// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/parsing/rewriter.h" #include "src/ast/ast.h" #include "src/ast/scopes.h" #include "src/objects-inl.h" #include "src/parsing/parse-info.h" #include "src/parsing/parser.h" namespace v8 { namespace internal { class Processor final : public AstVisitor<Processor> { public: Processor(uintptr_t stack_limit, DeclarationScope* closure_scope, Variable* result, AstValueFactory* ast_value_factory) : result_(result), result_assigned_(false), replacement_(nullptr), is_set_(false), breakable_(false), zone_(ast_value_factory->zone()), closure_scope_(closure_scope), factory_(ast_value_factory, ast_value_factory->zone()) { DCHECK_EQ(closure_scope, closure_scope->GetClosureScope()); InitializeAstVisitor(stack_limit); } Processor(Parser* parser, DeclarationScope* closure_scope, Variable* result, AstValueFactory* ast_value_factory) : result_(result), result_assigned_(false), replacement_(nullptr), is_set_(false), breakable_(false), zone_(ast_value_factory->zone()), closure_scope_(closure_scope), factory_(ast_value_factory, zone_) { DCHECK_EQ(closure_scope, closure_scope->GetClosureScope()); InitializeAstVisitor(parser->stack_limit()); } void Process(ZoneList<Statement*>* statements); bool result_assigned() const { return result_assigned_; } Zone* zone() { return zone_; } DeclarationScope* closure_scope() { return closure_scope_; } AstNodeFactory* factory() { return &factory_; } // Returns ".result = value" Expression* SetResult(Expression* value) { result_assigned_ = true; VariableProxy* result_proxy = factory()->NewVariableProxy(result_); return factory()->NewAssignment(Token::ASSIGN, result_proxy, value, kNoSourcePosition); } // Inserts '.result = undefined' in front of the given statement. Statement* AssignUndefinedBefore(Statement* s); private: Variable* result_; // We are not tracking result usage via the result_'s use // counts (we leave the accurate computation to the // usage analyzer). Instead we simple remember if // there was ever an assignment to result_. bool result_assigned_; // When visiting a node, we "return" a replacement for that node in // [replacement_]. In many cases this will just be the original node. Statement* replacement_; // To avoid storing to .result all the time, we eliminate some of // the stores by keeping track of whether or not we're sure .result // will be overwritten anyway. This is a bit more tricky than what I // was hoping for. bool is_set_; bool breakable_; class BreakableScope final { public: explicit BreakableScope(Processor* processor, bool breakable = true) : processor_(processor), previous_(processor->breakable_) { processor->breakable_ = processor->breakable_ || breakable; } ~BreakableScope() { processor_->breakable_ = previous_; } private: Processor* processor_; bool previous_; }; Zone* zone_; DeclarationScope* closure_scope_; AstNodeFactory factory_; // Node visitors. #define DEF_VISIT(type) void Visit##type(type* node); AST_NODE_LIST(DEF_VISIT) #undef DEF_VISIT void VisitIterationStatement(IterationStatement* stmt); DEFINE_AST_VISITOR_SUBCLASS_MEMBERS(); }; Statement* Processor::AssignUndefinedBefore(Statement* s) { Expression* undef = factory()->NewUndefinedLiteral(kNoSourcePosition); Expression* assignment = SetResult(undef); Block* b = factory()->NewBlock(NULL, 2, false, kNoSourcePosition); b->statements()->Add( factory()->NewExpressionStatement(assignment, kNoSourcePosition), zone()); b->statements()->Add(s, zone()); return b; } void Processor::Process(ZoneList<Statement*>* statements) { // If we're in a breakable scope (named block, iteration, or switch), we walk // all statements. The last value producing statement before the break needs // to assign to .result. If we're not in a breakable scope, only the last // value producing statement in the block assigns to .result, so we can stop // early. for (int i = statements->length() - 1; i >= 0 && (breakable_ || !is_set_); --i) { Visit(statements->at(i)); statements->Set(i, replacement_); } } void Processor::VisitBlock(Block* node) { // An initializer block is the rewritten form of a variable declaration // with initialization expressions. The initializer block contains the // list of assignments corresponding to the initialization