// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/snapshot/deserializer.h" #include "src/api.h" #include "src/assembler-inl.h" #include "src/bootstrapper.h" #include "src/deoptimizer.h" #include "src/external-reference-table.h" #include "src/heap/heap-inl.h" #include "src/isolate.h" #include "src/macro-assembler.h" #include "src/objects-inl.h" #include "src/snapshot/builtin-deserializer.h" #include "src/snapshot/natives.h" #include "src/snapshot/startup-deserializer.h" #include "src/v8.h" #include "src/v8threads.h" namespace v8 { namespace internal { void Deserializer::DecodeReservation( Vector<const SerializedData::Reservation> res) { DCHECK_EQ(0, reservations_[NEW_SPACE].size()); STATIC_ASSERT(NEW_SPACE == 0); int current_space = NEW_SPACE; for (auto& r : res) { reservations_[current_space].push_back({r.chunk_size(), nullptr, nullptr}); if (r.is_last()) current_space++; } DCHECK_EQ(kNumberOfSpaces, current_space); for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0; } void Deserializer::RegisterDeserializedObjectsForBlackAllocation() { isolate_->heap()->RegisterDeserializedObjectsForBlackAllocation( reservations_, deserialized_large_objects_, allocated_maps_); } bool Deserializer::ReserveSpace() { #ifdef DEBUG for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) { DCHECK(reservations_[i].size() > 0); } #endif // DEBUG DCHECK(allocated_maps_.empty()); if (!isolate_->heap()->ReserveSpace(reservations_, &allocated_maps_)) return false; for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) { high_water_[i] = reservations_[i][0].start; } return true; } // static bool Deserializer::ReserveSpace(StartupDeserializer* startup_deserializer, BuiltinDeserializer* builtin_deserializer) { const int first_space = NEW_SPACE; const int last_space = SerializerDeserializer::kNumberOfSpaces; Isolate* isolate = startup_deserializer->isolate(); // Create a set of merged reservations to reserve space in one go. // The BuiltinDeserializer's reservations are ignored, since our actual // requirements vary based on whether lazy deserialization is enabled. // Instead, we manually determine the required code-space. DCHECK(builtin_deserializer->ReservesOnlyCodeSpace()); Heap::Reservation merged_reservations[kNumberOfSpaces]; for (int i = first_space; i < last_space; i++) { merged_reservations[i] = startup_deserializer->reservations_[i]; } Heap::Reservation builtin_reservations = builtin_deserializer->CreateReservationsForEagerBuiltins(); DCHECK(!builtin_reservations.empty()); for (const auto& c : builtin_reservations) { merged_reservations[CODE_SPACE].push_back(c); } if (!isolate->heap()->ReserveSpace(merged_reservations, &startup_deserializer->allocated_maps_)) { return false; } DisallowHeapAllocation no_allocation; // Distribute the successful allocations between both deserializers. // There's nothing to be done here except for code space. { const int num_builtin_reservations = static_cast<int>(builtin_reservations.size()); for (int i = num_builtin_reservations - 1; i >= 0; i--) { const auto& c = merged_reservations[CODE_SPACE].back(); DCHECK_EQ(c.size, builtin_reservations[i].size); DCHECK_EQ(c.size, c.end - c.start); builtin_reservations[i].start = c.start; builtin_reservations[i].end = c.end; merged_reservations[CODE_SPACE].pop_back(); } builtin_deserializer->InitializeBuiltinsTable(builtin_reservations); } // Write back startup reservations. for (int i = first_space; i < last_space; i++) { startup_deserializer->reservations_[i].swap(merged_reservations[i]); } for (int i = first_space; i < kNumberOfPreallocatedSpaces; i++) { startup_deserializer->high_water_[i] = startup_deserializer->reservations_[i][0].start; builtin_deserializer->high_water_[i] = nullptr; } return true; } bool Deserializer::ReservesOnlyCodeSpace() const { for (int space = NEW_SPACE; space < kNumberOfSpaces; space++) { if (space == CODE_SPACE) continue; const auto& r = reservations_[space]; for (const Heap::Chunk& c : r) if (c.size != 0) return false; } return true; } void Deserializer::Initialize(Isolate* isolate) { DCHECK_NULL(isolate_); DCHECK_NOT_NULL(isolate); isolate_ = isolate; DCHECK_NULL(external_reference_table_); external_reference_table_ = ExternalReferenceTable::instance(isolate); #ifdef DEBUG // Count the number of external references registered through the API. num_api_references_ = 0; if (isolate_->api_external_references() != nullptr) { while (isolate_->api_external_references()[num_api_references_] != 0) { num_api_references_++; } } #endif // DEBUG CHECK_EQ(magic_number_, SerializedData::ComputeMagicNumber(external_reference_table_)); } void Deserializer::SortMapDescriptors() { for (const auto& address : allocated_maps_) { Map* map = Map::cast(HeapObject::FromAddress(address)); if (map->instance_descriptors()->number_of_descriptors() > 1) { map->instance_descriptors()->Sort(); } } } bool Deserializer::IsLazyDeserializationEnabled() const { return FLAG_lazy_deserialization && !isolate()->serializer_enabled(); } Deserializer::~Deserializer() { #ifdef DEBUG // Do not perform checks if we aborted deserialization. if (source_.position() == 0) return; // Check that we only have padding bytes remaining. while (source_.HasMore()) DCHECK_EQ(kNop, source_.Get()); for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) { int chunk_index = current_chunk_[space]; DCHECK_EQ(reservations_[space].size(), chunk_index + 1); DCHECK_EQ(reservations_[space][chunk_index].end, high_water_[space]); } DCHECK_EQ(allocated_maps_.size(), next_map_index_); #endif // DEBUG } // This is called on the roots. It is the driver of the deserialization // process. It is also called on the body of each function. void Deserializer::VisitRootPointers(Root root, Object** start, Object** end) { // The space must be new space. Any other space would cause ReadChunk to try // to update the remembered using nullptr as the address. ReadData(start, end, NEW_SPACE, nullptr); } void Deserializer::Synchronize(VisitorSynchronization::SyncTag tag) { static const byte expected = kSynchronize; CHECK_EQ(expected, source_.Get()); deserializing_builtins_ = (tag == VisitorSynchronization::kHandleScope); } void Deserializer::DeserializeDeferredObjects() { for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) { switch (code) { case kAlignmentPrefix: case kAlignmentPrefix + 1: case kAlignmentPrefix + 2: SetAlignment(code); break; default: { int space = code & kSpaceMask; DCHECK(space <= kNumberOfSpaces); DCHECK(code - space == kNewObject); HeapObject* object = GetBackReferencedObject(space); int size = source_.GetInt() << kPointerSizeLog2; Address obj_address = object->address(); Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize); Object** end = reinterpret_cast<Object**>(obj_address + size); bool filled = ReadData(start, end, space, obj_address); CHECK(filled); DCHECK(CanBeDeferred(object)); PostProcessNewObject(object, space); } } } } StringTableInsertionKey::StringTableInsertionKey(String* string) : StringTableKey(ComputeHashField(string)), string_(string) { DCHECK(string->IsInternalizedString()); } bool StringTableInsertionKey::IsMatch(Object* string) { // We know that all entries in a hash table had their hash keys created. // Use that knowledge to have fast failure. if (Hash() != String::cast(string)->Hash()) return false; // We want to compare the content of two internalized strings here. return string_->SlowEquals(String::cast(string)); } Handle<String> StringTableInsertionKey::AsHandle(Isolate* isolate) { return handle(string_, isolate); } uint32_t StringTableInsertionKey::ComputeHashField(String* string) { // Make sure hash_field() is computed. string->Hash(); return string->hash_field(); } HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) { if (deserializing_user_code()) { if (obj->IsString()) { String* string = String::cast(obj); // Uninitialize hash field as the hash seed may have changed. string->set_hash_field(String::kEmptyHashField); if (string->IsInternalizedString()) { // Canonicalize the internalized string. If it already exists in the // string table, set it to forward to the existing one. StringTableInsertionKey key(string); String* canonical = StringTable::LookupKeyIfExists(isolate_, &key); if (canonical == nullptr) { new_internalized_strings_.push_back(handle(string)); return string; } else { string->SetForwardedInternalizedString(canonical); return canonical; } } } else if (obj->IsScript()) { new_scripts_.push_back(handle(Script::cast(obj))); } else { DCHECK(CanBeDeferred(obj)); } } if (obj->IsAllocationSite()) { // Allocation sites are present in the snapshot, and must be linked into // a list at deserialization time. AllocationSite* site = AllocationSite::cast(obj); // TODO(mvstanton): consider treating the heap()->allocation_sites_list() // as a (weak) root. If this root is relocated correctly, this becomes // unnecessary. if (isolate_->heap()->allocation_sites_list() == Smi::kZero) { site->set_weak_next(isolate_->heap()->undefined_value()); } else { site->set_weak_next(isolate_->heap()->allocation_sites_list()); } isolate_->heap()->set_allocation_sites_list(site); } else if (obj->IsCode()) { // We flush all code pages after deserializing the startup snapshot. In that // case, we only need to remember code objects in the large object space. // When deserializing user code, remember each individual code object. if (deserializing_user_code() || space == LO_SPACE) { new_code_objects_.push_back(Code::cast(obj)); } } else if (obj->IsAccessorInfo()) { if (isolate_->external_reference_redirector()) { accessor_infos_.push_back(AccessorInfo::cast(obj)); } } else if (obj->IsExternalOneByteString()) { DCHECK(obj->map() == isolate_->heap()->native_source_string_map()); ExternalOneByteString* string = ExternalOneByteString::cast(obj); DCHECK(string->is_short()); string->set_resource( NativesExternalStringResource::DecodeForDeserialization( string->resource())); isolate_->heap()->RegisterExternalString(string); } else if (obj->IsJSArrayBuffer()) { JSArrayBuffer* buffer = JSArrayBuffer::cast(obj); // Only fixup for the off-heap case. if (buffer->backing_store() != nullptr) { Smi* store_index = reinterpret_cast<Smi*>(buffer->backing_store()); void* backing_store = off_heap_backing_stores_[store_index->value()]; buffer->set_backing_store(backing_store); buffer->set_allocation_base(backing_store); isolate_->heap()->RegisterNewArrayBuffer(buffer); } } else if (obj->IsFixedTypedArrayBase()) { FixedTypedArrayBase* fta = FixedTypedArrayBase::cast(obj); // Only fixup for the off-heap case. if (fta->base_pointer() == nullptr) { Smi* store_index = reinterpret_cast<Smi*>(fta->external_pointer()); void* backing_store = off_heap_backing_stores_[store_index->value()]; fta->set_external_pointer(backing_store); } } if (FLAG_rehash_snapshot && can_rehash_ && !deserializing_user_code()) { if (obj->IsString()) { // Uninitialize hash field as we are going to reinitialize the hash seed. String* string = String::cast(obj); string->set_hash_field(String::kEmptyHashField); } else if (obj->IsTransitionArray() && TransitionArray::cast(obj)->number_of_entries() > 1) { transition_arrays_.push_back(TransitionArray::cast(obj)); } } // Check alignment. DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment())); return obj; } int Deserializer::MaybeReplaceWithDeserializeLazy(int builtin_id) { DCHECK(Builtins::IsBuiltinId(builtin_id)); return (IsLazyDeserializationEnabled() && Builtins::IsLazy(builtin_id) && !deserializing_builtins_) ? Builtins::kDeserializeLazy : builtin_id; } HeapObject* Deserializer::GetBackReferencedObject(int space) { HeapObject* obj; SerializerReference back_reference = SerializerReference::FromBitfield(source_.GetInt()); if (space == LO_SPACE) { uint32_t index = back_reference.large_object_index(); obj = deserialized_large_objects_[index]; } else if (space == MAP_SPACE) { int index = back_reference.map_index(); DCHECK(index < next_map_index_); obj = HeapObject::FromAddress(allocated_maps_[index]); } else { DCHECK(space < kNumberOfPreallocatedSpaces); uint32_t chunk_index = back_reference.chunk_index(); DCHECK_LE(chunk_index, current_chunk_[space]); uint32_t chunk_offset = back_reference.chunk_offset(); Address address = reservations_[space][chunk_index].start + chunk_offset; if (next_alignment_ != kWordAligned) { int padding = Heap::GetFillToAlign(address, next_alignment_); next_alignment_ = kWordAligned; DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller()); address += padding; } obj = HeapObject::FromAddress(address); } if (deserializing_user_code() && obj->IsInternalizedString()) { obj = String::cast(obj)->GetForwardedInternalizedString(); } hot_objects_.Add(obj); return obj; } // This routine writes the new object into the pointer provided and then // returns true if the new object was in young space and false otherwise. // The reason for this strange interface is that otherwise the object is // written very late, which means the FreeSpace map is not set up by the // time we need to use it to mark the space at the end of a page free. void Deserializer::ReadObject(int space_number, Object** write_back) { Address address; HeapObject* obj; int size = source_.GetInt() << kObjectAlignmentBits; if (next_alignment_ != kWordAligned) { int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_); address = Allocate(space_number, reserved); obj = HeapObject::FromAddress(address); // If one of the following assertions fails, then we are deserializing an // aligned object when the filler maps have not been deserialized yet. // We require filler maps as padding to align the object. Heap* heap = isolate_->heap(); DCHECK(heap->free_space_map()->IsMap()); DCHECK(heap->one_pointer_filler_map()->IsMap()); DCHECK(heap->two_pointer_filler_map()->IsMap()); obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_); address = obj->address(); next_alignment_ = kWordAligned; } else { address = Allocate(space_number, size); obj = HeapObject::FromAddress(address); } isolate_->heap()->OnAllocationEvent(obj, size); Object** current = reinterpret_cast<Object**>(address); Object** limit = current + (size >> kPointerSizeLog2); if (ReadData(current, limit, space_number, address)) { // Only post process if object content has not been deferred. obj = PostProcessNewObject(obj, space_number); } Object* write_back_obj = obj; UnalignedCopy(write_back, &write_back_obj); #ifdef DEBUG if (obj->IsCode()) { DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE); } else { DCHECK(space_number != CODE_SPACE); } #endif // DEBUG } // We know the space requirements before deserialization and can // pre-allocate that reserved space. During deserialization, all we need // to do is to bump up the pointer for each space in the reserved // space. This is also used for fixing back references. // We may have to split up the pre-allocation into several chunks // because it would not fit onto a single page. We do not have to keep // track of when to move to the next chunk. An opcode will signal this. // Since multiple large objects cannot be folded into one large object // space allocation, we have to do an actual allocation when deserializing // each large object. Instead of tracking offset for back references, we // reference large objects by index. Address Deserializer::Allocate(int space_index, int size) { if (space_index == LO_SPACE) { AlwaysAllocateScope scope(isolate_); LargeObjectSpace* lo_space = isolate_->heap()->lo_space(); Executability exec = static_cast<Executability>(source_.Get()); AllocationResult result = lo_space->AllocateRaw(size, exec); HeapObject* obj = result.ToObjectChecked(); deserialized_large_objects_.push_back(obj); return obj->address(); } else if (space_index == MAP_SPACE) { DCHECK_EQ(Map::kSize, size); return allocated_maps_[next_map_index_++]; } else { DCHECK(space_index < kNumberOfPreallocatedSpaces); Address address = high_water_[space_index]; DCHECK_NOT_NULL(address); high_water_[space_index] += size; #ifdef DEBUG // Assert that the current reserved chunk is still big enough. const Heap::Reservation& reservation = reservations_[space_index]; int chunk_index = current_chunk_[space_index]; DCHECK_LE(high_water_[space_index], reservation[chunk_index].end); #endif if (space_index == CODE_SPACE) SkipList::Update(address, size); return address; } } Object* Deserializer::ReadDataSingle() { Object* o; Object** start = &o; Object** end = start + 1; int source_space = NEW_SPACE; Address current_object = nullptr; CHECK(ReadData(start, end, source_space, current_object)); return o; } bool Deserializer::ReadData(Object** current, Object** limit, int source_space, Address current_object_address) { Isolate* const isolate = isolate_; // Write barrier support costs around 1% in startup time. In fact there // are no new space objects in current boot snapshots, so it's not needed, // but that may change. bool write_barrier_needed = (current_object_address != nullptr && source_space != NEW_SPACE && source_space != CODE_SPACE); while (current < limit) { byte data = source_.Get(); switch (data) { #define CASE_STATEMENT(where, how, within, space_number) \ case where + how + within + space_number: \ STATIC_ASSERT((where & ~kWhereMask) == 0); \ STATIC_ASSERT((how & ~kHowToCodeMask) == 0); \ STATIC_ASSERT((within & ~kWhereToPointMask) == 0); \ STATIC_ASSERT((space_number & ~kSpaceMask) == 0); #define CASE_BODY(where, how, within, space_number_if_any) \ current = ReadDataCase<where, how, within, space_number_if_any>( \ isolate, current, current_object_address, data, write_barrier_needed); \ break; // This generates a case and a body for the new space (which has to do extra // write barrier handling) and handles the other spaces with fall-through