey(i)->Hash(); while (parent_index <= max_parent_index) { int child_index = 2 * parent_index + 1; uint32_t child_hash = GetSortedKey(child_index)->Hash(); if (child_index + 1 < len) { uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash(); if (right_child_hash > child_hash) { child_index++; child_hash = right_child_hash; } } if (child_hash <= parent_hash) break; SwapSortedKeys(parent_index, child_index); // Now element at child_index could be < its children. parent_index = child_index; // parent_hash remains correct. } } // Extract elements and create sorted array. for (int i = len - 1; i > 0; --i) { // Put max element at the back of the array. SwapSortedKeys(0, i); // Shift down the new top element. int parent_index = 0; const uint32_t parent_hash = GetSortedKey(parent_index)->Hash(); const int max_parent_index = (i / 2) - 1; while (parent_index <= max_parent_index) { int child_index = parent_index * 2 + 1; uint32_t child_hash = GetSortedKey(child_index)->Hash(); if (child_index + 1 < i) { uint32_t right_child_hash = GetSortedKey(child_index + 1)->Hash(); if (right_child_hash > child_hash) { child_index++; child_hash = right_child_hash; } } if (child_hash <= parent_hash) break; SwapSortedKeys(parent_index, child_index); parent_index = child_index; } } DCHECK(IsSortedNoDuplicates()); } Handle<AccessorPair> AccessorPair::Copy(Handle<AccessorPair> pair) { Handle<AccessorPair> copy = pair->GetIsolate()->factory()->NewAccessorPair(); copy->set_getter(pair->getter()); copy->set_setter(pair->setter()); return copy; } Handle<Object> AccessorPair::GetComponent(Handle<AccessorPair> accessor_pair, AccessorComponent component) { Object* accessor = accessor_pair->get(component); if (accessor->IsFunctionTemplateInfo()) { return ApiNatives::InstantiateFunction( handle(FunctionTemplateInfo::cast(accessor))) .ToHandleChecked(); } Isolate* isolate = accessor_pair->GetIsolate(); if (accessor->IsTheHole()) { return isolate->factory()->undefined_value(); } return handle(accessor, isolate); } Handle<DeoptimizationInputData> DeoptimizationInputData::New( Isolate* isolate, int deopt_entry_count, PretenureFlag pretenure) { return Handle<DeoptimizationInputData>::cast( isolate->factory()->NewFixedArray(LengthFor(deopt_entry_count), pretenure)); } Handle<DeoptimizationOutputData> DeoptimizationOutputData::New( Isolate* isolate, int number_of_deopt_points, PretenureFlag pretenure) { Handle<FixedArray> result; if (number_of_deopt_points == 0) { result = isolate->factory()->empty_fixed_array(); } else { result = isolate->factory()->NewFixedArray( LengthOfFixedArray(number_of_deopt_points), pretenure); } return Handle<DeoptimizationOutputData>::cast(result); } // static Handle<LiteralsArray> LiteralsArray::New(Isolate* isolate, Handle<TypeFeedbackVector> vector, int number_of_literals, PretenureFlag pretenure) { Handle<FixedArray> literals = isolate->factory()->NewFixedArray( number_of_literals + kFirstLiteralIndex, pretenure); Handle<LiteralsArray> casted_literals = Handle<LiteralsArray>::cast(literals); casted_literals->set_feedback_vector(*vector); return casted_literals; } int HandlerTable::LookupRange(int pc_offset, int* data_out, CatchPrediction* prediction_out) { int innermost_handler = -1; #ifdef DEBUG // Assuming that ranges are well nested, we don't need to track the innermost // offsets. This is just to verify that the table is actually well nested. int innermost_start = std::numeric_limits<int>::min(); int innermost_end = std::numeric_limits<int>::max(); #endif for (int i = 0; i < length(); i += kRangeEntrySize) { int start_offset = Smi::cast(get(i + kRangeStartIndex))->value(); int end_offset = Smi::cast(get(i + kRangeEndIndex))->value(); int handler_field = Smi::cast(get(i + kRangeHandlerIndex))->value(); int handler_offset = HandlerOffsetField::decode(handler_field); CatchPrediction prediction = HandlerPredictionField::decode(handler_field); int handler_data = Smi::cast(get(i + kRangeDataIndex))->value(); if (pc_offset > start_offset && pc_offset <= end_offset) { DCHECK_GE(start_offset, innermost_start); DCHECK_LT(end_offset, innermost_end); innermost_handler = handler_offset; #ifdef DEBUG innermost_start = start_offset; innermost_end = end_offset; #endif if (data_out) *data_out = handler_data; if (prediction_out) *prediction_out = prediction; } } return innermost_handler; } // TODO(turbofan): Make sure table is sorted and use binary search. int HandlerTable::LookupReturn(int pc_offset, CatchPrediction* prediction_out) { for (int i = 0; i < length(); i += kReturnEntrySize) { int return_offset = Smi::cast(get(i + kReturnOffsetIndex))->value(); int handler_field = Smi::cast(get(i + kReturnHandlerIndex))->value(); if (pc_offset == return_offset) { if (prediction_out) { *prediction_out = HandlerPredictionField::decode(handler_field); } return HandlerOffsetField::decode(handler_field); } } return -1; } #ifdef DEBUG bool DescriptorArray::IsEqualTo(DescriptorArray* other) { if (IsEmpty()) return other->IsEmpty(); if (other->IsEmpty()) return false; if (length() != other->length()) return false; for (int i = 0; i < length(); ++i) { if (get(i) != other->get(i)) return false; } return true; } #endif bool String::LooksValid() { if (!GetIsolate()->heap()->Contains(this)) return false; return true; } // static MaybeHandle<String> Name::ToFunctionName(Handle<Name> name) { if (name->IsString()) return Handle<String>::cast(name); // ES6 section 9.2.11 SetFunctionName, step 4. Isolate* const isolate = name->GetIsolate(); Handle<Object> description(Handle<Symbol>::cast(name)->name(), isolate); if (description->IsUndefined()) return isolate->factory()->empty_string(); IncrementalStringBuilder builder(isolate); builder.AppendCharacter('['); builder.AppendString(Handle<String>::cast(description)); builder.AppendCharacter(']'); return builder.Finish(); } namespace { bool AreDigits(const uint8_t* s, int from, int to) { for (int i = from; i < to; i++) { if (s[i] < '0' || s[i] > '9') return false; } return true; } int ParseDecimalInteger(const uint8_t* s, int from, int to) { DCHECK(to - from < 10); // Overflow is not possible. DCHECK(from < to); int d = s[from] - '0'; for (int i = from + 1; i < to; i++) { d = 10 * d + (s[i] - '0'); } return d; } } // namespace // static Handle<Object> String::ToNumber(Handle<String> subject) { Isolate* const isolate = subject->GetIsolate(); // Flatten {subject} string first. subject = String::Flatten(subject); // Fast array index case. uint32_t index; if (subject->AsArrayIndex(&index)) { return isolate->factory()->NewNumberFromUint(index); } // Fast case: short integer or some sorts of junk values. if (subject->IsSeqOneByteString()) { int len = subject->length(); if (len == 0) return handle(Smi::FromInt(0), isolate); DisallowHeapAllocation no_gc; uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars(); bool minus = (data[0] == '-'); int start_pos = (minus ? 1 : 0); if (start_pos == len) { return isolate->factory()->nan_value(); } else if (data[start_pos] > '9') { // Fast check for a junk value. A valid string may start from a // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit // or the 'I' character ('Infinity'). All of that have codes not greater // than '9' except 'I' and . if (data[start_pos] != 'I' && data[start_pos] != 0xa0) { return isolate->factory()->nan_value(); } } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) { // The maximal/minimal smi has 10 digits. If the string has less digits // we know it will fit into the smi-data type. int d = ParseDecimalInteger(data, start_pos, len); if (minus) { if (d == 0) return isolate->factory()->minus_zero_value(); d = -d; } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize && (len == 1 || data[0] != '0')) { // String hash is not calculated yet but all the data are present. // Update the hash field to speed up sequential convertions. uint32_t hash = StringHasher::MakeArrayIndexHash(d, len); #ifdef DEBUG subject->Hash(); // Force hash calculation. DCHECK_EQ(static_cast<int>(subject->hash_field()), static_cast<int>(hash)); #endif subject->set_hash_field(hash); } return handle(Smi::FromInt(d), isolate); } } // Slower case. int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_BINARY; return isolate->factory()->NewNumber( StringToDouble(isolate->unicode_cache(), subject, flags)); } String::FlatContent String::GetFlatContent() { DCHECK(!AllowHeapAllocation::IsAllowed()); int length = this->length(); StringShape shape(this); String* string = this; int offset = 0; if (shape.representation_tag() == kConsStringTag) { ConsString* cons = ConsString::cast(string); if (cons->second()->length() != 0) { return FlatContent(); } string = cons->first(); shape = StringShape(string); } if (shape.representation_tag() == kSlicedStringTag) { SlicedString* slice = SlicedString::cast(string); offset = slice->offset(); string = slice->parent(); shape = StringShape(string); DCHECK(shape.representation_tag() != kConsStringTag && shape.representation_tag() != kSlicedStringTag); } if (shape.encoding_tag() == kOneByteStringTag) { const uint8_t* start; if (shape.representation_tag() == kSeqStringTag) { start = SeqOneByteString::cast(string)->GetChars(); } else { start = ExternalOneByteString::cast(string)->GetChars(); } return FlatContent(start + offset, length); } else { DCHECK(shape.encoding_tag() == kTwoByteStringTag); const uc16* start; if (shape.representation_tag() == kSeqStringTag) { start = SeqTwoByteString::cast(string)->GetChars(); } else { start = ExternalTwoByteString::cast(string)->GetChars(); } return FlatContent(start + offset, length); } } base::SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robust_flag, int offset, int length, int* length_return) { if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { return base::SmartArrayPointer<char>(NULL); } // Negative length means the to the end of the string. if (length < 0) length = kMaxInt - offset; // Compute the size of the UTF-8 string. Start at the specified offset. StringCharacterStream stream(this, offset); int character_position = offset; int utf8_bytes = 0; int last = unibrow::Utf16::kNoPreviousCharacter; while (stream.HasMore() && character_position++ < offset + length) { uint16_t character = stream.GetNext(); utf8_bytes += unibrow::Utf8::Length(character, last); last = character; } if (length_return) { *length_return = utf8_bytes; } char* result = NewArray<char>(utf8_bytes + 1); // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset. stream.Reset(this, offset); character_position = offset; int utf8_byte_position = 0; last = unibrow::Utf16::kNoPreviousCharacter; while (stream.HasMore() && character_position++ < offset + length) { uint16_t character = stream.GetNext(); if (allow_nulls == DISALLOW_NULLS && character == 0) { character = ' '; } utf8_byte_position += unibrow::Utf8::Encode(result + utf8_byte_position, character, last); last = character; } result[utf8_byte_position] = 0; return base::SmartArrayPointer<char>(result); } base::SmartArrayPointer<char> String::ToCString(AllowNullsFlag allow_nulls, RobustnessFlag robust_flag, int* length_return) { return ToCString(allow_nulls, robust_flag, 0, -1, length_return); } const uc16* String::GetTwoByteData(unsigned start) { DCHECK(!IsOneByteRepresentationUnderneath()); switch (StringShape(this).representation_tag()) { case kSeqStringTag: return SeqTwoByteString::cast(this)->SeqTwoByteStringGetData(start); case kExternalStringTag: return ExternalTwoByteString::cast(this)-> ExternalTwoByteStringGetData(start); case kSlicedStringTag: { SlicedString* slice = SlicedString::cast(this); return slice->parent()->GetTwoByteData(start + slice->offset()); } case kConsStringTag: UNREACHABLE(); return NULL; } UNREACHABLE(); return NULL; } base::SmartArrayPointer<uc16> String::ToWideCString( RobustnessFlag robust_flag) { if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) { return base::SmartArrayPointer<uc16>(); } StringCharacterStream stream(this); uc16* result = NewArray<uc16>(length() + 1); int i = 0; while (stream.HasMore()) { uint16_t character = stream.GetNext(); result[i++] = character; } result[i] = 0; return base::SmartArrayPointer<uc16>(result); } const uc16* SeqTwoByteString::SeqTwoByteStringGetData(unsigned start) { return reinterpret_cast<uc16*>( reinterpret_cast<char*>(this) - kHeapObjectTag + kHeaderSize) + start; } void Relocatable::PostGarbageCollectionProcessing(Isolate* isolate) { Relocatable* current = isolate->relocatable_top(); while (current != NULL) { current->PostGarbageCollection(); current = current->prev_; } } // Reserve space for statics needing saving and restoring. int Relocatable::ArchiveSpacePerThread() { return sizeof(Relocatable*); // NOLINT } // Archive statics that are thread-local. char* Relocatable::ArchiveState(Isolate* isolate, char* to) { *reinterpret_cast<Relocatable**>(to) = isolate->relocatable_top(); isolate->set_relocatable_top(NULL); return to + ArchiveSpacePerThread(); } // Restore statics that are thread-local. char* Relocatable::RestoreState(Isolate* isolate, char* from) { isolate->set_relocatable_top(*reinterpret_cast<Relocatable**>(from)); return from + ArchiveSpacePerThread(); } char* Relocatable::Iterate(ObjectVisitor* v, char* thread_storage) { Relocatable* top = *reinterpret_cast<Relocatable**>(thread_storage); Iterate(v, top); return thread_storage + ArchiveSpacePerThread(); } void Relocatable::Iterate(Isolate* isolate, ObjectVisitor* v) { Iterate(v, isolate->relocatable_top()); } void Relocatable::Iterate(ObjectVisitor* v, Relocatable* top) { Relocatable* current = top; while (current != NULL) { current->IterateInstance(v); current = current->prev_; } } FlatStringReader::FlatStringReader(Isolate* isolate, Handle<String> str) : Relocatable(isolate), str_(str.location()), length_(str->length()) { PostGarbageCollection(); } FlatStringReader::FlatStringReader(Isolate* isolate, Vector<const char> input) : Relocatable(isolate), str_(0), is_one_byte_(true), length_(input.length()), start_(input.start()) {} void FlatStringReader::PostGarbageCollection() { if (str_ == NULL) return; Handle<String> str(str_); DCHECK(str->IsFlat()); DisallowHeapAllocation no_gc; // This does not actually prevent the vector from being relocated later. String::FlatContent content = str->GetFlatContent(); DCHECK(content.IsFlat()); is_one_byte_ = content.IsOneByte(); if (is_one_byte_) { start_ = content.ToOneByteVector().start(); } else { start_ = content.ToUC16Vector().start(); } } void ConsStringIterator::Initialize(ConsString* cons_string, int offset) { DCHECK(cons_string != NULL); root_ = cons_string; consumed_ = offset; // Force stack blown condition to trigger restart. depth_ = 1; maximum_depth_ = kStackSize + depth_; DCHECK(StackBlown()); } String* ConsStringIterator::Continue(int* offset_out) { DCHECK(depth_ != 0); DCHECK_EQ(0, *offset_out); bool blew_stack = StackBlown(); String* string = NULL; // Get the next leaf if there is one. if (!blew_stack) string = NextLeaf(&blew_stack); // Restart search from root. if (blew_stack) { DCHECK(string == NULL); string = Search(offset_out); } // Ensure future calls return null immediately. if (string == NULL) Reset(NULL); return string; } String* ConsStringIterator::Search(int* offset_out) { ConsString* cons_string = root_; // Reset the stack, pushing the root string. depth_ = 1; maximum_depth_ = 1; frames_[0] = cons_string; const int consumed = consumed_; int offset = 0; while (true) { // Loop until the string is found which contains the target offset. String* string = cons_string->first(); int length = string->length(); int32_t type; if (consumed < offset + length) { // Target offset is in the left branch. // Keep going if we're still in a ConString. type = string->map()->instance_type(); if ((type & kStringRepresentationMask) == kConsStringTag) { cons_string = ConsString::cast(string); PushLeft(cons_string); continue; } // Tell the stack we're done descending. AdjustMaximumDepth(); } else { // Descend right. // Update progress through the string. offset += length; // Keep going if we're still in a ConString. string = cons_string->second(); type = string->map()->instance_type(); if ((type & kStringRepresentationMask) == kConsStringTag) { cons_string = ConsString::cast(string); PushRight(cons_string); continue; } // Need this to be updated for the current string. length = string->length(); // Account for the possibility of an empty right leaf. // This happens only if we have asked for an offset outside the string. if (length == 0) { // Reset so future operations will return null immediately. Reset(NULL); return NULL; } // Tell the stack we're done descending. AdjustMaximumDepth(); // Pop stack so next iteration is in correct place. Pop(); } DCHECK(length != 0); // Adjust return values and exit. consumed_ = offset + length; *offset_out = consumed - offset; return string; } UNREACHABLE(); return NULL; } String* ConsStringIterator::NextLeaf(bool* blew_stack) { while (true) { // Tree traversal complete. if (depth_ == 0) { *blew_stack = false; return NULL; } // We've lost track of higher nodes. if (StackBlown()) { *blew_stack = true; return NULL; } // Go right. ConsString* cons_string = frames_[OffsetForDepth(depth_ - 1)]; String* string = cons_string->second(); int32_t type = string->map()->instance_type(); if ((type & kStringRepresentationMask) != kConsStringTag) { // Pop stack so next iteration is in correct place. Pop(); int length = string->length(); // Could be a flattened ConsString. if (length == 0) continue; consumed_ += length; return string; } cons_string = ConsString::cast(string); PushRight(cons_string); // Need to traverse all the way left. while (true) { // Continue left. string = cons_string->first(); type = string->map()->instance_type(); if ((type & kStringRepresentationMask) != kConsStringTag) { AdjustMaximumDepth(); int length = string->length(); DCHECK(length != 0); consumed_ += length; return string; } cons_string = ConsString::cast(string); PushLeft(cons_string); } } UNREACHABLE(); return NULL; } uint16_t ConsString::ConsStringGet(int index) { DCHECK(index >= 0 && index < this->length()); // Check for a flattened cons string if (second()->length() == 0) { String* left = first(); return left->Get(index); } String* string = String::cast(this); while (true) { if (StringShape(string).IsCons()) { ConsString* cons_string = ConsString::cast(string); String* left = cons_string->first(); if (left->length() > index) { string = left; } else { index -= left->length(); string = cons_string->second(); } } else { return string->Get(index); } } UNREACHABLE(); return 0; } uint16_t SlicedString::SlicedStringGet(int index) { return parent()->Get(offset() + index); } template <typename sinkchar> void String::WriteToFlat(String* src, sinkchar* sink, int f, int t) { String* source = src; int from = f; int to = t; while (true) { DCHECK(0 <= from && from <= to && to <= source->length()); switch (StringShape(source).full_representation_tag()) { case kOneByteStringTag | kExternalStringTag: { CopyChars(sink, ExternalOneByteString::cast(source)->GetChars() + from, to - from); return; } case kTwoByteStringTag | kExternalStringTag: { const uc16* data = ExternalTwoByteString::cast(source)->GetChars(); CopyChars(sink, data + from, to - from); return; } case kOneByteStringTag | kSeqStringTag: { CopyChars(sink, SeqOneByteString::cast(source)->GetChars() + from, to - from); return; } case kTwoByteStringTag | kSeqStringTag: { CopyChars(sink, SeqTwoByteString::cast(source)->GetChars() + from, to - from); return; } case kOneByteStringTag | kConsStringTag: case kTwoByteStringTag | kConsStringTag: { ConsString* cons_string = ConsString::cast(source); String* first = cons_string->first(); int boundary = first->length(); if (to - boundary >= boundary - from) { // Right hand side is longer. Recurse over left. if (from < boundary) { WriteToFlat(first, sink, from, boundary); if (from == 0 && cons_string->second() == first) { CopyChars(sink + boundary, sink, boundary); return; } sink += boundary - from; from = 0; } else { from -= boundary; } to -= boundary; source = cons_string->second(); } else { // Left hand side is longer. Recurse over right. if (to > boundary) { String* second = cons_string->second(); // When repeatedly appending to a string, we get a cons string that // is unbalanced to the left, a list, essentially. We inline the // common case of sequential one-byte right child. if (to - boundary == 1) { sink[boundary - from] = static_cast<sinkchar>(second->Get(0)); } else if (second->IsSeqOneByteString()) { CopyChars(sink + boundary - from, SeqOneByteString::cast(second)->GetChars(), to - boundary); } else { WriteToFlat(second, sink + boundary - from, 0, to - boundary); } to = boundary; } source = first; } break; } case kOneByteStringTag | kSlicedStringTag: case kTwoByteStringTag | kSlicedStringTag: { SlicedString* slice = SlicedString::cast(source); unsigned offset = slice->offset(); WriteToFlat(slice->parent(), sink, from + offset, to + offset); return; } } } } template <typename SourceChar> static void CalculateLineEndsImpl(Isolate* isolate, List<int>* line_ends, Vector<const SourceChar> src, bool include_ending_line) { const int src_len = src.length(); UnicodeCache* cache = isolate->unicode_cache(); for (int i = 0; i < src_len - 1; i++) { SourceChar current = src[i]; SourceChar next = src[i + 1]; if (cache->IsLineTerminatorSequence(current, next)) line_ends->Add(i); } if (src_len > 0 && cache->IsLineTerminatorSequence(src[src_len - 1], 0)) { line_ends->Add(src_len - 1); } if (include_ending_line) { // Include one character beyond the end of script. The rewriter uses that // position for the implicit return statement. line_ends->Add(src_len); } } Handle<FixedArray> String::CalculateLineEnds(Handle<String> src, bool include_ending_line) { src = Flatten(src); // Rough estimate of line count based on a roughly estimated average // length of (unpacked) code. int line_count_estimate = src->length() >> 4; List<int> line_ends(line_count_estimate); Isolate* isolate = src->GetIsolate(); { DisallowHeapAllocation no_allocation; // ensure vectors stay valid. // Dispatch on type of strings. String::FlatContent content = src->GetFlatContent(); DCHECK(content.IsFlat()); if (content.IsOneByte()) { CalculateLineEndsImpl(isolate, &line_ends, content.ToOneByteVector(), include_ending_line); } else { CalculateLineEndsImpl(isolate, &line_ends, content.ToUC16Vector(), include_ending_line); } } int line_count = line_ends.length(); Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count); for (int i = 0; i < line_count; i++) { array->set(i, Smi::FromInt(line_ends[i])); } return array; } // Compares the contents of two strings by reading and comparing // int-sized blocks of characters. template <typename Char> static inline bool CompareRawStringContents(const Char* const a, const Char* const b, int length) { return CompareChars(a, b, length) == 0; } template<typename Chars1, typename Chars2> class RawStringComparator : public AllStatic { public: static inline bool compare(const Chars1* a, const Chars2* b, int len) { DCHECK(sizeof(Chars1) != sizeof(Chars2)); for (int i = 0; i < len; i++) { if (a[i] != b[i]) { return false; } } return true; } }; template<> class RawStringComparator<uint16_t, uint16_t> { public: static inline bool compare(const uint16_t* a, const uint16_t* b, int len) { return CompareRawStringContents(a, b, len); } }; template<> class RawStringComparator<uint8_t, uint8_t> { public: static inline bool compare(const uint8_t* a, const uint8_t* b, int len) { return CompareRawStringContents(a, b, len); } }; class StringComparator { class State { public: State() : is_one_byte_(true), length_(0), buffer8_(NULL) {} void Init(String* string) { ConsString* cons_string = String::VisitFlat(this, string); iter_.Reset(cons_string); if (cons_string != NULL) { int offset; string = iter_.Next(&offset); String::VisitFlat(this, string, offset); } } inline void VisitOneByteString(const uint8_t* chars, int length) { is_one_byte_ = true; buffer8_ = chars; length_ = length; } inline void VisitTwoByteString(const uint16_t* chars, int length) { is_one_byte_ = false; buffer16_ = chars; length_ = length; } void Advance(int consumed) { DCHECK(consumed <= length_); // Still in buffer. if (length_ != consumed) { if (is_one_byte_) { buffer8_ += consumed; } else { buffer16_ += consumed; } length_ -= consumed; return; } // Advance state. int offset; String* next = iter_.Next(&offset); DCHECK_EQ(0, offset); DCHECK(next != NULL); String::VisitFlat(this, next); } ConsStringIterator iter_; bool is_one_byte_; int length_; union { const uint8_t* buffer8_; const uint16_t* buffer16_; }; private: DISALLOW_COPY_AND_ASSIGN(State); }; public: inline StringComparator() {} template<typename Chars1, typename Chars2> static inline bool Equals(State* state_1, State* state_2, int to_check) { const Chars1* a = reinterpret_cast<const Chars1*>(state_1->buffer8_); const Chars2* b = reinterpret_cast<const Chars2*>(state_2->buffer8_); return RawStringComparator<Chars1, Chars2>::compare(a, b, to_check); } bool Equals(String* string_1, String* string_2) { int length = string_1->length(); state_1_.Init(string_1); state_2_.Init(string_2); while (true) { int to_check = Min(state_1_.length_, state_2_.length_); DCHECK(to_check > 0 && to_check <= length); bool is_equal; if (state_1_.is_one_byte_) { if (state_2_.is_one_byte_) { is_equal = Equals<uint8_t, uint8_t>(&state_1_, &state_2_, to_check); } else { is_equal = Equals<uint8_t, uint16_t>(&state_1_, &state_2_, to_check); } } else { if (state_2_.is_one_byte_) { is_equal = Equals<uint16_t, uint8_t>(&state_1_, &state_2_, to_check); } else { is_equal = Equals<uint16_t, uint16_t>(&state_1_, &state_2_, to_check); } } // Looping done. if (!is_equal) return false; length -= to_check; // Exit condition. Strings are equal. if (length == 0) return true; state_1_.Advance(to_check); state_2_.Advance(to_check); } } private: State state_1_; State state_2_; DISALLOW_COPY_AND_ASSIGN(StringComparator); }; bool String::SlowEquals(String* other) { DisallowHeapAllocation no_gc; // Fast check: negative check with lengths. int len = length(); if (len != other->length()) return false; if (len == 0) return true; // Fast check: if hash code is computed for both strings // a fast negative check can be performed. if (HasHashCode() && other->HasHashCode()) { #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { if (Hash() != other->Hash()) { bool found_difference = false; for (int i = 0; i < len; i++) { if (Get(i) != other->Get(i)) { found_difference = true; break; } } DCHECK(found_difference); } } #endif if (Hash() != other->Hash()) return false; } // We know the strings are both non-empty. Compare the first chars // before we try to flatten the strings. if (this->Get(0) != other->Get(0)) return false; if (IsSeqOneByteString() && other->IsSeqOneByteString()) { const uint8_t* str1 = SeqOneByteString::cast(this)->GetChars(); const uint8_t* str2 = SeqOneByteString::cast(other)->GetChars(); return CompareRawStringContents(str1, str2, len); } StringComparator comparator; return comparator.Equals(this, other); } bool String::SlowEquals(Handle<String> one, Handle<String> two) { // Fast check: negative check with lengths. int one_length = one->length(); if (one_length != two->length()) return false; if (one_length == 0) return true; // Fast check: if hash code is computed for both strings // a fast negative check can be performed. if (one->HasHashCode() && two->HasHashCode()) { #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { if (one->Hash() != two->Hash()) { bool found_difference = false; for (int i = 0; i < one_length; i++) { if (one->Get(i) != two->Get(i)) { found_difference = true; break; } } DCHECK(found_difference); } } #endif if (one->Hash() != two->Hash()) return false; } // We know the strings are both non-empty. Compare the first chars // before we try to flatten the strings. if (one->Get(0) != two->Get(0)) return false; one = String::Flatten(one); two = String::Flatten(two); DisallowHeapAllocation no_gc; String::FlatContent flat1 = one->GetFlatContent(); String::FlatContent flat2 = two->GetFlatContent(); if (flat1.IsOneByte() && flat2.IsOneByte()) { return CompareRawStringContents(flat1.ToOneByteVector().start(), flat2.ToOneByteVector().start(), one_length); } else { for (int i = 0; i < one_length; i++) { if (flat1.Get(i) != flat2.Get(i)) return false; } return true; } } // static ComparisonResult String::Compare(Handle<String> x, Handle<String> y) { // A few fast case tests before we flatten. if (x.is_identical_to(y)) { return ComparisonResult::kEqual; } else if (y->length() == 0) { return x->length() == 0 ? ComparisonResult::kEqual : ComparisonResult::kGreaterThan; } else if (x->length() == 0) { return ComparisonResult::kLessThan; } int const d = x->Get(0) - y->Get(0); if (d < 0) { return ComparisonResult::kLessThan; } else if (d > 0) { return ComparisonResult::kGreaterThan; } // Slow case. x = String::Flatten(x); y = String::Flatten(y); DisallowHeapAllocation no_gc; ComparisonResult result = ComparisonResult::kEqual; int prefix_length = x->length(); if (y->length() < prefix_length) { prefix_length = y->length(); result = ComparisonResult::kGreaterThan; } else if (y->length() > prefix_length) { result = ComparisonResult::kLessThan; } int r; String::FlatContent x_content = x->GetFlatContent(); String::FlatContent y_content = y->GetFlatContent(); if (x_content.IsOneByte()) { Vector<const uint8_t> x_chars = x_content.ToOneByteVector(); if (y_content.IsOneByte()) { Vector<const uint8_t> y_chars = y_content.ToOneByteVector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } else { Vector<const uc16> y_chars = y_content.ToUC16Vector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } } else { Vector<const uc16> x_chars = x_content.ToUC16Vector(); if (y_content.IsOneByte()) { Vector<const uint8_t> y_chars = y_content.ToOneByteVector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } else { Vector<const uc16> y_chars = y_content.ToUC16Vector(); r = CompareChars(x_chars.start(), y_chars.start(), prefix_length); } } if (r < 0) { result = ComparisonResult::kLessThan; } else if (r > 0) { result = ComparisonResult::kGreaterThan; } return result; } bool String::IsUtf8EqualTo(Vector<const char> str, bool allow_prefix_match) { int slen = length(); // Can't check exact length equality, but we can check bounds. int str_len = str.length(); if (!allow_prefix_match && (str_len < slen || str_len > slen*static_cast<int>(unibrow::Utf8::kMaxEncodedSize))) { return false; } int i; size_t remaining_in_str = static_cast<size_t>(str_len); const uint8_t* utf8_data = reinterpret_cast<const uint8_t*>(str.start()); for (i = 0; i < slen && remaining_in_str > 0; i++) { size_t cursor = 0; uint32_t r = unibrow::Utf8::ValueOf(utf8_data, remaining_in_str, &cursor); DCHECK(cursor > 0 && cursor <= remaining_in_str); if (r > unibrow::Utf16::kMaxNonSurrogateCharCode) { if (i > slen - 1) return false; if (Get(i++) != unibrow::Utf16::LeadSurrogate(r)) return false; if (Get(i) != unibrow::Utf16::TrailSurrogate(r)) return false; } else { if (Get(i) != r) return false; } utf8_data += cursor; remaining_in_str -= cursor; } return (allow_prefix_match || i == slen) && remaining_in_str == 0; } bool String::IsOneByteEqualTo(Vector<const uint8_t> str) { int slen = length(); if (str.length() != slen) return false; DisallowHeapAllocation no_gc; FlatContent content = GetFlatContent(); if (content.IsOneByte()) { return CompareChars(content.ToOneByteVector().start(), str.start(), slen) == 0; } for (int i = 0; i < slen; i++) { if (Get(i) != static_cast<uint16_t>(str[i])) return false; } return true; } bool String::IsTwoByteEqualTo(Vector<const uc16> str) { int slen = length(); if (str.length() != slen) return false; DisallowHeapAllocation no_gc; FlatContent content = GetFlatContent(); if (content.IsTwoByte()) { return CompareChars(content.ToUC16Vector().start(), str.start(), slen) == 0; } for (int i = 0; i < slen; i++) { if (Get(i) != str[i]) return false; } return true; } uint32_t String::ComputeAndSetHash() { // Should only be called if hash code has not yet been computed. DCHECK(!HasHashCode()); // Store the hash code in the object. uint32_t field = IteratingStringHasher::Hash(this, GetHeap()->HashSeed()); set_hash_field(field); // Check the hash code is there. DCHECK(HasHashCode()); uint32_t result = field >> kHashShift; DCHECK(result != 0); // Ensure that the hash value of 0 is never computed. return result; } bool String::ComputeArrayIndex(uint32_t* index) { int length = this->length(); if (length == 0 || length > kMaxArrayIndexSize) return false; StringCharacterStream stream(this); return StringToArrayIndex(&stream, index); } bool String::SlowAsArrayIndex(uint32_t* index) { if (length() <= kMaxCachedArrayIndexLength) { Hash(); // force computation of hash code uint32_t field = hash_field(); if ((field & kIsNotArrayIndexMask) != 0) return false; // Isolate the array index form the full hash field. *index = ArrayIndexValueBits::decode(field); return true; } else { return ComputeArrayIndex(index); } } Handle<String> SeqString::Truncate(Handle<SeqString> string, int new_length) { int new_size, old_size; int old_length = string->length(); if (old_length <= new_length) return string; if (string->IsSeqOneByteString()) { old_size = SeqOneByteString::SizeFor(old_length); new_size = SeqOneByteString::SizeFor(new_length); } else { DCHECK(string->IsSeqTwoByteString()); old_size = SeqTwoByteString::SizeFor(old_length); new_size = SeqTwoByteString::SizeFor(new_length); } int delta = old_size - new_size; Address start_of_string = string->address(); DCHECK_OBJECT_ALIGNED(start_of_string); DCHECK_OBJECT_ALIGNED(start_of_string + new_size); Heap* heap = string->GetHeap(); // Sizes are pointer size aligned, so that we can use filler objects // that are a multiple of pointer size. heap->CreateFillerObjectAt(start_of_string + new_size, delta, ClearRecordedSlots::kNo); heap->AdjustLiveBytes(*string, -delta, Heap::CONCURRENT_TO_SWEEPER); // We are storing the new length using release store after creating a filler // for the left-over space to avoid races with the sweeper thread. string->synchronized_set_length(new_length); if (new_length == 0) return heap->isolate()->factory()->empty_string(); return string; } uint32_t StringHasher::MakeArrayIndexHash(uint32_t value, int length) { // For array indexes mix the length into the hash as an array index could // be zero. DCHECK(length > 0); DCHECK(length <= String::kMaxArrayIndexSize); DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); value <<= String::ArrayIndexValueBits::kShift; value |= length << String::ArrayIndexLengthBits::kShift; DCHECK((value & String::kIsNotArrayIndexMask) == 0); DCHECK((length > String::kMaxCachedArrayIndexLength) || (value & String::kContainsCachedArrayIndexMask) == 0); return value; } uint32_t StringHasher::GetHashField() { if (length_ <= String::kMaxHashCalcLength) { if (is_array_index_) { return MakeArrayIndexHash(array_index_, length_); } return (GetHashCore(raw_running_hash_) << String::kHashShift) | String::kIsNotArrayIndexMask; } else { return (length_ << String::kHashShift) | String::kIsNotArrayIndexMask; } } uint32_t StringHasher::ComputeUtf8Hash(Vector<const char> chars, uint32_t seed, int* utf16_length_out) { int vector_length = chars.length(); // Handle some edge cases if (vector_length <= 1) { DCHECK(vector_length == 0 || static_cast<uint8_t>(chars.start()[0]) <= unibrow::Utf8::kMaxOneByteChar); *utf16_length_out = vector_length; return HashSequentialString(chars.start(), vector_length, seed); } // Start with a fake length which won't affect computation. // It will be updated later. StringHasher hasher(String::kMaxArrayIndexSize, seed); size_t remaining = static_cast<size_t>(vector_length); const uint8_t* stream = reinterpret_cast<const uint8_t*>(chars.start()); int utf16_length = 0; bool is_index = true; DCHECK(hasher.is_array_index_); while (remaining > 0) { size_t consumed = 0; uint32_t c = unibrow::Utf8::ValueOf(stream, remaining, &consumed); DCHECK(consumed > 0 && consumed <= remaining); stream += consumed; remaining -= consumed; bool is_two_characters = c > unibrow::Utf16::kMaxNonSurrogateCharCode; utf16_length += is_two_characters ? 