// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #include "src/typing-asm.h" #include "src/ast.h" #include "src/codegen.h" #include "src/scopes.h" #include "src/zone-type-cache.h" namespace v8 { namespace internal { namespace { base::LazyInstance::type kCache = LAZY_INSTANCE_INITIALIZER; } // namespace #define FAIL(node, msg) \ do { \ valid_ = false; \ int line = node->position() == RelocInfo::kNoPosition \ ? -1 \ : script_->GetLineNumber(node->position()); \ base::OS::SNPrintF(error_message_, sizeof(error_message_), \ "asm: line %d: %s\n", line + 1, msg); \ return; \ } while (false) #define RECURSE(call) \ do { \ DCHECK(!HasStackOverflow()); \ call; \ if (HasStackOverflow()) return; \ if (!valid_) return; \ } while (false) AsmTyper::AsmTyper(Isolate* isolate, Zone* zone, Script* script, FunctionLiteral* root) : script_(script), root_(root), valid_(true), stdlib_types_(zone), stdlib_heap_types_(zone), stdlib_math_types_(zone), global_variable_type_(HashMap::PointersMatch, ZoneHashMap::kDefaultHashMapCapacity, ZoneAllocationPolicy(zone)), local_variable_type_(HashMap::PointersMatch, ZoneHashMap::kDefaultHashMapCapacity, ZoneAllocationPolicy(zone)), in_function_(false), building_function_tables_(false), cache_(kCache.Get()) { InitializeAstVisitor(isolate, zone); InitializeStdlib(); } bool AsmTyper::Validate() { VisitAsmModule(root_); return valid_ && !HasStackOverflow(); } void AsmTyper::VisitAsmModule(FunctionLiteral* fun) { Scope* scope = fun->scope(); if (!scope->is_function_scope()) FAIL(fun, "not at function scope"); // Module parameters. for (int i = 0; i < scope->num_parameters(); ++i) { Variable* param = scope->parameter(i); DCHECK(GetType(param) == NULL); SetType(param, Type::None(zone())); } ZoneList* decls = scope->declarations(); // Set all globals to type Any. VariableDeclaration* decl = scope->function(); if (decl != NULL) SetType(decl->proxy()->var(), Type::None()); RECURSE(VisitDeclarations(scope->declarations())); // Validate global variables. RECURSE(VisitStatements(fun->body())); // Validate function annotations. for (int i = 0; i < decls->length(); ++i) { FunctionDeclaration* decl = decls->at(i)->AsFunctionDeclaration(); if (decl != NULL) { RECURSE(VisitFunctionAnnotation(decl->fun())); Variable* var = decl->proxy()->var(); DCHECK(GetType(var) == NULL); SetType(var, computed_type_); DCHECK(GetType(var) != NULL); } } // Build function tables. building_function_tables_ = true; RECURSE(VisitStatements(fun->body())); building_function_tables_ = false; // Validate function bodies. for (int i = 0; i < decls->length(); ++i) { FunctionDeclaration* decl = decls->at(i)->AsFunctionDeclaration(); if (decl != NULL) { RECURSE( VisitWithExpectation(decl->fun(), Type::Any(zone()), "UNREACHABLE")); if (!computed_type_->IsFunction()) { FAIL(decl->fun(), "function literal expected to be a function"); } } } // Validate exports. ReturnStatement* stmt = fun->body()->last()->AsReturnStatement(); RECURSE(VisitWithExpectation(stmt->expression(), Type::Object(), "expected object export")); } void AsmTyper::VisitVariableDeclaration(VariableDeclaration* decl) { Variable* var = decl->proxy()->var(); if (var->location() != VariableLocation::PARAMETER) { if (GetType(var) == NULL) { SetType(var, Type::Any(zone())); } else { DCHECK(!GetType(var)->IsFunction()); } } DCHECK(GetType(var) != NULL); intish_ = 0; } void AsmTyper::VisitFunctionDeclaration(FunctionDeclaration* decl) { if (in_function_) { FAIL(decl, "function declared inside another"); } } void AsmTyper::VisitFunctionAnnotation(FunctionLiteral* fun) { // Extract result type. ZoneList* body = fun->body(); Type* result_type = Type::Undefined(zone()); if (body->length() > 0) { ReturnStatement* stmt = body->last()->AsReturnStatement(); if (stmt != NULL) { RECURSE(VisitExpressionAnnotation(stmt->expression())); result_type = computed_type_; } } Type::FunctionType* type = Type::Function(result_type, Type::Any(), fun->parameter_count(), zone()) ->AsFunction(); // Extract parameter types. bool good = true; for (int i = 0; i < fun->parameter_count(); ++i) { good = false; if (i >= body->length()) break; ExpressionStatement* stmt = body->at(i)->AsExpressionStatement(); if (stmt == NULL) break; Assignment* expr = stmt->expression()->AsAssignment(); if (expr == NULL || expr->is_compound()) break; VariableProxy* proxy = expr->target()->AsVariableProxy(); if (proxy == NULL) break; Variable* var = proxy->var(); if (var->location() != VariableLocation::PARAMETER || var->index() != i) break; RECURSE(VisitExpressionAnnotation(expr->value())); SetType(var, computed_type_); type->InitParameter(i, computed_type_); good = true; } if (!good) FAIL(fun, "missing parameter type annotations"); SetResult(fun, type); } void AsmTyper::VisitExpressionAnnotation(Expression* expr) { // Normal +x or x|0 annotations. BinaryOperation* bin = expr->AsBinaryOperation(); if (bin != NULL) { Literal* right = bin->right()->AsLiteral(); if (right != NULL) { switch (bin->op()) { case Token::MUL: // We encode +x as 1*x if (right->raw_value()->ContainsDot() && right->raw_value()->AsNumber() == 1.0) { SetResult(expr, cache_.kFloat64); return; } break; case Token::BIT_OR: if (!right->raw_value()->ContainsDot() && right->raw_value()->AsNumber() == 0.0) { SetResult(expr, cache_.kInt32); return; } break; default: break; } } FAIL(expr, "invalid type annotation on binary op"); } // Numbers or the undefined literal (for empty returns). if (expr->IsLiteral()) { RECURSE(VisitWithExpectation(expr, Type::Any(), "invalid literal")); return; } Call* call = expr->AsCall(); if (call != NULL) { if (call->expression()->IsVariableProxy()) { RECURSE(VisitWithExpectation( call->expression(), Type::Any(zone()), "only fround allowed on expression annotations")); if (!computed_type_->Is( Type::Function(cache_.kFloat32, Type::Number(zone()), zone()))) { FAIL(call->expression(), "only fround allowed on expression annotations"); } if (call->arguments()->length() != 1) { FAIL(call, "invalid argument count calling fround"); } SetResult(expr, cache_.kFloat32); return; } } FAIL(expr, "invalid type annotation"); } void AsmTyper::VisitStatements(ZoneList* stmts) { for (int i = 0; i < stmts->length(); ++i) { Statement* stmt = stmts->at(i); RECURSE(Visit(stmt)); } } void AsmTyper::VisitBlock(Block* stmt) { RECURSE(VisitStatements(stmt->statements())); } void AsmTyper::VisitExpressionStatement(ExpressionStatement* stmt) { RECURSE(VisitWithExpectation(stmt->expression(), Type::Any(), "expression statement expected to be any")); } void AsmTyper::VisitEmptyStatement(EmptyStatement* stmt) {} void AsmTyper::VisitEmptyParentheses(EmptyParentheses* expr) { UNREACHABLE(); } void AsmTyper::VisitIfStatement(IfStatement* stmt) { if (!in_function_) { FAIL(stmt, "if statement inside module body"); } RECURSE(VisitWithExpectation(stmt->condition(), cache_.kInt32, "if condition expected to be integer")); RECURSE(Visit(stmt->then_statement())); RECURSE(Visit(stmt->else_statement())); } void AsmTyper::VisitContinueStatement(ContinueStatement* stmt) { if (!in_function_) { FAIL(stmt, "continue statement inside module body"); } } void AsmTyper::VisitBreakStatement(BreakStatement* stmt) { if (!in_function_) { FAIL(stmt, "continue statement inside module body"); } } void