// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_ARM_CODE_STUBS_ARM_H_ #define V8_ARM_CODE_STUBS_ARM_H_ namespace v8 { namespace internal { void ArrayNativeCode(MacroAssembler* masm, Label* call_generic_code); class StringHelper : public AllStatic { public: // Generate code for copying a large number of characters. This function // is allowed to spend extra time setting up conditions to make copying // faster. Copying of overlapping regions is not supported. // Dest register ends at the position after the last character written. static void GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, String::Encoding encoding); // Compares two flat one-byte strings and returns result in r0. static void GenerateCompareFlatOneByteStrings( MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3, Register scratch4); // Compares two flat one-byte strings for equality and returns result in r0. static void GenerateFlatOneByteStringEquals(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3); private: static void GenerateOneByteCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch1, Register scratch2, Label* chars_not_equal); DISALLOW_IMPLICIT_CONSTRUCTORS(StringHelper); }; class RecordWriteStub: public PlatformCodeStub { public: RecordWriteStub(Isolate* isolate, Register object, Register value, Register address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) : PlatformCodeStub(isolate), regs_(object, // An input reg. address, // An input reg. value) { // One scratch reg. minor_key_ = ObjectBits::encode(object.code()) | ValueBits::encode(value.code()) | AddressBits::encode(address.code()) | RememberedSetActionBits::encode(remembered_set_action) | SaveFPRegsModeBits::encode(fp_mode); } RecordWriteStub(uint32_t key, Isolate* isolate) : PlatformCodeStub(key, isolate), regs_(object(), address(), value()) {} enum Mode { STORE_BUFFER_ONLY, INCREMENTAL, INCREMENTAL_COMPACTION }; bool SometimesSetsUpAFrame() OVERRIDE { return false; } static void PatchBranchIntoNop(MacroAssembler* masm, int pos) { masm->instr_at_put(pos, (masm->instr_at(pos) & ~B27) | (B24 | B20)); DCHECK(Assembler::IsTstImmediate(masm->instr_at(pos))); } static void PatchNopIntoBranch(MacroAssembler* masm, int pos) { masm->instr_at_put(pos, (masm->instr_at(pos) & ~(B24 | B20)) | B27); DCHECK(Assembler::IsBranch(masm->instr_at(pos))); } static Mode GetMode(Code* stub) { Instr first_instruction = Assembler::instr_at(stub->instruction_start()); Instr second_instruction = Assembler::instr_at(stub->instruction_start() + Assembler::kInstrSize); if (Assembler::IsBranch(first_instruction)) { return INCREMENTAL; } DCHECK(Assembler::IsTstImmediate(first_instruction)); if (Assembler::IsBranch(second_instruction)) { return INCREMENTAL_COMPACTION; } DCHECK(Assembler::IsTstImmediate(second_instruction)); return STORE_BUFFER_ONLY; } static void Patch(Code* stub, Mode mode) { MacroAssembler masm(NULL, stub->instruction_start(), stub->instruction_size()); switch (mode) { case STORE_BUFFER_ONLY: DCHECK(GetMode(stub) == INCREMENTAL || GetMode(stub) == INCREMENTAL_COMPACTION); PatchBranchIntoNop(&masm, 0); PatchBranchIntoNop(&masm, Assembler::kInstrSize); break; case INCREMENTAL: DCHECK(GetMode(stub) == STORE_BUFFER_ONLY); PatchNopIntoBranch(&masm, 0); break; case INCREMENTAL_COMPACTION: DCHECK(GetMode(stub) == STORE_BUFFER_ONLY); PatchNopIntoBranch(&masm, Assembler::kInstrSize); break; } DCHECK(GetMode(stub) == mode); CpuFeatures::FlushICache(stub->instruction_start(), 2 * Assembler::kInstrSize); } DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR(); private: // This is a helper class for freeing up 3 scratch registers. The input is // two registers that must be preserved and one scratch register provided by // the caller. class RegisterAllocation { public: RegisterAllocation(Register object, Register address, Register scratch0) : object_(object), address_(address), scratch0_(scratch0) { DCHECK(!AreAliased(scratch0, object, address, no_reg)); scratch1_ = GetRegisterThatIsNotOneOf(object_, address_, scratch0_); } void Save(MacroAssembler* masm) { DCHECK(!AreAliased(object_, address_, scratch1_, scratch0_)); // We don't have to save scratch0_ because it was given to us as // a scratch register. masm->push(scratch1_); } void