2 : 1; // No need to keep hashing. But we do need to calculate utf16_length. if (utf16_length > String::kMaxHashCalcLength) continue; if (is_two_characters) { uint16_t c1 = unibrow::Utf16::LeadSurrogate(c); uint16_t c2 = unibrow::Utf16::TrailSurrogate(c); hasher.AddCharacter(c1); hasher.AddCharacter(c2); if (is_index) is_index = hasher.UpdateIndex(c1); if (is_index) is_index = hasher.UpdateIndex(c2); } else { hasher.AddCharacter(c); if (is_index) is_index = hasher.UpdateIndex(c); } } *utf16_length_out = static_cast<int>(utf16_length); // Must set length here so that hash computation is correct. hasher.length_ = utf16_length; return hasher.GetHashField(); } void IteratingStringHasher::VisitConsString(ConsString* cons_string) { // Run small ConsStrings through ConsStringIterator. if (cons_string->length() < 64) { ConsStringIterator iter(cons_string); int offset; String* string; while (nullptr != (string = iter.Next(&offset))) { DCHECK_EQ(0, offset); String::VisitFlat(this, string, 0); } return; } // Slow case. const int max_length = String::kMaxHashCalcLength; int length = std::min(cons_string->length(), max_length); if (cons_string->HasOnlyOneByteChars()) { uint8_t* buffer = new uint8_t[length]; String::WriteToFlat(cons_string, buffer, 0, length); AddCharacters(buffer, length); delete[] buffer; } else { uint16_t* buffer = new uint16_t[length]; String::WriteToFlat(cons_string, buffer, 0, length); AddCharacters(buffer, length); delete[] buffer; } } void String::PrintOn(FILE* file) { int length = this->length(); for (int i = 0; i < length; i++) { PrintF(file, "%c", Get(i)); } } int Map::Hash() { // For performance reasons we only hash the 3 most variable fields of a map: // constructor, prototype and bit_field2. For predictability reasons we // use objects' offsets in respective pages for hashing instead of raw // addresses. // Shift away the tag. int hash = ObjectAddressForHashing(GetConstructor()) >> 2; // XOR-ing the prototype and constructor directly yields too many zero bits // when the two pointers are close (which is fairly common). // To avoid this we shift the prototype bits relatively to the constructor. hash ^= ObjectAddressForHashing(prototype()) << (32 - kPageSizeBits); return hash ^ (hash >> 16) ^ bit_field2(); } namespace { bool CheckEquivalent(Map* first, Map* second) { return first->GetConstructor() == second->GetConstructor() && first->prototype() == second->prototype() && first->instance_type() == second->instance_type() && first->bit_field() == second->bit_field() && first->is_extensible() == second->is_extensible() && first->new_target_is_base() == second->new_target_is_base() && first->has_hidden_prototype() == second->has_hidden_prototype(); } } // namespace bool Map::EquivalentToForTransition(Map* other) { if (!CheckEquivalent(this, other)) return false; if (instance_type() == JS_FUNCTION_TYPE) { // JSFunctions require more checks to ensure that sloppy function is // not equvalent to strict function. int nof = Min(NumberOfOwnDescriptors(), other->NumberOfOwnDescriptors()); return instance_descriptors()->IsEqualUpTo(other->instance_descriptors(), nof); } return true; } bool Map::EquivalentToForNormalization(Map* other, PropertyNormalizationMode mode) { int properties = mode == CLEAR_INOBJECT_PROPERTIES ? 0 : other->GetInObjectProperties(); return CheckEquivalent(this, other) && bit_field2() == other->bit_field2() && GetInObjectProperties() == properties; } bool JSFunction::Inlines(SharedFunctionInfo* candidate) { DisallowHeapAllocation no_gc; if (shared() == candidate) return true; if (code()->kind() != Code::OPTIMIZED_FUNCTION) return false; DeoptimizationInputData* const data = DeoptimizationInputData::cast(code()->deoptimization_data()); if (data->length() == 0) return false; FixedArray* const literals = data->LiteralArray(); int const inlined_count = data->InlinedFunctionCount()->value(); for (int i = 0; i < inlined_count; ++i) { if (SharedFunctionInfo::cast(literals->get(i)) == candidate) { return true; } } return false; } void JSFunction::MarkForBaseline() { Isolate* isolate = GetIsolate(); set_code_no_write_barrier( isolate->builtins()->builtin(Builtins::kCompileBaseline)); // No write barrier required, since the builtin is part of the root set. } void JSFunction::MarkForOptimization() { Isolate* isolate = GetIsolate(); DCHECK(!IsOptimized()); DCHECK(shared()->allows_lazy_compilation() || !shared()->optimization_disabled()); set_code_no_write_barrier( isolate->builtins()->builtin(Builtins::kCompileOptimized)); // No write barrier required, since the builtin is part of the root set. } void JSFunction::AttemptConcurrentOptimization() { Isolate* isolate = GetIsolate(); if (!isolate->concurrent_recompilation_enabled() || isolate->bootstrapper()->IsActive()) { MarkForOptimization(); return; } DCHECK(!IsInOptimizationQueue()); DCHECK(!IsOptimized()); DCHECK(shared()->allows_lazy_compilation() || !shared()->optimization_disabled()); DCHECK(isolate->concurrent_recompilation_enabled()); if (FLAG_trace_concurrent_recompilation) { PrintF(" ** Marking "); ShortPrint(); PrintF(" for concurrent recompilation.\n"); } set_code_no_write_barrier( isolate->builtins()->builtin(Builtins::kCompileOptimizedConcurrent)); // No write barrier required, since the builtin is part of the root set. } void SharedFunctionInfo::AddSharedCodeToOptimizedCodeMap( Handle<SharedFunctionInfo> shared, Handle<Code> code) { Isolate* isolate = shared->GetIsolate(); if (isolate->serializer_enabled()) return; DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION); // Empty code maps are unsupported. if (!shared->OptimizedCodeMapIsCleared()) { Handle<WeakCell> cell = isolate->factory()->NewWeakCell(code); // A collection may have occured and cleared the optimized code map in the // allocation above. if (!shared->OptimizedCodeMapIsCleared()) { shared->optimized_code_map()->set(kSharedCodeIndex, *cell); } } } // static void SharedFunctionInfo::AddToOptimizedCodeMap( Handle<SharedFunctionInfo> shared, Handle<Context> native_context, MaybeHandle<Code> code, Handle<LiteralsArray> literals, BailoutId osr_ast_id) { Isolate* isolate = shared->GetIsolate(); if (isolate->serializer_enabled()) return; DCHECK(code.is_null() || code.ToHandleChecked()->kind() == Code::OPTIMIZED_FUNCTION); DCHECK(native_context->IsNativeContext()); STATIC_ASSERT(kEntryLength == 4); Handle<FixedArray> new_code_map; int entry; if (shared->OptimizedCodeMapIsCleared()) { new_code_map = isolate->factory()->NewFixedArray(kInitialLength, TENURED); new_code_map->set(kSharedCodeIndex, *isolate->factory()->empty_weak_cell(), SKIP_WRITE_BARRIER); entry = kEntriesStart; } else { Handle<FixedArray> old_code_map(shared->optimized_code_map(), isolate); entry = shared->SearchOptimizedCodeMapEntry(*native_context, osr_ast_id); if (entry > kSharedCodeIndex) { // Just set the code and literals of the entry. if (!code.is_null()) { Handle<WeakCell> code_cell = isolate->factory()->NewWeakCell(code.ToHandleChecked()); old_code_map->set(entry + kCachedCodeOffset, *code_cell); } Handle<WeakCell> literals_cell = isolate->factory()->NewWeakCell(literals); old_code_map->set(entry + kLiteralsOffset, *literals_cell); return; } // Can we reuse an entry? DCHECK(entry < kEntriesStart); int length = old_code_map->length(); for (int i = kEntriesStart; i < length; i += kEntryLength) { if (WeakCell::cast(old_code_map->get(i + kContextOffset))->cleared()) { new_code_map = old_code_map; entry = i; break; } } if (entry < kEntriesStart) { // Copy old optimized code map and append one new entry. new_code_map = isolate->factory()->CopyFixedArrayAndGrow( old_code_map, kEntryLength, TENURED); // TODO(mstarzinger): Temporary workaround. The allocation above might // have flushed the optimized code map and the copy we created is full of // holes. For now we just give up on adding the entry and pretend it got // flushed. if (shared->OptimizedCodeMapIsCleared()) return; entry = old_code_map->length(); } } Handle<WeakCell> code_cell = code.is_null() ? isolate->factory()->empty_weak_cell() : isolate->factory()->NewWeakCell(code.ToHandleChecked()); Handle<WeakCell> literals_cell = isolate->factory()->NewWeakCell(literals); WeakCell* context_cell = native_context->self_weak_cell(); new_code_map->set(entry + kContextOffset, context_cell); new_code_map->set(entry + kCachedCodeOffset, *code_cell); new_code_map->set(entry + kLiteralsOffset, *literals_cell); new_code_map->set(entry + kOsrAstIdOffset, Smi::FromInt(osr_ast_id.ToInt())); #ifdef DEBUG for (int i = kEntriesStart; i < new_code_map->length(); i += kEntryLength) { WeakCell* cell = WeakCell::cast(new_code_map->get(i + kContextOffset)); DCHECK(cell->cleared() || cell->value()->IsNativeContext()); cell = WeakCell::cast(new_code_map->get(i + kCachedCodeOffset)); DCHECK(cell->cleared() || (cell->value()->IsCode() && Code::cast(cell->value())->kind() == Code::OPTIMIZED_FUNCTION)); cell = WeakCell::cast(new_code_map->get(i + kLiteralsOffset)); DCHECK(cell->cleared() || cell->value()->IsFixedArray()); DCHECK(new_code_map->get(i + kOsrAstIdOffset)->IsSmi()); } #endif FixedArray* old_code_map = shared->optimized_code_map(); if (old_code_map != *new_code_map) { shared->set_optimized_code_map(*new_code_map); } } void SharedFunctionInfo::ClearOptimizedCodeMap() { FixedArray* cleared_map = GetHeap()->cleared_optimized_code_map(); set_optimized_code_map(cleared_map, SKIP_WRITE_BARRIER); } void SharedFunctionInfo::EvictFromOptimizedCodeMap(Code* optimized_code, const char* reason) { DisallowHeapAllocation no_gc; if (OptimizedCodeMapIsCleared()) return; Heap* heap = GetHeap(); FixedArray* code_map = optimized_code_map(); int dst = kEntriesStart; int length = code_map->length(); for (int src = kEntriesStart; src < length; src += kEntryLength) { DCHECK(WeakCell::cast(code_map->get(src))->cleared() || WeakCell::cast(code_map->get(src))->value()->IsNativeContext()); if (WeakCell::cast(code_map->get(src + kCachedCodeOffset))->value() == optimized_code) { BailoutId osr(Smi::cast(code_map->get(src + kOsrAstIdOffset))->value()); if (FLAG_trace_opt) { PrintF("[evicting entry from optimizing code map (%s) for ", reason); ShortPrint(); if (osr.IsNone()) { PrintF("]\n"); } else { PrintF(" (osr ast id %d)]\n", osr.ToInt()); } } if (!osr.IsNone()) { // Evict the src entry by not copying it to the dst entry. continue; } // In case of non-OSR entry just clear the code in order to proceed // sharing literals. code_map->set(src + kCachedCodeOffset, heap->empty_weak_cell(), SKIP_WRITE_BARRIER); } // Keep the src entry by copying it to the dst entry. if (dst != src) { code_map->set(dst + kContextOffset, code_map->get(src + kContextOffset)); code_map->set(dst + kCachedCodeOffset, code_map->get(src + kCachedCodeOffset)); code_map->set(dst + kLiteralsOffset, code_map->get(src + kLiteralsOffset)); code_map->set(dst + kOsrAstIdOffset, code_map->get(src + kOsrAstIdOffset)); } dst += kEntryLength; } if (WeakCell::cast(code_map->get(kSharedCodeIndex))->value() == optimized_code) { // Evict context-independent code as well. code_map->set(kSharedCodeIndex, heap->empty_weak_cell(), SKIP_WRITE_BARRIER); if (FLAG_trace_opt) { PrintF("[evicting entry from optimizing code map (%s) for ", reason); ShortPrint(); PrintF(" (context-independent code)]\n"); } } if (dst != length) { // Always trim even when array is cleared because of heap verifier. heap->RightTrimFixedArray<Heap::CONCURRENT_TO_SWEEPER>(code_map, length - dst); if (code_map->length() == kEntriesStart && WeakCell::cast(code_map->get(kSharedCodeIndex))->cleared()) { ClearOptimizedCodeMap(); } } } void SharedFunctionInfo::TrimOptimizedCodeMap(int shrink_by) { FixedArray* code_map = optimized_code_map(); DCHECK(shrink_by % kEntryLength == 0); DCHECK(shrink_by <= code_map->length() - kEntriesStart); // Always trim even when array is cleared because of heap verifier. GetHeap()->RightTrimFixedArray<Heap::SEQUENTIAL_TO_SWEEPER>(code_map, shrink_by); if (code_map->length() == kEntriesStart && WeakCell::cast(code_map->get(kSharedCodeIndex))->cleared()) { ClearOptimizedCodeMap(); } } static void GetMinInobjectSlack(Map* map, void* data) { int slack = map->unused_property_fields(); if (*reinterpret_cast<int*>(data) > slack) { *reinterpret_cast<int*>(data) = slack; } } static void ShrinkInstanceSize(Map* map, void* data) { int slack = *reinterpret_cast<int*>(data); map->SetInObjectProperties(map->GetInObjectProperties() - slack); map->set_unused_property_fields(map->unused_property_fields() - slack); map->set_instance_size(map->instance_size() - slack * kPointerSize); map->set_construction_counter(Map::kNoSlackTracking); // Visitor id might depend on the instance size, recalculate it. map->set_visitor_id(Heap::GetStaticVisitorIdForMap(map)); } static void StopSlackTracking(Map* map, void* data) { map->set_construction_counter(Map::kNoSlackTracking); } void Map::CompleteInobjectSlackTracking() { // Has to be an initial map. DCHECK(GetBackPointer()->IsUndefined()); int slack = unused_property_fields(); TransitionArray::TraverseTransitionTree(this, &GetMinInobjectSlack, &slack); if (slack != 0) { // Resize the initial map and all maps in its transition tree. TransitionArray::TraverseTransitionTree(this, &ShrinkInstanceSize, &slack); } else { TransitionArray::TraverseTransitionTree(this, &StopSlackTracking, nullptr); } } static bool PrototypeBenefitsFromNormalization(Handle<JSObject> object) { DisallowHeapAllocation no_gc; if (!object->HasFastProperties()) return false; Map* map = object->map(); if (map->is_prototype_map()) return false; DescriptorArray* descriptors = map->instance_descriptors(); for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) { PropertyDetails details = descriptors->GetDetails(i); if (details.location() == kDescriptor) continue; if (details.representation().IsHeapObject() || details.representation().IsTagged()) { FieldIndex index = FieldIndex::ForDescriptor(map, i); if (object->RawFastPropertyAt(index)->IsJSFunction()) return true; } } return false; } // static void JSObject::OptimizeAsPrototype(Handle<JSObject> object, PrototypeOptimizationMode mode) { if (object->IsJSGlobalObject()) return; if (mode == FAST_PROTOTYPE && PrototypeBenefitsFromNormalization(object)) { // First normalize to ensure all JSFunctions are DATA_CONSTANT. JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, 0, "NormalizeAsPrototype"); } Handle<Map> previous_map(object->map()); if (!object->HasFastProperties()) { JSObject::MigrateSlowToFast(object, 0, "OptimizeAsPrototype"); } if (!object->map()->is_prototype_map()) { if (object->map() == *previous_map) { Handle<Map> new_map = Map::Copy(handle(object->map()), "CopyAsPrototype"); JSObject::MigrateToMap(object, new_map); } object->map()->set_is_prototype_map(true); // Replace the pointer to the exact constructor with the Object function // from the same context if undetectable from JS. This is to avoid keeping // memory alive unnecessarily. Object* maybe_constructor = object->map()->GetConstructor(); if (maybe_constructor->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(maybe_constructor); Isolate* isolate = object->GetIsolate(); if (!constructor->shared()->IsApiFunction() && object->class_name() == isolate->heap()->Object_string()) { Context* context = constructor->context()->native_context(); JSFunction* object_function = context->object_function(); object->map()->SetConstructor(object_function); } } } } // static void JSObject::ReoptimizeIfPrototype(Handle<JSObject> object) { if (!object->map()->is_prototype_map()) return; OptimizeAsPrototype(object, FAST_PROTOTYPE); } // static void JSObject::LazyRegisterPrototypeUser(Handle<Map> user, Isolate* isolate) { DCHECK(FLAG_track_prototype_users); // Contract: In line with InvalidatePrototypeChains()'s requirements, // leaf maps don't need to register as users, only prototypes do. DCHECK(user->is_prototype_map()); Handle<Map> current_user = user; Handle<PrototypeInfo> current_user_info = Map::GetOrCreatePrototypeInfo(user, isolate); for (PrototypeIterator iter(user); !iter.IsAtEnd(); iter.Advance()) { // Walk up the prototype chain as far as links haven't been registered yet. if (current_user_info->registry_slot() != PrototypeInfo::UNREGISTERED) { break; } Handle<Object> maybe_proto = PrototypeIterator::GetCurrent(iter); // Proxies on the prototype chain are not supported. They make it // impossible to make any assumptions about the prototype chain anyway. if (maybe_proto->IsJSProxy()) return; Handle<JSObject> proto = Handle<JSObject>::cast(maybe_proto); Handle<PrototypeInfo> proto_info = Map::GetOrCreatePrototypeInfo(proto, isolate); Handle<Object> maybe_registry(proto_info->prototype_users(), isolate); int slot = 0; Handle<WeakFixedArray> new_array = WeakFixedArray::Add(maybe_registry, current_user, &slot); current_user_info->set_registry_slot(slot); if (!maybe_registry.is_identical_to(new_array)) { proto_info->set_prototype_users(*new_array); } if (FLAG_trace_prototype_users) { PrintF("Registering %p as a user of prototype %p (map=%p).\n", reinterpret_cast<void*>(*current_user), reinterpret_cast<void*>(*proto), reinterpret_cast<void*>(proto->map())); } current_user = handle(proto->map(), isolate); current_user_info = proto_info; } } // Can be called regardless of whether |user| was actually registered with // |prototype|. Returns true when there was a registration. // static bool JSObject::UnregisterPrototypeUser(Handle<Map> user, Isolate* isolate) { DCHECK(user->is_prototype_map()); // If it doesn't have a PrototypeInfo, it was never registered. if (!user->prototype_info()->IsPrototypeInfo()) return false; // If it had no prototype before, see if it had users that might expect // registration. if (!user->prototype()->IsJSObject()) { Object* users = PrototypeInfo::cast(user->prototype_info())->prototype_users(); return users->IsWeakFixedArray(); } Handle<JSObject> prototype(JSObject::cast(user->prototype()), isolate); Handle<PrototypeInfo> user_info = Map::GetOrCreatePrototypeInfo(user, isolate); int slot = user_info->registry_slot(); if (slot == PrototypeInfo::UNREGISTERED) return false; DCHECK(prototype->map()->is_prototype_map()); Object* maybe_proto_info = prototype->map()->prototype_info(); // User knows its registry slot, prototype info and user registry must exist. DCHECK(maybe_proto_info->IsPrototypeInfo()); Handle<PrototypeInfo> proto_info(PrototypeInfo::cast(maybe_proto_info), isolate); Object* maybe_registry = proto_info->prototype_users(); DCHECK(maybe_registry->IsWeakFixedArray()); DCHECK(WeakFixedArray::cast(maybe_registry)->Get(slot) == *user); WeakFixedArray::cast(maybe_registry)->Clear(slot); if (FLAG_trace_prototype_users) { PrintF("Unregistering %p as a user of prototype %p.\n", reinterpret_cast<void*>(*user), reinterpret_cast<void*>(*prototype)); } return true; } static void InvalidatePrototypeChainsInternal(Map* map) { if (!map->is_prototype_map()) return; if (FLAG_trace_prototype_users) { PrintF("Invalidating prototype map %p 's cell\n", reinterpret_cast<void*>(map)); } Object* maybe_proto_info = map->prototype_info(); if (!maybe_proto_info->IsPrototypeInfo()) return; PrototypeInfo* proto_info = PrototypeInfo::cast(maybe_proto_info); Object* maybe_cell = proto_info->validity_cell(); if (maybe_cell->IsCell()) { // Just set the value; the cell will be replaced lazily. Cell* cell = Cell::cast(maybe_cell); cell->set_value(Smi::FromInt(Map::kPrototypeChainInvalid)); } WeakFixedArray::Iterator iterator(proto_info->prototype_users()); // For now, only maps register themselves as users. Map* user; while ((user = iterator.Next<Map>())) { // Walk the prototype chain (backwards, towards leaf objects) if necessary. InvalidatePrototypeChainsInternal(user); } } // static void JSObject::InvalidatePrototypeChains(Map* map) { if (!FLAG_eliminate_prototype_chain_checks) return; DisallowHeapAllocation no_gc; InvalidatePrototypeChainsInternal(map); } // static Handle<PrototypeInfo> Map::GetOrCreatePrototypeInfo(Handle<JSObject> prototype, Isolate* isolate) { Object* maybe_proto_info = prototype->map()->prototype_info(); if (maybe_proto_info->IsPrototypeInfo()) { return handle(PrototypeInfo::cast(maybe_proto_info), isolate); } Handle<PrototypeInfo> proto_info = isolate->factory()->NewPrototypeInfo(); prototype->map()->set_prototype_info(*proto_info); return proto_info; } // static Handle<PrototypeInfo> Map::GetOrCreatePrototypeInfo(Handle<Map> prototype_map, Isolate* isolate) { Object* maybe_proto_info = prototype_map->prototype_info(); if (maybe_proto_info->IsPrototypeInfo()) { return handle(PrototypeInfo::cast(maybe_proto_info), isolate); } Handle<PrototypeInfo> proto_info = isolate->factory()->NewPrototypeInfo(); prototype_map->set_prototype_info(*proto_info); return proto_info; } // static Handle<Cell> Map::GetOrCreatePrototypeChainValidityCell(Handle<Map> map, Isolate* isolate) { Handle<Object> maybe_prototype(map->prototype(), isolate); if (!maybe_prototype->IsJSObject()) return Handle<Cell>::null(); Handle<JSObject> prototype = Handle<JSObject>::cast(maybe_prototype); // Ensure the prototype is registered with its own prototypes so its cell // will be invalidated when necessary. JSObject::LazyRegisterPrototypeUser(handle(prototype->map(), isolate), isolate); Handle<PrototypeInfo> proto_info = GetOrCreatePrototypeInfo(prototype, isolate); Object* maybe_cell = proto_info->validity_cell(); // Return existing cell if it's still valid. if (maybe_cell->IsCell()) { Handle<Cell> cell(Cell::cast(maybe_cell), isolate); if (cell->value() == Smi::FromInt(Map::kPrototypeChainValid)) { return cell; } } // Otherwise create a new cell. Handle<Cell> cell = isolate->factory()->NewCell( handle(Smi::FromInt(Map::kPrototypeChainValid), isolate)); proto_info->set_validity_cell(*cell); return cell; } // static void Map::SetPrototype(Handle<Map> map, Handle<Object> prototype, PrototypeOptimizationMode proto_mode) { bool is_hidden = false; if (prototype->IsJSObject()) { Handle<JSObject> prototype_jsobj = Handle<JSObject>::cast(prototype); JSObject::OptimizeAsPrototype(prototype_jsobj, proto_mode); Object* maybe_constructor = prototype_jsobj->map()->GetConstructor(); if (maybe_constructor->IsJSFunction()) { JSFunction* constructor = JSFunction::cast(maybe_constructor); Object* data = constructor->shared()->function_data(); is_hidden = (data->IsFunctionTemplateInfo() && FunctionTemplateInfo::cast(data)->hidden_prototype()) || prototype->IsJSGlobalObject(); } } map->set_has_hidden_prototype(is_hidden); WriteBarrierMode wb_mode = prototype->IsNull() ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER; map->set_prototype(*prototype, wb_mode); } Handle<Object> CacheInitialJSArrayMaps( Handle<Context> native_context, Handle<Map> initial_map) { // Replace all of the cached initial array maps in the native context with // the appropriate transitioned elements kind maps. Handle<Map> current_map = initial_map; ElementsKind kind = current_map->elements_kind(); DCHECK_EQ(GetInitialFastElementsKind(), kind); native_context->set(Context::ArrayMapIndex(kind), *current_map); for (int i = GetSequenceIndexFromFastElementsKind(kind) + 1; i < kFastElementsKindCount; ++i) { Handle<Map> new_map; ElementsKind next_kind = GetFastElementsKindFromSequenceIndex(i); if (Map* maybe_elements_transition = current_map->ElementsTransitionMap()) { new_map = handle(maybe_elements_transition); } else { new_map = Map::CopyAsElementsKind( current_map, next_kind, INSERT_TRANSITION); } DCHECK_EQ(next_kind, new_map->elements_kind()); native_context->set(Context::ArrayMapIndex(next_kind), *new_map); current_map = new_map; } return initial_map; } void JSFunction::SetInstancePrototype(Handle<JSFunction> function, Handle<Object> value) { Isolate* isolate = function->GetIsolate(); DCHECK(value->IsJSReceiver()); // Now some logic for the maps of the objects that are created by using this // function as a constructor. if (function->has_initial_map()) { // If the function has allocated the initial map replace it with a // copy containing the new prototype. Also complete any in-object // slack tracking that is in progress at this point because it is // still tracking the old copy. function->CompleteInobjectSlackTrackingIfActive(); Handle<Map> initial_map(function->initial_map(), isolate); if (!initial_map->GetIsolate()->bootstrapper()->IsActive() && initial_map->instance_type() == JS_OBJECT_TYPE) { // Put the value in the initial map field until an initial map is needed. // At that point, a new initial map is created and the prototype is put // into the initial map where it belongs. function->set_prototype_or_initial_map(*value); } else { Handle<Map> new_map = Map::Copy(initial_map, "SetInstancePrototype"); JSFunction::SetInitialMap(function, new_map, value); // If the function is used as the global Array function, cache the // updated initial maps (and transitioned versions) in the native context. Handle<Context> native_context(function->context()->native_context(), isolate); Handle<Object> array_function( native_context->get(Context::ARRAY_FUNCTION_INDEX), isolate); if (array_function->IsJSFunction() && *function == JSFunction::cast(*array_function)) { CacheInitialJSArrayMaps(native_context, new_map); } } // Deoptimize all code that embeds the previous initial map. initial_map->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kInitialMapChangedGroup); } else { // Put the value in the initial map field until an initial map is // needed. At that point, a new initial map is created and the // prototype is put into the initial map where it belongs. function->set_prototype_or_initial_map(*value); if (value->IsJSObject()) { // Optimize as prototype to detach it from its transition tree. JSObject::OptimizeAsPrototype(Handle<JSObject>::cast(value), FAST_PROTOTYPE); } } isolate->heap()->ClearInstanceofCache(); } void JSFunction::SetPrototype(Handle<JSFunction> function, Handle<Object> value) { DCHECK(function->IsConstructor() || IsGeneratorFunction(function->shared()->kind())); Handle<Object> construct_prototype = value; // If the value is not a JSReceiver, store the value in the map's // constructor field so it can be accessed. Also, set the prototype // used for constructing objects to the original object prototype. // See ECMA-262 13.2.2. if (!value->IsJSReceiver()) { // Copy the map so this does not affect unrelated functions. // Remove map transitions because they point to maps with a // different prototype. Handle<Map> new_map = Map::Copy(handle(function->map()), "SetPrototype"); JSObject::MigrateToMap(function, new_map); new_map->SetConstructor(*value); new_map->set_non_instance_prototype(true); Isolate* isolate = new_map->GetIsolate(); construct_prototype = handle( function->context()->native_context()->initial_object_prototype(), isolate); } else { function->map()->set_non_instance_prototype(false); } return SetInstancePrototype(function, construct_prototype); } bool JSFunction::RemovePrototype() { Context* native_context = context()->native_context(); Map* no_prototype_map = is_strict(shared()->language_mode()) ? native_context->strict_function_without_prototype_map() : native_context->sloppy_function_without_prototype_map(); if (map() == no_prototype_map) return true; #ifdef DEBUG if (map() != (is_strict(shared()->language_mode()) ? native_context->strict_function_map() : native_context->sloppy_function_map())) { return false; } #endif set_map(no_prototype_map); set_prototype_or_initial_map(no_prototype_map->GetHeap()->the_hole_value()); return true; } void JSFunction::SetInitialMap(Handle<JSFunction> function, Handle<Map> map, Handle<Object> prototype) { if (map->prototype() != *prototype) { Map::SetPrototype(map, prototype, FAST_PROTOTYPE); } function->set_prototype_or_initial_map(*map); map->SetConstructor(*function); #if TRACE_MAPS if (FLAG_trace_maps) { PrintF("[TraceMaps: InitialMap map= %p SFI= %d_%s ]\n", reinterpret_cast<void*>(*map), function->shared()->unique_id(), function->shared()->DebugName()->ToCString().get()); } #endif } #ifdef DEBUG namespace { bool CanSubclassHaveInobjectProperties(InstanceType instance_type) { switch (instance_type) { case JS_OBJECT_TYPE: case JS_CONTEXT_EXTENSION_OBJECT_TYPE: case JS_GENERATOR_OBJECT_TYPE: case JS_MODULE_TYPE: case JS_VALUE_TYPE: case JS_DATE_TYPE: case JS_ARRAY_TYPE: case JS_MESSAGE_OBJECT_TYPE: case JS_ARRAY_BUFFER_TYPE: case JS_TYPED_ARRAY_TYPE: case JS_DATA_VIEW_TYPE: case JS_SET_TYPE: case JS_MAP_TYPE: case JS_SET_ITERATOR_TYPE: case JS_MAP_ITERATOR_TYPE: case JS_WEAK_MAP_TYPE: case JS_WEAK_SET_TYPE: case JS_PROMISE_TYPE: case JS_REGEXP_TYPE: case JS_FUNCTION_TYPE: return true; case JS_BOUND_FUNCTION_TYPE: case JS_PROXY_TYPE: case JS_GLOBAL_PROXY_TYPE: case JS_GLOBAL_OBJECT_TYPE: case FIXED_ARRAY_TYPE: case FIXED_DOUBLE_ARRAY_TYPE: case ODDBALL_TYPE: case FOREIGN_TYPE: case MAP_TYPE: case CODE_TYPE: case CELL_TYPE: case PROPERTY_CELL_TYPE: case WEAK_CELL_TYPE: case SYMBOL_TYPE: case BYTECODE_ARRAY_TYPE: case HEAP_NUMBER_TYPE: case MUTABLE_HEAP_NUMBER_TYPE: case SIMD128_VALUE_TYPE: case FILLER_TYPE: case BYTE_ARRAY_TYPE: case FREE_SPACE_TYPE: case SHARED_FUNCTION_INFO_TYPE: #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case FIXED_##TYPE##_ARRAY_TYPE: #undef TYPED_ARRAY_CASE #define MAKE_STRUCT_CASE(NAME, Name, name) case NAME##_TYPE: STRUCT_LIST(MAKE_STRUCT_CASE) #undef MAKE_STRUCT_CASE // We must not end up here for these instance types at all. UNREACHABLE(); // Fall through. default: return false; } } } // namespace #endif void JSFunction::EnsureHasInitialMap(Handle<JSFunction> function) { DCHECK(function->IsConstructor() || function->shared()->is_generator()); if (function->has_initial_map()) return; Isolate* isolate = function->GetIsolate(); // The constructor should be compiled for the optimization hints to be // available. Compiler::Compile(function, Compiler::CLEAR_EXCEPTION); // First create a new map with the size and number of in-object properties // suggested by the function. InstanceType instance_type; if (function->shared()->is_generator()) { instance_type = JS_GENERATOR_OBJECT_TYPE; } else { instance_type = JS_OBJECT_TYPE; } int instance_size; int in_object_properties; function->CalculateInstanceSize(instance_type, 0, &instance_size, &in_object_properties); Handle<Map> map = isolate->factory()->NewMap(instance_type, instance_size); // Fetch or allocate prototype. Handle<Object> prototype; if (function->has_instance_prototype()) { prototype = handle(function->instance_prototype(), isolate); } else { prototype = isolate->factory()->NewFunctionPrototype(function); } map->SetInObjectProperties(in_object_properties); map->set_unused_property_fields(in_object_properties); DCHECK(map->has_fast_object_elements()); // Finally link initial map and constructor function. DCHECK(prototype->IsJSReceiver()); JSFunction::SetInitialMap(function, map, prototype); map->StartInobjectSlackTracking(); } // static MaybeHandle<Map> JSFunction::GetDerivedMap(Isolate* isolate, Handle<JSFunction> constructor, Handle<JSReceiver> new_target) { EnsureHasInitialMap(constructor); Handle<Map> constructor_initial_map(constructor->initial_map(), isolate); if (*new_target == *constructor) return constructor_initial_map; // Fast case, new.target is a subclass of constructor. The map is cacheable // (and may already have been cached). new.target.prototype is guaranteed to // be a JSReceiver. if (new_target->IsJSFunction()) { Handle<JSFunction> function = Handle<JSFunction>::cast(new_target); // Check that |function|'s initial map still in sync with the |constructor|, // otherwise we must create a new initial map for |function|. if (function->has_initial_map() && function->initial_map()->GetConstructor() == *constructor) { return handle(function->initial_map(), isolate); } // Create a new map with the size and number of in-object properties // suggested by |function|. // Link initial map and constructor function if the new.target is actually a // subclass constructor. if (IsSubclassConstructor(function->shared()->kind())) { Handle<Object> prototype(function->instance_prototype(), isolate); InstanceType instance_type = constructor_initial_map->instance_type(); DCHECK(CanSubclassHaveInobjectProperties(instance_type)); int internal_fields = JSObject::GetInternalFieldCount(*constructor_initial_map); int pre_allocated = constructor_initial_map->GetInObjectProperties() - constructor_initial_map->unused_property_fields(); int instance_size; int in_object_properties; function->CalculateInstanceSizeForDerivedClass( instance_type, internal_fields, &instance_size, &in_object_properties); int unused_property_fields = in_object_properties - pre_allocated; Handle<Map> map = Map::CopyInitialMap(constructor_initial_map, instance_size, in_object_properties, unused_property_fields); map->set_new_target_is_base(false); JSFunction::SetInitialMap(function, map, prototype); map->SetConstructor(*constructor); map->set_construction_counter(Map::kNoSlackTracking); map->StartInobjectSlackTracking(); return map; } } // Slow path, new.target is either a proxy or can't cache the map. // new.target.prototype is not guaranteed to be a JSReceiver, and may need to // fall back to the intrinsicDefaultProto. Handle<Object> prototype; if (new_target->IsJSFunction()) { Handle<JSFunction> function = Handle<JSFunction>::cast(new_target); // Make sure the new.target.prototype is cached. EnsureHasInitialMap(function); prototype = handle(function->prototype(), isolate); } else { Handle<String> prototype_string = isolate->factory()->prototype_string(); ASSIGN_RETURN_ON_EXCEPTION( isolate, prototype, JSReceiver::GetProperty(new_target, prototype_string), Map); // The above prototype lookup might change the constructor and its // prototype, hence we have to reload the initial map. EnsureHasInitialMap(constructor); constructor_initial_map = handle(constructor->initial_map(), isolate); } // If prototype is not a JSReceiver, fetch the intrinsicDefaultProto from the // correct realm. Rather than directly fetching the .prototype, we fetch the // constructor that points to the .prototype. This relies on // constructor.prototype being FROZEN for those constructors. if (!prototype->IsJSReceiver()) { Handle<Context> context; ASSIGN_RETURN_ON_EXCEPTION(isolate, context, JSReceiver::GetFunctionRealm(new_target), Map); DCHECK(context->IsNativeContext()); Handle<Object> maybe_index = JSReceiver::GetDataProperty( constructor, isolate->factory()->native_context_index_symbol()); int index = maybe_index->IsSmi() ? Smi::cast(*maybe_index)->value() : Context::OBJECT_FUNCTION_INDEX; Handle<JSFunction> realm_constructor(JSFunction::cast(context->get(index))); prototype = handle(realm_constructor->prototype(), isolate); } Handle<Map> map = Map::CopyInitialMap(constructor_initial_map); map->set_new_target_is_base(false); DCHECK(prototype->IsJSReceiver()); if (map->prototype() != *prototype) { Map::SetPrototype(map, prototype, FAST_PROTOTYPE); } map->SetConstructor(*constructor); return map; } void JSFunction::PrintName(FILE* out) { base::SmartArrayPointer<char> name = shared()->DebugName()->ToCString(); PrintF(out, "%s", name.get()); } Handle<String> JSFunction::GetName(Handle<JSFunction> function) { Isolate* isolate = function->GetIsolate(); Handle<Object> name = JSReceiver::GetDataProperty(function, isolate->factory()->name_string()); if (name->IsString()) return Handle<String>::cast(name); return handle(function->shared()->DebugName(), isolate); } Handle<String> JSFunction::GetDebugName(Handle<JSFunction> function) { Isolate* isolate = function->GetIsolate(); Handle<Object> name = JSReceiver::GetDataProperty( function, isolate->factory()->display_name_string()); if (name->IsString()) return Handle<String>::cast(name); return JSFunction::GetName(function); } void JSFunction::SetName(Handle<JSFunction> function, Handle<Name> name, Handle<String> prefix) { Isolate* isolate = function->GetIsolate(); Handle<String> function_name = Name::ToFunctionName(name).ToHandleChecked(); if (prefix->length() > 0) { IncrementalStringBuilder builder(isolate); builder.AppendString(prefix); builder.AppendCharacter(' '); builder.AppendString(function_name); function_name = builder.Finish().ToHandleChecked(); } JSObject::DefinePropertyOrElementIgnoreAttributes( function, isolate->factory()->name_string(), function_name, static_cast<PropertyAttributes>(DONT_ENUM | READ_ONLY)) .ToHandleChecked(); } namespace { char const kNativeCodeSource[] = "function () { [native code] }"; Handle<String> NativeCodeFunctionSourceString( Handle<SharedFunctionInfo> shared_info) { Isolate* const isolate = shared_info->GetIsolate(); if (shared_info->name()->IsString()) { IncrementalStringBuilder builder(isolate); builder.AppendCString("function "); builder.AppendString(handle(String::cast(shared_info->name()), isolate)); builder.AppendCString("() { [native code] }"); return builder.Finish().ToHandleChecked(); } return isolate->factory()->NewStringFromAsciiChecked(kNativeCodeSource); } } // namespace // static Handle<String> JSBoundFunction::ToString(Handle<JSBoundFunction> function) { Isolate* const isolate = function->GetIsolate(); return isolate->factory()->NewStringFromAsciiChecked(kNativeCodeSource); } // static Handle<String> JSFunction::ToString(Handle<JSFunction> function) { Isolate* const isolate = function->GetIsolate(); Handle<SharedFunctionInfo> shared_info(function->shared(), isolate); // Check if {function} should hide its source code. if (!shared_info->script()->IsScript() || Script::cast(shared_info->script())->hide_source()) { return NativeCodeFunctionSourceString(shared_info); } // Check if we should print {function} as a class. Handle<Object> class_start_position = JSReceiver::GetDataProperty( function, isolate->factory()->class_start_position_symbol()); if (class_start_position->IsSmi()) { Handle<Object> class_end_position = JSReceiver::GetDataProperty( function, isolate->factory()->class_end_position_symbol()); Handle<String> script_source( String::cast(Script::cast(shared_info->script())->source()), isolate); return isolate->factory()->NewSubString( script_source, Handle<Smi>::cast(class_start_position)->value(), Handle<Smi>::cast(class_end_position)->value()); } // Check if we have source code for the {function}. if (!shared_info->HasSourceCode()) { return NativeCodeFunctionSourceString(shared_info); } IncrementalStringBuilder builder(isolate); if (!shared_info->is_arrow()) { if (shared_info->is_concise_method()) { if (shared_info->is_generator()) builder.AppendCharacter('*'); } else { if (shared_info->is_generator()) { builder.AppendCString("function* "); } else { builder.AppendCString("function "); } } if (shared_info->name_should_print_as_anonymous()) { builder.AppendCString("anonymous"); } else if (!shared_info->is_anonymous_expression()) { builder.AppendString(handle(String::cast(shared_info->name()), isolate)); } } builder.AppendString(Handle<String>::cast(shared_info->GetSourceCode())); return builder.Finish().ToHandleChecked(); } void Oddball::Initialize(Isolate* isolate, Handle<Oddball> oddball, const char* to_string, Handle<Object> to_number, bool to_boolean, const char* type_of, byte kind) { Handle<String> internalized_to_string = isolate->factory()->InternalizeUtf8String(to_string); Handle<String> internalized_type_of = isolate->factory()->InternalizeUtf8String(type_of); oddball->set_to_number_raw(to_number->Number()); oddball->set_to_boolean(isolate->heap()->ToBoolean(to_boolean)); oddball->set_to_number(*to_number); oddball->set_to_string(*internalized_to_string); oddball->set_type_of(*internalized_type_of); oddball->set_kind(kind); } void Script::SetEvalOrigin(Handle<Script> script, Handle<SharedFunctionInfo> outer_info, int eval_position) { if (eval_position == RelocInfo::kNoPosition) { // If the position is missing, attempt to get the code offset from the // current activation. Do not translate the code offset into source // position, but store it as negative value for lazy translation. StackTraceFrameIterator it(script->GetIsolate()); if (!it.done() && it.is_javascript()) { FrameSummary summary = FrameSummary::GetFirst(it.javascript_frame()); script->set_eval_from_shared(summary.function()->shared()); script->set_eval_from_position(-summary.code_offset()); return; } eval_position = 0; } script->set_eval_from_shared(*outer_info); script->set_eval_from_position(eval_position); } int Script::GetEvalPosition() { DisallowHeapAllocation no_gc; DCHECK(compilation_type() == Script::COMPILATION_TYPE_EVAL); int position = eval_from_position(); if (position < 0) { // Due to laziness, the position may not have been translated from code // offset yet, which would be encoded as negative integer. In that case, // translate and set the position. if (eval_from_shared()->IsUndefined()) { position = 0; } else { SharedFunctionInfo* shared = SharedFunctionInfo::cast(eval_from_shared()); position = shared->abstract_code()->SourcePosition(-position); } DCHECK(position >= 0); set_eval_from_position(position); } return position; } void Script::InitLineEnds(Handle<Script> script) { if (!script->line_ends()->IsUndefined()) return; Isolate* isolate = script->GetIsolate(); if (!script->source()->IsString()) { DCHECK(script->source()->IsUndefined()); Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0); script->set_line_ends(*empty); DCHECK(script->line_ends()->IsFixedArray()); return; } Handle<String> src(String::cast(script->source()), isolate); Handle<FixedArray> array = String::CalculateLineEnds(src, true); if (*array != isolate->heap()->empty_fixed_array()) { array->set_map(isolate->heap()->fixed_cow_array_map()); } script->set_line_ends(*array); DCHECK(script->line_ends()->IsFixedArray()); } int Script::GetColumnNumber(Handle<Script> script, int code_pos) { int line_number = GetLineNumber(script, code_pos); if (line_number == -1) return -1; DisallowHeapAllocation no_allocation; FixedArray* line_ends_array = FixedArray::cast(script->line_ends()); line_number = line_number - script->line_offset(); if (line_number == 0) return code_pos + script->column_offset(); int prev_line_end_pos = Smi::cast(line_ends_array->get(line_number - 1))->value(); return code_pos - (prev_line_end_pos + 1); } int Script::GetLineNumberWithArray(int code_pos) { DisallowHeapAllocation no_allocation; DCHECK(line_ends()->IsFixedArray()); FixedArray* line_ends_array = FixedArray::cast(line_ends()); int line_ends_len = line_ends_array->length(); if (line_ends_len == 0) return -1; if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) { return line_offset(); } int left = 0; int right = line_ends_len; while (int half = (right - left) / 2) { if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) { right -= half; } else { left += half; } } return right + line_offset(); } int Script::GetLineNumber(Handle<Script> script, int code_pos) { InitLineEnds(script); return script->GetLineNumberWithArray(code_pos); } int Script::GetLineNumber(int code_pos) { DisallowHeapAllocation no_allocation; if (!line_ends()->IsUndefined()) return GetLineNumberWithArray(code_pos); // Slow mode: we do not have line_ends. We have to iterate through source. if (!source()->IsString()) return -1; String* source_string = String::cast(source()); int line = 0; int len = source_string->length(); for (int pos = 0; pos < len; pos++) { if (pos == code_pos) break; if (source_string->Get(pos) == '\n') line++; } return line; } Handle<Object> Script::GetNameOrSourceURL(Handle<Script> script) { Isolate* isolate = script->GetIsolate(); Handle<String> name_or_source_url_key = isolate->factory()->InternalizeOneByteString( STATIC_CHAR_VECTOR("nameOrSourceURL")); Handle<JSObject> script_wrapper = Script::GetWrapper(script); Handle<Object> property = JSReceiver::GetProperty(script_wrapper, name_or_source_url_key) .ToHandleChecked(); DCHECK(property->IsJSFunction()); Handle<Object> result; // Do not check against pending exception, since this function may be called // when an exception has already been pending. if (!Execution::TryCall(isolate, property, script_wrapper, 0, NULL) .ToHandle(&result)) { return isolate->factory()->undefined_value(); } return result; } Handle<JSObject> Script::GetWrapper(Handle<Script> script) { Isolate* isolate = script->GetIsolate(); if (!script->wrapper()->IsUndefined()) { DCHECK(script->wrapper()->IsWeakCell()); Handle<WeakCell> cell(WeakCell::cast(script->wrapper())); if (!cell->cleared()) { // Return a handle for the existing script wrapper from the cache. return handle(JSObject::cast(cell->value())); } // If we found an empty WeakCell, that means the script wrapper was // GCed. We are not notified directly of that, so we decrement here // so that we at least don't count double for any given script. isolate->counters()->script_wrappers()->Decrement(); } // Construct a new script wrapper. isolate->counters()->script_wrappers()->Increment(); Handle<JSFunction> constructor = isolate->script_function(); Handle<JSValue> result = Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor)); result->set_value(*script); Handle<WeakCell> cell = isolate->factory()->NewWeakCell(result); script->set_wrapper(*cell); return result; } MaybeHandle<SharedFunctionInfo> Script::FindSharedFunctionInfo( FunctionLiteral* fun) { WeakFixedArray::Iterator iterator(shared_function_infos()); SharedFunctionInfo* shared; while ((shared = iterator.Next<SharedFunctionInfo>())) { if (fun->function_token_position() == shared->function_token_position() && fun->start_position() == shared->start_position()) { return Handle<SharedFunctionInfo>(shared); } } return MaybeHandle<SharedFunctionInfo>(); } Script::Iterator::Iterator(Isolate* isolate) : iterator_(isolate->heap()->script_list()) {} Script* Script::Iterator::Next() { return iterator_.Next<Script>(); } SharedFunctionInfo::Iterator::Iterator(Isolate* isolate) : script_iterator_(isolate), sfi_iterator_(isolate->heap()->noscript_shared_function_infos()) {} bool SharedFunctionInfo::Iterator::NextScript() { Script* script = script_iterator_.Next(); if (script == NULL) return false; sfi_iterator_.Reset(script->shared_function_infos()); return true; } SharedFunctionInfo* SharedFunctionInfo::Iterator::Next() { do { SharedFunctionInfo* next = sfi_iterator_.Next<SharedFunctionInfo>(); if (next != NULL) return next; } while (NextScript()); return NULL; } void SharedFunctionInfo::SetScript(Handle<SharedFunctionInfo> shared, Handle<Object> script_object) { if (shared->script() == *script_object) return; Isolate* isolate = shared->GetIsolate(); // Add shared function info to new script's list. If a collection occurs, // the shared function info may be temporarily in two lists. // This is okay because the gc-time processing of these lists can tolerate // duplicates. Handle<Object> list; if (script_object->IsScript()) { Handle<Script> script = Handle<Script>::cast(script_object); list = handle(script->shared_function_infos(), isolate); } else { list = isolate->factory()->noscript_shared_function_infos(); } #ifdef DEBUG if (FLAG_enable_slow_asserts) { WeakFixedArray::Iterator iterator(*list); SharedFunctionInfo* next; while ((next = iterator.Next<SharedFunctionInfo>())) { DCHECK_NE(next, *shared); } } #endif // DEBUG list = WeakFixedArray::Add(list, shared); if (script_object->IsScript()) { Handle<Script> script = Handle<Script>::cast(script_object); script->set_shared_function_infos(*list); } else { isolate->heap()->SetRootNoScriptSharedFunctionInfos(*list); } // Remove shared function info from old script's list. if (shared->script()->IsScript()) { Script* old_script = Script::cast(shared->script()); if (old_script->shared_function_infos()->IsWeakFixedArray()) { WeakFixedArray* list = WeakFixedArray::cast(old_script->shared_function_infos()); list->Remove(shared); } } else { // Remove shared function info from root array. Object* list = isolate->heap()->noscript_shared_function_infos(); CHECK(WeakFixedArray::cast(list)->Remove(shared)); } // Finally set new script. shared->set_script(*script_object); } String* SharedFunctionInfo::DebugName() { Object* n = name(); if (!n->IsString() || String::cast(n)->length() == 0) return inferred_name(); return String::cast(n); } // The filter is a pattern that matches function names in this way: // "*" all; the default // "-" all but the top-level function // "-name" all but the function "name" // "" only the top-level function // "name" only the function "name" // "name*" only functions starting with "name" // "~" none; the tilde is not an identifier bool SharedFunctionInfo::PassesFilter(const char* raw_filter) { if (*raw_filter == '*') return true; String* name = DebugName(); Vector<const char> filter = CStrVector(raw_filter); if (filter.length() == 0) return name->length() == 0; if (filter[0] == '-') { // Negative filter. if (filter.length() == 1) { return (name->length() != 0); } else if (name->IsUtf8EqualTo(filter.SubVector(1, filter.length()))) { return false; } if (filter[filter.length() - 1] == '*' && name->IsUtf8EqualTo(filter.SubVector(1, filter.length() - 1), true)) { return false; } return true; } else if (name->IsUtf8EqualTo(filter)) { return true; } if (filter[filter.length() - 1] == '*' && name->IsUtf8EqualTo(filter.SubVector(0, filter.length() - 1), true)) { return true; } return false; } bool SharedFunctionInfo::HasSourceCode() const { return !script()->IsUndefined() && !reinterpret_cast<Script*>(script())->source()->IsUndefined(); } Handle<Object> SharedFunctionInfo::GetSourceCode() { if (!HasSourceCode()) return GetIsolate()->factory()->undefined_value(); Handle<String> source(String::cast(Script::cast(script())->source())); return GetIsolate()->factory()->NewSubString( source, start_position(), end_position()); } bool SharedFunctionInfo::IsInlineable() { // Check that the function has a script associated with it. if (!script()->IsScript()) return false; return !optimization_disabled(); } int SharedFunctionInfo::SourceSize() { return end_position() - start_position(); } void JSFunction::CalculateInstanceSizeHelper(InstanceType instance_type, int requested_internal_fields, int requested_in_object_properties, int* instance_size, int* in_object_properties) { int header_size = JSObject::GetHeaderSize(instance_type); DCHECK_LE(requested_internal_fields, (JSObject::kMaxInstanceSize - header_size) >> kPointerSizeLog2); *instance_size = Min(header_size + ((requested_internal_fields + requested_in_object_properties) << kPointerSizeLog2), JSObject::kMaxInstanceSize); *in_object_properties = ((*instance_size - header_size) >> kPointerSizeLog2) - requested_internal_fields; } void JSFunction::CalculateInstanceSize(InstanceType instance_type, int requested_internal_fields, int* instance_size, int* in_object_properties) { CalculateInstanceSizeHelper(instance_type, requested_internal_fields, shared()->expected_nof_properties(), instance_size, in_object_properties); } void JSFunction::CalculateInstanceSizeForDerivedClass( InstanceType instance_type, int requested_internal_fields, int* instance_size, int* in_object_properties) { Isolate* isolate = GetIsolate(); int expected_nof_properties = 0; for (PrototypeIterator iter(isolate, this, PrototypeIterator::START_AT_RECEIVER); !iter.IsAtEnd(); iter.Advance()) { JSReceiver* current = iter.GetCurrent<JSReceiver>(); if (!current->IsJSFunction()) break; JSFunction* func = JSFunction::cast(current); SharedFunctionInfo* shared = func->shared(); expected_nof_properties += shared->expected_nof_properties(); if (!IsSubclassConstructor(shared->kind())) { break; } } CalculateInstanceSizeHelper(instance_type, requested_internal_fields, expected_nof_properties, instance_size, in_object_properties); } // Output the source code without any allocation in the heap. std::ostream& operator<<(std::ostream& os, const SourceCodeOf& v) { const SharedFunctionInfo* s = v.value; // For some native functions there is no source. if (!s->HasSourceCode()) return os << "<No Source>"; // Get the source for the script which this function came from. // Don't use String::cast because we don't want more assertion errors while // we are already creating a stack dump. String* script_source = reinterpret_cast<String*>(Script::cast(s->script())->source()); if (!script_source->LooksValid()) return os << "<Invalid Source>"; if (!s->is_toplevel()) { os << "function "; Object* name = s->name(); if (name->IsString() && String::cast(name)->length() > 0) { String::cast(name)->PrintUC16(os); } } int len = s->end_position() - s->start_position(); if (len <= v.max_length || v.max_length < 0) { script_source->PrintUC16(os, s->start_position(), s->end_position()); return os; } else { script_source->PrintUC16(os, s->start_position(), s->start_position() + v.max_length); return os << "...\n"; } } static bool IsCodeEquivalent(Code* code, Code* recompiled) { if (code->instruction_size() != recompiled->instruction_size()) return false; ByteArray* code_relocation = code->relocation_info(); ByteArray* recompiled_relocation = recompiled->relocation_info(); int length = code_relocation->length(); if (length != recompiled_relocation->length()) return false; int compare = memcmp(code_relocation->GetDataStartAddress(), recompiled_relocation->GetDataStartAddress(), length); return compare == 0; } void SharedFunctionInfo::EnableDeoptimizationSupport(Code* recompiled) { DCHECK(!has_deoptimization_support()); DisallowHeapAllocation no_allocation; Code* code = this->code(); if (IsCodeEquivalent(code, recompiled)) { // Copy the deoptimization data from the recompiled code. code->set_deoptimization_data(recompiled->deoptimization_data()); code->set_has_deoptimization_support(true); } else { // TODO(3025757): In case the recompiled isn't equivalent to the // old code, we have to replace it. We should try to avoid this // altogether because it flushes valuable type feedback by // effectively resetting all IC state. ReplaceCode(recompiled); } DCHECK(has_deoptimization_support()); } void SharedFunctionInfo::DisableOptimization(BailoutReason reason) { // Disable optimization for the shared function info and mark the // code as non-optimizable. The marker on the shared function info // is there because we flush non-optimized code thereby loosing the // non-optimizable information for the code. When the code is // regenerated and set on the shared function info it is marked as // non-optimizable if optimization is disabled for the shared // function info. DCHECK(reason != kNoReason); set_optimization_disabled(true); set_disable_optimization_reason(reason); // Code should be the lazy compilation stub or else unoptimized. DCHECK(abstract_code()->kind() == AbstractCode::FUNCTION || abstract_code()->kind() == AbstractCode::INTERPRETED_FUNCTION || abstract_code()->kind() == AbstractCode::BUILTIN); PROFILE(GetIsolate(), CodeDisableOptEvent(abstract_code(), this)); if (FLAG_trace_opt) { PrintF("[disabled optimization for "); ShortPrint(); PrintF(", reason: %s]\n", GetBailoutReason(reason)); } } namespace { // Sets the expected number of properties based on estimate from parser. void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared, FunctionLiteral* literal) { int estimate = literal->expected_property_count(); // If no properties are added in the constructor, they are more likely // to be added later. if (estimate == 0) estimate = 2; // TODO(yangguo): check whether those heuristics are still up-to-date. // We do not shrink objects that go into a snapshot (yet), so we adjust // the estimate conservatively. if (shared->GetIsolate()->serializer_enabled()) { estimate += 2; } else { // Inobject slack tracking will reclaim redundant inobject space later, // so we can afford to adjust the estimate generously. estimate += 8; } shared->set_expected_nof_properties(estimate); } } // namespace void SharedFunctionInfo::InitFromFunctionLiteral( Handle<SharedFunctionInfo> shared_info, FunctionLiteral* lit) { shared_info->set_length(lit->scope()->default_function_length()); shared_info->set_internal_formal_parameter_count(lit->parameter_count()); shared_info->set_function_token_position(lit->function_token_position()); shared_info->set_start_position(lit->start_position()); shared_info->set_end_position(lit->end_position()); shared_info->set_is_declaration(lit->is_declaration()); shared_info->set_is_named_expression(lit->is_named_expression()); shared_info->set_is_anonymous_expression(lit->is_anonymous_expression()); shared_info->set_inferred_name(*lit->inferred_name()); shared_info->set_allows_lazy_compilation(lit->AllowsLazyCompilation()); shared_info->set_allows_lazy_compilation_without_context( lit->AllowsLazyCompilationWithoutContext()); shared_info->set_language_mode(lit->language_mode()); shared_info->set_uses_arguments(lit->scope()->arguments() != NULL); shared_info->set_has_duplicate_parameters(lit->has_duplicate_parameters()); shared_info->set_ast_node_count(lit->ast_node_count()); shared_info->set_is_function(lit->is_function()); if (lit->dont_optimize_reason() != kNoReason) { shared_info->DisableOptimization(lit->dont_optimize_reason()); } shared_info->set_dont_crankshaft(lit->flags() & AstProperties::kDontCrankshaft); shared_info->set_never_compiled(true); shared_info->set_kind(lit->kind()); if (!IsConstructable(lit->kind(), lit->language_mode())) { shared_info->set_construct_stub( *shared_info->GetIsolate()->builtins()->ConstructedNonConstructable()); } shared_info->set_needs_home_object(lit->scope()->NeedsHomeObject()); shared_info->set_asm_function(lit->scope()->asm_function()); SetExpectedNofPropertiesFromEstimate(shared_info, lit); } bool SharedFunctionInfo::VerifyBailoutId(BailoutId id) { DCHECK(!id.IsNone()); Code* unoptimized = code(); DeoptimizationOutputData* data = DeoptimizationOutputData::cast(unoptimized->deoptimization_data()); unsigned ignore = Deoptimizer::GetOutputInfo(data, id, this); USE(ignore); return true; // Return true if there was no DCHECK. } void Map::StartInobjectSlackTracking() { DCHECK(!IsInobjectSlackTrackingInProgress()); // No tracking during the snapshot construction phase. Isolate* isolate = GetIsolate(); if (isolate->serializer_enabled()) return; if (unused_property_fields() == 0) return; set_construction_counter(Map::kSlackTrackingCounterStart); } void SharedFunctionInfo::ResetForNewContext(int new_ic_age) { code()->ClearInlineCaches(); // If we clear ICs, we need to clear the type feedback vector too, since // CallICs are synced with a feedback vector slot. ClearTypeFeedbackInfo(); set_ic_age(new_ic_age); if (code()->kind() == Code::FUNCTION) { code()->set_profiler_ticks(0); if (optimization_disabled() && opt_count() >= FLAG_max_opt_count) { // Re-enable optimizations if they were disabled due to opt_count limit. set_optimization_disabled(false); } set_opt_count(0); set_deopt_count(0); } else if (code()->is_interpreter_entry_trampoline()) { set_profiler_ticks(0); if (optimization_disabled() && opt_count() >= FLAG_max_opt_count) { // Re-enable optimizations if they were disabled due to opt_count limit. set_optimization_disabled(false); } set_opt_count(0); set_deopt_count(0); } } int SharedFunctionInfo::SearchOptimizedCodeMapEntry(Context* native_context, BailoutId osr_ast_id) { DisallowHeapAllocation no_gc; DCHECK(native_context->IsNativeContext()); if (!OptimizedCodeMapIsCleared()) { FixedArray* optimized_code_map = this->optimized_code_map(); int length = optimized_code_map->length(); Smi* osr_ast_id_smi = Smi::FromInt(osr_ast_id.ToInt()); for (int i = kEntriesStart; i < length; i += kEntryLength) { if (WeakCell::cast(optimized_code_map->get(i + kContextOffset)) ->value() == native_context && optimized_code_map->get(i + kOsrAstIdOffset) == osr_ast_id_smi) { return i; } } Object* shared_code = WeakCell::cast(optimized_code_map->get(kSharedCodeIndex))->value(); if (shared_code->IsCode() && osr_ast_id.IsNone()) { return kSharedCodeIndex; } } return -1; } CodeAndLiterals SharedFunctionInfo::SearchOptimizedCodeMap( Context* native_context, BailoutId osr_ast_id) { CodeAndLiterals result = {nullptr, nullptr}; int entry = SearchOptimizedCodeMapEntry(native_context, osr_ast_id); if (entry != kNotFound) { FixedArray* code_map = optimized_code_map(); if (entry == kSharedCodeIndex) { // We know the weak cell isn't cleared because we made sure of it in // SearchOptimizedCodeMapEntry and performed no allocations since that // call. result = { Code::cast(WeakCell::cast(code_map->get(kSharedCodeIndex))->value()), nullptr}; } else { DCHECK_LE(entry + kEntryLength, code_map->length()); WeakCell* cell = WeakCell::cast(code_map->get(entry + kCachedCodeOffset)); WeakCell* literals_cell = WeakCell::cast(code_map->get(entry + kLiteralsOffset)); result = {cell->cleared() ? nullptr : Code::cast(cell->value()), literals_cell->cleared() ? nullptr : LiteralsArray::cast(literals_cell->value())}; } } return result; } #define DECLARE_TAG(ignore1, name, ignore2) name, const char* const VisitorSynchronization::kTags[ VisitorSynchronization::kNumberOfSyncTags] = { VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG) }; #undef DECLARE_TAG #define DECLARE_TAG(ignore1, ignore2, name) name, const char* const VisitorSynchronization::kTagNames[ VisitorSynchronization::kNumberOfSyncTags] = { VISITOR_SYNCHRONIZATION_TAGS_LIST(DECLARE_TAG) }; #undef DECLARE_TAG void ObjectVisitor::VisitCodeTarget(RelocInfo* rinfo) { DCHECK(RelocInfo::IsCodeTarget(rinfo->rmode())); Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); Object* old_target = target; VisitPointer(&target); CHECK_EQ(target, old_target); // VisitPointer doesn't change Code* *target. } void ObjectVisitor::VisitCodeAgeSequence(RelocInfo* rinfo) { DCHECK(RelocInfo::IsCodeAgeSequence(rinfo->rmode())); Object* stub = rinfo->code_age_stub(); if (stub) { VisitPointer(&stub); } } void ObjectVisitor::VisitCodeEntry(Address entry_address) { Object* code = Code::GetObjectFromEntryAddress(entry_address); Object* old_code = code; VisitPointer(&code); if (code != old_code) { Memory::Address_at(entry_address) = reinterpret_cast<Code*>(code)->entry(); } } void ObjectVisitor::VisitCell(RelocInfo* rinfo) { DCHECK(rinfo->rmode() == RelocInfo::CELL); Object* cell = rinfo->target_cell(); Object* old_cell = cell; VisitPointer(&cell); if (cell != old_cell) { rinfo->set_target_cell(reinterpret_cast<Cell*>(cell)); } } void ObjectVisitor::VisitDebugTarget(RelocInfo* rinfo) { DCHECK(RelocInfo::IsDebugBreakSlot(rinfo->rmode()) && rinfo->IsPatchedDebugBreakSlotSequence()); Object* target = Code::GetCodeFromTargetAddress(rinfo->debug_call_address()); Object* old_target = target; VisitPointer(&target); CHECK_EQ(target, old_target); // VisitPointer doesn't change Code* *target. } void ObjectVisitor::VisitEmbeddedPointer(RelocInfo* rinfo) { DCHECK(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT); Object* p = rinfo->target_object(); VisitPointer(&p); } void ObjectVisitor::VisitExternalReference(RelocInfo* rinfo) { Address