expressions. // While unclear from the spec (ECMA-262, 3rd., 12.2), the value of // a variable declaration with initialization expression is 'undefined' // with some JS VMs: For instance, using smjs, print(eval('var x = 7')) // returns 'undefined'. To obtain the same behavior with v8, we need // to prevent rewriting in that case. if (!node->ignore_completion_value()) { BreakableScope scope(this, node->labels() != nullptr); Process(node->statements()); } replacement_ = node; } void Processor::VisitExpressionStatement(ExpressionStatement* node) { // Rewrite : <x>; -> .result = <x>; if (!is_set_) { node->set_expression(SetResult(node->expression())); is_set_ = true; } replacement_ = node; } void Processor::VisitIfStatement(IfStatement* node) { // Rewrite both branches. bool set_after = is_set_; Visit(node->then_statement()); node->set_then_statement(replacement_); bool set_in_then = is_set_; is_set_ = set_after; Visit(node->else_statement()); node->set_else_statement(replacement_); replacement_ = set_in_then && is_set_ ? node : AssignUndefinedBefore(node); is_set_ = true; } void Processor::VisitIterationStatement(IterationStatement* node) { // The statement may have to produce a value, so always assign undefined // before. // TODO(verwaest): Omit it if we know that there's no break/continue leaving // it early. DCHECK(breakable_ || !is_set_); BreakableScope scope(this); Visit(node->body()); node->set_body(replacement_); replacement_ = AssignUndefinedBefore(node); is_set_ = true; } void Processor::VisitDoWhileStatement(DoWhileStatement* node) { VisitIterationStatement(node); } void Processor::VisitWhileStatement(WhileStatement* node) { VisitIterationStatement(node); } void Processor::VisitForStatement(ForStatement* node) { VisitIterationStatement(node); } void Processor::VisitForInStatement(ForInStatement* node) { VisitIterationStatement(node); } void Processor::VisitForOfStatement(ForOfStatement* node) { VisitIterationStatement(node); } void Processor::VisitTryCatchStatement(TryCatchStatement* node) { // Rewrite both try and catch block. bool set_after = is_set_; Visit(node->try_block()); node->set_try_block(static_cast<Block*>(replacement_)); bool set_in_try = is_set_; is_set_ = set_after; Visit(node->catch_block()); node->set_catch_block(static_cast<Block*>(replacement_)); replacement_ = is_set_ && set_in_try ? node : AssignUndefinedBefore(node); is_set_ = true; } void Processor::VisitTryFinallyStatement(TryFinallyStatement* node) { // Only rewrite finally if it could contain 'break' or 'continue'. Always // rewrite try. if (breakable_) { // Only set result before a 'break' or 'continue'. is_set_ = true; Visit(node->finally_block()); node->set_finally_block(replacement_->AsBlock()); // Save .result value at the beginning of the finally block and restore it // at the end again: ".backup = .result; ...; .result = .backup" // This is necessary because the finally block does not normally contribute // to the completion value. CHECK_NOT_NULL(closure_scope()); Variable* backup = closure_scope()->NewTemporary( factory()->ast_value_factory()->dot_result_string()); Expression* backup_proxy = factory()->NewVariableProxy(backup); Expression* result_proxy = factory()->NewVariableProxy(result_); Expression* save = factory()->NewAssignment( Token::ASSIGN, backup_proxy, result_proxy, kNoSourcePosition); Expression* restore = factory()->NewAssignment( Token::ASSIGN, result_proxy, backup_proxy, kNoSourcePosition); node->finally_block()->statements()->InsertAt( 0, factory()->NewExpressionStatement(save, kNoSourcePosition), zone()); node->finally_block()->statements()->Add( factory()->NewExpressionStatement(restore, kNoSourcePosition), zone()); } Visit(node->try_block()); node->set_try_block(replacement_->AsBlock()); replacement_ = is_set_ ? node : AssignUndefinedBefore(node); is_set_ = true; } void Processor::VisitSwitchStatement(SwitchStatement* node) { // The statement may have to produce a value, so always assign undefined // before. // TODO(verwaest): Omit it if we know that there's no break/continue leaving // it early. DCHECK(breakable_ || !is_set_); BreakableScope scope(this); // Rewrite statements in all case clauses. ZoneList<CaseClause*>* clauses = node->cases(); for (int i = clauses->length() - 