Restore(MacroAssembler* masm) { masm->pop(scratch1_); } // If we have to call into C then we need to save and restore all caller- // saved registers that were not already preserved. The scratch registers // will be restored by other means so we don't bother pushing them here. void SaveCallerSaveRegisters(MacroAssembler* masm, SaveFPRegsMode mode) { masm->stm(db_w, sp, (kCallerSaved | lr.bit()) & ~scratch1_.bit()); if (mode == kSaveFPRegs) { masm->SaveFPRegs(sp, scratch0_); } } inline void RestoreCallerSaveRegisters(MacroAssembler*masm, SaveFPRegsMode mode) { if (mode == kSaveFPRegs) { masm->RestoreFPRegs(sp, scratch0_); } masm->ldm(ia_w, sp, (kCallerSaved | lr.bit()) & ~scratch1_.bit()); } inline Register object() { return object_; } inline Register address() { return address_; } inline Register scratch0() { return scratch0_; } inline Register scratch1() { return scratch1_; } private: Register object_; Register address_; Register scratch0_; Register scratch1_; friend class RecordWriteStub; }; enum OnNoNeedToInformIncrementalMarker { kReturnOnNoNeedToInformIncrementalMarker, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker }; inline Major MajorKey() const FINAL { return RecordWrite; } void Generate(MacroAssembler* masm) OVERRIDE; void GenerateIncremental(MacroAssembler* masm, Mode mode); void CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode); void InformIncrementalMarker(MacroAssembler* masm); void Activate(Code* code) OVERRIDE { code->GetHeap()->incremental_marking()->ActivateGeneratedStub(code); } Register object() const { return Register::from_code(ObjectBits::decode(minor_key_)); } Register value() const { return Register::from_code(ValueBits::decode(minor_key_)); } Register address() const { return Register::from_code(AddressBits::decode(minor_key_)); } RememberedSetAction remembered_set_action() const { return RememberedSetActionBits::decode(minor_key_); } SaveFPRegsMode save_fp_regs_mode() const { return SaveFPRegsModeBits::decode(minor_key_); } class ObjectBits: public BitField<int, 0, 4> {}; class ValueBits: public BitField<int, 4, 4> {}; class AddressBits: public BitField<int, 8, 4> {}; class RememberedSetActionBits: public BitField<RememberedSetAction, 12, 1> {}; class SaveFPRegsModeBits: public BitField<SaveFPRegsMode, 13, 1> {}; Label slow_; RegisterAllocation regs_; DISALLOW_COPY_AND_ASSIGN(RecordWriteStub); }; // Trampoline stub to call into native code. To call safely into native code // in the presence of compacting GC (which can move code objects) we need to // keep the code which called into native pinned in the memory. Currently the // simplest approach is to generate such stub early enough so it can never be // moved by GC class DirectCEntryStub: public PlatformCodeStub { public: explicit DirectCEntryStub(Isolate* isolate) : PlatformCodeStub(isolate) {} void GenerateCall(MacroAssembler* masm, Register target); private: bool NeedsImmovableCode() OVERRIDE { return true; } DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR(); DEFINE_PLATFORM_CODE_STUB(DirectCEntry, PlatformCodeStub); }; class NameDictionaryLookupStub: public PlatformCodeStub { public: enum LookupMode { POSITIVE_LOOKUP, NEGATIVE_LOOKUP }; NameDictionaryLookupStub(Isolate* isolate, LookupMode mode) : PlatformCodeStub(isolate) { minor_key_ = LookupModeBits::encode(mode); } static void GenerateNegativeLookup(MacroAssembler* masm, Label* miss, Label* done, Register receiver, Register properties, Handle<Name> name, Register scratch0); static void GeneratePositiveLookup(MacroAssembler* masm, Label* miss, Label* done, Register elements, Register name, Register r0, Register r1); bool SometimesSetsUpAFrame() OVERRIDE { return false; } private: static const int kInlinedProbes = 4; static const int kTotalProbes = 20; static const int kCapacityOffset = NameDictionary::kHeaderSize + NameDictionary::kCapacityIndex * kPointerSize; static const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; LookupMode mode() const { return LookupModeBits::decode(minor_key_); } class LookupModeBits: public BitField<LookupMode, 0, 1> {}; DEFINE_NULL_CALL_INTERFACE_DESCRIPTOR(); DEFINE_PLATFORM_CODE_STUB(NameDictionaryLookup, PlatformCodeStub); }; } } // namespace v8::internal #endif // V8_ARM_CODE_STUBS_ARM_H_