AsmTyper::VisitReturnStatement(ReturnStatement* stmt) { // Handle module return statement in VisitAsmModule. if (!in_function_) { return; } RECURSE( VisitWithExpectation(stmt->expression(), return_type_, "return expression expected to have return type")); } void AsmTyper::VisitWithStatement(WithStatement* stmt) { FAIL(stmt, "bad with statement"); } void AsmTyper::VisitSwitchStatement(SwitchStatement* stmt) { if (!in_function_) { FAIL(stmt, "switch statement inside module body"); } RECURSE(VisitWithExpectation(stmt->tag(), cache_.kInt32, "switch expression non-integer")); ZoneList* clauses = stmt->cases(); for (int i = 0; i < clauses->length(); ++i) { CaseClause* clause = clauses->at(i); if (clause->is_default()) continue; Expression* label = clause->label(); RECURSE( VisitWithExpectation(label, cache_.kInt32, "case label non-integer")); if (!label->IsLiteral()) FAIL(label, "non-literal case label"); Handle value = label->AsLiteral()->value(); int32_t value32; if (!value->ToInt32(&value32)) FAIL(label, "illegal case label value"); // TODO(bradnelson): Detect duplicates. ZoneList* stmts = clause->statements(); RECURSE(VisitStatements(stmts)); } } void AsmTyper::VisitCaseClause(CaseClause* clause) { UNREACHABLE(); } void AsmTyper::VisitDoWhileStatement(DoWhileStatement* stmt) { if (!in_function_) { FAIL(stmt, "do statement inside module body"); } RECURSE(Visit(stmt->body())); RECURSE(VisitWithExpectation(stmt->cond(), cache_.kInt32, "do condition expected to be integer")); } void AsmTyper::VisitWhileStatement(WhileStatement* stmt) { if (!in_function_) { FAIL(stmt, "while statement inside module body"); } RECURSE(VisitWithExpectation(stmt->cond(), cache_.kInt32, "while condition expected to be integer")); RECURSE(Visit(stmt->body())); } void AsmTyper::VisitForStatement(ForStatement* stmt) { if (!in_function_) { FAIL(stmt, "for statement inside module body"); } if (stmt->init() != NULL) { RECURSE(Visit(stmt->init())); } if (stmt->cond() != NULL) { RECURSE(VisitWithExpectation(stmt->cond(), cache_.kInt32, "for condition expected to be integer")); } if (stmt->next() != NULL) { RECURSE(Visit(stmt->next())); } RECURSE(Visit(stmt->body())); } void AsmTyper::VisitForInStatement(ForInStatement* stmt) { FAIL(stmt, "for-in statement encountered"); } void AsmTyper::VisitForOfStatement(ForOfStatement* stmt) { FAIL(stmt, "for-of statement encountered"); } void AsmTyper::VisitTryCatchStatement(TryCatchStatement* stmt) { FAIL(stmt, "try statement encountered"); } void AsmTyper::VisitTryFinallyStatement(TryFinallyStatement* stmt) { FAIL(stmt, "try statement encountered"); } void AsmTyper::VisitDebuggerStatement(DebuggerStatement* stmt) { FAIL(stmt, "debugger statement encountered"); } void AsmTyper::VisitFunctionLiteral(FunctionLiteral* expr) { Scope* scope = expr->scope(); DCHECK(scope->is_function_scope()); if (in_function_) { FAIL(expr, "invalid nested function"); } if (!expr->bounds().upper->IsFunction()) { FAIL(expr, "invalid function literal"); } Type::FunctionType* type = expr->bounds().upper->AsFunction(); Type* save_return_type = return_type_; return_type_ = type->Result(); in_function_ = true; local_variable_type_.Clear(); RECURSE(VisitDeclarations(scope->declarations())); RECURSE(VisitStatements(expr->body())); in_function_ = false; return_type_ = save_return_type; IntersectResult(expr, type); } void AsmTyper::VisitNativeFunctionLiteral(NativeFunctionLiteral* expr) { FAIL(expr, "function info literal encountered"); } void AsmTyper::VisitConditional(Conditional* expr) { RECURSE(VisitWithExpectation(expr->condition(), cache_.kInt32, "condition expected to be integer")); RECURSE(VisitWithExpectation( expr->then_expression(), expected_type_, "conditional then branch type mismatch with enclosing expression")); Type* then_type = computed_type_; RECURSE(VisitWithExpectation( expr->else_expression(), expected_type_, "conditional else branch type mismatch with enclosing expression")); Type* else_type = computed_type_; Type* type = Type::Intersect(then_type, else_type, zone()); if (!