// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/builtins/builtins.h" #include "src/api.h" #include "src/assembler-inl.h" #include "src/builtins/builtins-descriptors.h" #include "src/callable.h" #include "src/isolate.h" #include "src/macro-assembler.h" #include "src/objects-inl.h" #include "src/visitors.h" namespace v8 { namespace internal { // Forward declarations for C++ builtins. #define FORWARD_DECLARE(Name) \ Object* Builtin_##Name(int argc, Object** args, Isolate* isolate); BUILTIN_LIST_C(FORWARD_DECLARE) #undef FORWARD_DECLARE namespace { // TODO(jgruber): Pack in CallDescriptors::Key. struct BuiltinMetadata { const char* name; Builtins::Kind kind; union { Address cpp_entry; // For CPP and API builtins. int8_t parameter_count; // For TFJ builtins. } kind_specific_data; }; // clang-format off #define DECL_CPP(Name, ...) { #Name, Builtins::CPP, \ { FUNCTION_ADDR(Builtin_##Name) }}, #define DECL_API(Name, ...) { #Name, Builtins::API, \ { FUNCTION_ADDR(Builtin_##Name) }}, #ifdef V8_TARGET_BIG_ENDIAN #define DECL_TFJ(Name, Count, ...) { #Name, Builtins::TFJ, \ { reinterpret_cast<Address>(static_cast<uintptr_t>( \ Count) << (kBitsPerByte * (kPointerSize - 1))) }}, #else #define DECL_TFJ(Name, Count, ...) { #Name, Builtins::TFJ, \ { reinterpret_cast<Address>(Count) }}, #endif #define DECL_TFC(Name, ...) { #Name, Builtins::TFC, {} }, #define DECL_TFS(Name, ...) { #Name, Builtins::TFS, {} }, #define DECL_TFH(Name, ...) { #Name, Builtins::TFH, {} }, #define DECL_ASM(Name, ...) { #Name, Builtins::ASM, {} }, const BuiltinMetadata builtin_metadata[] = { BUILTIN_LIST(DECL_CPP, DECL_API, DECL_TFJ, DECL_TFC, DECL_TFS, DECL_TFH, DECL_ASM) }; #undef DECL_CPP #undef DECL_API #undef DECL_TFJ #undef DECL_TFC #undef DECL_TFS #undef DECL_TFH #undef DECL_ASM // clang-format on } // namespace Builtins::Builtins() : initialized_(false) { memset(builtins_, 0, sizeof(builtins_[0]) * builtin_count); } Builtins::~Builtins() {} BailoutId Builtins::GetContinuationBailoutId(Name name) { DCHECK(Builtins::KindOf(name) == TFJ || Builtins::KindOf(name) == TFC); return BailoutId(BailoutId::kFirstBuiltinContinuationId + name); } Builtins::Name Builtins::GetBuiltinFromBailoutId(BailoutId id) { int builtin_index = id.ToInt() - BailoutId::kFirstBuiltinContinuationId; DCHECK(Builtins::KindOf(builtin_index) == TFJ || Builtins::KindOf(builtin_index) == TFC); return static_cast<Name>(builtin_index); } void Builtins::TearDown() { initialized_ = false; } void Builtins::IterateBuiltins(RootVisitor* v) { v->VisitRootPointers(Root::kBuiltins, &builtins_[0], &builtins_[0] + builtin_count); } const char* Builtins::Lookup(byte* pc) { // may be called during initialization (disassembler!) if (initialized_) { for (int i = 0; i < builtin_count; i++) { Code* entry = Code::cast(builtins_[i]); if (entry->contains(pc)) return name(i); } } return nullptr; } Handle<Code> Builtins::NewFunctionContext(ScopeType scope_type) { switch (scope_type) { case ScopeType::EVAL_SCOPE: return builtin_handle(kFastNewFunctionContextEval); case ScopeType::FUNCTION_SCOPE: return builtin_handle(kFastNewFunctionContextFunction); default: UNREACHABLE(); } return Handle<Code>::null(); } Handle<Code> Builtins::NonPrimitiveToPrimitive(ToPrimitiveHint hint) { switch (hint) { case ToPrimitiveHint::kDefault: return builtin_handle(kNonPrimitiveToPrimitive_Default); case ToPrimitiveHint::kNumber: return builtin_handle(kNonPrimitiveToPrimitive_Number); case ToPrimitiveHint::kString: return builtin_handle(kNonPrimitiveToPrimitive_String); } UNREACHABLE(); } Handle<Code> Builtins::OrdinaryToPrimitive(OrdinaryToPrimitiveHint