// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/compiler.h" #include <algorithm> #include <memory> #include "src/asmjs/asm-js.h" #include "src/asmjs/asm-typer.h" #include "src/ast/ast-numbering.h" #include "src/ast/prettyprinter.h" #include "src/ast/scopes.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/compilation-cache.h" #include "src/compiler-dispatcher/optimizing-compile-dispatcher.h" #include "src/compiler/pipeline.h" #include "src/crankshaft/hydrogen.h" #include "src/debug/debug.h" #include "src/debug/liveedit.h" #include "src/deoptimizer.h" #include "src/frames-inl.h" #include "src/full-codegen/full-codegen.h" #include "src/globals.h" #include "src/heap/heap.h" #include "src/interpreter/interpreter.h" #include "src/isolate-inl.h" #include "src/log-inl.h" #include "src/messages.h" #include "src/parsing/parser.h" #include "src/parsing/rewriter.h" #include "src/parsing/scanner-character-streams.h" #include "src/runtime-profiler.h" #include "src/snapshot/code-serializer.h" #include "src/vm-state-inl.h" namespace v8 { namespace internal { // A wrapper around a CompilationInfo that detaches the Handles from // the underlying DeferredHandleScope and stores them in info_ on // destruction. class CompilationHandleScope final { public: explicit CompilationHandleScope(CompilationInfo* info) : deferred_(info->isolate()), info_(info) {} ~CompilationHandleScope() { info_->set_deferred_handles(deferred_.Detach()); } private: DeferredHandleScope deferred_; CompilationInfo* info_; }; // Helper that times a scoped region and records the elapsed time. struct ScopedTimer { explicit ScopedTimer(base::TimeDelta* location) : location_(location) { DCHECK(location_ != NULL); timer_.Start(); } ~ScopedTimer() { *location_ += timer_.Elapsed(); } base::ElapsedTimer timer_; base::TimeDelta* location_; }; // ---------------------------------------------------------------------------- // Implementation of CompilationJob CompilationJob::Status CompilationJob::PrepareJob() { DCHECK(ThreadId::Current().Equals(info()->isolate()->thread_id())); DisallowJavascriptExecution no_js(isolate()); if (FLAG_trace_opt && info()->IsOptimizing()) { OFStream os(stdout); os << "[compiling method " << Brief(*info()->closure()) << " using " << compiler_name_; if (info()->is_osr()) os << " OSR"; os << "]" << std::endl; } // Delegate to the underlying implementation. DCHECK(state() == State::kReadyToPrepare); ScopedTimer t(&time_taken_to_prepare_); return UpdateState(PrepareJobImpl(), State::kReadyToExecute); } CompilationJob::Status CompilationJob::ExecuteJob() { std::unique_ptr<DisallowHeapAllocation> no_allocation; std::unique_ptr<DisallowHandleAllocation> no_handles; std::unique_ptr<DisallowHandleDereference> no_deref; std::unique_ptr<DisallowCodeDependencyChange> no_dependency_change; if (can_execute_on_background_thread()) { no_allocation.reset(new DisallowHeapAllocation()); no_handles.reset(new DisallowHandleAllocation()); no_deref.reset(new DisallowHandleDereference()); no_dependency_change.reset(new DisallowCodeDependencyChange()); } else { DCHECK(ThreadId::Current().Equals(info()->isolate()->thread_id())); } // Delegate to the underlying implementation. DCHECK(state() == State::kReadyToExecute); ScopedTimer t(&time_taken_to_execute_); return UpdateState(ExecuteJobImpl(), State::kReadyToFinalize); } CompilationJob::Status CompilationJob::FinalizeJob() { DCHECK(ThreadId::Current().Equals(info()->isolate()->thread_id())); DisallowCodeDependencyChange no_dependency_change; DisallowJavascriptExecution no_js(isolate()); DCHECK(!info()->dependencies()->HasAborted()); // Delegate to the underlying implementation. DCHECK(state() == State::kReadyToFinalize); ScopedTimer t(&time_taken_to_finalize_); return UpdateState(FinalizeJobImpl(), State::kSucceeded); } CompilationJob::Status CompilationJob::RetryOptimization(BailoutReason