(type->Is(cache_.kInt32) || type->Is(cache_.kFloat64))) { FAIL(expr, "ill-typed conditional"); } IntersectResult(expr, type); } void AsmTyper::VisitVariableProxy(VariableProxy* expr) { Variable* var = expr->var(); if (GetType(var) == NULL) { FAIL(expr, "unbound variable"); } Type* type = Type::Intersect(GetType(var), expected_type_, zone()); if (type->Is(cache_.kInt32)) { type = cache_.kInt32; } SetType(var, type); intish_ = 0; IntersectResult(expr, type); } void AsmTyper::VisitLiteral(Literal* expr) { intish_ = 0; Handle value = expr->value(); if (value->IsNumber()) { int32_t i; uint32_t u; if (expr->raw_value()->ContainsDot()) { IntersectResult(expr, cache_.kFloat64); } else if (value->ToUint32(&u)) { IntersectResult(expr, cache_.kInt32); } else if (value->ToInt32(&i)) { IntersectResult(expr, cache_.kInt32); } else { FAIL(expr, "illegal number"); } } else if (value->IsString()) { IntersectResult(expr, Type::String()); } else if (value->IsUndefined()) { IntersectResult(expr, Type::Undefined()); } else { FAIL(expr, "illegal literal"); } } void AsmTyper::VisitRegExpLiteral(RegExpLiteral* expr) { FAIL(expr, "regular expression encountered"); } void AsmTyper::VisitObjectLiteral(ObjectLiteral* expr) { if (in_function_) { FAIL(expr, "object literal in function"); } // Allowed for asm module's export declaration. ZoneList* props = expr->properties(); for (int i = 0; i < props->length(); ++i) { ObjectLiteralProperty* prop = props->at(i); RECURSE(VisitWithExpectation(prop->value(), Type::Any(zone()), "object property expected to be a function")); if (!computed_type_->IsFunction()) { FAIL(prop->value(), "non-function in function table"); } } IntersectResult(expr, Type::Object(zone())); } void AsmTyper::VisitArrayLiteral(ArrayLiteral* expr) { if (in_function_) { FAIL(expr, "array literal inside a function"); } // Allowed for function tables. ZoneList* values = expr->values(); Type* elem_type = Type::None(zone()); for (int i = 0; i < values->length(); ++i) { Expression* value = values->at(i); RECURSE(VisitWithExpectation(value, Type::Any(), "UNREACHABLE")); if (!computed_type_->IsFunction()) { FAIL(value, "array component expected to be a function"); } elem_type = Type::Union(elem_type, computed_type_, zone()); } array_size_ = values->length(); IntersectResult(expr, Type::Array(elem_type, zone())); } void AsmTyper::VisitAssignment(Assignment* expr) { // Handle function tables and everything else in different passes. if (!in_function_) { if (expr->value()->IsArrayLiteral()) { if (!building_function_tables_) { return; } } else { if (building_function_tables_) { return; } } } if (expr->is_compound()) FAIL(expr, "compound assignment encountered"); Type* type = expected_type_; RECURSE(VisitWithExpectation( expr->value(), type, "assignment value expected to match surrounding")); if (intish_ != 0) { FAIL(expr, "value still an intish"); } RECURSE(VisitWithExpectation(expr->target(), computed_type_, "assignment target expected to match value")); if (intish_ != 0) { FAIL(expr, "value still an intish"); } IntersectResult(expr, computed_type_); } void AsmTyper::VisitYield(Yield* expr) { FAIL(expr, "yield expression encountered"); } void AsmTyper::VisitThrow(Throw* expr) { FAIL(expr, "throw