p = rinfo->target_external_reference(); VisitExternalReference(&p); } void Code::InvalidateRelocation() { InvalidateEmbeddedObjects(); set_relocation_info(GetHeap()->empty_byte_array()); } void Code::InvalidateEmbeddedObjects() { Object* undefined = GetHeap()->undefined_value(); Cell* undefined_cell = GetHeap()->undefined_cell(); int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | RelocInfo::ModeMask(RelocInfo::CELL); for (RelocIterator it(this, mode_mask); !it.done(); it.next()) { RelocInfo::Mode mode = it.rinfo()->rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { it.rinfo()->set_target_object(undefined, SKIP_WRITE_BARRIER); } else if (mode == RelocInfo::CELL) { it.rinfo()->set_target_cell(undefined_cell, SKIP_WRITE_BARRIER); } } } void Code::Relocate(intptr_t delta) { for (RelocIterator it(this, RelocInfo::kApplyMask); !it.done(); it.next()) { it.rinfo()->apply(delta); } Assembler::FlushICache(GetIsolate(), instruction_start(), instruction_size()); } void Code::CopyFrom(const CodeDesc& desc) { // copy code CopyBytes(instruction_start(), desc.buffer, static_cast<size_t>(desc.instr_size)); // copy reloc info CopyBytes(relocation_start(), desc.buffer + desc.buffer_size - desc.reloc_size, static_cast<size_t>(desc.reloc_size)); // unbox handles and relocate intptr_t delta = instruction_start() - desc.buffer; int mode_mask = RelocInfo::kCodeTargetMask | RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | RelocInfo::ModeMask(RelocInfo::CELL) | RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) | RelocInfo::kApplyMask; // Needed to find target_object and runtime_entry on X64 Assembler* origin = desc.origin; AllowDeferredHandleDereference embedding_raw_address; for (RelocIterator it(this, mode_mask); !it.done(); it.next()) { RelocInfo::Mode mode = it.rinfo()->rmode(); if (mode == RelocInfo::EMBEDDED_OBJECT) { Handle<Object> p = it.rinfo()->target_object_handle(origin); it.rinfo()->set_target_object(*p, UPDATE_WRITE_BARRIER, SKIP_ICACHE_FLUSH); } else if (mode == RelocInfo::CELL) { Handle<Cell> cell = it.rinfo()->target_cell_handle(); it.rinfo()->set_target_cell(*cell, UPDATE_WRITE_BARRIER, SKIP_ICACHE_FLUSH); } else if (RelocInfo::IsCodeTarget(mode)) { // rewrite code handles in inline cache targets to direct // pointers to the first instruction in the code object Handle<Object> p = it.rinfo()->target_object_handle(origin); Code* code = Code::cast(*p); it.rinfo()->set_target_address(code->instruction_start(), UPDATE_WRITE_BARRIER, SKIP_ICACHE_FLUSH); } else if (RelocInfo::IsRuntimeEntry(mode)) { Address p = it.rinfo()->target_runtime_entry(origin); it.rinfo()->set_target_runtime_entry(p, UPDATE_WRITE_BARRIER, SKIP_ICACHE_FLUSH); } else if (mode == RelocInfo::CODE_AGE_SEQUENCE) { Handle<Object> p = it.rinfo()->code_age_stub_handle(origin); Code* code = Code::cast(*p); it.rinfo()->set_code_age_stub(code, SKIP_ICACHE_FLUSH); } else { it.rinfo()->apply(delta); } } Assembler::FlushICache(GetIsolate(), instruction_start(), instruction_size()); } // Locate the source position which is closest to the code offset. This is // using the source position information embedded in the relocation info. // The position returned is relative to the beginning of the script where the // source for this function is found. int Code::SourcePosition(int code_offset) { Address pc = instruction_start() + code_offset; int distance = kMaxInt; int position = RelocInfo::kNoPosition; // Initially no position found. // Run through all the relocation info to find the best matching source // position. All the code needs to be considered as the sequence of the // instructions in the code does not necessarily follow the same order as the // source. RelocIterator it(this, RelocInfo::kPositionMask); while (!it.done()) { // Only look at positions after the current pc. if (it.rinfo()->pc() < pc) { // Get position and distance. int dist = static_cast<int>(pc - it.rinfo()->pc()); int pos = static_cast<int>(it.rinfo()->data()); // If this position is closer than the current candidate or if it has the // same distance as the current candidate and the position is higher then // this position is the new candidate. if ((dist < distance) || (dist == distance && pos > position)) { position = pos; distance = dist; } } it.next(); } DCHECK(kind() == FUNCTION || (is_optimized_code() && is_turbofanned()) || is_wasm_code() || position == RelocInfo::kNoPosition); return position; } // Same as Code::SourcePosition above except it only looks for statement // positions. int Code::SourceStatementPosition(int code_offset) { // First find the position as close as possible using all position // information. int position = SourcePosition(code_offset); // Now find the closest statement position before the position. int statement_position = 0; RelocIterator it(this, RelocInfo::kPositionMask); while (!it.done()) { if (RelocInfo::IsStatementPosition(it.rinfo()->rmode())) { int p = static_cast<int>(it.rinfo()->data()); if (statement_position < p && p <= position) { statement_position = p; } } it.next(); } return statement_position; } SafepointEntry Code::GetSafepointEntry(Address pc) { SafepointTable table(this); return table.FindEntry(pc); } Object* Code::FindNthObject(int n, Map* match_map) { DCHECK(is_inline_cache_stub()); DisallowHeapAllocation no_allocation; int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); for (RelocIterator it(this, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); Object* object = info->target_object(); if (object->IsWeakCell()) object = WeakCell::cast(object)->value(); if (object->IsHeapObject()) { if (HeapObject::cast(object)->map() == match_map) { if (--n == 0) return object; } } } return NULL; } AllocationSite* Code::FindFirstAllocationSite() { Object* result = FindNthObject(1, GetHeap()->allocation_site_map()); return (result != NULL) ? AllocationSite::cast(result) : NULL; } Map* Code::FindFirstMap() { Object* result = FindNthObject(1, GetHeap()->meta_map()); return (result != NULL) ? Map::cast(result) : NULL; } void Code::FindAndReplace(const FindAndReplacePattern& pattern) { DCHECK(is_inline_cache_stub() || is_handler()); DisallowHeapAllocation no_allocation; int mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT); STATIC_ASSERT(FindAndReplacePattern::kMaxCount < 32); int current_pattern = 0; for (RelocIterator it(this, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); Object* object = info->target_object(); if (object->IsHeapObject()) { if (object->IsWeakCell()) { object = HeapObject::cast(WeakCell::cast(object)->value()); } Map* map = HeapObject::cast(object)->map(); if (map == *pattern.find_[current_pattern]) { info->set_target_object(*pattern.replace_[current_pattern]); if (++current_pattern == pattern.count_) return; } } } UNREACHABLE(); } void Code::ClearInlineCaches() { int mask = RelocInfo::ModeMask(RelocInfo::CODE_TARGET) | RelocInfo::ModeMask(RelocInfo::CODE_TARGET_WITH_ID); for (RelocIterator it(this, mask); !it.done(); it.next()) { RelocInfo* info = it.rinfo(); Code* target(Code::GetCodeFromTargetAddress(info->target_address())); if (target->is_inline_cache_stub()) { IC::Clear(this->GetIsolate(), info->pc(), info->host()->constant_pool()); } } } int AbstractCode::SourcePosition(int offset) { return IsBytecodeArray() ? GetBytecodeArray()->SourcePosition(offset) : GetCode()->SourcePosition(offset); } int AbstractCode::SourceStatementPosition(int offset) { return IsBytecodeArray() ? GetBytecodeArray()->SourceStatementPosition(offset) : GetCode()->SourceStatementPosition(offset); } void SharedFunctionInfo::ClearTypeFeedbackInfo() { feedback_vector()->ClearSlots(this); } void SharedFunctionInfo::ClearTypeFeedbackInfoAtGCTime() { feedback_vector()->ClearSlotsAtGCTime(this); } BailoutId Code::TranslatePcOffsetToAstId(uint32_t pc_offset) { DisallowHeapAllocation no_gc; DCHECK(kind() == FUNCTION); BackEdgeTable back_edges(this, &no_gc); for (uint32_t i = 0; i < back_edges.length(); i++) { if (back_edges.pc_offset(i) == pc_offset) return back_edges.ast_id(i); } return BailoutId::None(); } uint32_t Code::TranslateAstIdToPcOffset(BailoutId ast_id) { DisallowHeapAllocation no_gc; DCHECK(kind() == FUNCTION); BackEdgeTable back_edges(this, &no_gc); for (uint32_t i = 0; i < back_edges.length(); i++) { if (back_edges.ast_id(i) == ast_id) return back_edges.pc_offset(i); } UNREACHABLE(); // We expect to find the back edge. return 0; } void Code::MakeCodeAgeSequenceYoung(byte* sequence, Isolate* isolate) { PatchPlatformCodeAge(isolate, sequence, kNoAgeCodeAge, NO_MARKING_PARITY); } void Code::MarkCodeAsExecuted(byte* sequence, Isolate* isolate) { PatchPlatformCodeAge(isolate, sequence, kExecutedOnceCodeAge, NO_MARKING_PARITY); } // NextAge defines the Code::Age state transitions during a GC cycle. static Code::Age NextAge(Code::Age age) { switch (age) { case Code::kNotExecutedCodeAge: // Keep, until we've been executed. case Code::kToBeExecutedOnceCodeAge: // Keep, until we've been executed. case Code::kLastCodeAge: // Clamp at last Code::Age value. return age; case Code::kExecutedOnceCodeAge: // Pre-age code that has only been executed once. return static_cast<Code::Age>(Code::kPreAgedCodeAge + 1); default: return static_cast<Code::Age>(age + 1); // Default case: Increase age. } } // IsOldAge defines the collection criteria for a Code object. static bool IsOldAge(Code::Age age) { return age >= Code::kIsOldCodeAge || age == Code::kNotExecutedCodeAge; } void Code::MakeYoung(Isolate* isolate) { byte* sequence = FindCodeAgeSequence(); if (sequence != NULL) MakeCodeAgeSequenceYoung(sequence, isolate); } void Code::PreAge(Isolate* isolate) { byte* sequence = FindCodeAgeSequence(); if (sequence != NULL) { PatchPlatformCodeAge(isolate, sequence, kPreAgedCodeAge, NO_MARKING_PARITY); } } void Code::MarkToBeExecutedOnce(Isolate* isolate) { byte* sequence = FindCodeAgeSequence(); if (sequence != NULL) { PatchPlatformCodeAge(isolate, sequence, kToBeExecutedOnceCodeAge, NO_MARKING_PARITY); } } void Code::MakeOlder(MarkingParity current_parity) { byte* sequence = FindCodeAgeSequence(); if (sequence != NULL) { Age age; MarkingParity code_parity; Isolate* isolate = GetIsolate(); GetCodeAgeAndParity(isolate, sequence, &age, &code_parity); Age next_age = NextAge(age); if (age != next_age && code_parity != current_parity) { PatchPlatformCodeAge(isolate, sequence, next_age, current_parity); } } } bool Code::IsOld() { return IsOldAge(GetAge()); } byte* Code::FindCodeAgeSequence() { return FLAG_age_code && prologue_offset() != Code::kPrologueOffsetNotSet && (kind() == OPTIMIZED_FUNCTION || (kind() == FUNCTION && !has_debug_break_slots())) ? instruction_start() + prologue_offset() : NULL; } Code::Age Code::GetAge() { byte* sequence = FindCodeAgeSequence(); if (sequence == NULL) { return kNoAgeCodeAge; } Age age; MarkingParity parity; GetCodeAgeAndParity(GetIsolate(), sequence, &age, &parity); return age; } void Code::GetCodeAgeAndParity(Code* code, Age* age, MarkingParity* parity) { Isolate* isolate = code->GetIsolate(); Builtins* builtins = isolate->builtins(); Code* stub = NULL; #define HANDLE_CODE_AGE(AGE) \ stub = *builtins->Make##AGE##CodeYoungAgainEvenMarking(); \ if (code == stub) { \ *age = k##AGE##CodeAge; \ *parity = EVEN_MARKING_PARITY; \ return; \ } \ stub = *builtins->Make##AGE##CodeYoungAgainOddMarking(); \ if (code == stub) { \ *age = k##AGE##CodeAge; \ *parity = ODD_MARKING_PARITY; \ return; \ } CODE_AGE_LIST(HANDLE_CODE_AGE) #undef HANDLE_CODE_AGE stub = *builtins->MarkCodeAsExecutedOnce(); if (code == stub) { *age = kNotExecutedCodeAge; *parity = NO_MARKING_PARITY; return; } stub = *builtins->MarkCodeAsExecutedTwice(); if (code == stub) { *age = kExecutedOnceCodeAge; *parity = NO_MARKING_PARITY; return; } stub = *builtins->MarkCodeAsToBeExecutedOnce(); if (code == stub) { *age = kToBeExecutedOnceCodeAge; *parity = NO_MARKING_PARITY; return; } UNREACHABLE(); } Code* Code::GetCodeAgeStub(Isolate* isolate, Age age, MarkingParity parity) { Builtins* builtins = isolate->builtins(); switch (age) { #define HANDLE_CODE_AGE(AGE) \ case k##AGE##CodeAge: { \ Code* stub = parity == EVEN_MARKING_PARITY \ ? *builtins->Make##AGE##CodeYoungAgainEvenMarking() \ : *builtins->Make##AGE##CodeYoungAgainOddMarking(); \ return stub; \ } CODE_AGE_LIST(HANDLE_CODE_AGE) #undef HANDLE_CODE_AGE case kNotExecutedCodeAge: { DCHECK(parity == NO_MARKING_PARITY); return *builtins->MarkCodeAsExecutedOnce(); } case kExecutedOnceCodeAge: { DCHECK(parity == NO_MARKING_PARITY); return *builtins->MarkCodeAsExecutedTwice(); } case kToBeExecutedOnceCodeAge: { DCHECK(parity == NO_MARKING_PARITY); return *builtins->MarkCodeAsToBeExecutedOnce(); } default: UNREACHABLE(); break; } return NULL; } void Code::PrintDeoptLocation(FILE* out, Address pc) { Deoptimizer::DeoptInfo info = Deoptimizer::GetDeoptInfo(this, pc); class SourcePosition pos = info.position; if (info.deopt_reason != Deoptimizer::kNoReason || !pos.IsUnknown()) { if (FLAG_hydrogen_track_positions) { PrintF(out, " ;;; deoptimize at %d_%d: %s\n", pos.inlining_id(), pos.position(), Deoptimizer::GetDeoptReason(info.deopt_reason)); } else { PrintF(out, " ;;; deoptimize at %d: %s\n", pos.raw(), Deoptimizer::GetDeoptReason(info.deopt_reason)); } } } bool Code::CanDeoptAt(Address pc) { DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(deoptimization_data()); Address code_start_address = instruction_start(); for (int i = 0; i < deopt_data->DeoptCount(); i++) { if (deopt_data->Pc(i)->value() == -1) continue; Address address = code_start_address + deopt_data->Pc(i)->value(); if (address == pc && deopt_data->AstId(i) != BailoutId::None()) { return true; } } return false; } // Identify kind of code. const char* Code::Kind2String(Kind kind) { switch (kind) { #define CASE(name) case name: return #name; CODE_KIND_LIST(CASE) #undef CASE case NUMBER_OF_KINDS: break; } UNREACHABLE(); return NULL; } Handle<WeakCell> Code::WeakCellFor(Handle<Code> code) { DCHECK(code->kind() == OPTIMIZED_FUNCTION); WeakCell* raw_cell = code->CachedWeakCell(); if (raw_cell != NULL) return Handle<WeakCell>(raw_cell); Handle<WeakCell> cell = code->GetIsolate()->factory()->NewWeakCell(code); DeoptimizationInputData::cast(code->deoptimization_data()) ->SetWeakCellCache(*cell); return cell; } WeakCell* Code::CachedWeakCell() { DCHECK(kind() == OPTIMIZED_FUNCTION); Object* weak_cell_cache = DeoptimizationInputData::cast(deoptimization_data())->WeakCellCache(); if (weak_cell_cache->IsWeakCell()) { DCHECK(this == WeakCell::cast(weak_cell_cache)->value()); return WeakCell::cast(weak_cell_cache); } return NULL; } #ifdef ENABLE_DISASSEMBLER void DeoptimizationInputData::DeoptimizationInputDataPrint( std::ostream& os) { // NOLINT disasm::NameConverter converter; int const inlined_function_count = InlinedFunctionCount()->value(); os << "Inlined functions (count = " << inlined_function_count << ")\n"; for (int id = 0; id < inlined_function_count; ++id) { Object* info = LiteralArray()->get(id); os << " " << Brief(SharedFunctionInfo::cast(info)) << "\n"; } os << "\n"; int deopt_count = DeoptCount(); os << "Deoptimization Input Data (deopt points = " << deopt_count << ")\n"; if (0 != deopt_count) { os << " index ast id argc pc"; if (FLAG_print_code_verbose) os << " commands"; os << "\n"; } for (int i = 0; i < deopt_count; i++) { os << std::setw(6) << i << " " << std::setw(6) << AstId(i).ToInt() << " " << std::setw(6) << ArgumentsStackHeight(i)->value() << " " << std::setw(6) << Pc(i)->value(); if (!FLAG_print_code_verbose) { os << "\n"; continue; } // Print details of the frame translation. int translation_index = TranslationIndex(i)->value(); TranslationIterator iterator(TranslationByteArray(), translation_index); Translation::Opcode opcode = static_cast<Translation::Opcode>(iterator.Next()); DCHECK(Translation::BEGIN == opcode); int frame_count = iterator.Next(); int jsframe_count = iterator.Next(); os << " " << Translation::StringFor(opcode) << " {frame count=" << frame_count << ", js frame count=" << jsframe_count << "}\n"; while (iterator.HasNext() && Translation::BEGIN != (opcode = static_cast<Translation::Opcode>(iterator.Next()))) { os << std::setw(31) << " " << Translation::StringFor(opcode) << " "; switch (opcode) { case Translation::BEGIN: UNREACHABLE(); break; case Translation::JS_FRAME: { int ast_id = iterator.Next(); int shared_info_id = iterator.Next(); unsigned height = iterator.Next(); Object* shared_info = LiteralArray()->get(shared_info_id); os << "{ast_id=" << ast_id << ", function=" << Brief(SharedFunctionInfo::cast(shared_info)->DebugName()) << ", height=" << height << "}"; break; } case Translation::INTERPRETED_FRAME: { int bytecode_offset = iterator.Next(); int shared_info_id = iterator.Next(); unsigned height = iterator.Next(); Object* shared_info = LiteralArray()->get(shared_info_id); os << "{bytecode_offset=" << bytecode_offset << ", function=" << Brief(SharedFunctionInfo::cast(shared_info)->DebugName()) << ", height=" << height << "}"; break; } case Translation::COMPILED_STUB_FRAME: { Code::Kind stub_kind = static_cast<Code::Kind>(iterator.Next()); os << "{kind=" << stub_kind << "}"; break; } case Translation::ARGUMENTS_ADAPTOR_FRAME: case Translation::CONSTRUCT_STUB_FRAME: { int shared_info_id = iterator.Next(); Object* shared_info = LiteralArray()->get(shared_info_id); unsigned height = iterator.Next(); os << "{function=" << Brief(SharedFunctionInfo::cast(shared_info)->DebugName()) << ", height=" << height << "}"; break; } case Translation::TAIL_CALLER_FRAME: { int shared_info_id = iterator.Next(); Object* shared_info = LiteralArray()->get(shared_info_id); os << "{function=" << Brief(SharedFunctionInfo::cast(shared_info)->DebugName()) << "}"; break; } case Translation::GETTER_STUB_FRAME: case Translation::SETTER_STUB_FRAME: { int shared_info_id = iterator.Next(); Object* shared_info = LiteralArray()->get(shared_info_id); os << "{function=" << Brief(SharedFunctionInfo::cast(shared_info) ->DebugName()) << "}"; break; } case Translation::REGISTER: { int reg_code = iterator.Next(); os << "{input=" << converter.NameOfCPURegister(reg_code) << "}"; break; } case Translation::INT32_REGISTER: { int reg_code = iterator.Next(); os << "{input=" << converter.NameOfCPURegister(reg_code) << "}"; break; } case Translation::UINT32_REGISTER: { int reg_code = iterator.Next(); os << "{input=" << converter.NameOfCPURegister(reg_code) << " (unsigned)}"; break; } case Translation::BOOL_REGISTER: { int reg_code = iterator.Next(); os << "{input=" << converter.NameOfCPURegister(reg_code) << " (bool)}"; break; } case Translation::DOUBLE_REGISTER: { int reg_code = iterator.Next(); os << "{input=" << DoubleRegister::from_code(reg_code).ToString() << "}"; break; } case Translation::STACK_SLOT: { int input_slot_index = iterator.Next(); os << "{input=" << input_slot_index << "}"; break; } case Translation::INT32_STACK_SLOT: { int input_slot_index = iterator.Next(); os << "{input=" << input_slot_index << "}"; break; } case Translation::UINT32_STACK_SLOT: { int input_slot_index = iterator.Next(); os << "{input=" << input_slot_index << " (unsigned)}"; break; } case Translation::BOOL_STACK_SLOT: { int input_slot_index = iterator.Next(); os << "{input=" << input_slot_index << " (bool)}"; break; } case Translation::DOUBLE_STACK_SLOT: { int input_slot_index = iterator.Next(); os << "{input=" << input_slot_index << "}"; break; } case Translation::LITERAL: { int literal_index = iterator.Next(); Object* literal_value = LiteralArray()->get(literal_index); os << "{literal_id=" << literal_index << " (" << Brief(literal_value) << ")}"; break; } case Translation::DUPLICATED_OBJECT: { int object_index = iterator.Next(); os << "{object_index=" << object_index << "}"; break; } case Translation::ARGUMENTS_OBJECT: case Translation::CAPTURED_OBJECT: { int args_length = iterator.Next(); os << "{length=" << args_length << "}"; break; } } os << "\n"; } } } void DeoptimizationOutputData::DeoptimizationOutputDataPrint( std::ostream& os) { // NOLINT os << "Deoptimization Output Data (deopt points = " << this->DeoptPoints() << ")\n"; if (this->DeoptPoints() == 0) return; os << "ast id pc state\n"; for (int i = 0; i < this->DeoptPoints(); i++) { int pc_and_state = this->PcAndState(i)->value(); os << std::setw(6) << this->AstId(i).ToInt() << " " << std::setw(8) << FullCodeGenerator::PcField::decode(pc_and_state) << " " << FullCodeGenerator::State2String( FullCodeGenerator::StateField::decode(pc_and_state)) << "\n"; } } void HandlerTable::HandlerTableRangePrint(std::ostream& os) { os << " from to hdlr\n"; for (int i = 0; i < length(); i += kRangeEntrySize) { int pc_start = Smi::cast(get(i + kRangeStartIndex))->value(); int pc_end = Smi::cast(get(i + kRangeEndIndex))->value(); int handler_field = Smi::cast(get(i + kRangeHandlerIndex))->value(); int handler_offset = HandlerOffsetField::decode(handler_field); CatchPrediction prediction = HandlerPredictionField::decode(handler_field); int data = Smi::cast(get(i + kRangeDataIndex))->value(); os << " (" << std::setw(4) << pc_start << "," << std::setw(4) << pc_end << ") -> " << std::setw(4) << handler_offset << " (prediction=" << prediction << ", data=" << data << ")\n"; } } void HandlerTable::HandlerTableReturnPrint(std::ostream& os) { os << " off hdlr (c)\n"; for (int i = 0; i < length(); i += kReturnEntrySize) { int pc_offset = Smi::cast(get(i + kReturnOffsetIndex))->value(); int handler_field = Smi::cast(get(i + kReturnHandlerIndex))->value(); int handler_offset = HandlerOffsetField::decode(handler_field); CatchPrediction prediction = HandlerPredictionField::decode(handler_field); os << " " << std::setw(4) << pc_offset << " -> " << std::setw(4) << handler_offset << " (prediction=" << prediction << ")\n"; } } const char* Code::ICState2String(InlineCacheState state) { switch (state) { case UNINITIALIZED: return "UNINITIALIZED"; case PREMONOMORPHIC: return "PREMONOMORPHIC"; case MONOMORPHIC: return "MONOMORPHIC"; case RECOMPUTE_HANDLER: return "RECOMPUTE_HANDLER"; case POLYMORPHIC: return "POLYMORPHIC"; case MEGAMORPHIC: return "MEGAMORPHIC"; case GENERIC: return "GENERIC"; case DEBUG_STUB: return "DEBUG_STUB"; } UNREACHABLE(); return NULL; } void Code::PrintExtraICState(std::ostream& os, // NOLINT Kind kind, ExtraICState extra) { os << "extra_ic_state = "; if ((kind == STORE_IC || kind == KEYED_STORE_IC) && is_strict(static_cast<LanguageMode>(extra))) { os << "STRICT\n"; } else { os << extra << "\n"; } } void Code::Disassemble(const char* name, std::ostream& os) { // NOLINT os << "kind = " << Kind2String(kind()) << "\n"; if (IsCodeStubOrIC()) { const char* n = CodeStub::MajorName(CodeStub::GetMajorKey(this)); os << "major_key = " << (n == NULL ? "null" : n) << "\n"; } if (is_inline_cache_stub()) { os << "ic_state = " << ICState2String(ic_state()) << "\n"; PrintExtraICState(os, kind(), extra_ic_state()); if (is_compare_ic_stub()) { DCHECK(CodeStub::GetMajorKey(this) == CodeStub::CompareIC); CompareICStub stub(stub_key(), GetIsolate()); os << "compare_state = " << CompareICState::GetStateName(stub.left()) << "*" << CompareICState::GetStateName(stub.right()) << " -> " << CompareICState::GetStateName(stub.state()) << "\n"; os << "compare_operation = " << Token::Name(stub.op()) << "\n"; } } if ((name != nullptr) && (name[0] != '\0')) { os << "name = " << name << "\n"; } else if (kind() == BUILTIN) { name = GetIsolate()->builtins()->Lookup(instruction_start()); if (name != nullptr) { os << "name = " << name << "\n"; } } else if (kind() == BYTECODE_HANDLER) { name = GetIsolate()->interpreter()->LookupNameOfBytecodeHandler(this); if (name != nullptr) { os << "name = " << name << "\n"; } } if (kind() == OPTIMIZED_FUNCTION) { os << "stack_slots = " << stack_slots() << "\n"; } os << "compiler = " << (is_turbofanned() ? "turbofan" : is_crankshafted() ? "crankshaft" : kind() == Code::FUNCTION ? "full-codegen" : "unknown") << "\n"; os << "Instructions (size = " << instruction_size() << ")\n"; { Isolate* isolate = GetIsolate(); int size = instruction_size(); int safepoint_offset = is_crankshafted() ? static_cast<int>(safepoint_table_offset()) : size; int back_edge_offset = (kind() == Code::FUNCTION) ? static_cast<int>(back_edge_table_offset()) : size; int constant_pool_offset = FLAG_enable_embedded_constant_pool ? this->constant_pool_offset() : size; // Stop before reaching any embedded tables int code_size = Min(safepoint_offset, back_edge_offset); code_size = Min(code_size, constant_pool_offset); byte* begin = instruction_start(); byte* end = begin + code_size; Disassembler::Decode(isolate, &os, begin, end, this); if (constant_pool_offset < size) { int constant_pool_size = size - constant_pool_offset; DCHECK((constant_pool_size & kPointerAlignmentMask) == 0); os << "\nConstant Pool (size = " << constant_pool_size << ")\n"; Vector<char> buf = Vector<char>::New(50); intptr_t* ptr = reinterpret_cast<intptr_t*>(begin + constant_pool_offset); for (int i = 0; i < constant_pool_size; i += kPointerSize, ptr++) { SNPrintF(buf, "%4d %08" V8PRIxPTR, i, *ptr); os << static_cast<const void*>(ptr) << " " << buf.start() << "\n"; } } } os << "\n"; if (kind() == FUNCTION) { DeoptimizationOutputData* data = DeoptimizationOutputData::cast(this->deoptimization_data()); data->DeoptimizationOutputDataPrint(os); } else if (kind() == OPTIMIZED_FUNCTION) { DeoptimizationInputData* data = DeoptimizationInputData::cast(this->deoptimization_data()); data->DeoptimizationInputDataPrint(os); } os << "\n"; if (is_crankshafted()) { SafepointTable table(this); os << "Safepoints (size = " << table.size() << ")\n"; for (unsigned i = 0; i < table.length(); i++) { unsigned pc_offset = table.GetPcOffset(i); os << static_cast<const void*>(instruction_start() + pc_offset) << " "; os << std::setw(4) << pc_offset << " "; table.PrintEntry(i, os); os << " (sp -> fp) "; SafepointEntry entry = table.GetEntry(i); if (entry.deoptimization_index() != Safepoint::kNoDeoptimizationIndex) { os << std::setw(6) << entry.deoptimization_index(); } else { os << "<none>"; } if (entry.argument_count() > 0) { os << " argc: " << entry.argument_count(); } os << "\n"; } os << "\n"; } else if (kind() == FUNCTION) { unsigned offset = back_edge_table_offset(); // If there is no back edge table, the "table start" will be at or after // (due to alignment) the end of the instruction stream. if (static_cast<int>(offset) < instruction_size()) { DisallowHeapAllocation no_gc; BackEdgeTable back_edges(this, &no_gc); os << "Back edges (size = " << back_edges.length() << ")\n"; os << "ast_id pc_offset loop_depth\n"; for (uint32_t i = 0; i < back_edges.length(); i++) { os << std::setw(6) << back_edges.ast_id(i).ToInt() << " " << std::setw(9) << back_edges.pc_offset(i) << " " << std::setw(10) << back_edges.loop_depth(i) << "\n"; } os << "\n"; } #ifdef OBJECT_PRINT if (!type_feedback_info()->IsUndefined()) { TypeFeedbackInfo::cast(type_feedback_info())->TypeFeedbackInfoPrint(os); os << "\n"; } #endif } if (handler_table()->length() > 0) { os << "Handler Table (size = " << handler_table()->Size() << ")\n"; if (kind() == FUNCTION) { HandlerTable::cast(handler_table())->HandlerTableRangePrint(os); } else if (kind() == OPTIMIZED_FUNCTION) { HandlerTable::cast(handler_table())->HandlerTableReturnPrint(os); } os << "\n"; } os << "RelocInfo (size = " << relocation_size() << ")\n"; for (RelocIterator it(this); !it.done(); it.next()) { it.rinfo()->Print(GetIsolate(), os); } os << "\n"; } #endif // ENABLE_DISASSEMBLER int BytecodeArray::SourcePosition(int offset) { int last_position = 0; for (interpreter::SourcePositionTableIterator iterator( source_position_table()); !iterator.done() && iterator.bytecode_offset() <= offset; iterator.Advance()) { last_position = iterator.source_position(); } return last_position; } int BytecodeArray::SourceStatementPosition(int offset) { // First find the position as close as possible using all position // information. int position = SourcePosition(offset); // Now find the closest statement position before the position. int statement_position = 0; interpreter::SourcePositionTableIterator iterator(source_position_table()); while (!iterator.done()) { if (iterator.is_statement()) { int p = iterator.source_position(); if (statement_position < p && p <= position) { statement_position = p; } } iterator.Advance(); } return statement_position; } void BytecodeArray::Disassemble(std::ostream& os) { os << "Parameter count " << parameter_count() << "\n"; os << "Frame size " << frame_size() << "\n"; const uint8_t* base_address = GetFirstBytecodeAddress(); interpreter::SourcePositionTableIterator source_positions( source_position_table()); interpreter::BytecodeArrayIterator iterator(handle(this)); while (!iterator.done()) { if (!source_positions.done() && iterator.current_offset() == source_positions.bytecode_offset()) { os << std::setw(5) << source_positions.source_position(); os << (source_positions.is_statement() ? " S> " : " E> "); source_positions.Advance(); } else { os << " "; } const uint8_t* current_address = base_address + iterator.current_offset(); os << reinterpret_cast<const void*>(current_address) << " @ " << std::setw(4) << iterator.current_offset() << " : "; interpreter::Bytecodes::Decode(os, current_address, parameter_count()); if (interpreter::Bytecodes::IsJump(iterator.current_bytecode())) { const void* jump_target = base_address + iterator.GetJumpTargetOffset(); os << " (" << jump_target << " @ " << iterator.GetJumpTargetOffset() << ")"; } os << std::endl; iterator.Advance(); } if (constant_pool()->length() > 0) { os << "Constant pool (size = " << constant_pool()->length() << ")\n"; constant_pool()->Print(); } #ifdef ENABLE_DISASSEMBLER if (handler_table()->length() > 0) { os << "Handler Table (size = " << handler_table()->Size() << ")\n"; HandlerTable::cast(handler_table())->HandlerTableRangePrint(os); } #endif } void BytecodeArray::CopyBytecodesTo(BytecodeArray* to) { BytecodeArray* from = this; DCHECK_EQ(from->length(), to->length()); CopyBytes(to->GetFirstBytecodeAddress(), from->GetFirstBytecodeAddress(), from->length()); } // static void JSArray::Initialize(Handle<JSArray> array, int capacity, int length) { DCHECK(capacity >= 0); array->GetIsolate()->factory()->NewJSArrayStorage( array, length, capacity, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE); } void JSArray::SetLength(Handle<JSArray> array, uint32_t new_length) { // We should never end in here with a pixel or external array. DCHECK(array->AllowsSetLength()); if (array->SetLengthWouldNormalize(new_length)) { JSObject::NormalizeElements(array); } array->GetElementsAccessor()->SetLength(array, new_length); } // static void Map::AddDependentCode(Handle<Map> map, DependentCode::DependencyGroup group, Handle<Code> code) { Handle<WeakCell> cell = Code::WeakCellFor(code); Handle<DependentCode> codes = DependentCode::InsertWeakCode( Handle<DependentCode>(map->dependent_code()), group, cell); if (*codes != map->dependent_code()) map->set_dependent_code(*codes); } Handle<DependentCode> DependentCode::InsertCompilationDependencies( Handle<DependentCode> entries, DependencyGroup group, Handle<Foreign> info) { return Insert(entries, group, info); } Handle<DependentCode> DependentCode::InsertWeakCode( Handle<DependentCode> entries, DependencyGroup group, Handle<WeakCell> code_cell) { return Insert(entries, group, code_cell); } Handle<DependentCode> DependentCode::Insert(Handle<DependentCode> entries, DependencyGroup group, Handle<Object> object) { if (entries->length() == 0 || entries->group() > group) { // There is no such group. return DependentCode::New(group, object, entries); } if (entries->group() < group) { // The group comes later in the list. Handle<DependentCode> old_next(entries->next_link()); Handle<DependentCode> new_next = Insert(old_next, group, object); if (!old_next.is_identical_to(new_next)) { entries->set_next_link(*new_next); } return entries; } DCHECK_EQ(group, entries->group()); int count = entries->count(); // Check for existing entry to avoid duplicates. for (int i = 0; i < count; i++) { if (entries->object_at(i) == *object) return entries; } if (entries->length() < kCodesStartIndex + count + 1) { entries = EnsureSpace(entries); // Count could have changed, reload it. count = entries->count(); } entries->set_object_at(count, *object); entries->set_count(count + 1); return entries; } Handle<DependentCode> DependentCode::New(DependencyGroup group, Handle<Object> object, Handle<DependentCode> next) { Isolate* isolate = next->GetIsolate(); Handle<DependentCode> result = Handle<DependentCode>::cast( isolate->factory()->NewFixedArray(kCodesStartIndex + 1, TENURED)); result->set_next_link(*next); result->set_flags(GroupField::encode(group) | CountField::encode(1)); result->set_object_at(0, *object); return result; } Handle<DependentCode> DependentCode::EnsureSpace( Handle<DependentCode> entries) { if (entries->Compact()) return entries; Isolate* isolate = entries->GetIsolate(); int capacity = kCodesStartIndex + DependentCode::Grow(entries->count()); int grow_by = capacity - entries->length(); return Handle<DependentCode>::cast( isolate->factory()->CopyFixedArrayAndGrow(entries, grow_by, TENURED)); } bool DependentCode::Compact() { int old_count = count(); int new_count = 0; for (int i = 0; i < old_count; i++) { Object* obj = object_at(i); if (!obj->IsWeakCell() || !WeakCell::cast(obj)->cleared()) { if (i != new_count) { copy(i, new_count); } new_count++; } } set_count(new_count); for (int i = new_count; i < old_count; i++) { clear_at(i); } return new_count < old_count; } void DependentCode::UpdateToFinishedCode(DependencyGroup group, Foreign* info, WeakCell* code_cell) { if (this->length() == 0 || this->group() > group) { // There is no such group. return; } if (this->group() < group) { // The group comes later in the list. next_link()->UpdateToFinishedCode(group, info, code_cell); return; } DCHECK_EQ(group, this->group()); DisallowHeapAllocation no_gc; int count = this->count(); for (int i = 0; i < count; i++) { if (object_at(i) == info) { set_object_at(i, code_cell); break; } } #ifdef DEBUG for (int i = 0; i < count; i++) { DCHECK(object_at(i) != info); } #endif } void DependentCode::RemoveCompilationDependencies( DependentCode::DependencyGroup group, Foreign* info) { if (this->length() == 0 || this->group() > group) { // There is no such group. return; } if (this->group() < group) { // The group comes later in the list. next_link()->RemoveCompilationDependencies(group, info); return; } DCHECK_EQ(group, this->group()); DisallowHeapAllocation no_allocation; int old_count = count(); // Find compilation info wrapper. int info_pos = -1; for (int i = 0; i < old_count; i++) { if (object_at(i) == info) { info_pos = i; break; } } if (info_pos == -1) return; // Not found. // Use the last code to fill the gap. if (info_pos < old_count - 1) { copy(old_count - 1, info_pos); } clear_at(old_count - 1); set_count(old_count - 1); #ifdef DEBUG for (int i = 0; i < old_count - 1; i++) { DCHECK(object_at(i) != info); } #endif } bool DependentCode::Contains(DependencyGroup group, WeakCell* code_cell) { if (this->length() == 0 || this->group() > group) { // There is no such group. return false; } if (this->group() < group) { // The group comes later in the list. return next_link()->Contains(group, code_cell); } DCHECK_EQ(group, this->group()); int count = this->count(); for (int i = 0; i < count; i++) { if (object_at(i) == code_cell) return true; } return false; } bool DependentCode::IsEmpty(DependencyGroup group) { if (this->length() == 0 || this->group() > group) { // There is no such group. return true; } if (this->group() < group) { // The group comes later in the list. return next_link()->IsEmpty(group); } DCHECK_EQ(group, this->group()); return count() == 0; } bool DependentCode::MarkCodeForDeoptimization( Isolate* isolate, DependentCode::DependencyGroup group) { if (this->length() == 0 || this->group() > group) { // There is no such group. return false; } if (this->group() < group) { // The group comes later in the list. return next_link()->MarkCodeForDeoptimization(isolate, group); } DCHECK_EQ(group, this->group()); DisallowHeapAllocation no_allocation_scope; // Mark all the code that needs to be deoptimized. bool marked = false; bool invalidate_embedded_objects = group == kWeakCodeGroup; int count = this->count(); for (int i = 0; i < count; i++) { Object* obj = object_at(i); if (obj->IsWeakCell()) { WeakCell* cell = WeakCell::cast(obj); if (cell->cleared()) continue; Code* code = Code::cast(cell->value()); if (!code->marked_for_deoptimization()) { SetMarkedForDeoptimization(code, group); if (invalidate_embedded_objects) { code->InvalidateEmbeddedObjects(); } marked = true; } } else { DCHECK(obj->IsForeign()); CompilationDependencies* info = reinterpret_cast<CompilationDependencies*>( Foreign::cast(obj)->foreign_address()); info->Abort(); } } for (int i = 0; i < count; i++) { clear_at(i); } set_count(0); return marked; } void DependentCode::DeoptimizeDependentCodeGroup( Isolate* isolate, DependentCode::DependencyGroup group) { DCHECK(AllowCodeDependencyChange::IsAllowed()); DisallowHeapAllocation no_allocation_scope; bool marked = MarkCodeForDeoptimization(isolate, group); if (marked) Deoptimizer::DeoptimizeMarkedCode(isolate); } void DependentCode::SetMarkedForDeoptimization(Code* code, DependencyGroup group) { code->set_marked_for_deoptimization(true); if (FLAG_trace_deopt && (code->deoptimization_data() != code->GetHeap()->empty_fixed_array())) { DeoptimizationInputData* deopt_data = DeoptimizationInputData::cast(code->deoptimization_data()); CodeTracer::Scope scope(code->GetHeap()->isolate()->GetCodeTracer()); PrintF(scope.file(), "[marking dependent code 0x%08" V8PRIxPTR " (opt #%d) for deoptimization, reason: %s]\n", reinterpret_cast<intptr_t>(code), deopt_data->OptimizationId()->value(), DependencyGroupName(group)); } } const char* DependentCode::DependencyGroupName(DependencyGroup group) { switch (group) { case kWeakCodeGroup: return "weak-code"; case kTransitionGroup: return "transition"; case kPrototypeCheckGroup: return "prototype-check"; case kPropertyCellChangedGroup: return "property-cell-changed"; case kFieldTypeGroup: return "field-type"; case kInitialMapChangedGroup: return "initial-map-changed"; case kAllocationSiteTenuringChangedGroup: return "allocation-site-tenuring-changed"; case kAllocationSiteTransitionChangedGroup: return "allocation-site-transition-changed"; } UNREACHABLE(); return "?"; } Handle<Map> Map::TransitionToPrototype(Handle<Map> map, Handle<Object> prototype, PrototypeOptimizationMode mode) { Handle<Map> new_map = TransitionArray::GetPrototypeTransition(map, prototype); if (new_map.is_null()) { new_map = Copy(map, "TransitionToPrototype"); TransitionArray::PutPrototypeTransition(map, prototype, new_map); Map::SetPrototype(new_map, prototype, mode); } return new_map; } Maybe<bool> JSReceiver::SetPrototype(Handle<JSReceiver> object, Handle<Object> value, bool from_javascript, ShouldThrow should_throw) { if (object->IsJSProxy()) { return JSProxy::SetPrototype(Handle<JSProxy>::cast(object), value, from_javascript, should_throw); } return JSObject::SetPrototype(Handle<JSObject>::cast(object), value, from_javascript, should_throw); } // ES6: 9.5.2 [[SetPrototypeOf]] (V) // static Maybe<bool> JSProxy::SetPrototype(Handle<JSProxy> proxy, Handle<Object> value, bool from_javascript, ShouldThrow should_throw) { Isolate* isolate = proxy->GetIsolate(); STACK_CHECK(Nothing<bool>()); Handle<Name> trap_name = isolate->factory()->setPrototypeOf_string(); // 1. Assert: Either Type(V) is Object or Type(V) is Null. DCHECK(value->IsJSReceiver() || value->IsNull()); // 2. Let handler be the value of the [[ProxyHandler]] internal slot of O. Handle<Object> handler(proxy->handler(), isolate); // 3. If handler is null, throw a TypeError exception. // 4. Assert: Type(handler) is Object. if (proxy->IsRevoked()) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxyRevoked, trap_name)); return Nothing<bool>(); } // 5. Let target be the value of the [[ProxyTarget]] internal slot. Handle<JSReceiver> target(proxy->target(), isolate); // 6. Let trap be ? GetMethod(handler, "getPrototypeOf"). Handle<Object> trap; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap, Object::GetMethod(Handle<JSReceiver>::cast(handler), trap_name), Nothing<bool>()); // 7. If trap is undefined, then return target.[[SetPrototypeOf]](). if (trap->IsUndefined()) { return JSReceiver::SetPrototype(target, value, from_javascript, should_throw); } // 8. Let booleanTrapResult be ToBoolean(? Call(trap, handler, «target, V»)). Handle<Object> argv[] = {target, value}; Handle<Object> trap_result; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, trap_result, Execution::Call(isolate, trap, handler, arraysize(argv), argv), Nothing<bool>()); bool bool_trap_result = trap_result->BooleanValue(); // 9. If booleanTrapResult is false, return false. if (!bool_trap_result) { RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name)); } // 10. Let extensibleTarget be ? IsExtensible(target). Maybe<bool> is_extensible = JSReceiver::IsExtensible(target); if (is_extensible.IsNothing()) return Nothing<bool>(); // 11. If extensibleTarget is true, return true. if (is_extensible.FromJust()) { if (bool_trap_result) return Just(true); RETURN_FAILURE( isolate, should_throw, NewTypeError(MessageTemplate::kProxyTrapReturnedFalsish, trap_name)); } // 12. Let targetProto be ? target.[[GetPrototypeOf]](). Handle<Object> target_proto; ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, target_proto, JSReceiver::GetPrototype(isolate, target), Nothing<bool>()); // 13. If SameValue(V, targetProto) is false, throw a TypeError exception. if (bool_trap_result && !value->SameValue(*target_proto)) { isolate->Throw(*isolate->factory()->NewTypeError( MessageTemplate::kProxySetPrototypeOfNonExtensible)); return Nothing<bool>(); } // 14. Return true. return Just(true); } Maybe<bool> JSObject::SetPrototype(Handle<JSObject> object, Handle<Object> value, bool from_javascript, ShouldThrow should_throw) { Isolate* isolate = object->GetIsolate(); // Setting the prototype of an Array instance invalidates the species // protector // because it could change the constructor property of the instance, which // could change the @@species constructor. if (object->IsJSArray() && isolate->IsArraySpeciesLookupChainIntact()) { isolate->CountUsage( v8::Isolate::UseCounterFeature::kArrayInstanceProtoModified); isolate->InvalidateArraySpeciesProtector(); } #ifdef DEBUG int size = object->Size(); #endif if (from_javascript) { if (object->IsAccessCheckNeeded() && !isolate->MayAccess(handle(isolate->context()), object)) { isolate->ReportFailedAccessCheck(object); RETURN_VALUE_IF_SCHEDULED_EXCEPTION(isolate, Nothing<bool>()); RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kNoAccess)); } } else { DCHECK(!object->IsAccessCheckNeeded()); } Heap* heap = isolate->heap(); // Silently ignore the change if value is not a JSObject or null. // SpiderMonkey behaves this way. if (!value->IsJSReceiver() && !value->IsNull()) return Just(true); bool dictionary_elements_in_chain = object->map()->DictionaryElementsInPrototypeChainOnly(); bool all_extensible = object->map()->is_extensible(); Handle<JSObject> real_receiver = object; if (from_javascript) { // Find the first object in the chain whose prototype object is not // hidden. PrototypeIterator iter(isolate, real_receiver, PrototypeIterator::START_AT_PROTOTYPE, PrototypeIterator::END_AT_NON_HIDDEN); while (!iter.IsAtEnd()) { // Casting to JSObject is fine because hidden prototypes are never // JSProxies. real_receiver = PrototypeIterator::GetCurrent<JSObject>(iter); iter.Advance(); all_extensible = all_extensible && real_receiver->map()->is_extensible(); } } Handle<Map> map(real_receiver->map()); // Nothing to do if prototype is already set. if (map->prototype() == *value) return Just(true); // From 8.6.2 Object Internal Methods // ... // In addition, if [[Extensible]] is false the value of the [[Class]] and // [[Prototype]] internal properties of the object may not be modified. // ... // Implementation specific extensions that modify [[Class]], [[Prototype]] // or [[Extensible]] must not violate the invariants defined in the preceding // paragraph. if (!all_extensible) { RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kNonExtensibleProto, object)); } // Before we can set the prototype we need to be sure prototype cycles are // prevented. It is sufficient to validate that the receiver is not in the // new prototype chain. if (value->IsJSReceiver()) { for (PrototypeIterator iter(isolate, JSReceiver::cast(*value), PrototypeIterator::START_AT_RECEIVER); !iter.IsAtEnd(); iter.Advance()) { if (iter.GetCurrent<JSReceiver>() == *object) { // Cycle detected. RETURN_FAILURE(isolate, should_throw, NewTypeError(MessageTemplate::kCyclicProto)); } } } // Set the new prototype of the object. isolate->UpdateArrayProtectorOnSetPrototype(real_receiver); PrototypeOptimizationMode mode = from_javascript ? REGULAR_PROTOTYPE : FAST_PROTOTYPE; Handle<Map> new_map = Map::TransitionToPrototype(map, value, mode); DCHECK(new_map->prototype() == *value); JSObject::MigrateToMap(real_receiver, new_map); if (from_javascript && !dictionary_elements_in_chain && new_map->DictionaryElementsInPrototypeChainOnly()) { // If the prototype chain didn't previously have element callbacks, then // KeyedStoreICs need to be cleared to ensure any that involve this // map go generic. TypeFeedbackVector::ClearAllKeyedStoreICs(isolate); } heap->ClearInstanceofCache(); DCHECK(size == object->Size()); return Just(true); } void JSObject::EnsureCanContainElements(Handle<JSObject> object, Arguments* args, uint32_t first_arg, uint32_t arg_count, EnsureElementsMode mode) { // Elements in |Arguments| are ordered backwards (because they're on the // stack), but the method that's called here iterates over them in forward // direction. return EnsureCanContainElements( object, args->arguments() - first_arg - (arg_count - 1), arg_count, mode); } ElementsAccessor* JSObject::GetElementsAccessor() { return ElementsAccessor::ForKind(GetElementsKind()); } void JSObject::ValidateElements(Handle<JSObject> object) { #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { ElementsAccessor* accessor = object->GetElementsAccessor(); accessor->Validate(object); } #endif } static bool ShouldConvertToSlowElements(JSObject* object, uint32_t capacity, uint32_t index, uint32_t* new_capacity) { STATIC_ASSERT(JSObject::kMaxUncheckedOldFastElementsLength <= JSObject::kMaxUncheckedFastElementsLength); if (index < capacity) { *new_capacity = capacity; return false; } if (index - capacity >= JSObject::kMaxGap) return true; *new_capacity = JSObject::NewElementsCapacity(index + 1); DCHECK_LT(index, *new_capacity); if (*new_capacity <= JSObject::kMaxUncheckedOldFastElementsLength || (*new_capacity <= JSObject::kMaxUncheckedFastElementsLength && object->GetHeap()->InNewSpace(object))) { return false; } // If the fast-case backing storage takes up roughly three times as // much space (in machine words) as a dictionary backing storage // would, the object should have slow elements. int used_elements = object->GetFastElementsUsage(); int dictionary_size = SeededNumberDictionary::ComputeCapacity(used_elements) * SeededNumberDictionary::kEntrySize; return 3 * static_cast<uint32_t>(dictionary_size) <= *new_capacity; } bool JSObject::WouldConvertToSlowElements(uint32_t index) { if (HasFastElements()) { Handle<FixedArrayBase> backing_store(FixedArrayBase::cast(elements())); uint32_t capacity = static_cast<uint32_t>(backing_store->length()); uint32_t new_capacity; return ShouldConvertToSlowElements(this, capacity, index, &new_capacity); } return false; } static ElementsKind BestFittingFastElementsKind(JSObject* object) { if (object->HasSloppyArgumentsElements()) { return FAST_SLOPPY_ARGUMENTS_ELEMENTS; } if (object->HasStringWrapperElements()) { return FAST_STRING_WRAPPER_ELEMENTS; } DCHECK(object->HasDictionaryElements()); SeededNumberDictionary* dictionary = object->element_dictionary(); ElementsKind kind = FAST_HOLEY_SMI_ELEMENTS; for (int i = 0; i < dictionary->Capacity(); i++) { Object* key = dictionary->KeyAt(i); if (key->IsNumber()) { Object* value = dictionary->ValueAt(i); if (!value->IsNumber()) return FAST_HOLEY_ELEMENTS; if (!value->IsSmi()) { if (!FLAG_unbox_double_arrays) return FAST_HOLEY_ELEMENTS; kind = FAST_HOLEY_DOUBLE_ELEMENTS; } } } return kind; } static bool ShouldConvertToFastElements(JSObject* object, SeededNumberDictionary* dictionary, uint32_t index, uint32_t* new_capacity) { // If properties with non-standard attributes or accessors were added, we // cannot go back to fast elements. if (dictionary->requires_slow_elements()) return false; // Adding a property with this index will require slow elements. if (index >= static_cast<uint32_t>(Smi::kMaxValue)) return false; if (object->IsJSArray()) { Object* length = JSArray::cast(object)->length(); if (!length->IsSmi()) return false; *new_capacity = static_cast<uint32_t>(Smi::cast(length)->value()); } else { *new_capacity = dictionary->max_number_key() + 1; } *new_capacity = Max(index + 1, *new_capacity); uint32_t dictionary_size = static_cast<uint32_t>(dictionary->Capacity()) * SeededNumberDictionary::kEntrySize; // Turn fast if the dictionary only saves 50% space. return 2 * dictionary_size >= *new_capacity; } // static MaybeHandle<Object> JSObject::AddDataElement(Handle<JSObject> object, uint32_t index, Handle<Object> value, PropertyAttributes attributes) { MAYBE_RETURN_NULL( AddDataElement(object, index, value, attributes, THROW_ON_ERROR)); return value; } // static Maybe<bool> JSObject::AddDataElement(Handle<JSObject> object, uint32_t index, Handle<Object> value, PropertyAttributes attributes, ShouldThrow should_throw) { DCHECK(object->map()->is_extensible()); Isolate* isolate = object->GetIsolate(); uint32_t old_length = 0; uint32_t new_capacity = 0; if (object->IsJSArray()) { CHECK(JSArray::cast(*object)->length()->ToArrayLength(&old_length)); } ElementsKind kind = object->GetElementsKind(); FixedArrayBase* elements = object->elements(); ElementsKind dictionary_kind = DICTIONARY_ELEMENTS; if (IsSloppyArgumentsElements(kind)) { elements = FixedArrayBase::cast(FixedArray::cast(elements)->get(1)); dictionary_kind = SLOW_SLOPPY_ARGUMENTS_ELEMENTS; } else if (IsStringWrapperElementsKind(kind)) { dictionary_kind = SLOW_STRING_WRAPPER_ELEMENTS; } if (attributes != NONE) { kind = dictionary_kind; } else if (elements->IsSeededNumberDictionary()) { kind = ShouldConvertToFastElements(*object, SeededNumberDictionary::cast(elements), index, &new_capacity) ? BestFittingFastElementsKind(*object) : dictionary_kind; // Overwrite in case of arguments. } else if (ShouldConvertToSlowElements( *object, static_cast<uint32_t>(elements->length()), index, &new_capacity)) { kind = dictionary_kind; } ElementsKind to = value->OptimalElementsKind(); if (IsHoleyElementsKind(kind) || !object->IsJSArray() || index > old_length) { to = GetHoleyElementsKind(to); kind = GetHoleyElementsKind(kind); } to = GetMoreGeneralElementsKind(kind, to); ElementsAccessor* accessor = ElementsAccessor::ForKind(to); accessor->Add(object, index, value, attributes, new_capacity); uint32_t new_length = old_length; Handle<Object> new_length_handle; if (object->IsJSArray() && index >= old_length) { new_length = index + 1; new_length_handle = isolate->factory()->NewNumberFromUint(new_length); JSArray::cast(*object)->set_length(*new_length_handle); } return Just(true); } bool JSArray::SetLengthWouldNormalize(uint32_t new_length) { if (!HasFastElements()) return false; uint32_t capacity = static_cast<uint32_t>(elements()->length()); uint32_t new_capacity; return JSArray::SetLengthWouldNormalize(GetHeap(), new_length) && ShouldConvertToSlowElements(this, capacity, new_length - 1, &new_capacity); } const double AllocationSite::kPretenureRatio = 0.85; void AllocationSite::ResetPretenureDecision() { set_pretenure_decision(kUndecided); set_memento_found_count(0); set_memento_create_count(0); } PretenureFlag AllocationSite::GetPretenureMode() { PretenureDecision mode = pretenure_decision(); // Zombie objects "decide" to be untenured. return mode == kTenure ? TENURED : NOT_TENURED; } bool AllocationSite::IsNestedSite() { DCHECK(FLAG_trace_track_allocation_sites); Object* current = GetHeap()->allocation_sites_list(); while (current->IsAllocationSite()) { AllocationSite* current_site = AllocationSite::cast(current); if (current_site->nested_site() == this) { return true; } current = current_site->weak_next(); } return false; } void AllocationSite::DigestTransitionFeedback(Handle<AllocationSite> site, ElementsKind to_kind) { Isolate* isolate = site->GetIsolate(); if (site->SitePointsToLiteral() && site->transition_info()->IsJSArray()) { Handle<JSArray> transition_info = handle(JSArray::cast(site->transition_info())); ElementsKind kind = transition_info->GetElementsKind(); // if kind is holey ensure that to_kind is as well. if (IsHoleyElementsKind(kind)) { to_kind = GetHoleyElementsKind(to_kind); } if (IsMoreGeneralElementsKindTransition(kind, to_kind)) { // If the array is huge, it's not likely to be defined in a local // function, so we shouldn't make new instances of it very often. uint32_t length = 0; CHECK(transition_info->length()->ToArrayLength(&length)); if (length <= kMaximumArrayBytesToPretransition) { if (FLAG_trace_track_allocation_sites) { bool is_nested = site->IsNestedSite(); PrintF( "AllocationSite: JSArray %p boilerplate %s updated %s->%s\n", reinterpret_cast<void*>(*site), is_nested ? "(nested)" : "", ElementsKindToString(kind), ElementsKindToString(to_kind)); } JSObject::TransitionElementsKind(transition_info, to_kind); site->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kAllocationSiteTransitionChangedGroup); } } } else { ElementsKind kind = site->GetElementsKind(); // if kind is holey ensure that to_kind is as well. if (IsHoleyElementsKind(kind)) { to_kind = GetHoleyElementsKind(to_kind); } if (IsMoreGeneralElementsKindTransition(kind, to_kind)) { if (FLAG_trace_track_allocation_sites) { PrintF("AllocationSite: JSArray %p site updated %s->%s\n", reinterpret_cast<void*>(*site), ElementsKindToString(kind), ElementsKindToString(to_kind)); } site->SetElementsKind(to_kind); site->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kAllocationSiteTransitionChangedGroup); } } } const char* AllocationSite::PretenureDecisionName(PretenureDecision decision) { switch (decision) { case kUndecided: return "undecided"; case kDontTenure: return "don't tenure"; case kMaybeTenure: return "maybe tenure"; case kTenure: return "tenure"; case kZombie: return "zombie"; default: UNREACHABLE(); } return NULL; } void JSObject::UpdateAllocationSite(Handle<JSObject> object, ElementsKind to_kind) { if (!object->IsJSArray()) return; Heap* heap = object->GetHeap(); if (!heap->InNewSpace(*object)) return; Handle<AllocationSite> site; { DisallowHeapAllocation no_allocation; AllocationMemento* memento = heap->FindAllocationMemento<Heap::kForRuntime>(*object); if (memento == NULL) return; // Walk through to the Allocation Site site = handle(memento->GetAllocationSite()); } AllocationSite::DigestTransitionFeedback(site, to_kind); } void JSObject::TransitionElementsKind(Handle<JSObject> object, ElementsKind to_kind) { ElementsKind from_kind = object->GetElementsKind(); if (IsFastHoleyElementsKind(from_kind)) { to_kind = GetHoleyElementsKind(to_kind); } if (from_kind == to_kind) return; // This method should never be called for any other case. DCHECK(IsFastElementsKind(from_kind)); DCHECK(IsFastElementsKind(to_kind)); DCHECK_NE(TERMINAL_FAST_ELEMENTS_KIND, from_kind); UpdateAllocationSite(object, to_kind); if (object->elements() == object->GetHeap()->empty_fixed_array() || IsFastDoubleElementsKind(from_kind) == IsFastDoubleElementsKind(to_kind)) { // No change is needed to the elements() buffer, the transition // only requires a map change. Handle<Map> new_map = GetElementsTransitionMap(object, to_kind); MigrateToMap(object, new_map); if (FLAG_trace_elements_transitions) { Handle<FixedArrayBase> elms(object->elements()); PrintElementsTransition(stdout, object, from_kind, elms, to_kind, elms); } } else { DCHECK((IsFastSmiElementsKind(from_kind) && IsFastDoubleElementsKind(to_kind)) || (IsFastDoubleElementsKind(from_kind) && IsFastObjectElementsKind(to_kind))); uint32_t c = static_cast<uint32_t>(object->elements()->length()); ElementsAccessor::ForKind(to_kind)->GrowCapacityAndConvert(object, c); } } // static bool Map::IsValidElementsTransition(ElementsKind from_kind, ElementsKind to_kind) { // Transitions can't go backwards. if (!IsMoreGeneralElementsKindTransition(from_kind, to_kind)) { return false; } // Transitions from HOLEY -> PACKED are not allowed. return !IsFastHoleyElementsKind(from_kind) || IsFastHoleyElementsKind(to_kind); } bool JSArray::HasReadOnlyLength(Handle<JSArray> array) { Map* map = array->map(); // Fast path: "length" is the first fast property of arrays. Since it's not // configurable, it's guaranteed to be the first in the descriptor array. if (!map->is_dictionary_map()) { DCHECK(map->instance_descriptors()->GetKey(0) == array->GetHeap()->length_string()); return map->instance_descriptors()->GetDetails(0).IsReadOnly(); } Isolate* isolate = array->GetIsolate(); LookupIterator it(array, isolate->factory()->length_string(), array, LookupIterator::OWN_SKIP_INTERCEPTOR); CHECK_EQ(LookupIterator::ACCESSOR, it.state()); return it.IsReadOnly(); } bool JSArray::WouldChangeReadOnlyLength(Handle<JSArray> array, uint32_t index) { uint32_t length = 0; CHECK(array->length()->ToArrayLength(&length)); if (length <= index) return HasReadOnlyLength(array); return false; } template <typename BackingStore> static int FastHoleyElementsUsage(JSObject* object, BackingStore* store) { int limit = object->IsJSArray() ? Smi::cast(JSArray::cast(object)->length())->value() : store->length(); int used = 0; for (int i = 0; i < limit; ++i) { if (!store->is_the_hole(i)) ++used; } return used; } int JSObject::GetFastElementsUsage() { FixedArrayBase* store = elements(); switch (GetElementsKind()) { case FAST_SMI_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_ELEMENTS: return IsJSArray() ? Smi::cast(JSArray::cast(this)->length())->value() : store->length(); case FAST_SLOPPY_ARGUMENTS_ELEMENTS: store = FixedArray::cast(FixedArray::cast(store)->get(1)); // Fall through. case FAST_HOLEY_SMI_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: return FastHoleyElementsUsage(this, FixedArray::cast(store)); case FAST_HOLEY_DOUBLE_ELEMENTS: if (elements()->length() == 0) return 0; return FastHoleyElementsUsage(this, FixedDoubleArray::cast(store)); case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: case DICTIONARY_ELEMENTS: case NO_ELEMENTS: #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: \ TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE UNREACHABLE(); } return 0; } // Certain compilers request function template instantiation when they // see the definition of the other template functions in the // class. This requires us to have the template functions put // together, so even though this function belongs in objects-debug.cc, // we keep it here instead to satisfy certain compilers. #ifdef OBJECT_PRINT template <typename Derived, typename Shape, typename Key> void Dictionary<Derived, Shape, Key>::Print(std::ostream& os) { // NOLINT int capacity = this->Capacity(); for (int i = 0; i < capacity; i++) { Object* k = this->KeyAt(i); if (this->IsKey(k)) { os << "\n "; if (k->IsString()) { String::cast(k)->StringPrint(os); } else { os << Brief(k); } os << ": " << Brief(this->ValueAt(i)) << " " << this->DetailsAt(i); } } } #endif template<typename Derived, typename Shape, typename Key> void Dictionary<Derived, Shape, Key>::CopyValuesTo(FixedArray* elements) { int pos = 0; int capacity = this->Capacity(); DisallowHeapAllocation no_gc; WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc); for (int i = 0; i < capacity; i++) { Object* k = this->KeyAt(i); if (this->IsKey(k)) { elements->set(pos++, this->ValueAt(i), mode); } } DCHECK(pos == elements->length()); } MaybeHandle<Object> JSObject::GetPropertyWithInterceptor(LookupIterator* it, bool* done) { *done = false; Isolate* isolate = it->isolate(); // Make sure that the top context does not change when doing callbacks or // interceptor calls. AssertNoContextChange ncc(isolate); DCHECK_EQ(LookupIterator::INTERCEPTOR, it->state()); Handle<InterceptorInfo> interceptor = it->GetInterceptor(); if (interceptor->getter()->IsUndefined()) { return isolate->factory()->undefined_value(); } Handle<JSObject> holder = it->GetHolder<JSObject>(); Handle<Object> result; PropertyCallbackArguments args(isolate, interceptor->data(), *it->GetReceiver(), *holder, Object::DONT_THROW); if (it->IsElement()) { uint32_t index = it->index(); v8::IndexedPropertyGetterCallback getter = v8::ToCData<v8::IndexedPropertyGetterCallback>(interceptor->getter()); result = args.Call(getter, index); } else { Handle<Name> name = it->name(); DCHECK(!name->IsPrivate()); if (name->IsSymbol() && !interceptor->can_intercept_symbols()) { return isolate->factory()->undefined_value(); } v8::GenericNamedPropertyGetterCallback getter = v8::ToCData<v8::GenericNamedPropertyGetterCallback>( interceptor->getter()); result = args.Call(getter, name); } RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object); if (result.is_null()) return isolate->factory()->undefined_value(); *done = true; // Rebox handle before return return handle(*result, isolate); } Maybe<bool> JSObject::HasRealNamedProperty(Handle<JSObject> object, Handle<Name> name) { LookupIterator it = LookupIterator::PropertyOrElement( name->GetIsolate(), object, name, LookupIterator::OWN_SKIP_INTERCEPTOR); return HasProperty(&it); } Maybe<bool> JSObject::HasRealElementProperty(Handle<JSObject> object, uint32_t index) { Isolate* isolate = object->GetIsolate(); LookupIterator it(isolate, object, index, object, LookupIterator::OWN_SKIP_INTERCEPTOR); return HasProperty(&it); } Maybe<bool> JSObject::HasRealNamedCallbackProperty(Handle<JSObject> object, Handle<Name> name) { LookupIterator it = LookupIterator::PropertyOrElement( name->GetIsolate(), object, name, LookupIterator::OWN_SKIP_INTERCEPTOR); Maybe<PropertyAttributes> maybe_result = GetPropertyAttributes(&it); return maybe_result.IsJust() ? Just(it.state() == LookupIterator::ACCESSOR) : Nothing<bool>(); } void FixedArray::SwapPairs(FixedArray* numbers, int i, int j) { Object* temp = get(i); set(i, get(j)); set(j, temp); if (this != numbers) { temp = numbers->get(i); numbers->set(i, Smi::cast(numbers->get(j))); numbers->set(j, Smi::cast(temp)); } } static void InsertionSortPairs(FixedArray* content, FixedArray* numbers, int len) { for (int i = 1; i < len; i++) { int j = i; while (j > 0 && (NumberToUint32(numbers->get(j - 1)) > NumberToUint32(numbers->get(j)))) { content->SwapPairs(numbers, j - 1, j); j--; } } } void HeapSortPairs(FixedArray* content, FixedArray* numbers, int len) { // In-place heap sort. DCHECK(content->length() == numbers->length()); // Bottom-up max-heap construction. for (int i = 1; i < len; ++i) { int child_index = i; while (child_index > 0) { int parent_index = ((child_index + 1) >> 1) - 1; uint32_t parent_value = NumberToUint32(numbers->get(parent_index)); uint32_t child_value = NumberToUint32(numbers->get(child_index)); if (parent_value < child_value) { content->SwapPairs(numbers, parent_index, child_index); } else { break; } child_index = parent_index; } } // Extract elements and create sorted array. for (int i = len - 1; i > 0; --i) { // Put max element at the back of the array. content->SwapPairs(numbers, 0, i); // Sift down the new top element. int parent_index = 0; while (true) { int child_index = ((parent_index + 1) << 1) - 1; if (child_index >= i) break; uint32_t child1_value = NumberToUint32(numbers->get(child_index)); uint32_t child2_value = NumberToUint32(numbers->get(child_index + 1)); uint32_t parent_value = NumberToUint32(numbers->get(parent_index)); if (child_index + 1 >= i || child1_value > child2_value) { if (parent_value > child1_value) break; content->SwapPairs(numbers, parent_index, child_index); parent_index = child_index; } else { if (parent_value > child2_value) break; content->SwapPairs(numbers, parent_index, child_index + 1); parent_index = child_index + 1; } } } } // Sort this array and the numbers as pairs wrt. the (distinct) numbers. void FixedArray::SortPairs(FixedArray* numbers, uint32_t len) { DCHECK(this->length() == numbers->length()); // For small arrays, simply use insertion sort. if (len <= 10) { InsertionSortPairs(this, numbers, len); return; } // Check the range of indices. uint32_t min_index = NumberToUint32(numbers->get(0)); uint32_t max_index = min_index; uint32_t i; for (i = 1; i < len; i++) { if (NumberToUint32(numbers->get(i)) < min_index) { min_index = NumberToUint32(numbers->get(i)); } else if (NumberToUint32(numbers->get(i)) > max_index) { max_index = NumberToUint32(numbers->get(i)); } } if (max_index - min_index + 1 == len) { // Indices form a contiguous range, unless there are duplicates. // Do an in-place linear time sort assuming distinct numbers, but // avoid hanging in case they are not. for (i = 0; i < len; i++) { uint32_t p; uint32_t j = 0; // While the current element at i is not at its correct position p, // swap the elements at these two positions. while ((p = NumberToUint32(numbers->get(i)) - min_index) != i && j++ < len) { SwapPairs(numbers, i, p); } } } else { HeapSortPairs(this, numbers, len); return; } } void JSObject::CollectOwnPropertyNames(KeyAccumulator* keys, PropertyFilter filter) { if (HasFastProperties()) { int real_size = map()->NumberOfOwnDescriptors(); Handle<DescriptorArray> descs(map()->instance_descriptors()); for (int i = 0; i < real_size; i++) { PropertyDetails details = descs->GetDetails(i); if ((details.attributes() & filter) != 0) continue; if (filter & ONLY_ALL_CAN_READ) { if (details.kind() != kAccessor) continue; Object* accessors = descs->GetValue(i); if (!accessors->IsAccessorInfo()) continue; if (!AccessorInfo::cast(accessors)->all_can_read()) continue; } Name* key = descs->GetKey(i); if (key->FilterKey(filter)) continue; keys->AddKey(key, DO_NOT_CONVERT); } } else if (IsJSGlobalObject()) { GlobalDictionary::CollectKeysTo(handle(global_dictionary()), keys, filter); } else { NameDictionary::CollectKeysTo(handle(property_dictionary()), keys, filter); } } bool JSObject::WasConstructedFromApiFunction() { auto instance_type = map()->instance_type(); bool is_api_object = instance_type == JS_API_OBJECT_TYPE || instance_type == JS_SPECIAL_API_OBJECT_TYPE; #ifdef ENABLE_SLOW_DCHECKS if (FLAG_enable_slow_asserts) { Object* maybe_constructor = map()->GetConstructor(); if (!maybe_constructor->IsJSFunction()) return false; JSFunction* constructor = JSFunction::cast(maybe_constructor); if (constructor->shared()->IsApiFunction()) { DCHECK(is_api_object); } else { DCHECK(!is_api_object); } } #endif return is_api_object; } void JSObject::CollectOwnElementKeys(Handle<JSObject> object, KeyAccumulator* keys, PropertyFilter filter) { if (filter & SKIP_STRINGS) return; ElementsAccessor* accessor = object->GetElementsAccessor(); accessor->CollectElementIndices(object, keys, kMaxUInt32, filter, 0); } MaybeHandle<String> Object::ObjectProtoToString(Isolate* isolate, Handle<Object> object) { if (object->IsUndefined()) return isolate->factory()->undefined_to_string(); if (object->IsNull()) return isolate->factory()->null_to_string(); Handle<JSReceiver> receiver = Object::ToObject(isolate, object).ToHandleChecked(); Handle<String> tag; Handle<Object> to_string_tag; ASSIGN_RETURN_ON_EXCEPTION( isolate, to_string_tag, JSReceiver::GetProperty(receiver, isolate->factory()->to_string_tag_symbol()), String); if (to_string_tag->IsString()) { tag = Handle<String>::cast(to_string_tag); } if (tag.is_null()) { ASSIGN_RETURN_ON_EXCEPTION(isolate, tag, JSReceiver::BuiltinStringTag(receiver), String); } IncrementalStringBuilder builder(isolate); builder.AppendCString("[object "); builder.AppendString(tag); builder.AppendCharacter(']'); return builder.Finish(); } const char* Symbol::PrivateSymbolToName() const { Heap* heap = GetIsolate()->heap(); #define SYMBOL_CHECK_AND_PRINT(name) \ if (this == heap->name()) return #name; PRIVATE_SYMBOL_LIST(SYMBOL_CHECK_AND_PRINT) #undef SYMBOL_CHECK_AND_PRINT return "UNKNOWN"; } void Symbol::SymbolShortPrint(std::ostream& os) { os << "<Symbol: " << Hash(); if (!name()->IsUndefined()) { os << " "; HeapStringAllocator allocator; StringStream accumulator(&allocator); String::cast(name())->StringShortPrint(&accumulator); os << accumulator.ToCString().get(); } else { os << " (" << PrivateSymbolToName() << ")"; } os << ">"; } // StringSharedKeys are used as keys in the eval cache. class StringSharedKey : public HashTableKey { public: StringSharedKey(Handle<String> source, Handle<SharedFunctionInfo> shared, LanguageMode language_mode, int scope_position) : source_(source), shared_(shared), language_mode_(language_mode), scope_position_(scope_position) {} bool IsMatch(Object* other) override { DisallowHeapAllocation no_allocation; if (!other->IsFixedArray()) { if (!other->IsNumber()) return false; uint32_t other_hash = static_cast<uint32_t>(other->Number()); return Hash() == other_hash; } FixedArray* other_array = FixedArray::cast(other); SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0)); if (shared != *shared_) return false; int language_unchecked = Smi::cast(other_array->get(2))->value(); DCHECK(is_valid_language_mode(language_unchecked)); LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked); if (language_mode != language_mode_) return false; int scope_position = Smi::cast(other_array->get(3))->value(); if (scope_position != scope_position_) return false; String* source = String::cast(other_array->get(1)); return source->Equals(*source_); } static uint32_t StringSharedHashHelper(String* source, SharedFunctionInfo* shared, LanguageMode language_mode, int scope_position) { uint32_t hash = source->Hash(); if (shared->HasSourceCode()) { // Instead of using the SharedFunctionInfo pointer in the hash // code computation, we use a combination of the hash of the // script source code and the start position of the calling scope. // We do this to ensure that the cache entries can survive garbage // collection. Script* script(Script::cast(shared->script())); hash ^= String::cast(script->source())->Hash(); STATIC_ASSERT(LANGUAGE_END == 3); if (is_strict(language_mode)) hash ^= 0x8000; hash += scope_position; } return hash; } uint32_t Hash() override { return StringSharedHashHelper(*source_, *shared_, language_mode_, scope_position_); } uint32_t HashForObject(Object* obj) override { DisallowHeapAllocation no_allocation; if (obj->IsNumber()) { return static_cast<uint32_t>(obj->Number()); } FixedArray* other_array = FixedArray::cast(obj); SharedFunctionInfo* shared = SharedFunctionInfo::cast(other_array->get(0)); String* source = String::cast(other_array->get(1)); int language_unchecked = Smi::cast(other_array->get(2))->value(); DCHECK(is_valid_language_mode(language_unchecked)); LanguageMode language_mode = static_cast<LanguageMode>(language_unchecked); int scope_position = Smi::cast(other_array->get(3))->value(); return StringSharedHashHelper(source, shared, language_mode, scope_position); } Handle<Object> AsHandle(Isolate* isolate) override { Handle<FixedArray> array = isolate->factory()->NewFixedArray(4); array->set(0, *shared_); array->set(1, *source_); array->set(2, Smi::FromInt(language_mode_)); array->set(3, Smi::FromInt(scope_position_)); return array; } private: Handle<String> source_; Handle<SharedFunctionInfo> shared_; LanguageMode language_mode_; int scope_position_; }; namespace { JSRegExp::Flags RegExpFlagsFromString(Handle<String> flags, bool* success) { JSRegExp::Flags value = JSRegExp::kNone; int length = flags->length(); // A longer flags string cannot be valid. if (length > 5) return JSRegExp::Flags(0); for (int i = 0; i < length; i++) { JSRegExp::Flag flag = JSRegExp::kNone; switch (flags->Get(i)) { case 'g': flag = JSRegExp::kGlobal; break; case 'i': flag = JSRegExp::kIgnoreCase; break; case 'm': flag = JSRegExp::kMultiline; break; case 'u': if (!FLAG_harmony_unicode_regexps) return JSRegExp::Flags(0); flag = JSRegExp::kUnicode; break; case 'y': flag = JSRegExp::kSticky; break; default: return JSRegExp::Flags(0); } // Duplicate flag. if (value & flag) return JSRegExp::Flags(0); value |= flag; } *success = true; return value; } } // namespace // static MaybeHandle<JSRegExp> JSRegExp::New(Handle<String> pattern, Flags flags) { Isolate* isolate = pattern->GetIsolate(); Handle<JSFunction> constructor = isolate->regexp_function(); Handle<JSRegExp> regexp = Handle<JSRegExp>::cast(isolate->factory()->NewJSObject(constructor)); return JSRegExp::Initialize(regexp, pattern, flags); } // static MaybeHandle<JSRegExp> JSRegExp::New(Handle<String> pattern, Handle<String> flags_string) { Isolate* isolate = pattern->GetIsolate(); bool success = false; Flags flags = RegExpFlagsFromString(flags_string, &success); if (!success) { THROW_NEW_ERROR( isolate, NewSyntaxError(MessageTemplate::kInvalidRegExpFlags, flags_string), JSRegExp); } return New(pattern, flags); } // static Handle<JSRegExp> JSRegExp::Copy(Handle<JSRegExp> regexp) { Isolate* const isolate = regexp->GetIsolate(); return Handle<JSRegExp>::cast(isolate->factory()->CopyJSObject(regexp)); } template <typename Char> inline int CountRequiredEscapes(Handle<String> source) { DisallowHeapAllocation no_gc; int escapes = 0; Vector<const Char> src = source->GetCharVector<Char>(); for (int i = 0; i < src.length(); i++) { if (src[i] == '/' && (i == 0 || src[i - 1] != '\\')) escapes++; } return escapes; } template <typename Char, typename StringType> inline Handle<StringType> WriteEscapedRegExpSource(Handle<String> source, Handle<StringType> result) { DisallowHeapAllocation no_gc; Vector<const Char> src = source->GetCharVector<Char>(); Vector<Char> dst(result->GetChars(), result->length()); int s = 0; int d = 0; while (s < src.length()) { if (src[s] == '/' && (s == 0 || src[s - 1] != '\\')) dst[d++] = '\\'; dst[d++] = src[s++]; } DCHECK_EQ(result->length(), d); return result; } MaybeHandle<String> EscapeRegExpSource(Isolate* isolate, Handle<String> source) { String::Flatten(source); if (source->length() == 0) return isolate->factory()->query_colon_string(); bool one_byte = source->IsOneByteRepresentationUnderneath(); int escapes = one_byte ? CountRequiredEscapes<uint8_t>(source) : CountRequiredEscapes<uc16>(source); if (escapes == 0) return source; int length = source->length() + escapes; if (one_byte) { Handle<SeqOneByteString> result; ASSIGN_RETURN_ON_EXCEPTION(isolate, result, isolate->factory()->NewRawOneByteString(length), String); return WriteEscapedRegExpSource<uint8_t>(source, result); } else { Handle<SeqTwoByteString> result; ASSIGN_RETURN_ON_EXCEPTION(isolate, result, isolate->factory()->NewRawTwoByteString(length), String); return WriteEscapedRegExpSource<uc16>(source, result); } } // static MaybeHandle<JSRegExp> JSRegExp::Initialize(Handle<JSRegExp> regexp, Handle<String> source, Handle<String> flags_string) { Isolate* isolate = source->GetIsolate(); bool success = false; Flags flags = RegExpFlagsFromString(flags_string, &success); if (!success) { THROW_NEW_ERROR( isolate, NewSyntaxError(MessageTemplate::kInvalidRegExpFlags, flags_string), JSRegExp); } return Initialize(regexp, source, flags); } // static MaybeHandle<JSRegExp> JSRegExp::Initialize(Handle<JSRegExp> regexp, Handle<String> source, Flags flags) { Isolate* isolate = regexp->GetIsolate(); Factory* factory = isolate->factory(); // If source is the empty string we set it to "(?:)" instead as // suggested by ECMA-262, 5th, section 15.10.4.1. if (source->length() == 0) source = factory->query_colon_string(); Handle<String> escaped_source; ASSIGN_RETURN_ON_EXCEPTION(isolate, escaped_source, EscapeRegExpSource(isolate, source), JSRegExp); regexp->set_source(*escaped_source); regexp->set_flags(Smi::FromInt(flags)); Map* map = regexp->map(); Object* constructor = map->GetConstructor(); if (constructor->IsJSFunction() && JSFunction::cast(constructor)->initial_map() == map) { // If we still have the original map, set in-object properties directly. regexp->InObjectPropertyAtPut(JSRegExp::kLastIndexFieldIndex, Smi::FromInt(0), SKIP_WRITE_BARRIER); } else { // Map has changed, so use generic, but slower, method. PropertyAttributes writable = static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE); JSObject::SetOwnPropertyIgnoreAttributes( regexp, factory->last_index_string(), Handle<Smi>(Smi::FromInt(0), isolate), writable) .Check(); } RETURN_ON_EXCEPTION(isolate, RegExpImpl::Compile(regexp, source, flags), JSRegExp); return regexp; } // RegExpKey carries the source and flags of a regular expression as key. class RegExpKey : public HashTableKey { public: RegExpKey(Handle<String> string, JSRegExp::Flags flags) : string_(string), flags_(Smi::FromInt(flags)) {} // Rather than storing the key in the hash table, a pointer to the // stored value is stored where the key should be. IsMatch then // compares the search key to the found object, rather than comparing // a key to a key. bool IsMatch(Object* obj) override { FixedArray* val = FixedArray::cast(obj); return string_->Equals(String::cast(val->get(JSRegExp::kSourceIndex))) && (flags_ == val->get(JSRegExp::kFlagsIndex)); } uint32_t Hash() override { return RegExpHash(*string_, flags_); } Handle<Object> AsHandle(Isolate* isolate) override { // Plain hash maps, which is where regexp keys are used, don't // use this function. UNREACHABLE(); return MaybeHandle<Object>().ToHandleChecked(); } uint32_t HashForObject(Object* obj) override { FixedArray* val = FixedArray::cast(obj); return RegExpHash(String::cast(val->get(JSRegExp::kSourceIndex)), Smi::cast(val->get(JSRegExp::kFlagsIndex))); } static uint32_t RegExpHash(String* string, Smi* flags) { return string->Hash() + flags->value(); } Handle<String> string_; Smi* flags_; }; Handle<Object> OneByteStringKey::AsHandle(Isolate* isolate) { if (hash_field_ == 0) Hash(); return isolate->factory()->NewOneByteInternalizedString(string_, hash_field_); } Handle<Object> TwoByteStringKey::AsHandle(Isolate* isolate) { if (hash_field_ == 0) Hash(); return isolate->factory()->NewTwoByteInternalizedString(string_, hash_field_); } Handle<Object> SeqOneByteSubStringKey::AsHandle(Isolate* isolate) { if (hash_field_ == 0) Hash(); return isolate->factory()->NewOneByteInternalizedSubString( string_, from_, length_, hash_field_); } bool SeqOneByteSubStringKey::IsMatch(Object* string) { Vector<const uint8_t> chars(string_->GetChars() + from_, length_); return String::cast(string)->IsOneByteEqualTo(chars); } // InternalizedStringKey carries a string/internalized-string object as key. class InternalizedStringKey : public HashTableKey { public: explicit InternalizedStringKey(Handle<String> string) : string_(String::Flatten(string)) {} bool IsMatch(Object* string) override { return String::cast(string)->Equals(*string_); } uint32_t Hash() override { return string_->Hash(); } uint32_t HashForObject(Object* other) override { return String::cast(other)->Hash(); } Handle<Object> AsHandle(Isolate* isolate) override { // Internalize the string if possible. MaybeHandle<Map> maybe_map = isolate->factory()->InternalizedStringMapForString(string_); Handle<Map> map; if (maybe_map.ToHandle(&map)) { string_->set_map_no_write_barrier(*map); DCHECK(string_->IsInternalizedString()); return string_; } // Otherwise allocate a new internalized string. return isolate->factory()->NewInternalizedStringImpl( string_, string_->length(), string_->hash_field()); } static uint32_t StringHash(Object* obj) { return String::cast(obj)->Hash(); } Handle<String> string_; }; template<typename Derived, typename Shape, typename Key> void HashTable<Derived, Shape, Key>::IteratePrefix(ObjectVisitor* v) { BodyDescriptorBase::IteratePointers(this, 0, kElementsStartOffset, v); } template<typename Derived, typename Shape, typename Key> void HashTable<Derived, Shape, Key>::IterateElements(ObjectVisitor* v) { BodyDescriptorBase::IteratePointers(this, kElementsStartOffset, kHeaderSize + length() * kPointerSize, v); } template<typename Derived, typename Shape, typename Key> Handle<Derived> HashTable<Derived, Shape, Key>::New( Isolate* isolate, int at_least_space_for, MinimumCapacity capacity_option, PretenureFlag pretenure) { DCHECK(0 <= at_least_space_for); DCHECK(!capacity_option || base::bits::IsPowerOfTwo32(at_least_space_for)); int capacity = (capacity_option == USE_CUSTOM_MINIMUM_CAPACITY) ? at_least_space_for : ComputeCapacity(at_least_space_for); if (capacity > HashTable::kMaxCapacity) { v8::internal::Heap::FatalProcessOutOfMemory("invalid table size", true); } Factory* factory = isolate->factory(); int length = EntryToIndex(capacity); Handle<FixedArray> array = factory->NewFixedArray(length, pretenure); array->set_map_no_write_barrier(*factory->hash_table_map()); Handle<Derived> table = Handle<Derived>::cast(array); table->SetNumberOfElements(0); table->SetNumberOfDeletedElements(0); table->SetCapacity(capacity); return table; } // Find entry for key otherwise return kNotFound. template <typename Derived, typename Shape> int NameDictionaryBase<Derived, Shape>::FindEntry(Handle<Name> key) { if (!key->IsUniqueName()) { return DerivedDictionary::FindEntry(key); } // Optimized for unique names. Knowledge of the key type allows: // 1. Move the check if the key is unique out of the loop. // 2. Avoid comparing hash codes in unique-to-unique comparison. // 3. Detect a case when a dictionary key is not unique but the key is. // In case of positive result the dictionary key may be replaced by the // internalized string with minimal performance penalty. It gives a chance // to perform further lookups in code stubs (and significant performance // boost a certain style of code). // EnsureCapacity will guarantee the hash table is never full. uint32_t capacity = this->Capacity(); uint32_t entry = Derived::FirstProbe(key->Hash(), capacity); uint32_t count = 1; while (true) { int index = Derived::EntryToIndex(entry); Object* element = this->get(index); if (element->IsUndefined()) break; // Empty entry. if (*key == element) return entry; if (!element->IsUniqueName() && !element->IsTheHole() && Name::cast(element)->Equals(*key)) { // Replace a key that is a non-internalized string by the equivalent // internalized string for faster further lookups. this->set(index, *key); return entry; } DCHECK(element->IsTheHole() || !Name::cast(element)->Equals(*key)); entry = Derived::NextProbe(entry, count++, capacity); } return Derived::kNotFound; } template<typename Derived, typename Shape, typename Key> void HashTable<Derived, Shape, Key>::Rehash( Handle<Derived> new_table, Key key) { DCHECK(NumberOfElements() < new_table->Capacity()); DisallowHeapAllocation no_gc; WriteBarrierMode mode = new_table->GetWriteBarrierMode(no_gc); // Copy prefix to new array. for (int i = kPrefixStartIndex; i < kPrefixStartIndex + Shape::kPrefixSize; i++) { new_table->set(i, get(i), mode); } // Rehash the elements. int capacity = this->Capacity(); Heap* heap = new_table->GetHeap(); Object* the_hole = heap->the_hole_value(); Object* undefined = heap->undefined_value(); for (int i = 0; i < capacity; i++) { uint32_t from_index = EntryToIndex(i); Object* k = this->get(from_index); if (k != the_hole && k != undefined) { uint32_t hash = this->HashForObject(key, k); uint32_t insertion_index = EntryToIndex(new_table->FindInsertionEntry(hash)); for (int j = 0; j < Shape::kEntrySize; j++) { new_table->set(insertion_index + j, get(from_index + j), mode); } } } new_table->SetNumberOfElements(NumberOfElements()); new_table->SetNumberOfDeletedElements(0); } template<typename Derived, typename Shape, typename Key> uint32_t HashTable<Derived, Shape, Key>::EntryForProbe( Key key, Object* k, int probe, uint32_t expected) { uint32_t hash = this->HashForObject(key, k); uint32_t capacity = this->Capacity(); uint32_t entry = FirstProbe(hash, capacity); for (int i = 1; i < probe; i++) { if (entry == expected) return expected; entry = NextProbe(entry, i, capacity); } return entry; } template<typename Derived, typename Shape, typename Key> void HashTable<Derived, Shape, Key>::Swap(uint32_t entry1, uint32_t entry2, WriteBarrierMode mode) { int index1 = EntryToIndex(entry1); int index2 = EntryToIndex(entry2); Object* temp[Shape::kEntrySize]; for (int j = 0; j < Shape::kEntrySize; j++) { temp[j] = get(index1 + j); } for (int j = 0; j < Shape::kEntrySize; j++) { set(index1 + j, get(index2 + j), mode); } for (int j = 0; j < Shape::kEntrySize; j++) { set(index2 + j, temp[j], mode); } } template<typename Derived, typename Shape, typename Key> void HashTable<Derived, Shape, Key>::Rehash(Key key) { DisallowHeapAllocation no_gc; WriteBarrierMode mode = GetWriteBarrierMode(no_gc); uint32_t capacity = Capacity(); bool done = false; for (int probe = 1; !done; probe++) { // All elements at entries given by one of the first _probe_ probes // are placed correctly. Other elements might need to be moved. done = true; for (uint32_t current = 0; current < capacity; current++) { Object* current_key = get(EntryToIndex(current)); if (IsKey(current_key)) { uint32_t target = EntryForProbe(key, current_key, probe, current); if (current == target) continue; Object* target_key = get(EntryToIndex(target)); if (!IsKey(target_key) || EntryForProbe(key, target_key, probe, target) != target) { // Put the current element into the correct position. Swap(current, target, mode); // The other element will be processed on the next iteration. current--; } else { // The place for the current element is occupied. Leave the element // for the next probe. done = false; } } } } // Wipe deleted entries. Heap* heap = GetHeap(); Object* the_hole = heap->the_hole_value(); Object* undefined = heap->undefined_value(); for (uint32_t current = 0; current < capacity; current++) { if (get(EntryToIndex(current)) == the_hole) { set(EntryToIndex(current), undefined); } } SetNumberOfDeletedElements(0); } template<typename Derived, typename Shape, typename Key> Handle<Derived> HashTable<Derived, Shape, Key>::EnsureCapacity( Handle<Derived> table, int n, Key key, PretenureFlag pretenure) { Isolate* isolate = table->GetIsolate(); int capacity = table->Capacity(); int nof = table->NumberOfElements() + n; if (table->HasSufficientCapacity(n)) return table; const int kMinCapacityForPretenure = 256; bool should_pretenure = pretenure == TENURED || ((capacity > kMinCapacityForPretenure) && !isolate->heap()->InNewSpace(*table)); Handle<Derived> new_table = HashTable::New( isolate, nof * 2, USE_DEFAULT_MINIMUM_CAPACITY, should_pretenure ? TENURED : NOT_TENURED); table->Rehash(new_table, key); return new_table; } template <typename Derived, typename Shape, typename Key> bool HashTable<Derived, Shape, Key>::HasSufficientCapacity(int n) { int capacity = Capacity(); int nof = NumberOfElements() + n; int nod = NumberOfDeletedElements(); // Return true if: // 50% is still free after adding n elements and // at most 50% of the free elements are deleted elements. if (nod <= (capacity - nof) >> 1) { int needed_free = nof >> 1; if (nof + needed_free <= capacity) return true; } return false; } template<typename Derived, typename Shape, typename Key> Handle<Derived> HashTable<Derived, Shape, Key>::Shrink(Handle<Derived> table, Key key) { int capacity = table->Capacity(); int nof = table->NumberOfElements(); // Shrink to fit the number of elements if only a quarter of the // capacity is filled with elements. if (nof > (capacity >> 2)) return table; // Allocate a new dictionary with room for at least the current // number of elements. The allocation method will make sure that // there is extra room in the dictionary for additions. Don't go // lower than room for 16 elements. int at_least_room_for = nof; if (at_least_room_for < 16) return table; Isolate* isolate = table->GetIsolate(); const int kMinCapacityForPretenure = 256; bool pretenure = (at_least_room_for > kMinCapacityForPretenure) && !isolate->heap()->InNewSpace(*table); Handle<Derived> new_table = HashTable::New( isolate, at_least_room_for, USE_DEFAULT_MINIMUM_CAPACITY, pretenure ? TENURED : NOT_TENURED); table->Rehash(new_table, key); return new_table; } template<typename Derived, typename Shape, typename Key> uint32_t HashTable<Derived, Shape, Key>::FindInsertionEntry(uint32_t hash) { uint32_t capacity = Capacity(); uint32_t entry = FirstProbe(hash, capacity); uint32_t count = 1; // EnsureCapacity will guarantee the hash table is never full. Heap* heap = GetHeap(); Object* the_hole = heap->the_hole_value(); Object* undefined = heap->undefined_value(); while (true) { Object* element = KeyAt(entry); if (element == the_hole || element == undefined) break; entry = NextProbe(entry, count++, capacity); } return entry; } // Force instantiation of template instances class. // Please note this list is compiler dependent. template class HashTable<StringTable, StringTableShape, HashTableKey*>; template class HashTable<CompilationCacheTable, CompilationCacheShape, HashTableKey*>; template class HashTable<ObjectHashTable, ObjectHashTableShape, Handle<Object> >; template class HashTable<WeakHashTable, WeakHashTableShape<2>, Handle<Object> >; template class Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >; template class Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name> >; template class Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>; template class Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>; template Handle<SeededNumberDictionary> Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: New(Isolate*, int at_least_space_for, PretenureFlag pretenure); template Handle<UnseededNumberDictionary> Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>:: New(Isolate*, int at_least_space_for, PretenureFlag pretenure); template Handle<NameDictionary> Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >:: New(Isolate*, int n, PretenureFlag pretenure); template Handle<GlobalDictionary> Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name> >::New( Isolate*, int n, PretenureFlag pretenure); template Handle<SeededNumberDictionary> Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: AtPut(Handle<SeededNumberDictionary>, uint32_t, Handle<Object>); template Handle<UnseededNumberDictionary> Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>:: AtPut(Handle<UnseededNumberDictionary>, uint32_t, Handle<Object>); template Object* Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: SlowReverseLookup(Object* value); template Object* Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >:: SlowReverseLookup(Object* value); template Handle<Object> Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::DeleteProperty( Handle<NameDictionary>, int); template Handle<Object> Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::DeleteProperty(Handle<SeededNumberDictionary>, int); template Handle<Object> Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::DeleteProperty(Handle<UnseededNumberDictionary>, int); template Handle<NameDictionary> HashTable<NameDictionary, NameDictionaryShape, Handle<Name> >:: New(Isolate*, int, MinimumCapacity, PretenureFlag); template Handle<NameDictionary> HashTable<NameDictionary, NameDictionaryShape, Handle<Name> >:: Shrink(Handle<NameDictionary>, Handle<Name>); template Handle<SeededNumberDictionary> HashTable<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: Shrink(Handle<SeededNumberDictionary>, uint32_t); template Handle<UnseededNumberDictionary> HashTable<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>::Shrink(Handle<UnseededNumberDictionary>, uint32_t); template Handle<NameDictionary> Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::Add( Handle<NameDictionary>, Handle<Name>, Handle<Object>, PropertyDetails); template Handle<GlobalDictionary> Dictionary<GlobalDictionary, GlobalDictionaryShape, Handle<Name> >::Add( Handle<GlobalDictionary>, Handle<Name>, Handle<Object>, PropertyDetails); template Handle<FixedArray> Dictionary< NameDictionary, NameDictionaryShape, Handle<Name> >::BuildIterationIndicesArray(Handle<NameDictionary>); template Handle<FixedArray> Dictionary< NameDictionary, NameDictionaryShape, Handle<Name> >::GenerateNewEnumerationIndices(Handle<NameDictionary>); template Handle<SeededNumberDictionary> Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: Add(Handle<SeededNumberDictionary>, uint32_t, Handle<Object>, PropertyDetails); template Handle<UnseededNumberDictionary> Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>:: Add(Handle<UnseededNumberDictionary>, uint32_t, Handle<Object>, PropertyDetails); template Handle<SeededNumberDictionary> Dictionary<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>:: EnsureCapacity(Handle<SeededNumberDictionary>, int, uint32_t); template Handle<UnseededNumberDictionary> Dictionary<UnseededNumberDictionary, UnseededNumberDictionaryShape, uint32_t>:: EnsureCapacity(Handle<UnseededNumberDictionary>, int, uint32_t); template void Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >::SetRequiresCopyOnCapacityChange(); template Handle<NameDictionary> Dictionary<NameDictionary, NameDictionaryShape, Handle<Name> >:: EnsureCapacity(Handle<NameDictionary>, int, Handle<Name>); template int HashTable<SeededNumberDictionary, SeededNumberDictionaryShape, uint32_t>::FindEntry(uint32_t); template int NameDictionaryBase<NameDictionary, NameDictionaryShape>::FindEntry( Handle<Name>); Handle<Object> JSObject::PrepareSlowElementsForSort( Handle<JSObject> object, uint32_t limit) { DCHECK(object->HasDictionaryElements()); Isolate* isolate = object->GetIsolate(); // Must stay in dictionary mode, either because of requires_slow_elements, // or because we are not going to sort (and therefore compact) all of the // elements. Handle<SeededNumberDictionary> dict(object->element_dictionary(), isolate); Handle<SeededNumberDictionary> new_dict = SeededNumberDictionary::New(isolate, dict->NumberOfElements()); uint32_t pos = 0; uint32_t undefs = 0; int capacity = dict->Capacity(); Handle<Smi> bailout(Smi::FromInt(-1), isolate); // Entry to the new dictionary does not cause it to grow, as we have // allocated one that is large enough for all entries. DisallowHeapAllocation no_gc; for (int i = 0; i < capacity; i++) { Object* k = dict->KeyAt(i); if (!dict->IsKey(k)) continue; DCHECK(k->IsNumber()); DCHECK(!k->IsSmi() || Smi::cast(k)->value() >= 0); DCHECK(!k->IsHeapNumber() || HeapNumber::cast(k)->value() >= 0); DCHECK(!k->IsHeapNumber() || HeapNumber::cast(k)->value() <= kMaxUInt32); HandleScope scope(isolate); Handle<Object> value(dict->ValueAt(i), isolate); PropertyDetails details = dict->DetailsAt(i); if (details.type() == ACCESSOR_CONSTANT || details.IsReadOnly()) { // Bail out and do the sorting of undefineds and array holes in JS. // Also bail out if the element is not supposed to be moved. return bailout; } uint32_t key = NumberToUint32(k); if (key < limit) { if (value->IsUndefined()) { undefs++; } else if (pos > static_cast<uint32_t>(Smi::kMaxValue)) { // Adding an entry with the key beyond smi-range requires // allocation. Bailout. return bailout; } else { Handle<Object> result = SeededNumberDictionary::AddNumberEntry( new_dict, pos, value, details, object->map()->is_prototype_map()); DCHECK(result.is_identical_to(new_dict)); USE(result); pos++; } } else if (key > static_cast<uint32_t>(Smi::kMaxValue)) { // Adding an entry with the key beyond smi-range requires // allocation. Bailout. return bailout; } else { Handle<Object> result = SeededNumberDictionary::AddNumberEntry( new_dict, key, value, details, object->map()->is_prototype_map()); DCHECK(result.is_identical_to(new_dict)); USE(result); } } uint32_t result = pos; PropertyDetails no_details = PropertyDetails::Empty(); while (undefs > 0) { if (pos > static_cast<uint32_t>(Smi::kMaxValue)) { // Adding an entry with the key beyond smi-range requires // allocation. Bailout. return bailout; } HandleScope scope(isolate); Handle<Object> result = SeededNumberDictionary::AddNumberEntry( new_dict, pos, isolate->factory()->undefined_value(), no_details, object->map()->is_prototype_map()); DCHECK(result.is_identical_to(new_dict)); USE(result); pos++; undefs--; } object->set_elements(*new_dict); AllowHeapAllocation allocate_return_value; return isolate->factory()->NewNumberFromUint(result); } // Collects all defined (non-hole) and non-undefined (array) elements at // the start of the elements array. // If the object is in dictionary mode, it is converted to fast elements // mode. Handle<Object> JSObject::PrepareElementsForSort(Handle<JSObject> object, uint32_t limit) { Isolate* isolate = object->GetIsolate(); if (object->HasSloppyArgumentsElements()) { return handle(Smi::FromInt(-1), isolate); } if (object->HasStringWrapperElements()) { int len = String::cast(Handle<JSValue>::cast(object)->value())->length(); return handle(Smi::FromInt(len), isolate); } if (object->HasDictionaryElements()) { // Convert to fast elements containing only the existing properties. // Ordering is irrelevant, since we are going to sort anyway. Handle<SeededNumberDictionary> dict(object->element_dictionary()); if (object->IsJSArray() || dict->requires_slow_elements() || dict->max_number_key() >= limit) { return JSObject::PrepareSlowElementsForSort(object, limit); } // Convert to fast elements. Handle<Map> new_map = JSObject::GetElementsTransitionMap(object, FAST_HOLEY_ELEMENTS); PretenureFlag tenure = isolate->heap()->InNewSpace(*object) ? NOT_TENURED: TENURED; Handle<FixedArray> fast_elements = isolate->factory()->NewFixedArray(dict->NumberOfElements(), tenure); dict->CopyValuesTo(*fast_elements); JSObject::ValidateElements(object); JSObject::SetMapAndElements(object, new_map, fast_elements); } else if (object->HasFixedTypedArrayElements()) { // Typed arrays cannot have holes or undefined elements. return handle(Smi::FromInt( FixedArrayBase::cast(object->elements())->length()), isolate); } else if (!object->HasFastDoubleElements()) { EnsureWritableFastElements(object); } DCHECK(object->HasFastSmiOrObjectElements() || object->HasFastDoubleElements()); // Collect holes at the end, undefined before that and the rest at the // start, and return the number of non-hole, non-undefined values. Handle<FixedArrayBase> elements_base(object->elements()); uint32_t elements_length = static_cast<uint32_t>(elements_base->length()); if (limit > elements_length) { limit = elements_length; } if (limit == 0) { return handle(Smi::FromInt(0), isolate); } uint32_t result = 0; if (elements_base->map() == isolate->heap()->fixed_double_array_map()) { FixedDoubleArray* elements = FixedDoubleArray::cast(*elements_base); // Split elements into defined and the_hole, in that order. unsigned int holes = limit; // Assume most arrays