reason) { DCHECK(info_->IsOptimizing()); info_->RetryOptimization(reason); state_ = State::kFailed; return FAILED; } CompilationJob::Status CompilationJob::AbortOptimization(BailoutReason reason) { DCHECK(info_->IsOptimizing()); info_->AbortOptimization(reason); state_ = State::kFailed; return FAILED; } void CompilationJob::RecordUnoptimizedCompilationStats() const { int code_size; if (info()->has_bytecode_array()) { code_size = info()->bytecode_array()->SizeIncludingMetadata(); } else { code_size = info()->code()->SizeIncludingMetadata(); } Counters* counters = isolate()->counters(); // TODO(4280): Rename counters from "baseline" to "unoptimized" eventually. counters->total_baseline_code_size()->Increment(code_size); counters->total_baseline_compile_count()->Increment(1); // TODO(5203): Add timers for each phase of compilation. } void CompilationJob::RecordOptimizedCompilationStats() const { DCHECK(info()->IsOptimizing()); Handle<JSFunction> function = info()->closure(); if (!function->IsOptimized()) { // Concurrent recompilation and OSR may race. Increment only once. int opt_count = function->shared()->opt_count(); function->shared()->set_opt_count(opt_count + 1); } double ms_creategraph = time_taken_to_prepare_.InMillisecondsF(); double ms_optimize = time_taken_to_execute_.InMillisecondsF(); double ms_codegen = time_taken_to_finalize_.InMillisecondsF(); if (FLAG_trace_opt) { PrintF("[optimizing "); function->ShortPrint(); PrintF(" - took %0.3f, %0.3f, %0.3f ms]\n", ms_creategraph, ms_optimize, ms_codegen); } if (FLAG_trace_opt_stats) { static double compilation_time = 0.0; static int compiled_functions = 0; static int code_size = 0; compilation_time += (ms_creategraph + ms_optimize + ms_codegen); compiled_functions++; code_size += function->shared()->SourceSize(); PrintF("Compiled: %d functions with %d byte source size in %fms.\n", compiled_functions, code_size, compilation_time); } if (FLAG_hydrogen_stats) { isolate()->GetHStatistics()->IncrementSubtotals(time_taken_to_prepare_, time_taken_to_execute_, time_taken_to_finalize_); } } Isolate* CompilationJob::isolate() const { return info()->isolate(); } namespace { void AddWeakObjectToCodeDependency(Isolate* isolate, Handle<HeapObject> object, Handle<Code> code) { Handle<WeakCell> cell = Code::WeakCellFor(code); Heap* heap = isolate->heap(); if (heap->InNewSpace(*object)) { heap->AddWeakNewSpaceObjectToCodeDependency(object, cell); } else { Handle<DependentCode> dep(heap->LookupWeakObjectToCodeDependency(object)); dep = DependentCode::InsertWeakCode(dep, DependentCode::kWeakCodeGroup, cell); heap->AddWeakObjectToCodeDependency(object, dep); } } } // namespace void CompilationJob::RegisterWeakObjectsInOptimizedCode(Handle<Code> code) { // TODO(turbofan): Move this to pipeline.cc once Crankshaft dies. Isolate* const isolate = code->GetIsolate(); DCHECK(code->is_optimized_code()); std::vector<Handle<Map>> maps; std::vector<Handle<HeapObject>> objects; { DisallowHeapAllocation no_gc; int const mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | RelocInfo::ModeMask(RelocInfo::CELL); for (RelocIterator it(*code, mode_mask); !it.done(); it.next()) { RelocInfo::Mode mode = it.rinfo()->rmode(); if (mode == RelocInfo::CELL && code->IsWeakObjectInOptimizedCode(it.rinfo()->target_cell())) { objects.push_back(handle(it.rinfo()->target_cell(), isolate)); } else if (mode == RelocInfo::EMBEDDED_OBJECT && code->IsWeakObjectInOptimizedCode( it.rinfo()->target_object())) { Handle<HeapObject> object(HeapObject::cast(it.rinfo()->target_object()), isolate); if (object->IsMap()) { maps.push_back(Handle<Map>::cast(object)); } else { objects.push_back(object); } } } } for (Handle<Map> map : maps) { if (map->dependent_code()->IsEmpty(DependentCode::kWeakCodeGroup)) { isolate->heap()->AddRetainedMap(map); } Map::AddDependentCode(map, DependentCode::kWeakCodeGroup, code); } for (Handle<HeapObject> object : objects) { AddWeakObjectToCodeDependency(isolate, object, code); } code->set_can_have_weak_objects(true); } // ---------------------------------------------------------------------------- // Local helper methods that make up the compilation pipeline. namespace { bool IsEvalToplevel(Handle<SharedFunctionInfo> shared) { return shared->is_toplevel() && shared->script()->IsScript() && Script::cast(shared->script())->compilation_type() == Script::COMPILATION_TYPE_EVAL; } bool Parse(ParseInfo* info) { // Create a canonical handle scope if compiling ignition bytecode. This is // required by the constant array builder to de-duplicate objects without // dereferencing handles. std::unique_ptr<CanonicalHandleScope> canonical; if (FLAG_ignition) canonical.reset(new CanonicalHandleScope(info->isolate())); return Parser::ParseStatic(info); } void RecordFunctionCompilation(CodeEventListener::LogEventsAndTags tag, CompilationInfo* info) { // Log the code generation. If source information is available include // script name and line number. Check explicitly whether logging is // enabled as finding the line number is not free. if (info->isolate()->logger()->is_logging_code_events() || info->isolate()->is_profiling()) { Handle<SharedFunctionInfo> shared = info->shared_info(); Handle<Script> script = info->parse_info()->script(); Handle<AbstractCode> abstract_code = info->has_bytecode_array() ? Handle<AbstractCode>::cast(info->bytecode_array()) : Handle<AbstractCode>::cast(info->code()); if (abstract_code.is_identical_to( info->isolate()->builtins()->CompileLazy())) { return; } int line_num = Script::GetLineNumber(script, shared->start_position()) + 1; int column_num = Script::GetColumnNumber(script, shared->start_position()) + 1; String* script_name = script->name()->IsString() ? String::cast(script->name()) : info->isolate()->heap()->empty_string(); CodeEventListener::LogEventsAndTags log_tag = Logger::ToNativeByScript(tag, *script); PROFILE(info->isolate(), CodeCreateEvent(log_tag, *abstract_code, *shared, script_name, line_num, column_num)); } } void EnsureFeedbackMetadata(CompilationInfo* info) { DCHECK(info->has_shared_info()); // If no type feedback metadata exists, we create it now. At this point the // AstNumbering pass has already run. Note the snapshot can contain outdated // vectors for a different configuration, hence we also recreate a new vector // when the function is not compiled (i.e. no code was serialized). // TODO(mvstanton): reintroduce is_empty() predicate to feedback_metadata(). if (info->shared_info()->feedback_metadata()->length() == 0 || !info->shared_info()->is_compiled()) { Handle<TypeFeedbackMetadata> feedback_metadata = TypeFeedbackMetadata::New( info->isolate(), info->literal()->feedback_vector_spec()); info->shared_info()->set_feedback_metadata(*feedback_metadata); } // It's very important that recompiles do not alter the structure of the type // feedback vector. Verify that the structure fits the function literal. CHECK(!info->shared_info()->feedback_metadata()->SpecDiffersFrom( info->literal()->feedback_vector_spec())); } bool ShouldUseIgnition(CompilationInfo* info) { if (!FLAG_ignition) return false; DCHECK(info->has_shared_info()); // When requesting debug code as a replacement for existing code, we provide // the same kind as the existing code (to prevent implicit tier-change). if (info->is_debug() && info->shared_info()->is_compiled()) { return !info->shared_info()->HasBaselineCode(); } // Since we can't OSR from Ignition, skip Ignition for asm.js functions. if (info->shared_info()->asm_function()) { return false; } // Checks whether top level functions should be passed by the filter. if (info->shared_info()->is_toplevel()) { Vector<const char> filter = CStrVector(FLAG_ignition_filter); return (filter.length() == 0) || (filter.length() == 1 && filter[0] == '*'); } // Finally respect the filter. return