cases // and one body. #define ALL_SPACES(where, how, within) \ CASE_STATEMENT(where, how, within, NEW_SPACE) \ CASE_BODY(where, how, within, NEW_SPACE) \ CASE_STATEMENT(where, how, within, OLD_SPACE) \ CASE_STATEMENT(where, how, within, CODE_SPACE) \ CASE_STATEMENT(where, how, within, MAP_SPACE) \ CASE_STATEMENT(where, how, within, LO_SPACE) \ CASE_BODY(where, how, within, kAnyOldSpace) #define FOUR_CASES(byte_code) \ case byte_code: \ case byte_code + 1: \ case byte_code + 2: \ case byte_code + 3: #define SIXTEEN_CASES(byte_code) \ FOUR_CASES(byte_code) \ FOUR_CASES(byte_code + 4) \ FOUR_CASES(byte_code + 8) \ FOUR_CASES(byte_code + 12) #define SINGLE_CASE(where, how, within, space) \ CASE_STATEMENT(where, how, within, space) \ CASE_BODY(where, how, within, space) // Deserialize a new object and write a pointer to it to the current // object. ALL_SPACES(kNewObject, kPlain, kStartOfObject) // Deserialize a new code object and write a pointer to its first // instruction to the current code object. ALL_SPACES(kNewObject, kFromCode, kInnerPointer) // Find a recently deserialized object using its offset from the current // allocation point and write a pointer to it to the current object. ALL_SPACES(kBackref, kPlain, kStartOfObject) ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject) #if V8_CODE_EMBEDS_OBJECT_POINTER // Deserialize a new object from pointer found in code and write // a pointer to it to the current object. Required only for MIPS, PPC, ARM // or S390 with embedded constant pool, and omitted on the other // architectures because it is fully unrolled and would cause bloat. ALL_SPACES(kNewObject, kFromCode, kStartOfObject) // Find a recently deserialized code object using its offset from the // current allocation point and write a pointer to it to the current // object. Required only for MIPS, PPC, ARM or S390 with embedded // constant pool. ALL_SPACES(kBackref, kFromCode, kStartOfObject) ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject) #endif // Find a recently deserialized code object using its offset from the // current allocation point and write a pointer to its first instruction // to the current code object or the instruction pointer in a function // object. ALL_SPACES(kBackref, kFromCode, kInnerPointer) ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer) // Find an object in the roots array and write a pointer to it to the // current object. SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0) #if V8_CODE_EMBEDS_OBJECT_POINTER // Find an object in the roots array and write a pointer to it to in code. SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0) #endif // Find an object in the partial snapshots cache and write a pointer to it // to the current object. SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0) SINGLE_CASE(kPartialSnapshotCache, kFromCode, kStartOfObject, 0) SINGLE_CASE(kPartialSnapshotCache, kFromCode, kInnerPointer, 0) // Find an external reference and write a pointer to it to the current // object. SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0) // Find an external reference and write a pointer to it in the current // code object. SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0) // Find an object in the attached references and write a pointer to it to // the current object. SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0) SINGLE_CASE(kAttachedReference, kFromCode, kStartOfObject, 0) SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0) // Find a builtin and write a pointer to it to the current object. SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0) SINGLE_CASE(kBuiltin, kFromCode, kStartOfObject, 0) SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0) #undef CASE_STATEMENT #undef CASE_BODY #undef ALL_SPACES case kSkip: { int size = source_.GetInt(); current = reinterpret_cast<Object**>( reinterpret_cast<intptr_t>(current) + size); break; } case kInternalReferenceEncoded: case kInternalReference: { // Internal reference address is not encoded via skip, but by offset // from code entry. int pc_offset = source_.GetInt(); int target_offset = source_.GetInt(); Code* code = Code::cast(HeapObject::FromAddress(current_object_address)); DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size()); DCHECK(0 <= target_offset && target_offset <= code->instruction_size()); Address pc = code->entry() + pc_offset; Address target = code->entry() + target_offset; Assembler::deserialization_set_target_internal_reference_at( isolate, pc, target, data == kInternalReference ? RelocInfo::INTERNAL_REFERENCE : RelocInfo::INTERNAL_REFERENCE_ENCODED); break; } case kNop: break; case kNextChunk: { int space = source_.Get(); DCHECK(space < kNumberOfPreallocatedSpaces); int chunk_index = current_chunk_[space]; const Heap::Reservation& reservation = reservations_[space]; // Make sure the current chunk is indeed exhausted. CHECK_EQ(reservation[chunk_index].end, high_water_[space]); // Move to next reserved chunk. chunk_index = ++current_chunk_[space]; CHECK_LT(chunk_index, reservation.size()); high_water_[space] = reservation[chunk_index].start; break; } case kDeferred: { // Deferred can only occur right after the heap object header. DCHECK(current == reinterpret_cast<Object**>(current_object_address + kPointerSize)); HeapObject* obj = HeapObject::FromAddress(current_object_address); // If the deferred object is a map, its instance type may be used // during deserialization. Initialize it with a temporary value. if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE); current = limit; return false; } case kSynchronize: // If we get here then that indicates that you have a mismatch between // the number of GC roots when serializing and deserializing. CHECK(false); break; // Deserialize raw data of variable length. case kVariableRawData: { int size_in_bytes = source_.GetInt(); byte* raw_data_out = reinterpret_cast<byte*>(current); source_.CopyRaw(raw_data_out, size_in_bytes); current = reinterpret_cast<Object**>( reinterpret_cast<intptr_t>(current) + size_in_bytes); break; } // Deserialize raw code directly into the body of the code object. // Do not move current. case kVariableRawCode: { int size_in_bytes = source_.GetInt(); source_.CopyRaw(current_object_address + Code::kDataStart, size_in_bytes); break; } case kVariableRepeat: { int repeats = source_.GetInt(); Object* object = current[-1]; DCHECK(!isolate->heap()->InNewSpace(object)); for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); break; } case kOffHeapBackingStore: { int byte_length = source_.GetInt(); byte* backing_store = static_cast<byte*>( isolate->array_buffer_allocator()->AllocateUninitialized( byte_length)); CHECK_NOT_NULL(backing_store); source_.CopyRaw(backing_store, byte_length); off_heap_backing_stores_.push_back(backing_store); break; } case kApiReference: { int skip = source_.GetInt(); current = reinterpret_cast<Object**>( reinterpret_cast<Address>(current) + skip); uint32_t reference_id = static_cast<uint32_t>(source_.GetInt()); DCHECK_WITH_MSG(reference_id < num_api_references_, "too few external references provided through the API"); Address address = reinterpret_cast<Address>( isolate->api_external_references()[reference_id]); memcpy(current, &address, kPointerSize); current++; break; } case kAlignmentPrefix: case kAlignmentPrefix + 1: case kAlignmentPrefix + 2: SetAlignment(data); break; STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots); STATIC_ASSERT(kNumberOfRootArrayConstants == 32); SIXTEEN_CASES(kRootArrayConstantsWithSkip) SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) { int skip = source_.GetInt(); current = reinterpret_cast<Object**>( reinterpret_cast<intptr_t>(current) + skip); // Fall through. } SIXTEEN_CASES(kRootArrayConstants) SIXTEEN_CASES(kRootArrayConstants + 16) { int id = data & kRootArrayConstantsMask; Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); Object* object = isolate->heap()->root(root_index); DCHECK(!isolate->heap()->InNewSpace(object)); UnalignedCopy(current++, &object); break; } STATIC_ASSERT(kNumberOfHotObjects == 8); FOUR_CASES(kHotObjectWithSkip) FOUR_CASES(kHotObjectWithSkip + 4) { int skip = source_.GetInt(); current = reinterpret_cast<Object**>( reinterpret_cast<Address>(current) + skip); // Fall through. } FOUR_CASES(kHotObject) FOUR_CASES(kHotObject + 4) { int index = data & kHotObjectMask; Object* hot_object = hot_objects_.Get(index); UnalignedCopy(current, &hot_object); if (write_barrier_needed && isolate->heap()->InNewSpace(hot_object)) { Address current_address = reinterpret_cast<Address>(current); isolate->heap()->RecordWrite( HeapObject::FromAddress(current_object_address), reinterpret_cast<Object**>(current_address), hot_object); } current++; break; } // Deserialize raw data of fixed length from 1 to 32 words. STATIC_ASSERT(kNumberOfFixedRawData == 32); SIXTEEN_CASES(kFixedRawData) SIXTEEN_CASES(kFixedRawData + 16) { byte* raw_data_out = reinterpret_cast<byte*>(current); int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2; source_.CopyRaw(raw_data_out, size_in_bytes); current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes); break; } STATIC_ASSERT(kNumberOfFixedRepeat == 16); SIXTEEN_CASES(kFixedRepeat) { int repeats = data - kFixedRepeatStart; Object* object; UnalignedCopy(&object, current - 1); DCHECK(!isolate->heap()->InNewSpace(object)); for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object); break; } #undef SIXTEEN_CASES #undef FOUR_CASES #undef SINGLE_CASE default: CHECK(false); } } CHECK_EQ(limit, current); return true; } template <int where, int how, int within, int space_number_if_any> Object** Deserializer::ReadDataCase(Isolate* isolate, Object** current, Address current_object_address, byte data, bool write_barrier_needed) { bool emit_write_barrier = false; bool current_was_incremented = false; int space_number = space_number_if_any == kAnyOldSpace ? (data & kSpaceMask) : space_number_if_any; if (where == kNewObject && how == kPlain && within == kStartOfObject) { ReadObject(space_number, current); emit_write_barrier = (space_number == NEW_SPACE); } else { Object* new_object = nullptr; /* May not be a real Object pointer. */ if (where == kNewObject) { ReadObject(space_number, &new_object); } else if (where == kBackref) { emit_write_barrier = (space_number == NEW_SPACE); new_object = GetBackReferencedObject(data & kSpaceMask); } else if (where == kBackrefWithSkip) { int skip = source_.GetInt(); current = reinterpret_cast<Object**>(reinterpret_cast<Address>(current) + skip); emit_write_barrier = (space_number == NEW_SPACE); new_object = GetBackReferencedObject(data & kSpaceMask); } else if (where == kRootArray) { int id = source_.GetInt(); Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(id); new_object = isolate->heap()->root(root_index); emit_write_barrier = isolate->heap()->InNewSpace(new_object); hot_objects_.Add(HeapObject::cast(new_object)); } else if (where == kPartialSnapshotCache) { int cache_index = source_.GetInt(); new_object = isolate->partial_snapshot_cache()->at(cache_index); emit_write_barrier = isolate->heap()->InNewSpace(new_object); } else if (where == kExternalReference) { int skip = source_.GetInt(); current = reinterpret_cast<Object**>(reinterpret_cast<Address>(current) + skip); uint32_t reference_id = static_cast<uint32_t>(source_.GetInt()); Address address = external_reference_table_->address(reference_id); new_object = reinterpret_cast<Object*>(address); } else if (where == kAttachedReference) { int index = source_.GetInt(); new_object = *attached_objects_[index]; emit_write_barrier = isolate->heap()->InNewSpace(new_object); } else { DCHECK(where == kBuiltin); int builtin_id = MaybeReplaceWithDeserializeLazy(source_.GetInt()); new_object = isolate->builtins()->builtin(builtin_id); emit_write_barrier = false; } if (within == kInnerPointer) { DCHECK(how == kFromCode); if (where == kBuiltin) { // At this point, new_object may still be uninitialized, thus the // unchecked Code cast. new_object = reinterpret_cast<Object*>( reinterpret_cast<Code*>(new_object)->instruction_start()); } else if (new_object->IsCode()) { new_object = reinterpret_cast<Object*>( Code::cast(new_object)->instruction_start()); } else { Cell* cell = Cell::cast(new_object); new_object = reinterpret_cast<Object*>(cell->ValueAddress()); } } if (how == kFromCode) { Address location_of_branch_data = reinterpret_cast<Address>(current); Assembler::deserialization_set_special_target_at( isolate, location_of_branch_data, Code::cast(HeapObject::FromAddress(current_object_address)), reinterpret_cast<Address>(new_object)); location_of_branch_data += Assembler::kSpecialTargetSize; current = reinterpret_cast<Object**>(location_of_branch_data); current_was_incremented = true; } else { UnalignedCopy(current, &new_object); } } if (emit_write_barrier && write_barrier_needed) { Address current_address = reinterpret_cast<Address>(current); SLOW_DCHECK(isolate->heap()->ContainsSlow(current_object_address)); isolate->heap()->RecordWrite( HeapObject::FromAddress(current_object_address), reinterpret_cast<Object**>(current_address), *reinterpret_cast<Object**>(current_address)); } if (!current_was_incremented) { current++; } return current; } } // namespace internal } // namespace v8