1; i >= 0; --i) { CaseClause* clause = clauses->at(i); Process(clause->statements()); } replacement_ = AssignUndefinedBefore(node); is_set_ = true; } void Processor::VisitContinueStatement(ContinueStatement* node) { is_set_ = false; replacement_ = node; } void Processor::VisitBreakStatement(BreakStatement* node) { is_set_ = false; replacement_ = node; } void Processor::VisitWithStatement(WithStatement* node) { Visit(node->statement()); node->set_statement(replacement_); replacement_ = is_set_ ? node : AssignUndefinedBefore(node); is_set_ = true; } void Processor::VisitSloppyBlockFunctionStatement( SloppyBlockFunctionStatement* node) { Visit(node->statement()); node->set_statement(replacement_); replacement_ = node; } void Processor::VisitEmptyStatement(EmptyStatement* node) { replacement_ = node; } void Processor::VisitReturnStatement(ReturnStatement* node) { is_set_ = true; replacement_ = node; } void Processor::VisitDebuggerStatement(DebuggerStatement* node) { replacement_ = node; } // Expressions are never visited. #define DEF_VISIT(type) \ void Processor::Visit##type(type* expr) { UNREACHABLE(); } EXPRESSION_NODE_LIST(DEF_VISIT) #undef DEF_VISIT // Declarations are never visited. #define DEF_VISIT(type) \ void Processor::Visit##type(type* expr) { UNREACHABLE(); } DECLARATION_NODE_LIST(DEF_VISIT) #undef DEF_VISIT // Assumes code has been parsed. Mutates the AST, so the AST should not // continue to be used in the case of failure. bool Rewriter::Rewrite(ParseInfo* info, Isolate* isolate) { DisallowHeapAllocation no_allocation; DisallowHandleAllocation no_handles; DisallowHandleDereference no_deref; RuntimeCallTimerScope runtimeTimer( info->runtime_call_stats(), &RuntimeCallStats::CompileRewriteReturnResult); FunctionLiteral* function = info->literal(); DCHECK_NOT_NULL(function); Scope* scope = function->scope(); DCHECK_NOT_NULL(scope); DCHECK_EQ(scope, scope->GetClosureScope()); if (!(scope->is_script_scope() || scope->is_eval_scope() || scope->is_module_scope())) { return true; } ZoneList<Statement*>* body = function->body(); DCHECK_IMPLIES(scope->is_module_scope(), !body->is_empty()); if (!body->is_empty()) { Variable* result = scope->AsDeclarationScope()->NewTemporary( info->ast_value_factory()->dot_result_string()); Processor processor(info->stack_limit(), scope->AsDeclarationScope(), result, info->ast_value_factory()); processor.Process(body); DCHECK_IMPLIES(scope->is_module_scope(), processor.result_assigned()); if (processor.result_assigned()) { int pos = kNoSourcePosition; Expression* result_value = processor.factory()->NewVariableProxy(result, pos); Statement* result_statement = processor.factory()->NewReturnStatement(result_value, pos); body->Add(result_statement, info->zone()); } // TODO(leszeks): Remove this check and releases once internalization is // moved out of parsing/analysis. Also remove the parameter once done. DCHECK(ThreadId::Current().Equals(isolate->thread_id())); no_deref.Release(); no_handles.Release(); no_allocation.Release(); // Internalize any values created during rewriting. info->ast_value_factory()->Internalize(isolate); if (processor.HasStackOverflow()) return false; } return true; } bool Rewriter::Rewrite(Parser* parser, DeclarationScope* closure_scope, DoExpression* expr, AstValueFactory* factory) { DisallowHeapAllocation no_allocation; DisallowHandleAllocation no_handles; DisallowHandleDereference no_deref; Block* block = expr->block(); DCHECK_EQ(closure_scope, closure_scope->GetClosureScope()); DCHECK(block->scope() == nullptr || block->scope()->GetClosureScope() == closure_scope); ZoneList<Statement*>* body = block->statements(); VariableProxy* result = expr->result(); Variable* result_var = result->var(); if (!body->is_empty()) { Processor processor(parser, closure_scope, result_var, factory); processor.Process(body); if (processor.HasStackOverflow()) return false; if (!processor.result_assigned()) { AstNodeFactory* node_factory = processor.factory(); Expression* undef = node_factory->NewUndefinedLiteral(kNoSourcePosition); Statement* completion = node_factory->NewExpressionStatement( processor.SetResult(undef), expr->position()); body->Add(completion, factory->zone()); } } return true; } } // namespace internal } // namespace v8