info->shared_info()->PassesFilter(FLAG_ignition_filter); } CompilationJob* GetUnoptimizedCompilationJob(CompilationInfo* info) { // Function should have been parsed and analyzed before creating a compilation // job. DCHECK_NOT_NULL(info->literal()); DCHECK_NOT_NULL(info->scope()); EnsureFeedbackMetadata(info); if (ShouldUseIgnition(info)) { return interpreter::Interpreter::NewCompilationJob(info); } else { return FullCodeGenerator::NewCompilationJob(info); } } void InstallSharedScopeInfo(CompilationInfo* info, Handle<SharedFunctionInfo> shared) { Handle<ScopeInfo> scope_info = info->scope()->scope_info(); shared->set_scope_info(*scope_info); Scope* outer_scope = info->scope()->GetOuterScopeWithContext(); if (outer_scope) { shared->set_outer_scope_info(*outer_scope->scope_info()); } } void InstallSharedCompilationResult(CompilationInfo* info, Handle<SharedFunctionInfo> shared) { // TODO(mstarzinger): Compiling for debug code might be used to reveal inner // functions via {FindSharedFunctionInfoInScript}, in which case we end up // regenerating existing bytecode. Fix this! if (info->is_debug() && info->has_bytecode_array()) { shared->ClearBytecodeArray(); } DCHECK(!info->code().is_null()); shared->ReplaceCode(*info->code()); if (info->has_bytecode_array()) { DCHECK(!shared->HasBytecodeArray()); // Only compiled once. shared->set_bytecode_array(*info->bytecode_array()); } } void InstallUnoptimizedCode(CompilationInfo* info) { Handle<SharedFunctionInfo> shared = info->shared_info(); // Update the shared function info with the scope info. InstallSharedScopeInfo(info, shared); // Install compilation result on the shared function info InstallSharedCompilationResult(info, shared); } CompilationJob::Status FinalizeUnoptimizedCompilationJob(CompilationJob* job) { CompilationJob::Status status = job->FinalizeJob(); if (status == CompilationJob::SUCCEEDED) { InstallUnoptimizedCode(job->info()); job->RecordUnoptimizedCompilationStats(); } return status; } bool GenerateUnoptimizedCode(CompilationInfo* info) { if (FLAG_validate_asm && info->scope()->asm_module() && !info->shared_info()->is_asm_wasm_broken()) { EnsureFeedbackMetadata(info); MaybeHandle<FixedArray> wasm_data; wasm_data = AsmJs::ConvertAsmToWasm(info->parse_info()); if (!wasm_data.is_null()) { info->shared_info()->set_asm_wasm_data(*wasm_data.ToHandleChecked()); info->SetCode(info->isolate()->builtins()->InstantiateAsmJs()); InstallUnoptimizedCode(info); return true; } } std::unique_ptr<CompilationJob> job(GetUnoptimizedCompilationJob(info)); if (job->PrepareJob() != CompilationJob::SUCCEEDED) return false; if (job->ExecuteJob() != CompilationJob::SUCCEEDED) return false; if (FinalizeUnoptimizedCompilationJob(job.get()) != CompilationJob::SUCCEEDED) { return false; } return true; } bool CompileUnoptimizedCode(CompilationInfo* info) { DCHECK(AllowCompilation::IsAllowed(info->isolate())); if (!Compiler::Analyze(info->parse_info()) || !GenerateUnoptimizedCode(info)) { Isolate* isolate = info->isolate(); if (!isolate->has_pending_exception()) isolate->StackOverflow(); return false; } return true; } MUST_USE_RESULT MaybeHandle<Code> GetUnoptimizedCode(CompilationInfo* info) { VMState<COMPILER> state(info->isolate()); PostponeInterruptsScope postpone(info->isolate()); // Parse and update CompilationInfo with the results. if (!Parse(info->parse_info())) return MaybeHandle<Code>(); DCHECK_EQ(info->shared_info()->language_mode(), info->literal()->language_mode()); // Compile either unoptimized code or bytecode for the interpreter. if (!CompileUnoptimizedCode(info)) return MaybeHandle<Code>(); // Record the function compilation event. RecordFunctionCompilation(CodeEventListener::LAZY_COMPILE_TAG, info); return info->code(); } MUST_USE_RESULT MaybeHandle<Code> GetCodeFromOptimizedCodeMap( Handle<JSFunction> function, BailoutId osr_ast_id) { Handle<SharedFunctionInfo> shared(function->shared()); DisallowHeapAllocation