// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_EXECUTION_H_ #define V8_EXECUTION_H_ #include "src/base/atomicops.h" #include "src/globals.h" namespace v8 { namespace internal { template <typename T> class Handle; class Execution final : public AllStatic { public: // Whether to report pending messages, or keep them pending on the isolate. enum class MessageHandling { kReport, kKeepPending }; enum class Target { kCallable, kRunMicrotasks }; // Call a function, the caller supplies a receiver and an array // of arguments. // // When the function called is not in strict mode, receiver is // converted to an object. // V8_EXPORT_PRIVATE V8_WARN_UNUSED_RESULT static MaybeHandle<Object> Call( Isolate* isolate, Handle<Object> callable, Handle<Object> receiver, int argc, Handle<Object> argv[]); // Construct object from function, the caller supplies an array of // arguments. V8_WARN_UNUSED_RESULT static MaybeHandle<Object> New( Isolate* isolate, Handle<Object> constructor, int argc, Handle<Object> argv[]); V8_WARN_UNUSED_RESULT static MaybeHandle<Object> New( Isolate* isolate, Handle<Object> constructor, Handle<Object> new_target, int argc, Handle<Object> argv[]); // Call a function, just like Call(), but handle don't report exceptions // externally. // The return value is either the result of calling the function (if no // exception occurred), or an empty handle. // If message_handling is MessageHandling::kReport, exceptions (except for // termination exceptions) will be stored in exception_out (if not a // nullptr). static MaybeHandle<Object> TryCall(Isolate* isolate, Handle<Object> callable, Handle<Object> receiver, int argc, Handle<Object> argv[], MessageHandling message_handling, MaybeHandle<Object>* exception_out, Target target = Target::kCallable); // Convenience method for performing RunMicrotasks static MaybeHandle<Object> RunMicrotasks(Isolate* isolate, MessageHandling message_handling, MaybeHandle<Object>* exception_out); }; class ExecutionAccess; class InterruptsScope; // StackGuard contains the handling of the limits that are used to limit the // number of nested invocations of JavaScript and the stack size used in each // invocation. class V8_EXPORT_PRIVATE StackGuard final { public: // Pass the address beyond which the stack should not grow. The stack // is assumed to grow downwards. void SetStackLimit(uintptr_t limit); // The simulator uses a separate JS stack. Limits on the JS stack might have // to be adjusted in order to reflect overflows of the C stack, because we // cannot rely on the interleaving of frames on the simulator. void AdjustStackLimitForSimulator(); // Threading support. char* ArchiveStackGuard(char* to); char* RestoreStackGuard(char* from); static int ArchiveSpacePerThread() { return sizeof(ThreadLocal); } void FreeThreadResources(); // Sets up the default stack guard for this thread if it has not // already been set up. void InitThread(const ExecutionAccess& lock); // Clears the stack guard for this thread so it does not look as if // it has been set up. void ClearThread(const ExecutionAccess& lock); #define INTERRUPT_LIST(V) \ V(TERMINATE_EXECUTION, TerminateExecution, 0) \ V(GC_REQUEST, GC, 1) \ V(INSTALL_CODE, InstallCode, 2) \ V(API_INTERRUPT, ApiInterrupt, 3) \ V(DEOPT_MARKED_ALLOCATION_SITES, DeoptMarkedAllocationSites, 4) #define V(NAME, Name, id) \ inline bool Check##Name() { return CheckInterrupt(NAME); } \ inline bool CheckAndClear##Name() { return CheckAndClearInterrupt(NAME); } \ inline void Request##Name() { RequestInterrupt(NAME); } \ inline void Clear##Name() { ClearInterrupt(NAME); } INTERRUPT_LIST(V) #undef V // Flag used to set the interrupt causes. enum InterruptFlag { #define V(NAME, Name, id) NAME = (1 << id), INTERRUPT_LIST(V) #undef V #define V(NAME, Name, id) NAME | ALL_INTERRUPTS = INTERRUPT_LIST(V) 0 #undef V }; uintptr_t climit() { return