statement encountered"); } int AsmTyper::ElementShiftSize(Type* type) { if (type->Is(cache_.kInt8) || type->Is(cache_.kUint8)) return 0; if (type->Is(cache_.kInt16) || type->Is(cache_.kUint16)) return 1; if (type->Is(cache_.kInt32) || type->Is(cache_.kUint32) || type->Is(cache_.kFloat32)) return 2; if (type->Is(cache_.kFloat64)) return 3; return -1; } void AsmTyper::VisitHeapAccess(Property* expr) { Type::ArrayType* array_type = computed_type_->AsArray(); size_t size = array_size_; Type* type = array_type->AsArray()->Element(); if (type->IsFunction()) { BinaryOperation* bin = expr->key()->AsBinaryOperation(); if (bin == NULL || bin->op() != Token::BIT_AND) { FAIL(expr->key(), "expected & in call"); } RECURSE(VisitWithExpectation(bin->left(), cache_.kInt32, "array index expected to be integer")); Literal* right = bin->right()->AsLiteral(); if (right == NULL || right->raw_value()->ContainsDot()) { FAIL(right, "call mask must be integer"); } RECURSE(VisitWithExpectation(bin->right(), cache_.kInt32, "call mask expected to be integer")); if (static_cast(right->raw_value()->AsNumber()) != size - 1) { FAIL(right, "call mask must match function table"); } bin->set_bounds(Bounds(cache_.kInt32)); } else { BinaryOperation* bin = expr->key()->AsBinaryOperation(); if (bin == NULL || bin->op() != Token::SAR) { FAIL(expr->key(), "expected >> in heap access"); } RECURSE(VisitWithExpectation(bin->left(), cache_.kInt32, "array index expected to be integer")); Literal* right = bin->right()->AsLiteral(); if (right == NULL || right->raw_value()->ContainsDot()) { FAIL(right, "heap access shift must be integer"); } RECURSE(VisitWithExpectation(bin->right(), cache_.kInt32, "array shift expected to be integer")); int n = static_cast(right->raw_value()->AsNumber()); int expected_shift = ElementShiftSize(type); if (expected_shift < 0 || n != expected_shift) { FAIL(right, "heap access shift must match element size"); } bin->set_bounds(Bounds(cache_.kInt32)); } IntersectResult(expr, type); } void AsmTyper::VisitProperty(Property* expr) { // stdlib.Math.x Property* inner_prop = expr->obj()->AsProperty(); if (inner_prop != NULL) { // Get property name. Literal* key = expr->key()->AsLiteral(); if (key == NULL || !key->IsPropertyName()) FAIL(expr, "invalid type annotation on property 2"); Handle name = key->AsPropertyName(); // Check that inner property name is "Math". Literal* math_key = inner_prop->key()->AsLiteral(); if (math_key == NULL || !math_key->IsPropertyName() || !math_key->AsPropertyName()->IsUtf8EqualTo(CStrVector("Math"))) FAIL(expr, "invalid type annotation on stdlib (a1)"); // Check that object is stdlib. VariableProxy* proxy = inner_prop->obj()->AsVariableProxy(); if (proxy == NULL) FAIL(expr, "invalid type annotation on stdlib (a2)"); Variable* var = proxy->var(); if (var->location() != VariableLocation::PARAMETER || var->index() != 0) FAIL(expr, "invalid type annotation on stdlib (a3)"); // Look up library type. Type* type = LibType(stdlib_math_types_, name); if (type == NULL) FAIL(expr, "unknown standard function 3 "); SetResult(expr, type); return; } // Only recurse at this point so that we avoid needing // stdlib.Math to have a real type. RECURSE(VisitWithExpectation(expr->obj(), Type::Any(), "property holder expected to be object")); // For heap view or function table access. if (computed_type_->IsArray()) { VisitHeapAccess(expr); return; } // Get property name. Literal* key = expr->key()->AsLiteral(); if (key == NULL || !key->IsPropertyName()) FAIL(expr, "invalid type annotation on property 3"); Handle name = key->AsPropertyName(); // stdlib.x or foreign.x