no_gc; CodeAndLiterals cached = shared->SearchOptimizedCodeMap( function->context()->native_context(), osr_ast_id); if (cached.code != nullptr) { // Caching of optimized code enabled and optimized code found. if (cached.literals != nullptr) function->set_literals(cached.literals); DCHECK(!cached.code->marked_for_deoptimization()); DCHECK(function->shared()->is_compiled()); return Handle<Code>(cached.code); } return MaybeHandle<Code>(); } void InsertCodeIntoOptimizedCodeMap(CompilationInfo* info) { Handle<Code> code = info->code(); if (code->kind() != Code::OPTIMIZED_FUNCTION) return; // Nothing to do. // Function context specialization folds-in the function context, // so no sharing can occur. if (info->is_function_context_specializing()) return; // Frame specialization implies function context specialization. DCHECK(!info->is_frame_specializing()); // TODO(4764): When compiling for OSR from bytecode, BailoutId might derive // from bytecode offset and overlap with actual BailoutId. No caching! if (info->is_osr() && info->is_optimizing_from_bytecode()) return; // Cache optimized context-specific code. Handle<JSFunction> function = info->closure(); Handle<SharedFunctionInfo> shared(function->shared()); Handle<LiteralsArray> literals(function->literals()); Handle<Context> native_context(function->context()->native_context()); SharedFunctionInfo::AddToOptimizedCodeMap(shared, native_context, code, literals, info->osr_ast_id()); } bool Renumber(ParseInfo* parse_info) { // Create a canonical handle scope if compiling ignition bytecode. This is // required by the constant array builder to de-duplicate objects without // dereferencing handles. std::unique_ptr<CanonicalHandleScope> canonical; if (FLAG_ignition) { canonical.reset(new CanonicalHandleScope(parse_info->isolate())); } if (!AstNumbering::Renumber(parse_info->isolate(), parse_info->zone(), parse_info->literal())) { return false; } Handle<SharedFunctionInfo> shared_info = parse_info->shared_info(); if (!shared_info.is_null()) { FunctionLiteral* lit = parse_info->literal(); shared_info->set_ast_node_count(lit->ast_node_count()); if (lit->dont_optimize_reason() != kNoReason) { shared_info->DisableOptimization(lit->dont_optimize_reason()); } if (lit->flags() & AstProperties::kDontCrankshaft) { shared_info->set_dont_crankshaft(true); } } return true; } bool UseTurboFan(Handle<SharedFunctionInfo> shared) { bool optimization_disabled = shared->optimization_disabled(); bool dont_crankshaft = shared->dont_crankshaft(); // Check the enabling conditions for Turbofan. // 1. "use asm" code. bool is_turbofanable_asm = FLAG_turbo_asm && shared->asm_function() && !optimization_disabled; // 2. Fallback for features unsupported by Crankshaft. bool is_unsupported_by_crankshaft_but_turbofanable = dont_crankshaft && strcmp(FLAG_turbo_filter, "~~") == 0 && !optimization_disabled; // 3. Explicitly enabled by the command-line filter. bool passes_turbo_filter = shared->PassesFilter(FLAG_turbo_filter); return is_turbofanable_asm || is_unsupported_by_crankshaft_but_turbofanable || passes_turbo_filter; } bool GetOptimizedCodeNow(CompilationJob* job) { CompilationInfo* info = job->info(); Isolate* isolate = info->isolate(); // Parsing is not required when optimizing from existing bytecode. if (!info->is_optimizing_from_bytecode()) { if (!Compiler::ParseAndAnalyze(info->parse_info())) return false; EnsureFeedbackMetadata(info); } JSFunction::EnsureLiterals(info->closure()); TimerEventScope<TimerEventRecompileSynchronous> timer(isolate); RuntimeCallTimerScope runtimeTimer(isolate, &RuntimeCallStats::RecompileSynchronous); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.RecompileSynchronous"); if (job->PrepareJob() != CompilationJob::SUCCEEDED || job->ExecuteJob() != CompilationJob::SUCCEEDED || job->FinalizeJob() != CompilationJob::SUCCEEDED) { if (FLAG_trace_opt) { PrintF("[aborted optimizing "); info->closure()->ShortPrint(); PrintF(" because: %s]\n", GetBailoutReason(info->bailout_reason())); } return false; } // Success! job->RecordOptimizedCompilationStats(); DCHECK(!isolate->has_pending_exception()); InsertCodeIntoOptimizedCodeMap(info); RecordFunctionCompilation(CodeEventListener::LAZY_COMPILE_TAG, info); return true; } bool GetOptimizedCodeLater(CompilationJob* job) { CompilationInfo* info = job->info(); Isolate* isolate = info->isolate(); if (!isolate->optimizing_compile_dispatcher()->IsQueueAvailable()) { if (FLAG_trace_concurrent_recompilation) { PrintF(" ** Compilation queue full, will retry optimizing "); info->closure()->ShortPrint(); PrintF(" later.\n"); } return false; } if (isolate->heap()->HighMemoryPressure()) { if (FLAG_trace_concurrent_recompilation) { PrintF(" ** High memory pressure, will retry optimizing "); info->closure()->ShortPrint(); PrintF(" later.\n"); } return false; } // Parsing is not required when optimizing from existing bytecode. if (!info->is_optimizing_from_bytecode()) { if (!Compiler::ParseAndAnalyze(info->parse_info())) return false; EnsureFeedbackMetadata(info); } JSFunction::EnsureLiterals(info->closure()); TimerEventScope<TimerEventRecompileSynchronous> timer(info->isolate()); RuntimeCallTimerScope runtimeTimer(info->isolate(), &RuntimeCallStats::RecompileSynchronous); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.RecompileSynchronous"); if (job->PrepareJob() != CompilationJob::SUCCEEDED) return false; isolate->optimizing_compile_dispatcher()->QueueForOptimization(job); if (FLAG_trace_concurrent_recompilation) { PrintF(" ** Queued "); info->closure()->ShortPrint(); PrintF(" for concurrent optimization.\n"); } return true; } MaybeHandle<Code> GetOptimizedCode(Handle<JSFunction> function, Compiler::ConcurrencyMode mode, BailoutId osr_ast_id = BailoutId::None(), JavaScriptFrame* osr_frame = nullptr) { Isolate* isolate = function->GetIsolate(); Handle<SharedFunctionInfo> shared(function->shared(), isolate); bool ignition_osr = osr_frame && osr_frame->is_interpreted(); DCHECK_IMPLIES(ignition_osr, !osr_ast_id.IsNone()); DCHECK_IMPLIES(ignition_osr, FLAG_ignition_osr); // Flag combination --ignition-osr --no-turbo-from-bytecode is unsupported. if (ignition_osr && !FLAG_turbo_from_bytecode) return MaybeHandle<Code>(); Handle<Code> cached_code; // TODO(4764): When compiling for OSR from bytecode, BailoutId might derive // from bytecode offset and overlap with actual BailoutId. No lookup! if (!ignition_osr && GetCodeFromOptimizedCodeMap(function, osr_ast_id) .ToHandle(&cached_code)) { if (FLAG_trace_opt) { PrintF("[found optimized code for "); function->ShortPrint(); if (!osr_ast_id.IsNone()) { PrintF(" at OSR AST id %d", osr_ast_id.ToInt()); } PrintF("]\n"); } return cached_code; } // Reset profiler ticks, function is no longer considered hot. if (shared->is_compiled()) { shared->code()->set_profiler_ticks(0); } VMState<COMPILER> state(isolate); DCHECK(!isolate->has_pending_exception()); PostponeInterruptsScope postpone(isolate); bool use_turbofan = UseTurboFan(shared) || ignition_osr; std::unique_ptr<CompilationJob> job( use_turbofan ? compiler::Pipeline::NewCompilationJob(function) : new HCompilationJob(function)); CompilationInfo* info = job->info(); ParseInfo* parse_info = info->parse_info(); info->SetOptimizingForOsr(osr_ast_id, osr_frame); // Do not use Crankshaft/TurboFan if we need to be able to set break points. if (info->shared_info()->HasDebugInfo()) { info->AbortOptimization(kFunctionBeingDebugged); return MaybeHandle<Code>(); } // Limit the number of times we try to optimize functions. const int kMaxOptCount = FLAG_deopt_every_n_times == 0 ? FLAG_max_opt_count : 1000; if (info->shared_info()->opt_count() > kMaxOptCount) { info->AbortOptimization(kOptimizedTooManyTimes); return MaybeHandle<Code>(); } TimerEventScope<TimerEventOptimizeCode> optimize_code_timer(isolate); RuntimeCallTimerScope