thread_local_.climit(); } uintptr_t jslimit() { return thread_local_.jslimit(); } // This provides an asynchronous read of the stack limits for the current // thread. There are no locks protecting this, but it is assumed that you // have the global V8 lock if you are using multiple V8 threads. uintptr_t real_climit() { return thread_local_.real_climit_; } uintptr_t real_jslimit() { return thread_local_.real_jslimit_; } Address address_of_jslimit() { return reinterpret_cast<Address>(&thread_local_.jslimit_); } Address address_of_real_jslimit() { return reinterpret_cast<Address>(&thread_local_.real_jslimit_); } // If the stack guard is triggered, but it is not an actual // stack overflow, then handle the interruption accordingly. Object* HandleInterrupts(); private: StackGuard(); bool CheckInterrupt(InterruptFlag flag); void RequestInterrupt(InterruptFlag flag); void ClearInterrupt(InterruptFlag flag); bool CheckAndClearInterrupt(InterruptFlag flag); // You should hold the ExecutionAccess lock when calling this method. bool has_pending_interrupts(const ExecutionAccess& lock) { return thread_local_.interrupt_flags_ != 0; } // You should hold the ExecutionAccess lock when calling this method. inline void set_interrupt_limits(const ExecutionAccess& lock); // Reset limits to actual values. For example after handling interrupt. // You should hold the ExecutionAccess lock when calling this method. inline void reset_limits(const ExecutionAccess& lock); // Enable or disable interrupts. void EnableInterrupts(); void DisableInterrupts(); #if V8_TARGET_ARCH_64_BIT static const uintptr_t kInterruptLimit = uintptr_t{0xfffffffffffffffe}; static const uintptr_t kIllegalLimit = uintptr_t{0xfffffffffffffff8}; #else static const uintptr_t kInterruptLimit = 0xfffffffe; static const uintptr_t kIllegalLimit = 0xfffffff8; #endif void PushInterruptsScope(InterruptsScope* scope); void PopInterruptsScope(); class ThreadLocal final { public: ThreadLocal() { Clear(); } // You should hold the ExecutionAccess lock when you call Initialize or // Clear. void Clear(); // Returns true if the heap's stack limits should be set, false if not. bool Initialize(Isolate* isolate); // The stack limit is split into a JavaScript and a C++ stack limit. These // two are the same except when running on a simulator where the C++ and // JavaScript stacks are separate. Each of the two stack limits have two // values. The one eith the real_ prefix is the actual stack limit // set for the VM. The one without the real_ prefix has the same value as // the actual stack limit except when there is an interruption (e.g. debug // break or preemption) in which case it is lowered to make stack checks // fail. Both the generated code and the runtime system check against the // one without the real_ prefix. uintptr_t real_jslimit_; // Actual JavaScript stack limit set for the VM. uintptr_t real_climit_; // Actual C++ stack limit set for the VM. // jslimit_ and climit_ can be read without any lock. // Writing requires the ExecutionAccess lock. base::AtomicWord jslimit_; base::AtomicWord climit_; uintptr_t jslimit() { return bit_cast<uintptr_t>(base::Relaxed_Load(&jslimit_)); } void set_jslimit(uintptr_t limit) { return base::Relaxed_Store(&jslimit_, static_cast<base::AtomicWord>(limit)); } uintptr_t climit() { return bit_cast<uintptr_t>(base::Relaxed_Load(&climit_)); } void set_climit(uintptr_t limit) { return base::Relaxed_Store(&climit_, static_cast<base::AtomicWord>(limit)); } InterruptsScope* interrupt_scopes_; int interrupt_flags_; }; // TODO(isolates): Technically this could be calculated directly from a // pointer to StackGuard. Isolate* isolate_; ThreadLocal thread_local_; friend class Isolate; friend class StackLimitCheck; friend class InterruptsScope; DISALLOW_COPY_AND_ASSIGN(StackGuard); }; } // namespace internal } // namespace v8 #endif // V8_EXECUTION_H_