contain no holes and undefined values, so minimize the // number of stores of non-undefined, non-the-hole values. for (unsigned int i = 0; i < holes; i++) { if (elements->is_the_hole(i)) { holes--; } else { continue; } // Position i needs to be filled. while (holes > i) { if (elements->is_the_hole(holes)) { holes--; } else { elements->set(i, elements->get_scalar(holes)); break; } } } result = holes; while (holes < limit) { elements->set_the_hole(holes); holes++; } } else { FixedArray* elements = FixedArray::cast(*elements_base); DisallowHeapAllocation no_gc; // Split elements into defined, undefined and the_hole, in that order. Only // count locations for undefined and the hole, and fill them afterwards. WriteBarrierMode write_barrier = elements->GetWriteBarrierMode(no_gc); unsigned int undefs = limit; unsigned int holes = limit; // Assume most arrays contain no holes and undefined values, so minimize the // number of stores of non-undefined, non-the-hole values. for (unsigned int i = 0; i < undefs; i++) { Object* current = elements->get(i); if (current->IsTheHole()) { holes--; undefs--; } else if (current->IsUndefined()) { undefs--; } else { continue; } // Position i needs to be filled. while (undefs > i) { current = elements->get(undefs); if (current->IsTheHole()) { holes--; undefs--; } else if (current->IsUndefined()) { undefs--; } else { elements->set(i, current, write_barrier); break; } } } result = undefs; while (undefs < holes) { elements->set_undefined(undefs); undefs++; } while (holes < limit) { elements->set_the_hole(holes); holes++; } } return isolate->factory()->NewNumberFromUint(result); } ExternalArrayType JSTypedArray::type() { switch (elements()->map()->instance_type()) { #define INSTANCE_TYPE_TO_ARRAY_TYPE(Type, type, TYPE, ctype, size) \ case FIXED_##TYPE##_ARRAY_TYPE: \ return kExternal##Type##Array; TYPED_ARRAYS(INSTANCE_TYPE_TO_ARRAY_TYPE) #undef INSTANCE_TYPE_TO_ARRAY_TYPE default: UNREACHABLE(); return static_cast<ExternalArrayType>(-1); } } size_t JSTypedArray::element_size() { switch (elements()->map()->instance_type()) { #define INSTANCE_TYPE_TO_ELEMENT_SIZE(Type, type, TYPE, ctype, size) \ case FIXED_##TYPE##_ARRAY_TYPE: \ return size; TYPED_ARRAYS(INSTANCE_TYPE_TO_ELEMENT_SIZE) #undef INSTANCE_TYPE_TO_ELEMENT_SIZE default: UNREACHABLE(); return 0; } } void JSGlobalObject::InvalidatePropertyCell(Handle<JSGlobalObject> global, Handle<Name> name) { DCHECK(!global->HasFastProperties()); auto dictionary = handle(global->global_dictionary()); int entry = dictionary->FindEntry(name); if (entry == GlobalDictionary::kNotFound) return; PropertyCell::InvalidateEntry(dictionary, entry); } // TODO(ishell): rename to EnsureEmptyPropertyCell or something. Handle<PropertyCell> JSGlobalObject::EnsurePropertyCell( Handle<JSGlobalObject> global, Handle<Name> name) { DCHECK(!global->HasFastProperties()); auto dictionary = handle(global->global_dictionary()); int entry = dictionary->FindEntry(name); Handle<PropertyCell> cell; if (entry != GlobalDictionary::kNotFound) { // This call should be idempotent. DCHECK(dictionary->ValueAt(entry)->IsPropertyCell()); cell = handle(PropertyCell::cast(dictionary->ValueAt(entry))); DCHECK(cell->property_details().cell_type() == PropertyCellType::kUninitialized || cell->property_details().cell_type() == PropertyCellType::kInvalidated); DCHECK(cell->value()->IsTheHole()); return cell; } Isolate* isolate = global->GetIsolate(); cell = isolate->factory()->NewPropertyCell(); PropertyDetails details(NONE, DATA, 0, PropertyCellType::kUninitialized); dictionary = GlobalDictionary::Add(dictionary, name, cell, details); global->set_properties(*dictionary); return cell; } // This class is used for looking up two character strings in the string table. // If we don't have a hit we don't want to waste much time so we unroll the // string hash calculation loop here for speed. Doesn't work if the two // characters form a decimal integer, since such strings have a different hash // algorithm. class TwoCharHashTableKey : public HashTableKey { public: TwoCharHashTableKey(uint16_t c1, uint16_t c2, uint32_t seed) : c1_(c1), c2_(c2) { // Char 1. uint32_t hash = seed; hash += c1; hash += hash << 10; hash ^= hash >> 6; // Char 2. hash += c2; hash += hash << 10; hash ^= hash >> 6; // GetHash. hash += hash << 3; hash ^= hash >> 11; hash += hash << 15; if ((hash & String::kHashBitMask) == 0) hash = StringHasher::kZeroHash; hash_ = hash; #ifdef DEBUG // If this assert fails then we failed to reproduce the two-character // version of the string hashing algorithm above. One reason could be // that we were passed two digits as characters, since the hash // algorithm is different in that case. uint16_t chars[2] = {c1, c2}; uint32_t check_hash = StringHasher::HashSequentialString(chars, 2, seed); hash = (hash << String::kHashShift) | String::kIsNotArrayIndexMask; DCHECK_EQ(static_cast<int32_t>(hash), static_cast<int32_t>(check_hash)); #endif } bool IsMatch(Object* o) override { if (!o->IsString()) return false; String* other = String::cast(o); if (other->length() != 2) return false; if (other->Get(0) != c1_) return false; return other->Get(1) == c2_; } uint32_t Hash() override { return hash_; } uint32_t HashForObject(Object* key) override { if (!key->IsString()) return 0; return String::cast(key)->Hash(); } Handle<Object> AsHandle(Isolate* isolate) override { // The TwoCharHashTableKey is only used for looking in the string // table, not for adding to it. UNREACHABLE(); return MaybeHandle<Object>().ToHandleChecked(); } private: uint16_t c1_; uint16_t c2_; uint32_t hash_; }; MaybeHandle<String> StringTable::InternalizeStringIfExists( Isolate* isolate, Handle<String> string) { if (string->IsInternalizedString()) { return string; } return LookupStringIfExists(isolate, string); } MaybeHandle<String> StringTable::LookupStringIfExists( Isolate* isolate, Handle<String> string) { Handle<StringTable> string_table = isolate->factory()->string_table(); InternalizedStringKey key(string); int entry = string_table->FindEntry(&key); if (entry == kNotFound) { return MaybeHandle<String>(); } else { Handle<String> result(String::cast(string_table->KeyAt(entry)), isolate); DCHECK(StringShape(*result).IsInternalized()); return result; } } MaybeHandle<String> StringTable::LookupTwoCharsStringIfExists( Isolate* isolate, uint16_t c1, uint16_t c2) { Handle<StringTable> string_table = isolate->factory()->string_table(); TwoCharHashTableKey key(c1, c2, isolate->heap()->HashSeed()); int entry = string_table->FindEntry(&key); if (entry == kNotFound) { return MaybeHandle<String>(); } else { Handle<String> result(String::cast(string_table->KeyAt(entry)), isolate); DCHECK(StringShape(*result).IsInternalized()); return result; } } void StringTable::EnsureCapacityForDeserialization(Isolate* isolate, int expected) { Handle<StringTable> table = isolate->factory()->string_table(); // We need a key instance for the virtual hash function. InternalizedStringKey dummy_key(isolate->factory()->empty_string()); table = StringTable::EnsureCapacity(table, expected, &dummy_key); isolate->heap()->SetRootStringTable(*table); } Handle<String> StringTable::LookupString(Isolate* isolate, Handle<String> string) { if (string->IsConsString() && string->IsFlat()) { string = String::Flatten(string); if (string->IsInternalizedString()) return string; } InternalizedStringKey key(string); Handle<String> result = LookupKey(isolate, &key); if (string->IsConsString()) { Handle<ConsString> cons = Handle<ConsString>::cast(string); cons->set_first(*result); cons->set_second(isolate->heap()->empty_string()); } else if (string->IsSlicedString()) { STATIC_ASSERT(ConsString::kSize == SlicedString::kSize); DisallowHeapAllocation no_gc; bool one_byte = result->IsOneByteRepresentation(); Handle<Map> map = one_byte ? isolate->factory()->cons_one_byte_string_map() : isolate->factory()->cons_string_map(); string->set_map(*map); Handle<ConsString> cons = Handle<ConsString>::cast(string); cons->set_first(*result); cons->set_second(isolate->heap()->empty_string()); } return result; } Handle<String> StringTable::LookupKey(Isolate* isolate, HashTableKey* key) { Handle<StringTable> table = isolate->factory()->string_table(); int entry = table->FindEntry(key); // String already in table. if (entry != kNotFound) { return handle(String::cast(table->KeyAt(entry)), isolate); } // Adding new string. Grow table if needed. table = StringTable::EnsureCapacity(table, 1, key); // Create string object. Handle<Object> string = key->AsHandle(isolate); // There must be no attempts to internalize strings that could throw // InvalidStringLength error. CHECK(!string.is_null()); // Add the new string and return it along with the string table. entry = table->FindInsertionEntry(key->Hash()); table->set(EntryToIndex(entry), *string); table->ElementAdded(); isolate->heap()->SetRootStringTable(*table); return Handle<String>::cast(string); } String* StringTable::LookupKeyIfExists(Isolate* isolate, HashTableKey* key) { Handle<StringTable> table = isolate->factory()->string_table(); int entry = table->FindEntry(key); if (entry != kNotFound) return String::cast(table->KeyAt(entry)); return NULL; } Handle<StringSet> StringSet::New(Isolate* isolate) { return HashTable::New(isolate, 0); } Handle<StringSet> StringSet::Add(Handle<StringSet> stringset, Handle<String> name) { if (!stringset->Has(name)) { stringset = EnsureCapacity(stringset, 1, *name); uint32_t hash = StringSetShape::Hash(*name); int entry = stringset->FindInsertionEntry(hash); stringset->set(EntryToIndex(entry), *name); stringset->ElementAdded(); } return stringset; } bool StringSet::Has(Handle<String> name) { return FindEntry(*name) != kNotFound; } Handle<Object> CompilationCacheTable::Lookup(Handle<String> src, Handle<Context> context, LanguageMode language_mode) { Isolate* isolate = GetIsolate(); Handle<SharedFunctionInfo> shared(context->closure()->shared()); StringSharedKey key(src, shared, language_mode, RelocInfo::kNoPosition); int entry = FindEntry(&key); if (entry == kNotFound) return isolate->factory()->undefined_value(); int index = EntryToIndex(entry); if (!get(index)->IsFixedArray()) return isolate->factory()->undefined_value(); return Handle<Object>(get(index + 1), isolate); } Handle<Object> CompilationCacheTable::LookupEval( Handle<String> src, Handle<SharedFunctionInfo> outer_info, LanguageMode language_mode, int scope_position) { Isolate* isolate = GetIsolate(); // Cache key is the tuple (source, outer shared function info, scope position) // to unambiguously identify the context chain the cached eval code assumes. StringSharedKey key(src, outer_info, language_mode, scope_position); int entry = FindEntry(&key); if (entry == kNotFound) return isolate->factory()->undefined_value(); int index = EntryToIndex(entry); if (!get(index)->IsFixedArray()) return isolate->factory()->undefined_value(); return Handle<Object>(get(EntryToIndex(entry) + 1), isolate); } Handle<Object> CompilationCacheTable::LookupRegExp(Handle<String> src, JSRegExp::Flags flags) { Isolate* isolate = GetIsolate(); DisallowHeapAllocation no_allocation; RegExpKey key(src, flags); int entry = FindEntry(&key); if (entry == kNotFound) return isolate->factory()->undefined_value(); return Handle<Object>(get(EntryToIndex(entry) + 1), isolate); } Handle<CompilationCacheTable> CompilationCacheTable::Put( Handle<CompilationCacheTable> cache, Handle<String> src, Handle<Context> context, LanguageMode language_mode, Handle<Object> value) { Isolate* isolate = cache->GetIsolate(); Handle<SharedFunctionInfo> shared(context->closure()->shared()); StringSharedKey key(src, shared, language_mode, RelocInfo::kNoPosition); Handle<Object> k = key.AsHandle(isolate); cache = EnsureCapacity(cache, 1, &key); int entry = cache->FindInsertionEntry(key.Hash()); cache->set(EntryToIndex(entry), *k); cache->set(EntryToIndex(entry) + 1, *value); cache->ElementAdded(); return cache; } Handle<CompilationCacheTable> CompilationCacheTable::PutEval( Handle<CompilationCacheTable> cache, Handle<String> src, Handle<SharedFunctionInfo> outer_info, Handle<SharedFunctionInfo> value, int scope_position) { Isolate* isolate = cache->GetIsolate(); StringSharedKey key(src, outer_info, value->language_mode(), scope_position); { Handle<Object> k = key.AsHandle(isolate); DisallowHeapAllocation no_allocation_scope; int entry = cache->FindEntry(&key); if (entry != kNotFound) { cache->set(EntryToIndex(entry), *k); cache->set(EntryToIndex(entry) + 1, *value); return cache; } } cache = EnsureCapacity(cache, 1, &key); int entry = cache->FindInsertionEntry(key.Hash()); Handle<Object> k = isolate->factory()->NewNumber(static_cast<double>(key.Hash())); cache->set(EntryToIndex(entry), *k); cache->set(EntryToIndex(entry) + 1, Smi::FromInt(kHashGenerations)); cache->ElementAdded(); return cache; } Handle<CompilationCacheTable> CompilationCacheTable::PutRegExp( Handle<CompilationCacheTable> cache, Handle<String> src, JSRegExp::Flags flags, Handle<FixedArray> value) { RegExpKey key(src, flags); cache = EnsureCapacity(cache, 1, &key); int entry = cache->FindInsertionEntry(key.Hash()); // We store the value in the key slot, and compare the search key // to the stored value with a custon IsMatch function during lookups. cache->set(EntryToIndex(entry), *value); cache->set(EntryToIndex(entry) + 1, *value); cache->ElementAdded(); return cache; } void CompilationCacheTable::Age() { DisallowHeapAllocation no_allocation; Object* the_hole_value = GetHeap()->the_hole_value(); for (int entry = 0, size = Capacity(); entry < size; entry++) { int entry_index = EntryToIndex(entry); int value_index = entry_index + 1; if (get(entry_index)->IsNumber()) { Smi* count = Smi::cast(get(value_index)); count = Smi::FromInt(count->value() - 1); if (count->value() == 0) { NoWriteBarrierSet(this, entry_index, the_hole_value); NoWriteBarrierSet(this, value_index, the_hole_value); ElementRemoved(); } else { NoWriteBarrierSet(this, value_index, count); } } else if (get(entry_index)->IsFixedArray()) { SharedFunctionInfo* info = SharedFunctionInfo::cast(get(value_index)); if (info->code()->kind() != Code::FUNCTION || info->code()->IsOld()) { NoWriteBarrierSet(this, entry_index, the_hole_value); NoWriteBarrierSet(this, value_index, the_hole_value); ElementRemoved(); } } } } void CompilationCacheTable::Remove(Object* value) { DisallowHeapAllocation no_allocation; Object* the_hole_value = GetHeap()->the_hole_value(); for (int entry = 0, size = Capacity(); entry < size; entry++) { int entry_index = EntryToIndex(entry); int value_index = entry_index + 1; if (get(value_index) == value) { NoWriteBarrierSet(this, entry_index, the_hole_value); NoWriteBarrierSet(this, value_index, the_hole_value); ElementRemoved(); } } return; } template<typename Derived, typename Shape, typename Key> Handle<Derived> Dictionary<Derived, Shape, Key>::New( Isolate* isolate, int at_least_space_for, PretenureFlag pretenure) { DCHECK(0 <= at_least_space_for); Handle<Derived> dict = DerivedHashTable::New(isolate, at_least_space_for, USE_DEFAULT_MINIMUM_CAPACITY, pretenure); // Initialize the next enumeration index. dict->SetNextEnumerationIndex(PropertyDetails::kInitialIndex); return dict; } template <typename Derived, typename Shape, typename Key> Handle<FixedArray> Dictionary<Derived, Shape, Key>::BuildIterationIndicesArray( Handle<Derived> dictionary) { Factory* factory = dictionary->GetIsolate()->factory(); int length = dictionary->NumberOfElements(); Handle<FixedArray> iteration_order = factory->NewFixedArray(length); Handle<FixedArray> enumeration_order = factory->NewFixedArray(length); // Fill both the iteration order array and the enumeration order array // with property details. int capacity = dictionary->Capacity(); int pos = 0; for (int i = 0; i < capacity; i++) { if (dictionary->IsKey(dictionary->KeyAt(i))) { int index = dictionary->DetailsAt(i).dictionary_index(); iteration_order->set(pos, Smi::FromInt(i)); enumeration_order->set(pos, Smi::FromInt(index)); pos++; } } DCHECK(pos == length); // Sort the arrays wrt. enumeration order. iteration_order->SortPairs(*enumeration_order, enumeration_order->length()); return iteration_order; } template <typename Derived, typename Shape, typename Key> Handle<FixedArray> Dictionary<Derived, Shape, Key>::GenerateNewEnumerationIndices( Handle<Derived> dictionary) { int length = dictionary->NumberOfElements(); Handle<FixedArray> iteration_order = BuildIterationIndicesArray(dictionary); DCHECK(iteration_order->length() == length); // Iterate over the dictionary using the enumeration order and update // the dictionary with new enumeration indices. for (int i = 0; i < length; i++) { int index = Smi::cast(iteration_order->get(i))->value(); DCHECK(dictionary->IsKey(dictionary->KeyAt(index))); int enum_index = PropertyDetails::kInitialIndex + i; PropertyDetails details = dictionary->DetailsAt(index); PropertyDetails new_details = details.set_index(enum_index); dictionary->DetailsAtPut(index, new_details); } // Set the next enumeration index. dictionary->SetNextEnumerationIndex(PropertyDetails::kInitialIndex+length); return iteration_order; } template <typename Derived, typename Shape, typename Key> void Dictionary<Derived, Shape, Key>::SetRequiresCopyOnCapacityChange() { DCHECK_EQ(0, DerivedHashTable::NumberOfElements()); DCHECK_EQ(0, DerivedHashTable::NumberOfDeletedElements()); // Make sure that HashTable::EnsureCapacity will create a copy. DerivedHashTable::SetNumberOfDeletedElements(DerivedHashTable::Capacity()); DCHECK(!DerivedHashTable::HasSufficientCapacity(1)); } template <typename Derived, typename Shape, typename Key> Handle<Derived> Dictionary<Derived, Shape, Key>::EnsureCapacity( Handle<Derived> dictionary, int n, Key key) { // Check whether there are enough enumeration indices to add n elements. if (Shape::kIsEnumerable && !PropertyDetails::IsValidIndex(dictionary->NextEnumerationIndex() + n)) { // If not, we generate new indices for the properties. GenerateNewEnumerationIndices(dictionary); } return DerivedHashTable::EnsureCapacity(dictionary, n, key); } template <typename Derived, typename Shape, typename Key> Handle<Object> Dictionary<Derived, Shape, Key>::DeleteProperty( Handle<Derived> dictionary, int entry) { Factory* factory = dictionary->GetIsolate()->factory(); PropertyDetails details = dictionary->DetailsAt(entry); if (!details.IsConfigurable()) return factory->false_value(); dictionary->SetEntry( entry, factory->the_hole_value(), factory->the_hole_value()); dictionary->ElementRemoved(); return factory->true_value(); } template<typename Derived, typename Shape, typename Key> Handle<Derived> Dictionary<Derived, Shape, Key>::AtPut( Handle<Derived> dictionary, Key key, Handle<Object> value) { int entry = dictionary->FindEntry(key); // If the entry is present set the value; if (entry != Dictionary::kNotFound) { dictionary->ValueAtPut(entry, *value); return dictionary; } // Check whether the dictionary should be extended. dictionary = EnsureCapacity(dictionary, 1, key); #ifdef DEBUG USE(Shape::AsHandle(dictionary->GetIsolate(), key)); #endif PropertyDetails details = PropertyDetails::Empty(); AddEntry(dictionary, key, value, details, dictionary->Hash(key)); return dictionary; } template<typename Derived, typename Shape, typename Key> Handle<Derived> Dictionary<Derived, Shape, Key>::Add( Handle<Derived> dictionary, Key key, Handle<Object> value, PropertyDetails details) { // Valdate key is absent. SLOW_DCHECK((dictionary->FindEntry(key) == Dictionary::kNotFound)); // Check whether the dictionary should be extended. dictionary = EnsureCapacity(dictionary, 1, key); AddEntry(dictionary, key, value, details, dictionary->Hash(key)); return dictionary; } // Add a key, value pair to the dictionary. template<typename Derived, typename Shape, typename Key> void Dictionary<Derived, Shape, Key>::AddEntry( Handle<Derived> dictionary, Key key, Handle<Object> value, PropertyDetails details, uint32_t hash) { // Compute the key object. Handle<Object> k = Shape::AsHandle(dictionary->GetIsolate(), key); uint32_t entry = dictionary->FindInsertionEntry(hash); // Insert element at empty or deleted entry if (details.dictionary_index() == 0 && Shape::kIsEnumerable) { // Assign an enumeration index to the property and update // SetNextEnumerationIndex. int index = dictionary->NextEnumerationIndex(); details = details.set_index(index); dictionary->SetNextEnumerationIndex(index + 1); } dictionary->SetEntry(entry, k, value, details); DCHECK((dictionary->KeyAt(entry)->IsNumber() || dictionary->KeyAt(entry)->IsName())); dictionary->ElementAdded(); } bool SeededNumberDictionary::HasComplexElements() { if (!requires_slow_elements()) return false; int capacity = this->Capacity(); for (int i = 0; i < capacity; i++) { Object* k = this->KeyAt(i); if (this->IsKey(k)) { DCHECK(!IsDeleted(i)); PropertyDetails details = this->DetailsAt(i); if (details.type() == ACCESSOR_CONSTANT) return true; PropertyAttributes attr = details.attributes(); if (attr & ALL_ATTRIBUTES_MASK) return true; } } return false; } void SeededNumberDictionary::UpdateMaxNumberKey(uint32_t key, bool used_as_prototype) { DisallowHeapAllocation no_allocation; // If the dictionary requires slow elements an element has already // been added at a high index. if (requires_slow_elements()) return; // Check if this index is high enough that we should require slow // elements. if (key > kRequiresSlowElementsLimit) { if (used_as_prototype) { // TODO(verwaest): Remove this hack. TypeFeedbackVector::ClearAllKeyedStoreICs(GetIsolate()); } set_requires_slow_elements(); return; } // Update max key value. Object* max_index_object = get(kMaxNumberKeyIndex); if (!max_index_object->IsSmi() || max_number_key() < key) { FixedArray::set(kMaxNumberKeyIndex, Smi::FromInt(key << kRequiresSlowElementsTagSize)); } } Handle<SeededNumberDictionary> SeededNumberDictionary::AddNumberEntry( Handle<SeededNumberDictionary> dictionary, uint32_t key, Handle<Object> value, PropertyDetails details, bool used_as_prototype) { dictionary->UpdateMaxNumberKey(key, used_as_prototype); SLOW_DCHECK(dictionary->FindEntry(key) == kNotFound); return Add(dictionary, key, value, details); } Handle<UnseededNumberDictionary> UnseededNumberDictionary::AddNumberEntry( Handle<UnseededNumberDictionary> dictionary, uint32_t key, Handle<Object> value) { SLOW_DCHECK(dictionary->FindEntry(key) == kNotFound); return Add(dictionary, key, value, PropertyDetails::Empty()); } Handle<SeededNumberDictionary> SeededNumberDictionary::AtNumberPut( Handle<SeededNumberDictionary> dictionary, uint32_t key, Handle<Object> value, bool used_as_prototype) { dictionary->UpdateMaxNumberKey(key, used_as_prototype); return AtPut(dictionary, key, value); } Handle<UnseededNumberDictionary> UnseededNumberDictionary::AtNumberPut( Handle<UnseededNumberDictionary> dictionary, uint32_t key, Handle<Object> value) { return AtPut(dictionary, key, value); } Handle<SeededNumberDictionary> SeededNumberDictionary::Set( Handle<SeededNumberDictionary> dictionary, uint32_t key, Handle<Object> value, PropertyDetails details, bool used_as_prototype) { int entry = dictionary->FindEntry(key); if (entry == kNotFound) { return AddNumberEntry(dictionary, key, value, details, used_as_prototype); } // Preserve enumeration index. details = details.set_index(dictionary->DetailsAt(entry).dictionary_index()); Handle<Object> object_key = SeededNumberDictionaryShape::AsHandle(dictionary->GetIsolate(), key); dictionary->SetEntry(entry, object_key, value, details); return dictionary; } Handle<UnseededNumberDictionary> UnseededNumberDictionary::Set( Handle<UnseededNumberDictionary> dictionary, uint32_t key, Handle<Object> value) { int entry = dictionary->FindEntry(key); if (entry == kNotFound) return AddNumberEntry(dictionary, key, value); Handle<Object> object_key = UnseededNumberDictionaryShape::AsHandle(dictionary->GetIsolate(), key); dictionary->SetEntry(entry, object_key, value); return dictionary; } template <typename Derived, typename Shape, typename Key> int Dictionary<Derived, Shape, Key>::NumberOfElementsFilterAttributes( PropertyFilter filter) { int capacity = this->Capacity(); int result = 0; for (int i = 0; i < capacity; i++) { Object* k = this->KeyAt(i); if (this->IsKey(k) && !k->FilterKey(filter)) { if (this->IsDeleted(i)) continue; PropertyDetails details = this->DetailsAt(i); PropertyAttributes attr = details.attributes(); if ((attr & filter) == 0) result++; } } return result; } template <typename Dictionary> struct EnumIndexComparator { explicit EnumIndexComparator(Dictionary* dict) : dict(dict) {} bool operator() (Smi* a, Smi* b) { PropertyDetails da(dict->DetailsAt(a->value())); PropertyDetails db(dict->DetailsAt(b->value())); return da.dictionary_index() < db.dictionary_index(); } Dictionary* dict; }; template <typename Derived, typename Shape, typename Key> void Dictionary<Derived, Shape, Key>::CopyEnumKeysTo(FixedArray* storage) { int length = storage->length(); int capacity = this->Capacity(); int properties = 0; for (int i = 0; i < capacity; i++) { Object* k = this->KeyAt(i); if (this->IsKey(k) && !k->IsSymbol()) { PropertyDetails details = this->DetailsAt(i); if (details.IsDontEnum() || this->IsDeleted(i)) continue; storage->set(properties, Smi::FromInt(i)); properties++; if (properties == length) break; } } CHECK_EQ(length, properties); EnumIndexComparator<Derived> cmp(static_cast<Derived*>(this)); Smi** start = reinterpret_cast<Smi**>(storage->GetFirstElementAddress()); std::sort(start, start + length, cmp); for (int i = 0; i < length; i++) { int index = Smi::cast(storage->get(i))->value(); storage->set(i, this->KeyAt(index)); } } template <typename Derived, typename Shape, typename Key> void Dictionary<Derived, Shape, Key>::CollectKeysTo( Handle<Dictionary<Derived, Shape, Key> > dictionary, KeyAccumulator* keys, PropertyFilter filter) { int capacity = dictionary->Capacity(); Handle<FixedArray> array = keys->isolate()->factory()->NewFixedArray(dictionary->NumberOfElements()); int array_size = 0; { DisallowHeapAllocation no_gc; Dictionary<Derived, Shape, Key>* raw_dict = *dictionary; for (int i = 0; i < capacity; i++) { Object* k = raw_dict->KeyAt(i); if (!raw_dict->IsKey(k) || k->FilterKey(filter)) continue; if (raw_dict->IsDeleted(i)) continue; PropertyDetails details = raw_dict->DetailsAt(i); if ((details.attributes() & filter) != 0) continue; if (filter & ONLY_ALL_CAN_READ) { if (details.kind() != kAccessor) continue; Object* accessors = raw_dict->ValueAt(i); if (accessors->IsPropertyCell()) { accessors = PropertyCell::cast(accessors)->value(); } if (!accessors->IsAccessorInfo()) continue; if (!AccessorInfo::cast(accessors)->all_can_read()) continue; } array->set(array_size++, Smi::FromInt(i)); } EnumIndexComparator<Derived> cmp(static_cast<Derived*>(raw_dict)); Smi** start = reinterpret_cast<Smi**>(array->GetFirstElementAddress()); std::sort(start, start + array_size, cmp); } for (int i = 0; i < array_size; i++) { int index = Smi::cast(array->get(i))->value(); keys->AddKey(dictionary->KeyAt(index), DO_NOT_CONVERT); } } // Backwards lookup (slow). template<typename Derived, typename Shape, typename Key> Object* Dictionary<Derived, Shape, Key>::SlowReverseLookup(Object* value) { int capacity = this->Capacity(); for (int i = 0; i < capacity; i++) { Object* k = this->KeyAt(i); if (this->IsKey(k)) { Object* e = this->ValueAt(i); // TODO(dcarney): this should be templatized. if (e->IsPropertyCell()) { e = PropertyCell::cast(e)->value(); } if (e == value) return k; } } Heap* heap = Dictionary::GetHeap(); return heap->undefined_value(); } Object* ObjectHashTable::Lookup(Isolate* isolate, Handle<Object> key, int32_t hash) { DisallowHeapAllocation no_gc; DCHECK(IsKey(*key)); int entry = FindEntry(isolate, key, hash); if (entry == kNotFound) return isolate->heap()->the_hole_value(); return get(EntryToIndex(entry) + 1); } Object* ObjectHashTable::Lookup(Handle<Object> key) { DisallowHeapAllocation no_gc; DCHECK(IsKey(*key)); Isolate* isolate = GetIsolate(); // If the object does not have an identity hash, it was never used as a key. Object* hash = key->GetHash(); if (hash->IsUndefined()) { return isolate->heap()->the_hole_value(); } return Lookup(isolate, key, Smi::cast(hash)->value()); } Object* ObjectHashTable::Lookup(Handle<Object> key, int32_t hash) { return Lookup(GetIsolate(), key, hash); } Handle<ObjectHashTable> ObjectHashTable::Put(Handle<ObjectHashTable> table, Handle<Object> key, Handle<Object> value) { DCHECK(table->IsKey(*key)); DCHECK(!value->IsTheHole()); Isolate* isolate = table->GetIsolate(); // Make sure the key object has an identity hash code. int32_t hash = Object::GetOrCreateHash(isolate, key)->value(); return Put(table, key, value, hash); } Handle<ObjectHashTable> ObjectHashTable::Put(Handle<ObjectHashTable> table, Handle<Object> key, Handle<Object> value, int32_t hash) { DCHECK(table->IsKey(*key)); DCHECK(!value->IsTheHole()); Isolate* isolate = table->GetIsolate(); int entry = table->FindEntry(isolate, key, hash); // Key is already in table, just overwrite value. if (entry != kNotFound) { table->set(EntryToIndex(entry) + 1, *value); return table; } // Rehash if more than 33% of the entries are deleted entries. // TODO(jochen): Consider to shrink the fixed array in place. if ((table->NumberOfDeletedElements() << 1) > table->NumberOfElements()) { table->Rehash(isolate->factory()->undefined_value()); } // Check whether the hash table should be extended. table = EnsureCapacity(table, 1, key); table->AddEntry(table->FindInsertionEntry(hash), *key, *value); return table; } Handle<ObjectHashTable> ObjectHashTable::Remove(Handle<ObjectHashTable> table, Handle<Object> key, bool* was_present) { DCHECK(table->IsKey(*key)); Object* hash = key->GetHash(); if (hash->IsUndefined()) { *was_present = false; return table; } return Remove(table, key, was_present, Smi::cast(hash)->value()); } Handle<ObjectHashTable> ObjectHashTable::Remove(Handle<ObjectHashTable> table, Handle<Object> key, bool* was_present, int32_t hash) { DCHECK(table->IsKey(*key)); int entry = table->FindEntry(table->GetIsolate(), key, hash); if (entry == kNotFound) { *was_present = false; return table; } *was_present = true; table->RemoveEntry(entry); return Shrink(table, key); } void ObjectHashTable::AddEntry(int entry, Object* key, Object* value) { set(EntryToIndex(entry), key); set(EntryToIndex(entry) + 1, value); ElementAdded(); } void ObjectHashTable::RemoveEntry(int entry) { set_the_hole(EntryToIndex(entry)); set_the_hole(EntryToIndex(entry) + 1); ElementRemoved(); } Object* WeakHashTable::Lookup(Handle<HeapObject> key) { DisallowHeapAllocation no_gc; DCHECK(IsKey(*key)); int entry = FindEntry(key); if (entry == kNotFound) return GetHeap()->the_hole_value(); return get(EntryToValueIndex(entry)); } Handle<WeakHashTable> WeakHashTable::Put(Handle<WeakHashTable> table, Handle<HeapObject> key, Handle<HeapObject> value) { DCHECK(table->IsKey(*key)); int entry = table->FindEntry(key); // Key is already in table, just overwrite value. if (entry != kNotFound) { table->set(EntryToValueIndex(entry), *value); return table; } Handle<WeakCell> key_cell = key->GetIsolate()->factory()->NewWeakCell(key); // Check whether the hash table should be extended. table = EnsureCapacity(table, 1, key, TENURED); table->AddEntry(table->FindInsertionEntry(table->Hash(key)), key_cell, value); return table; } void WeakHashTable::AddEntry(int entry, Handle<WeakCell> key_cell, Handle<HeapObject> value) { DisallowHeapAllocation no_allocation; set(EntryToIndex(entry), *key_cell); set(EntryToValueIndex(entry), *value); ElementAdded(); } template<class Derived, class Iterator, int entrysize> Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Allocate( Isolate* isolate, int capacity, PretenureFlag pretenure) { // Capacity must be a power of two, since we depend on being able // to divide and multiple by 2 (kLoadFactor) to derive capacity // from number of buckets. If we decide to change kLoadFactor // to something other than 2, capacity should be stored as another // field of this object. capacity = base::bits::RoundUpToPowerOfTwo32(Max(kMinCapacity, capacity)); if (capacity > kMaxCapacity) { v8::internal::Heap::FatalProcessOutOfMemory("invalid table size", true); } int num_buckets = capacity / kLoadFactor; Handle<FixedArray> backing_store = isolate->factory()->NewFixedArray( kHashTableStartIndex + num_buckets + (capacity * kEntrySize), pretenure); backing_store->set_map_no_write_barrier( isolate->heap()->ordered_hash_table_map()); Handle<Derived> table = Handle<Derived>::cast(backing_store); for (int i = 0; i < num_buckets; ++i) { table->set(kHashTableStartIndex + i, Smi::FromInt(kNotFound)); } table->SetNumberOfBuckets(num_buckets); table->SetNumberOfElements(0); table->SetNumberOfDeletedElements(0); return table; } template<class Derived, class Iterator, int entrysize> Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::EnsureGrowable( Handle<Derived> table) { DCHECK(!table->IsObsolete()); int nof = table->NumberOfElements(); int nod = table->NumberOfDeletedElements(); int capacity = table->Capacity(); if ((nof + nod) < capacity) return table; // Don't need to grow if we can simply clear out deleted entries instead. // Note that we can't compact in place, though, so we always allocate // a new table. return Rehash(table, (nod < (capacity >> 1)) ? capacity << 1 : capacity); } template<class Derived, class Iterator, int entrysize> Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Shrink( Handle<Derived> table) { DCHECK(!table->IsObsolete()); int nof = table->NumberOfElements(); int capacity = table->Capacity(); if (nof >= (capacity >> 2)) return table; return Rehash(table, capacity / 2); } template<class Derived, class Iterator, int entrysize> Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Clear( Handle<Derived> table) { DCHECK(!table->IsObsolete()); Handle<Derived> new_table = Allocate(table->GetIsolate(), kMinCapacity, table->GetHeap()->InNewSpace(*table) ? NOT_TENURED : TENURED); table->SetNextTable(*new_table); table->SetNumberOfDeletedElements(kClearedTableSentinel); return new_table; } template <class Derived, class Iterator, int entrysize> bool OrderedHashTable<Derived, Iterator, entrysize>::HasKey( Handle<Derived> table, Handle<Object> key) { int entry = table->KeyToFirstEntry(*key); // Walk the chain in the bucket to find the key. while (entry != kNotFound) { Object* candidate_key = table->KeyAt(entry); if (candidate_key->SameValueZero(*key)) return true; entry = table->NextChainEntry(entry); } return false; } Handle<OrderedHashSet> OrderedHashSet::Add(Handle<OrderedHashSet> table, Handle<Object> key) { int hash = Object::GetOrCreateHash(table->GetIsolate(), key)->value(); int entry = table->HashToEntry(hash); // Walk the chain of the bucket and try finding the key. while (entry != kNotFound) { Object* candidate_key = table->KeyAt(entry); // Do not add if we have the key already if (candidate_key->SameValueZero(*key)) return table; entry = table->NextChainEntry(entry); } table = OrderedHashSet::EnsureGrowable(table); // Read the existing bucket values. int bucket = table->HashToBucket(hash); int previous_entry = table->HashToEntry(hash); int nof = table->NumberOfElements(); // Insert a new entry at the end, int new_entry = nof + table->NumberOfDeletedElements(); int new_index = table->EntryToIndex(new_entry); table->set(new_index, *key); table->set(new_index + kChainOffset, Smi::FromInt(previous_entry)); // and point the bucket to the new entry. table->set(kHashTableStartIndex + bucket, Smi::FromInt(new_entry)); table->SetNumberOfElements(nof + 1); return table; } template<class Derived, class Iterator, int entrysize> Handle<Derived> OrderedHashTable<Derived, Iterator, entrysize>::Rehash( Handle<Derived> table, int new_capacity) { Isolate* isolate = table->GetIsolate(); Heap* heap = isolate->heap(); DCHECK(!table->IsObsolete()); Handle<Derived> new_table = Allocate( isolate, new_capacity, heap->InNewSpace(*table) ? NOT_TENURED : TENURED); int nof = table->NumberOfElements(); int nod = table->NumberOfDeletedElements(); int new_buckets = new_table->NumberOfBuckets(); int new_entry = 0; int removed_holes_index = 0; DisallowHeapAllocation no_gc; Object* the_hole = heap->the_hole_value(); for (int old_entry = 0; old_entry < (nof + nod); ++old_entry) { Object* key = table->KeyAt(old_entry); if (key == the_hole) { table->SetRemovedIndexAt(removed_holes_index++, old_entry); continue; } Object* hash = key->GetHash(); int bucket = Smi::cast(hash)->value() & (new_buckets - 1); Object* chain_entry = new_table->get(kHashTableStartIndex + bucket); new_table->set(kHashTableStartIndex + bucket, Smi::FromInt(new_entry)); int new_index = new_table->EntryToIndex(new_entry); int old_index = table->EntryToIndex(old_entry); for (int i = 0; i < entrysize; ++i) { Object* value = table->get(old_index + i); new_table->set(new_index + i, value); } new_table->set(new_index + kChainOffset, chain_entry); ++new_entry; } DCHECK_EQ(nod, removed_holes_index); new_table->SetNumberOfElements(nof); table->SetNextTable(*new_table); return new_table; } template Handle<OrderedHashSet> OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Allocate( Isolate* isolate, int capacity, PretenureFlag pretenure); template Handle<OrderedHashSet> OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::EnsureGrowable( Handle<OrderedHashSet> table); template Handle<OrderedHashSet> OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Shrink( Handle<OrderedHashSet> table); template Handle<OrderedHashSet> OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::Clear( Handle<OrderedHashSet> table); template bool OrderedHashTable<OrderedHashSet, JSSetIterator, 1>::HasKey( Handle<OrderedHashSet> table, Handle<Object> key); template Handle<OrderedHashMap> OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Allocate( Isolate* isolate, int capacity, PretenureFlag pretenure); template Handle<OrderedHashMap> OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::EnsureGrowable( Handle<OrderedHashMap> table); template Handle<OrderedHashMap> OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Shrink( Handle<OrderedHashMap> table); template Handle<OrderedHashMap> OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::Clear( Handle<OrderedHashMap> table); template bool OrderedHashTable<OrderedHashMap, JSMapIterator, 2>::HasKey( Handle<OrderedHashMap> table, Handle<Object> key); template<class Derived, class TableType> void OrderedHashTableIterator<Derived, TableType>::Transition() { DisallowHeapAllocation no_allocation; TableType* table = TableType::cast(this->table()); if (!table->IsObsolete()) return; int index = Smi::cast(this->index())->value(); while (table->IsObsolete()) { TableType* next_table = table->NextTable(); if (index > 0) { int nod = table->NumberOfDeletedElements(); if (nod == TableType::kClearedTableSentinel) { index = 0; } else { int old_index = index; for (int i = 0; i < nod; ++i) { int removed_index = table->RemovedIndexAt(i); if (removed_index >= old_index) break; --index; } } } table = next_table; } set_table(table); set_index(Smi::FromInt(index)); } template<class Derived, class TableType> bool OrderedHashTableIterator<Derived, TableType>::HasMore() { DisallowHeapAllocation no_allocation; if (this->table()->IsUndefined()) return false; Transition(); TableType* table = TableType::cast(this->table()); int index = Smi::cast(this->index())->value(); int used_capacity = table->UsedCapacity(); while (index < used_capacity && table->KeyAt(index)->IsTheHole()) { index++; } set_index(Smi::FromInt(index)); if (index < used_capacity) return true; set_table(GetHeap()->undefined_value()); return false; } template<class Derived, class TableType> Smi* OrderedHashTableIterator<Derived, TableType>::Next(JSArray* value_array) { DisallowHeapAllocation no_allocation; if (HasMore()) { FixedArray* array = FixedArray::cast(value_array->elements()); static_cast<Derived*>(this)->PopulateValueArray(array); MoveNext(); return Smi::cast(kind()); } return Smi::FromInt(0); } template Smi* OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::Next( JSArray* value_array); template bool OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::HasMore(); template void OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::MoveNext(); template Object* OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::CurrentKey(); template void OrderedHashTableIterator<JSSetIterator, OrderedHashSet>::Transition(); template Smi* OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::Next( JSArray* value_array); template bool OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::HasMore(); template void OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::MoveNext(); template Object* OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::CurrentKey(); template void OrderedHashTableIterator<JSMapIterator, OrderedHashMap>::Transition(); void JSSet::Initialize(Handle<JSSet> set, Isolate* isolate) { Handle<OrderedHashSet> table = isolate->factory()->NewOrderedHashSet(); set->set_table(*table); } void JSSet::Clear(Handle<JSSet> set) { Handle<OrderedHashSet> table(OrderedHashSet::cast(set->table())); table = OrderedHashSet::Clear(table); set->set_table(*table); } void JSMap::Initialize(Handle<JSMap> map, Isolate* isolate) { Handle<OrderedHashMap> table = isolate->factory()->NewOrderedHashMap(); map->set_table(*table); } void JSMap::Clear(Handle<JSMap> map) { Handle<OrderedHashMap> table(OrderedHashMap::cast(map->table())); table = OrderedHashMap::Clear(table); map->set_table(*table); } void JSWeakCollection::Initialize(Handle<JSWeakCollection> weak_collection, Isolate* isolate) { Handle<ObjectHashTable> table = ObjectHashTable::New(isolate, 0); weak_collection->set_table(*table); } void JSWeakCollection::Set(Handle<JSWeakCollection> weak_collection, Handle<Object> key, Handle<Object> value, int32_t hash) { DCHECK(key->IsJSReceiver() || key->IsSymbol()); Handle<ObjectHashTable> table( ObjectHashTable::cast(weak_collection->table())); DCHECK(table->IsKey(*key)); Handle<ObjectHashTable> new_table = ObjectHashTable::Put(table, key, value, hash); weak_collection->set_table(*new_table); if (*table != *new_table) { // Zap the old table since we didn't record slots for its elements. table->FillWithHoles(0, table->length()); } } bool JSWeakCollection::Delete(Handle<JSWeakCollection> weak_collection, Handle<Object> key, int32_t hash) { DCHECK(key->IsJSReceiver() || key->IsSymbol()); Handle<ObjectHashTable> table( ObjectHashTable::cast(weak_collection->table())); DCHECK(table->IsKey(*key)); bool was_present = false; Handle<ObjectHashTable> new_table = ObjectHashTable::Remove(table, key, &was_present, hash); weak_collection->set_table(*new_table); if (*table != *new_table) { // Zap the old table since we didn't record slots for its elements. table->FillWithHoles(0, table->length()); } return was_present; } // Check if there is a break point at this code offset. bool DebugInfo::HasBreakPoint(int code_offset) { // Get the break point info object for this code offset. Object* break_point_info = GetBreakPointInfo(code_offset); // If there is no break point info object or no break points in the break // point info object there is no break point at this code offset. if (break_point_info->IsUndefined()) return false; return BreakPointInfo::cast(break_point_info)->GetBreakPointCount() > 0; } // Get the break point info object for this code offset. Object* DebugInfo::GetBreakPointInfo(int code_offset) { // Find the index of the break point info object for this code offset. int index = GetBreakPointInfoIndex(code_offset); // Return the break point info object if any. if (index == kNoBreakPointInfo) return GetHeap()->undefined_value(); return BreakPointInfo::cast(break_points()->get(index)); } // Clear a break point at the specified code offset. void DebugInfo::ClearBreakPoint(Handle<DebugInfo> debug_info, int code_offset, Handle<Object> break_point_object) { Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_offset), debug_info->GetIsolate()); if (break_point_info->IsUndefined()) return; BreakPointInfo::ClearBreakPoint( Handle<BreakPointInfo>::cast(break_point_info), break_point_object); } void DebugInfo::SetBreakPoint(Handle<DebugInfo> debug_info, int code_offset, int source_position, int statement_position, Handle<Object> break_point_object) { Isolate* isolate = debug_info->GetIsolate(); Handle<Object> break_point_info(debug_info->GetBreakPointInfo(code_offset), isolate); if (!break_point_info->IsUndefined()) { BreakPointInfo::SetBreakPoint( Handle<BreakPointInfo>::cast(break_point_info), break_point_object); return; } // Adding a new break point for a code offset which did not have any // break points before. Try to find a free slot. int index = kNoBreakPointInfo; for (int i = 0; i < debug_info->break_points()->length(); i++) { if (debug_info->break_points()->get(i)->IsUndefined()) { index = i; break; } } if (index == kNoBreakPointInfo) { // No free slot - extend break point info array. Handle<FixedArray> old_break_points = Handle<FixedArray>(FixedArray::cast(debug_info->break_points())); Handle<FixedArray> new_break_points = isolate->factory()->NewFixedArray( old_break_points->length() + DebugInfo::kEstimatedNofBreakPointsInFunction); debug_info->set_break_points(*new_break_points); for (int i = 0; i < old_break_points->length(); i++) { new_break_points->set(i, old_break_points->get(i)); } index = old_break_points->length(); } DCHECK(index != kNoBreakPointInfo); // Allocate new BreakPointInfo object and set the break point. Handle<BreakPointInfo> new_break_point_info = Handle<BreakPointInfo>::cast( isolate->factory()->NewStruct(BREAK_POINT_INFO_TYPE)); new_break_point_info->set_code_offset(code_offset); new_break_point_info->set_source_position(source_position); new_break_point_info->set_statement_position(statement_position); new_break_point_info->set_break_point_objects( isolate->heap()->undefined_value()); BreakPointInfo::SetBreakPoint(new_break_point_info, break_point_object); debug_info->break_points()->set(index, *new_break_point_info); } // Get the break point objects for a code offset. Handle<Object> DebugInfo::GetBreakPointObjects(int code_offset) { Object* break_point_info = GetBreakPointInfo(code_offset); if (break_point_info->IsUndefined()) { return GetIsolate()->factory()->undefined_value(); } return Handle<Object>( BreakPointInfo::cast(break_point_info)->break_point_objects(), GetIsolate()); } // Get the total number of break points. int DebugInfo::GetBreakPointCount() { if (break_points()->IsUndefined()) return 0; int count = 0; for (int i = 0; i < break_points()->length(); i++) { if (!break_points()->get(i)->IsUndefined()) { BreakPointInfo* break_point_info = BreakPointInfo::cast(break_points()->get(i)); count += break_point_info->GetBreakPointCount(); } } return count; } Handle<Object> DebugInfo::FindBreakPointInfo( Handle<DebugInfo> debug_info, Handle<Object> break_point_object) { Isolate* isolate = debug_info->GetIsolate(); if (!debug_info->break_points()->IsUndefined()) { for (int i = 0; i < debug_info->break_points()->length(); i++) { if (!debug_info->break_points()->get(i)->IsUndefined()) { Handle<BreakPointInfo> break_point_info = Handle<BreakPointInfo>( BreakPointInfo::cast(debug_info->break_points()->get(i)), isolate); if (BreakPointInfo::HasBreakPointObject(break_point_info, break_point_object)) { return break_point_info; } } } } return isolate->factory()->undefined_value(); } // Find the index of the break point info object for the specified code // position. int DebugInfo::GetBreakPointInfoIndex(int code_offset) { if (break_points()->IsUndefined()) return kNoBreakPointInfo; for (int i = 0; i < break_points()->length(); i++) { if (!break_points()->get(i)->IsUndefined()) { BreakPointInfo* break_point_info = BreakPointInfo::cast(break_points()->get(i)); if (break_point_info->code_offset() == code_offset) { return i; } } } return kNoBreakPointInfo; } // Remove the specified break point object. void BreakPointInfo::ClearBreakPoint(Handle<BreakPointInfo> break_point_info, Handle<Object> break_point_object) { Isolate* isolate = break_point_info->GetIsolate(); // If there are no break points just ignore. if (break_point_info->break_point_objects()->IsUndefined()) return; // If there is a single break point clear it if it is the same. if (!break_point_info->break_point_objects()->IsFixedArray()) { if (break_point_info->break_point_objects() == *break_point_object) { break_point_info->set_break_point_objects( isolate->heap()->undefined_value()); } return; } // If there are multiple break points shrink the array DCHECK(break_point_info->break_point_objects()->IsFixedArray()); Handle<FixedArray> old_array = Handle<FixedArray>( FixedArray::cast(break_point_info->break_point_objects())); Handle<FixedArray> new_array = isolate->factory()->NewFixedArray(old_array->length() - 1); int found_count = 0; for (int i = 0; i < old_array->length(); i++) { if (old_array->get(i) == *break_point_object) { DCHECK(found_count == 0); found_count++; } else { new_array->set(i - found_count, old_array->get(i)); } } // If the break point was found in the list change it. if (found_count > 0) break_point_info->set_break_point_objects(*new_array); } // Add the specified break point object. void BreakPointInfo::SetBreakPoint(Handle<BreakPointInfo> break_point_info, Handle<Object> break_point_object) { Isolate* isolate = break_point_info->GetIsolate(); // If there was no break point objects before just set it. if (break_point_info->break_point_objects()->IsUndefined()) { break_point_info->set_break_point_objects(*break_point_object); return; } // If the break point object is the same as before just ignore. if (break_point_info->break_point_objects() == *break_point_object) return; // If there was one break point object before replace with array. if (!break_point_info->break_point_objects()->IsFixedArray()) { Handle<FixedArray> array = isolate->factory()->NewFixedArray(2); array->set(0, break_point_info->break_point_objects()); array->set(1, *break_point_object); break_point_info->set_break_point_objects(*array); return; } // If there was more than one break point before extend array. Handle<FixedArray> old_array = Handle<FixedArray>( FixedArray::cast(break_point_info->break_point_objects())); Handle<FixedArray> new_array = isolate->factory()->NewFixedArray(old_array->length() + 1); for (int i = 0; i < old_array->length(); i++) { // If the break point was there before just ignore. if (old_array->get(i) == *break_point_object) return; new_array->set(i, old_array->get(i)); } // Add the new break point. new_array->set(old_array->length(), *break_point_object); break_point_info->set_break_point_objects(*new_array); } bool BreakPointInfo::HasBreakPointObject( Handle<BreakPointInfo> break_point_info, Handle<Object> break_point_object) { // No break point. if (break_point_info->break_point_objects()->IsUndefined()) return false; // Single break point. if (!break_point_info->break_point_objects()->IsFixedArray()) { return break_point_info->break_point_objects() == *break_point_object; } // Multiple break points. FixedArray* array = FixedArray::cast(break_point_info->break_point_objects()); for (int i = 0; i < array->length(); i++) { if (array->get(i) == *break_point_object) { return true; } } return false; } // Get the number of break points. int BreakPointInfo::GetBreakPointCount() { // No break point. if (break_point_objects()->IsUndefined()) return 0; // Single break point. if (!break_point_objects()->IsFixedArray()) return 1; // Multiple break points. return FixedArray::cast(break_point_objects())->length(); } // static MaybeHandle<JSDate> JSDate::New(Handle<JSFunction> constructor, Handle<JSReceiver> new_target, double tv) { Isolate* const isolate = constructor->GetIsolate(); Handle<JSObject> result; ASSIGN_RETURN_ON_EXCEPTION(isolate, result, JSObject::New(constructor, new_target), JSDate); if (-DateCache::kMaxTimeInMs <= tv && tv <= DateCache::kMaxTimeInMs) { tv = DoubleToInteger(tv) + 0.0; } else { tv = std::numeric_limits<double>::quiet_NaN(); } Handle<Object> value = isolate->factory()->NewNumber(tv); Handle<JSDate>::cast(result)->SetValue(*value, std::isnan(tv)); return Handle<JSDate>::cast(result); } // static double JSDate::CurrentTimeValue(Isolate* isolate) { if (FLAG_log_timer_events || FLAG_prof_cpp) LOG(isolate, CurrentTimeEvent()); // According to ECMA-262, section 15.9.1, page 117, the precision of // the number in a Date object representing a particular instant in // time is milliseconds. Therefore, we floor the result of getting // the OS time. return Floor(FLAG_verify_predictable ? isolate->heap()->MonotonicallyIncreasingTimeInMs() : base::OS::TimeCurrentMillis()); } // static Object* JSDate::GetField(Object* object, Smi* index) { return JSDate::cast(object)->DoGetField( static_cast<FieldIndex>(index->value())); } Object* JSDate::DoGetField(FieldIndex index) { DCHECK(index != kDateValue); DateCache* date_cache = GetIsolate()->date_cache(); if (index < kFirstUncachedField) { Object* stamp = cache_stamp(); if (stamp != date_cache->stamp() && stamp->IsSmi()) { // Since the stamp is not NaN, the value is also not NaN. int64_t local_time_ms = date_cache->ToLocal(static_cast<int64_t>(value()->Number())); SetCachedFields(local_time_ms, date_cache); } switch (index) { case kYear: return year(); case kMonth: return month(); case kDay: return day(); case kWeekday: return weekday(); case kHour: return hour(); case kMinute: return min(); case kSecond: return sec(); default: UNREACHABLE(); } } if (index >= kFirstUTCField) { return GetUTCField(index, value()->Number(), date_cache); } double time = value()->Number(); if (std::isnan(time)) return GetIsolate()->heap()->nan_value(); int64_t local_time_ms = date_cache->ToLocal(static_cast<int64_t>(time)); int days = DateCache::DaysFromTime(local_time_ms); if (index == kDays) return Smi::FromInt(days); int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days); if (index == kMillisecond) return Smi::FromInt(time_in_day_ms % 1000); DCHECK(index == kTimeInDay); return Smi::FromInt(time_in_day_ms); } Object* JSDate::GetUTCField(FieldIndex index, double value, DateCache* date_cache) { DCHECK(index >= kFirstUTCField); if (std::isnan(value)) return GetIsolate()->heap()->nan_value(); int64_t time_ms = static_cast<int64_t>(value); if (index == kTimezoneOffset) { return Smi::FromInt(date_cache->TimezoneOffset(time_ms)); } int days = DateCache::DaysFromTime(time_ms); if (index == kWeekdayUTC) return Smi::FromInt(date_cache->Weekday(days)); if (index <= kDayUTC) { int year, month, day; date_cache->YearMonthDayFromDays(days, &year, &month, &day); if (index == kYearUTC) return Smi::FromInt(year); if (index == kMonthUTC) return Smi::FromInt(month); DCHECK(index == kDayUTC); return Smi::FromInt(day); } int time_in_day_ms = DateCache::TimeInDay(time_ms, days); switch (index) { case kHourUTC: return Smi::FromInt(time_in_day_ms / (60 * 60 * 1000)); case kMinuteUTC: return Smi::FromInt((time_in_day_ms / (60 * 1000)) % 60); case kSecondUTC: return Smi::FromInt((time_in_day_ms / 1000) % 60); case kMillisecondUTC: return Smi::FromInt(time_in_day_ms % 1000); case kDaysUTC: return Smi::FromInt(days); case kTimeInDayUTC: return Smi::FromInt(time_in_day_ms); default: UNREACHABLE(); } UNREACHABLE(); return NULL; } // static Handle<Object> JSDate::SetValue(Handle<JSDate> date, double v) { Isolate* const isolate = date->GetIsolate(); Handle<Object> value = isolate->factory()->NewNumber(v); bool value_is_nan = std::isnan(v); date->SetValue(*value, value_is_nan); return value; } void JSDate::SetValue(Object* value, bool is_value_nan) { set_value(value); if (is_value_nan) { HeapNumber* nan = GetIsolate()->heap()->nan_value(); set_cache_stamp(nan, SKIP_WRITE_BARRIER); set_year(nan, SKIP_WRITE_BARRIER); set_month(nan, SKIP_WRITE_BARRIER); set_day(nan, SKIP_WRITE_BARRIER); set_hour(nan, SKIP_WRITE_BARRIER); set_min(nan, SKIP_WRITE_BARRIER); set_sec(nan, SKIP_WRITE_BARRIER); set_weekday(nan, SKIP_WRITE_BARRIER); } else { set_cache_stamp(Smi::FromInt(DateCache::kInvalidStamp), SKIP_WRITE_BARRIER); } } // static MaybeHandle<Object> JSDate::ToPrimitive(Handle<JSReceiver> receiver, Handle<Object> hint) { Isolate* const isolate = receiver->GetIsolate(); if (hint->IsString()) { Handle<String> hint_string = Handle<String>::cast(hint); if (hint_string->Equals(isolate->heap()->number_string())) { return JSReceiver::OrdinaryToPrimitive(receiver, OrdinaryToPrimitiveHint::kNumber); } if (hint_string->Equals(isolate->heap()->default_string()) || hint_string->Equals(isolate->heap()->string_string())) { return JSReceiver::OrdinaryToPrimitive(receiver, OrdinaryToPrimitiveHint::kString); } } THROW_NEW_ERROR(isolate, NewTypeError(MessageTemplate::kInvalidHint, hint), Object); } void JSDate::SetCachedFields(int64_t local_time_ms, DateCache* date_cache) { int days = DateCache::DaysFromTime(local_time_ms); int time_in_day_ms = DateCache::TimeInDay(local_time_ms, days); int year, month, day; date_cache->YearMonthDayFromDays(days, &year, &month, &day); int weekday = date_cache->Weekday(days); int hour = time_in_day_ms / (60 * 60 * 1000); int min = (time_in_day_ms / (60 * 1000)) % 60; int sec = (time_in_day_ms / 1000) % 60; set_cache_stamp(date_cache->stamp()); set_year(Smi::FromInt(year), SKIP_WRITE_BARRIER); set_month(Smi::FromInt(month), SKIP_WRITE_BARRIER); set_day(Smi::FromInt(day), SKIP_WRITE_BARRIER); set_weekday(Smi::FromInt(weekday), SKIP_WRITE_BARRIER); set_hour(Smi::FromInt(hour), SKIP_WRITE_BARRIER); set_min(Smi::FromInt(min), SKIP_WRITE_BARRIER); set_sec(Smi::FromInt(sec), SKIP_WRITE_BARRIER); } void JSArrayBuffer::Neuter() { CHECK(is_neuterable()); CHECK(is_external()); set_backing_store(NULL); set_byte_length(Smi::FromInt(0)); set_was_neutered(true); } void JSArrayBuffer::Setup(Handle<JSArrayBuffer> array_buffer, Isolate* isolate, bool is_external, void* data, size_t allocated_length, SharedFlag shared) { DCHECK(array_buffer->GetInternalFieldCount() == v8::ArrayBuffer::kInternalFieldCount); for (int i = 0; i < v8::ArrayBuffer::kInternalFieldCount; i++) { array_buffer->SetInternalField(i, Smi::FromInt(0)); } array_buffer->set_bit_field(0); array_buffer->set_is_external(is_external); array_buffer->set_is_neuterable(shared == SharedFlag::kNotShared); array_buffer->set_is_shared(shared == SharedFlag::kShared); Handle<Object> byte_length = isolate->factory()->NewNumberFromSize(allocated_length); CHECK(byte_length->IsSmi() || byte_length->IsHeapNumber()); array_buffer->set_byte_length(*byte_length); // Initialize backing store at last to avoid handling of |JSArrayBuffers| that // are currently being constructed in the |ArrayBufferTracker|. The // registration method below handles the case of registering a buffer that has // already been promoted. array_buffer->set_backing_store(data); if (data && !is_external) { isolate->heap()->RegisterNewArrayBuffer(*array_buffer); } } bool JSArrayBuffer::SetupAllocatingData(Handle<JSArrayBuffer> array_buffer, Isolate* isolate, size_t allocated_length, bool initialize, SharedFlag shared) { void* data; CHECK(isolate->array_buffer_allocator() != NULL); // Prevent creating array buffers when serializing. DCHECK(!isolate->serializer_enabled()); if (allocated_length != 0) { if (initialize) { data = isolate->array_buffer_allocator()->Allocate(allocated_length); } else { data = isolate->array_buffer_allocator()->AllocateUninitialized( allocated_length); } if (data == NULL) return false; } else { data = NULL; } JSArrayBuffer::Setup(array_buffer, isolate, false, data, allocated_length, shared); return true; } Handle<JSArrayBuffer> JSTypedArray::MaterializeArrayBuffer( Handle<JSTypedArray> typed_array) { Handle<Map> map(typed_array->map()); Isolate* isolate = typed_array->GetIsolate(); DCHECK(IsFixedTypedArrayElementsKind(map->elements_kind())); Handle<FixedTypedArrayBase> fixed_typed_array( FixedTypedArrayBase::cast(typed_array->elements())); Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(typed_array->buffer()), isolate); void* backing_store = isolate->array_buffer_allocator()->AllocateUninitialized( fixed_typed_array->DataSize()); buffer->set_is_external(false); DCHECK(buffer->byte_length()->IsSmi() || buffer->byte_length()->IsHeapNumber()); DCHECK(NumberToInt32(buffer->byte_length()) == fixed_typed_array->DataSize()); // Initialize backing store at last to avoid handling of |JSArrayBuffers| that // are currently being constructed in the |ArrayBufferTracker|. The // registration method below handles the case of registering a buffer that has // already been promoted. buffer->set_backing_store(backing_store); isolate->heap()->RegisterNewArrayBuffer(*buffer); memcpy(buffer->backing_store(), fixed_typed_array->DataPtr(), fixed_typed_array->DataSize()); Handle<FixedTypedArrayBase> new_elements = isolate->factory()->NewFixedTypedArrayWithExternalPointer( fixed_typed_array->length(), typed_array->type(), static_cast<uint8_t*>(buffer->backing_store())); typed_array->set_elements(*new_elements); return buffer; } Handle<JSArrayBuffer> JSTypedArray::GetBuffer() { Handle<JSArrayBuffer> array_buffer(JSArrayBuffer::cast(buffer()), GetIsolate()); if (array_buffer->was_neutered() || array_buffer->backing_store() != nullptr) { return array_buffer; } Handle<JSTypedArray> self(this); return MaterializeArrayBuffer(self); } Handle<PropertyCell> PropertyCell::InvalidateEntry( Handle<GlobalDictionary> dictionary, int entry) { Isolate* isolate = dictionary->GetIsolate(); // Swap with a copy. DCHECK(dictionary->ValueAt(entry)->IsPropertyCell()); Handle<PropertyCell> cell(PropertyCell::cast(dictionary->ValueAt(entry))); auto new_cell = isolate->factory()->NewPropertyCell(); new_cell->set_value(cell->value()); dictionary->ValueAtPut(entry, *new_cell); bool is_the_hole = cell->value()->IsTheHole(); // Cell is officially mutable henceforth. PropertyDetails details = cell->property_details(); details = details.set_cell_type(is_the_hole ? PropertyCellType::kInvalidated : PropertyCellType::kMutable); new_cell->set_property_details(details); // Old cell is ready for invalidation. if (is_the_hole) { cell->set_value(isolate->heap()->undefined_value()); } else { cell->set_value(isolate->heap()->the_hole_value()); } details = details.set_cell_type(PropertyCellType::kInvalidated); cell->set_property_details(details); cell->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kPropertyCellChangedGroup); return new_cell; } PropertyCellConstantType PropertyCell::GetConstantType() { if (value()->IsSmi()) return PropertyCellConstantType::kSmi; return PropertyCellConstantType::kStableMap; } static bool RemainsConstantType(Handle<PropertyCell> cell, Handle<Object> value) { // TODO(dcarney): double->smi and smi->double transition from kConstant if (cell->value()->IsSmi() && value->IsSmi()) { return true; } else if (cell->value()->IsHeapObject() && value->IsHeapObject()) { return HeapObject::cast(cell->value())->map() == HeapObject::cast(*value)->map() && HeapObject::cast(*value)->map()->is_stable(); } return false; } PropertyCellType PropertyCell::UpdatedType(Handle<PropertyCell> cell, Handle<Object> value, PropertyDetails details) { PropertyCellType type = details.cell_type(); DCHECK(!value->IsTheHole()); if (cell->value()->IsTheHole()) { switch (type) { // Only allow a cell to transition once into constant state. case PropertyCellType::kUninitialized: if (value->IsUndefined()) return PropertyCellType::kUndefined; return PropertyCellType::kConstant; case PropertyCellType::kInvalidated: return PropertyCellType::kMutable; default: UNREACHABLE(); return PropertyCellType::kMutable; } } switch (type) { case PropertyCellType::kUndefined: return PropertyCellType::kConstant; case PropertyCellType::kConstant: if (*value == cell->value()) return PropertyCellType::kConstant; // Fall through. case PropertyCellType::kConstantType: if (RemainsConstantType(cell, value)) { return PropertyCellType::kConstantType; } // Fall through. case PropertyCellType::kMutable: return PropertyCellType::kMutable; } UNREACHABLE(); return PropertyCellType::kMutable; } void PropertyCell::UpdateCell(Handle<GlobalDictionary> dictionary, int entry, Handle<Object> value, PropertyDetails details) { DCHECK(!value->IsTheHole()); DCHECK(dictionary->ValueAt(entry)->IsPropertyCell()); Handle<PropertyCell> cell(PropertyCell::cast(dictionary->ValueAt(entry))); const PropertyDetails original_details = cell->property_details(); // Data accesses could be cached in ics or optimized code. bool invalidate = original_details.kind() == kData && details.kind() == kAccessor; int index = original_details.dictionary_index(); PropertyCellType old_type = original_details.cell_type(); // Preserve the enumeration index unless the property was deleted or never // initialized. if (cell->value()->IsTheHole()) { index = dictionary->NextEnumerationIndex(); dictionary->SetNextEnumerationIndex(index + 1); // Negative lookup cells must be invalidated. invalidate = true; } DCHECK(index > 0); details = details.set_index(index); PropertyCellType new_type = UpdatedType(cell, value, original_details); if (invalidate) cell = PropertyCell::InvalidateEntry(dictionary, entry); // Install new property details and cell value. details = details.set_cell_type(new_type); cell->set_property_details(details); cell->set_value(*value); // Deopt when transitioning from a constant type. if (!invalidate && (old_type != new_type || original_details.IsReadOnly() != details.IsReadOnly())) { Isolate* isolate = dictionary->GetIsolate(); cell->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kPropertyCellChangedGroup); } } // static void PropertyCell::SetValueWithInvalidation(Handle<PropertyCell> cell, Handle<Object> new_value) { if (cell->value() != *new_value) { cell->set_value(*new_value); Isolate* isolate = cell->GetIsolate(); cell->dependent_code()->DeoptimizeDependentCodeGroup( isolate, DependentCode::kPropertyCellChangedGroup); } } } // namespace internal } // namespace v8