hint) { switch (hint) { case OrdinaryToPrimitiveHint::kNumber: return builtin_handle(kOrdinaryToPrimitive_Number); case OrdinaryToPrimitiveHint::kString: return builtin_handle(kOrdinaryToPrimitive_String); } UNREACHABLE(); } void Builtins::set_builtin(int index, HeapObject* builtin) { DCHECK(Builtins::IsBuiltinId(index)); DCHECK(Internals::HasHeapObjectTag(builtin)); // The given builtin may be completely uninitialized thus we cannot check its // type here. builtins_[index] = builtin; } Handle<Code> Builtins::builtin_handle(int index) { DCHECK(IsBuiltinId(index)); return Handle<Code>(reinterpret_cast<Code**>(builtin_address(index))); } // static int Builtins::GetStackParameterCount(Name name) { DCHECK(Builtins::KindOf(name) == TFJ); return builtin_metadata[name].kind_specific_data.parameter_count; } // static Callable Builtins::CallableFor(Isolate* isolate, Name name) { Handle<Code> code( reinterpret_cast<Code**>(isolate->builtins()->builtin_address(name))); CallDescriptors::Key key; switch (name) { // This macro is deliberately crafted so as to emit very little code, // in order to keep binary size of this function under control. #define CASE_OTHER(Name, ...) \ case k##Name: { \ key = Builtin_##Name##_InterfaceDescriptor::key(); \ break; \ } BUILTIN_LIST(IGNORE_BUILTIN, IGNORE_BUILTIN, IGNORE_BUILTIN, CASE_OTHER, CASE_OTHER, CASE_OTHER, IGNORE_BUILTIN) #undef CASE_OTHER case kConsoleAssert: { return Callable(code, BuiltinDescriptor(isolate)); } case kArrayForEach: { Handle<Code> code = BUILTIN_CODE(isolate, ArrayForEach); return Callable(code, BuiltinDescriptor(isolate)); } case kArrayForEachLoopEagerDeoptContinuation: { Handle<Code> code = BUILTIN_CODE(isolate, ArrayForEachLoopEagerDeoptContinuation); return Callable(code, BuiltinDescriptor(isolate)); } case kArrayForEachLoopLazyDeoptContinuation: { Handle<Code> code = BUILTIN_CODE(isolate, ArrayForEachLoopLazyDeoptContinuation); return Callable(code, BuiltinDescriptor(isolate)); } case kArrayMapLoopEagerDeoptContinuation: { Handle<Code> code = BUILTIN_CODE(isolate, ArrayMapLoopEagerDeoptContinuation); return Callable(code, BuiltinDescriptor(isolate)); } case kArrayMapLoopLazyDeoptContinuation: { Handle<Code> code = BUILTIN_CODE(isolate, ArrayMapLoopLazyDeoptContinuation); return Callable(code, BuiltinDescriptor(isolate)); } case kArrayFilterLoopEagerDeoptContinuation: { Handle<Code> code = BUILTIN_CODE(isolate, ArrayFilterLoopEagerDeoptContinuation); return Callable(code, BuiltinDescriptor(isolate)); } case kArrayFilterLoopLazyDeoptContinuation: { Handle<Code> code = BUILTIN_CODE(isolate, ArrayFilterLoopLazyDeoptContinuation); return Callable(code, BuiltinDescriptor(isolate)); } default: UNREACHABLE(); } CallInterfaceDescriptor descriptor(isolate, key); return Callable(code, descriptor); } // static const char* Builtins::name(int index) { DCHECK(IsBuiltinId(index)); return builtin_metadata[index].name; } // static Address Builtins::CppEntryOf(int index) { DCHECK(Builtins::HasCppImplementation(index)); return builtin_metadata[index].kind_specific_data.cpp_entry; } // static bool Builtins::IsLazy(int index) { DCHECK(IsBuiltinId(index)); // There are a couple of reasons that builtins can require eager-loading, // i.e. deserialization at isolate creation instead of on-demand. For // instance: // * DeserializeLazy implements lazy loading. // * Immovability requirement. This can only conveniently be guaranteed at // isolate creation (at runtime, we'd have to allocate in LO space). // * To avoid conflicts in SharedFunctionInfo::function_data (Illegal, // HandleApiCall, interpreter entry trampolines). // * Frequent use makes lazy loading unnecessary (CompileLazy). // TODO(wasm): Remove wasm builtins once immovability is no longer required. switch (index) { case kAbort: // Required by wasm. case kArrayForEachLoopEagerDeoptContinuation: // https://crbug.com/v8/6786. case kArrayForEachLoopLazyDeoptContinuation: // https://crbug.com/v8/6786. case kArrayMapLoopEagerDeoptContinuation: // https://crbug.com/v8/6786. case kArrayMapLoopLazyDeoptContinuation: // https://crbug.com/v8/6786. case kArrayFilterLoopEagerDeoptContinuation: // https://crbug.com/v8/6786. case kArrayFilterLoopLazyDeoptContinuation: // https://crbug.com/v8/6786. case kCheckOptimizationMarker: case kCompileLazy: case kDeserializeLazy: case kFunctionPrototypeHasInstance: // https://crbug.com/v8/6786. case kHandleApiCall: case kIllegal: case kInterpreterEnterBytecodeAdvance: case kInterpreterEnterBytecodeDispatch: case kInterpreterEntryTrampoline: case kObjectConstructor_ConstructStub: // https://crbug.com/v8/6787. case kProxyConstructor_ConstructStub: // https://crbug.com/v8/6787. case kNumberConstructor_ConstructStub: // https://crbug.com/v8/6787. case kStringConstructor_ConstructStub: // https://crbug.com/v8/6787. case kProxyConstructor: // https://crbug.com/v8/6787. case kRecordWrite: // https://crbug.com/chromium/765301. case kThrowWasmTrapDivByZero: // Required by wasm. case kThrowWasmTrapDivUnrepresentable: // Required by wasm. case kThrowWasmTrapFloatUnrepresentable: // Required by wasm. case kThrowWasmTrapFuncInvalid: // Required by wasm. case kThrowWasmTrapFuncSigMismatch: // Required by wasm. case kThrowWasmTrapMemOutOfBounds: // Required by wasm. case kThrowWasmTrapRemByZero: // Required by wasm. case kThrowWasmTrapUnreachable: // Required by wasm. case kToNumber: // Required by wasm. case kWasmCompileLazy: // Required by wasm. case kWasmStackGuard: // Required by wasm. return false; default: // TODO(6624): Extend to other kinds. return KindOf(index) == TFJ; } UNREACHABLE(); } // static Builtins::Kind Builtins::KindOf(int index) { DCHECK(IsBuiltinId(index)); return builtin_metadata[index].kind; } // static const char* Builtins::KindNameOf(int index) { Kind kind = Builtins::KindOf(index); // clang-format off switch (kind) { case CPP: return "CPP"; case API: return "API"; case TFJ: return "TFJ"; case TFC: return "TFC"; case TFS: return "TFS"; case TFH: return "TFH"; case ASM: return "ASM"; } // clang-format on UNREACHABLE(); } // static bool Builtins::IsCpp(int index) { return Builtins::KindOf(index) == CPP; } // static bool Builtins::HasCppImplementation(int index) { Kind kind = Builtins::KindOf(index); return (kind == CPP || kind == API); } Handle<Code> Builtins::JSConstructStubGeneric() { return FLAG_harmony_restrict_constructor_return ? builtin_handle(kJSConstructStubGenericRestrictedReturn) : builtin_handle(kJSConstructStubGenericUnrestrictedReturn); } // static bool Builtins::AllowDynamicFunction(Isolate* isolate, Handle<JSFunction> target, Handle<JSObject> target_global_proxy) { if (FLAG_allow_unsafe_function_constructor) return true; HandleScopeImplementer* impl = isolate->handle_scope_implementer(); Handle<Context> responsible_context = impl->MicrotaskContextIsLastEnteredContext() ? impl->MicrotaskContext() : impl->LastEnteredContext(); // TODO(jochen): Remove this. if (responsible_context.is_null()) { return true; } if (*responsible_context == target->context()) return true; return isolate->MayAccess(responsible_context, target_global_proxy); } } // namespace internal } // namespace v8