VariableProxy* proxy = expr->obj()->AsVariableProxy(); if (proxy != NULL) { Variable* var = proxy->var(); if (var->location() != VariableLocation::PARAMETER) { FAIL(expr, "invalid type annotation on variable"); } switch (var->index()) { case 0: { // Object is stdlib, look up library type. Type* type = LibType(stdlib_types_, name); if (type == NULL) { FAIL(expr, "unknown standard function 4"); } SetResult(expr, type); return; } case 1: // Object is foreign lib. SetResult(expr, expected_type_); return; default: FAIL(expr, "invalid type annotation on parameter"); } } FAIL(expr, "invalid property access"); } void AsmTyper::VisitCall(Call* expr) { RECURSE(VisitWithExpectation(expr->expression(), Type::Any(), "callee expected to be any")); if (computed_type_->IsFunction()) { Type::FunctionType* fun_type = computed_type_->AsFunction(); ZoneList* args = expr->arguments(); if (fun_type->Arity() != args->length()) { FAIL(expr, "call with wrong arity"); } for (int i = 0; i < args->length(); ++i) { Expression* arg = args->at(i); RECURSE(VisitWithExpectation( arg, fun_type->Parameter(i), "call argument expected to match callee parameter")); } IntersectResult(expr, fun_type->Result()); } else if (computed_type_->Is(Type::Any())) { // For foreign calls. ZoneList* args = expr->arguments(); for (int i = 0; i < args->length(); ++i) { Expression* arg = args->at(i); RECURSE(VisitWithExpectation(arg, Type::Any(), "foreign call argument expected to be any")); } IntersectResult(expr, Type::Number()); } else { FAIL(expr, "invalid callee"); } } void AsmTyper::VisitCallNew(CallNew* expr) { if (in_function_) { FAIL(expr, "new not allowed in module function"); } RECURSE(VisitWithExpectation(expr->expression(), Type::Any(), "expected stdlib function")); if (computed_type_->IsFunction()) { Type::FunctionType* fun_type = computed_type_->AsFunction(); ZoneList* args = expr->arguments(); if (fun_type->Arity() != args->length()) FAIL(expr, "call with wrong arity"); for (int i = 0; i < args->length(); ++i) { Expression* arg = args->at(i); RECURSE(VisitWithExpectation( arg, fun_type->Parameter(i), "constructor argument expected to match callee parameter")); } IntersectResult(expr, fun_type->Result()); return; } FAIL(expr, "ill-typed new operator"); } void AsmTyper::VisitCallRuntime(CallRuntime* expr) { // Allow runtime calls for now. } void AsmTyper::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::NOT: // Used to encode != and !== RECURSE(VisitWithExpectation(expr->expression(), cache_.kInt32, "operand expected to be integer")); IntersectResult(expr, cache_.kInt32); return; case Token::DELETE: FAIL(expr, "delete operator encountered"); case Token::VOID: FAIL(expr, "void operator encountered"); case Token::TYPEOF: FAIL(expr, "typeof operator encountered"); default: UNREACHABLE(); } } void AsmTyper::VisitCountOperation(CountOperation* expr) { FAIL(expr, "increment or decrement operator encountered"); } void AsmTyper::VisitBinaryOperation(BinaryOperation* expr) { switch (expr->op()) { case Token::COMMA: { RECURSE(VisitWithExpectation(expr->left(), Type::Any(), "left comma operand expected to be any")); RECURSE(VisitWithExpectation(expr->right(), Type::Any(), "right comma operand expected to be any")); IntersectResult(expr, computed_type_); return; } case Token::OR: case Token::AND: FAIL(expr, "logical operator encountered"); case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SHL: case Token::SHR: case Token::SAR: { // BIT_OR allows Any since it is used as a type coercion. // BIT_XOR allows Number since it is used as a type coercion (encoding ~). Type* expectation = expr->op() == Token::BIT_OR ? Type::Any() : expr->op() == Token::BIT_XOR ? Type::Number() : cache_.kInt32; Type* result = expr->op() == Token::SHR ? Type::Unsigned32() : cache_.kInt32; RECURSE(VisitWithExpectation(expr->left(), expectation, "left bit operand expected to be integer")); int left_intish = intish_; RECURSE(VisitWithExpectation(expr->right(), expectation, "right bit operand expected to be integer")); int right_intish = intish_; if (left_intish > kMaxUncombinedAdditiveSteps) { FAIL(expr, "too many consecutive additive ops"); } if (right_intish > kMaxUncombinedAdditiveSteps) { FAIL(expr, "too many consecutive additive ops"); } intish_ = 0; IntersectResult(expr, result); return; } case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: { RECURSE(VisitWithExpectation( expr->left(), Type::Number(), "left arithmetic operand expected to be number")); Type* left_type = computed_type_; int left_intish = intish_; RECURSE(VisitWithExpectation( expr->right(), Type::Number(), "right arithmetic operand expected to be number")); Type* right_type = computed_type_; int right_intish = intish_; Type* type = Type::Union(left_type, right_type, zone()); if (type->Is(cache_.kInt32)) { if (expr->op() == Token::MUL) { if (!expr->left()->IsLiteral() && !expr->right()->IsLiteral()) { FAIL(expr, "direct integer multiply forbidden"); } intish_ = 0; IntersectResult(expr, cache_.kInt32); return; } else { intish_ = left_intish + right_intish + 1; if (expr->op() == Token::ADD || expr->op() == Token::SUB) { if (intish_ > kMaxUncombinedAdditiveSteps) { FAIL(expr, "too many consecutive additive ops"); } } else { if (intish_ > kMaxUncombinedMultiplicativeSteps) { FAIL(expr, "too many consecutive multiplicative ops"); } } IntersectResult(expr, cache_.kInt32); return; } } else if (type->Is(Type::Number())) { IntersectResult(expr, cache_.kFloat64); return; } else { FAIL(expr, "ill-typed arithmetic operation"); } } default: UNREACHABLE(); } } void AsmTyper::VisitCompareOperation(CompareOperation* expr) { RECURSE( VisitWithExpectation(expr->left(), Type::Number(), "left comparison operand expected to be number")); Type* left_type = computed_type_; RECURSE( VisitWithExpectation(expr->right(), Type::Number(), "right comparison operand expected to be number")); Type* right_type = computed_type_; Type* type = Type::Union(left_type, right_type, zone()); expr->set_combined_type(type); if (type->Is(Type::Integral32()) || type->Is(Type::UntaggedFloat64())) { IntersectResult(expr, cache_.kInt32); } else { FAIL(expr, "ill-typed comparison operation"); } } void AsmTyper::VisitThisFunction(ThisFunction* expr) { FAIL(expr, "this function not allowed"); } void AsmTyper::VisitDeclarations(ZoneList* decls) { for (int i = 0; i < decls->length(); ++i) { Declaration* decl = decls->at(i); RECURSE(Visit(decl)); } } void AsmTyper::VisitImportDeclaration(ImportDeclaration* decl) { FAIL(decl, "import declaration encountered"); } void AsmTyper::VisitExportDeclaration(ExportDeclaration* decl) { FAIL(decl, "export declaration encountered"); } void AsmTyper::VisitClassLiteral(ClassLiteral* expr) { FAIL(expr, "class literal not allowed"); } void AsmTyper::VisitSpread(Spread* expr) { FAIL(expr, "spread not allowed"); } void AsmTyper::VisitSuperPropertyReference(SuperPropertyReference* expr) { FAIL(expr, "super property reference not allowed"); } void AsmTyper::VisitSuperCallReference(SuperCallReference* expr) { FAIL(expr, "call reference not allowed"); } void AsmTyper::InitializeStdlib() { Type* number_type = Type::Number(zone()); Type* double_type = cache_.kFloat64; Type* double_fn1_type = Type::Function(double_type, double_type, zone()); Type* double_fn2_type = Type::Function(double_type, double_type, double_type, zone()); Type* fround_type = Type::Function(cache_.kFloat32, number_type, zone()); Type* imul_type = Type::Function(cache_.kInt32, cache_.kInt32, cache_.kInt32, zone()); // TODO(bradnelson): currently only approximating the proper intersection type // (which we cannot currently represent). Type* abs_type = Type::Function(number_type, number_type, zone()); struct Assignment { const char* name; Type* type; }; const Assignment math[] = { {"PI", double_type}, {"E", double_type}, {"LN2", double_type}, {"LN10", double_type}, {"LOG2E", double_type}, {"LOG10E", double_type}, {"SQRT2", double_type}, {"SQRT1_2", double_type}, {"imul", imul_type}, {"abs", abs_type}, {"ceil", double_fn1_type}, {"floor", double_fn1_type}, {"fround", fround_type}, {"pow", double_fn2_type}, {"exp", double_fn1_type}, {"log", double_fn1_type}, {"min", double_fn2_type}, {"max", double_fn2_type}, {"sqrt", double_fn1_type}, {"cos", double_fn1_type}, {"sin", double_fn1_type}, {"tan", double_fn1_type}, {"acos", double_fn1_type}, {"asin", double_fn1_type}, {"atan", double_fn1_type}, {"atan2", double_fn2_type}}; for (unsigned i = 0; i < arraysize(math); ++i) { stdlib_math_types_[math[i].name] = math[i].type; } stdlib_types_["Infinity"] = double_type; stdlib_types_["NaN"] = double_type; Type* buffer_type = Type::Any(zone()); #define TYPED_ARRAY(TypeName, type_name, TYPE_NAME, ctype, size) \ stdlib_types_[#TypeName "Array"] = \ Type::Function(cache_.k##TypeName##Array, buffer_type, zone()); TYPED_ARRAYS(TYPED_ARRAY) #undef TYPED_ARRAY #define TYPED_ARRAY(TypeName, type_name, TYPE_NAME, ctype, size) \ stdlib_heap_types_[#TypeName "Array"] = \ Type::Function(cache_.k##TypeName##Array, buffer_type, zone()); TYPED_ARRAYS(TYPED_ARRAY) #undef TYPED_ARRAY } Type* AsmTyper::LibType(ObjectTypeMap map, Handle name) { base::SmartArrayPointer aname = name->ToCString(); ObjectTypeMap::iterator i = map.find(std::string(aname.get())); if (i == map.end()) { return NULL; } return i->second; } void AsmTyper::SetType(Variable* variable, Type* type) { ZoneHashMap::Entry* entry; if (in_function_) { entry = local_variable_type_.LookupOrInsert( variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone())); } else { entry = global_variable_type_.LookupOrInsert( variable, ComputePointerHash(variable), ZoneAllocationPolicy(zone())); } entry->value = reinterpret_cast(type); } Type* AsmTyper::GetType(Variable* variable) { i::ZoneHashMap::Entry* entry = NULL; if (in_function_) { entry = local_variable_type_.Lookup(variable, ComputePointerHash(variable)); } if (entry == NULL) { entry = global_variable_type_.Lookup(variable, ComputePointerHash(variable)); } if (entry == NULL) { return NULL; } else { return reinterpret_cast(entry->value); } } void AsmTyper::SetResult(Expression* expr, Type* type) { computed_type_ = type; expr->set_bounds(Bounds(computed_type_)); } void AsmTyper::IntersectResult(Expression* expr, Type* type) { computed_type_ = type; Type* bounded_type = Type::Intersect(computed_type_, expected_type_, zone()); expr->set_bounds(Bounds(bounded_type)); } void AsmTyper::VisitWithExpectation(Expression* expr, Type* expected_type, const char* msg) { Type* save = expected_type_; expected_type_ = expected_type; RECURSE(Visit(expr)); Type* bounded_type = Type::Intersect(computed_type_, expected_type_, zone()); if (bounded_type->Is(Type::None(zone()))) { #ifdef DEBUG PrintF("Computed type: "); computed_type_->Print(); PrintF("Expected type: "); expected_type_->Print(); #endif FAIL(expr, msg); } expected_type_ = save; } } } // namespace v8::internal