runtimeTimer(isolate, &RuntimeCallStats::OptimizeCode); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.OptimizeCode"); // TurboFan can optimize directly from existing bytecode. if (FLAG_turbo_from_bytecode && use_turbofan && ShouldUseIgnition(info)) { if (info->is_osr() && !ignition_osr) return MaybeHandle<Code>(); if (!Compiler::EnsureBytecode(info)) { if (isolate->has_pending_exception()) isolate->clear_pending_exception(); return MaybeHandle<Code>(); } info->MarkAsOptimizeFromBytecode(); } if (IsEvalToplevel(shared)) { parse_info->set_eval(); parse_info->set_toplevel(); parse_info->set_allow_lazy_parsing(false); } // Verify that OSR compilations are delegated to the correct graph builder. // Depending on the underlying frame the semantics of the {BailoutId} differ // and the various graph builders hard-code a certain semantic: // - Interpreter : The BailoutId represents a bytecode offset. // - FullCodegen : The BailoutId represents the id of an AST node. DCHECK_IMPLIES(info->is_osr() && ignition_osr, info->is_optimizing_from_bytecode()); DCHECK_IMPLIES(info->is_osr() && !ignition_osr, !info->is_optimizing_from_bytecode()); // In case of concurrent recompilation, all handles below this point will be // allocated in a deferred handle scope that is detached and handed off to // the background thread when we return. std::unique_ptr<CompilationHandleScope> compilation; if (mode == Compiler::CONCURRENT) { compilation.reset(new CompilationHandleScope(info)); } // In case of TurboFan, all handles below will be canonicalized. std::unique_ptr<CanonicalHandleScope> canonical; if (use_turbofan) canonical.reset(new CanonicalHandleScope(info->isolate())); // Reopen handles in the new CompilationHandleScope. info->ReopenHandlesInNewHandleScope(); parse_info->ReopenHandlesInNewHandleScope(); if (mode == Compiler::CONCURRENT) { if (GetOptimizedCodeLater(job.get())) { job.release(); // The background recompile job owns this now. return isolate->builtins()->InOptimizationQueue(); } } else { if (GetOptimizedCodeNow(job.get())) return info->code(); } if (isolate->has_pending_exception()) isolate->clear_pending_exception(); return MaybeHandle<Code>(); } CompilationJob::Status FinalizeOptimizedCompilationJob(CompilationJob* job) { CompilationInfo* info = job->info(); Isolate* isolate = info->isolate(); TimerEventScope<TimerEventRecompileSynchronous> timer(info->isolate()); RuntimeCallTimerScope runtimeTimer(isolate, &RuntimeCallStats::RecompileSynchronous); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.RecompileSynchronous"); Handle<SharedFunctionInfo> shared = info->shared_info(); shared->code()->set_profiler_ticks(0); DCHECK(!shared->HasDebugInfo()); // 1) Optimization on the concurrent thread may have failed. // 2) The function may have already been optimized by OSR. Simply continue. // Except when OSR already disabled optimization for some reason. // 3) The code may have already been invalidated due to dependency change. // 4) Code generation may have failed. if (job->state() == CompilationJob::State::kReadyToFinalize) { if (shared->optimization_disabled()) { job->RetryOptimization(kOptimizationDisabled); } else if (info->dependencies()->HasAborted()) { job->RetryOptimization(kBailedOutDueToDependencyChange); } else if (job->FinalizeJob() == CompilationJob::SUCCEEDED) { job->RecordOptimizedCompilationStats(); RecordFunctionCompilation(CodeEventListener::LAZY_COMPILE_TAG, info); if (shared ->SearchOptimizedCodeMap(info->context()->native_context(), info->osr_ast_id()) .code == nullptr) { InsertCodeIntoOptimizedCodeMap(info); } if (FLAG_trace_opt) { PrintF("[completed optimizing "); info->closure()->ShortPrint(); PrintF("]\n"); } info->closure()->ReplaceCode(*info->code()); return CompilationJob::SUCCEEDED; } } DCHECK(job->state() == CompilationJob::State::kFailed); if (FLAG_trace_opt) { PrintF("[aborted optimizing "); info->closure()->ShortPrint(); PrintF(" because: %s]\n", GetBailoutReason(info->bailout_reason())); } info->closure()->ReplaceCode(shared->code()); return CompilationJob::FAILED; } class InterpreterActivationsFinder : public ThreadVisitor, public OptimizedFunctionVisitor { public: explicit InterpreterActivationsFinder(SharedFunctionInfo* shared) : shared_(shared), has_activations_(false) {} void VisitThread(Isolate* isolate, ThreadLocalTop* top) { Address* activation_pc_address = nullptr; JavaScriptFrameIterator it(isolate, top); for (; !it.done(); it.Advance()) { JavaScriptFrame* frame = it.frame(); if (FLAG_turbo_from_bytecode && FLAG_ignition_osr && frame->is_optimized() && frame->function()->shared() == shared_) { // If we are able to optimize functions directly from bytecode, then // there might be optimized OSR code active on the stack that is not // reachable through a function. We count this as an activation. has_activations_ = true; } if (frame->is_interpreted() && frame->function()->shared() == shared_) { has_activations_ = true; activation_pc_address = frame->pc_address(); } } if (activation_pc_address) { activation_pc_addresses_.push_back(activation_pc_address); } } void VisitFunction(JSFunction* function) { if (function->Inlines(shared_)) has_activations_ = true; } void EnterContext(Context* context) {} void LeaveContext(Context* context) {} bool MarkActivationsForBaselineOnReturn(Isolate* isolate) { if (activation_pc_addresses_.empty()) return false; for (Address* activation_pc_address : activation_pc_addresses_) { DCHECK(isolate->inner_pointer_to_code_cache() ->GetCacheEntry(*activation_pc_address) ->code->is_interpreter_trampoline_builtin()); *activation_pc_address = isolate->builtins()->InterpreterMarkBaselineOnReturn()->entry(); } return true; } bool has_activations() { return has_activations_; } private: SharedFunctionInfo* shared_; bool has_activations_; std::vector<Address*> activation_pc_addresses_; }; bool HasInterpreterActivations( Isolate* isolate, InterpreterActivationsFinder* activations_finder) { activations_finder->VisitThread(isolate, isolate->thread_local_top()); isolate->thread_manager()->IterateArchivedThreads(activations_finder); if (FLAG_turbo_from_bytecode) { // If we are able to optimize functions directly from bytecode, then there // might be optimized functions that rely on bytecode being around. We need // to prevent switching the given function to baseline code in those cases. Deoptimizer::VisitAllOptimizedFunctions(isolate, activations_finder); } return activations_finder->has_activations(); } MaybeHandle<Code> GetBaselineCode(Handle<JSFunction> function) { Isolate* isolate = function->GetIsolate(); VMState<COMPILER> state(isolate); PostponeInterruptsScope postpone(isolate); Zone zone(isolate->allocator()); ParseInfo parse_info(&zone, function); CompilationInfo info(&parse_info, function); // Reset profiler ticks, function is no longer considered hot. if (function->shared()->HasBytecodeArray()) { function->shared()->set_profiler_ticks(0); } // Nothing left to do if the function already has baseline code. if (function->shared()->code()->kind() == Code::FUNCTION) { return Handle<Code>(function->shared()->code()); } // We do not switch to baseline code when the debugger might have created a // copy of the bytecode with break slots to be able to set break points. if (function->shared()->HasDebugInfo()) { return MaybeHandle<Code>(); } // TODO(4280): For now we do not switch generators or async functions to // baseline code because there might be suspended activations stored in // generator objects on the heap. We could eventually go directly to // TurboFan in this case. if (IsResumableFunction(function->shared()->kind())) { return MaybeHandle<Code>(); } // TODO(4280): For now we disable switching to baseline code in the presence // of interpreter activations of the given function. The reasons is that the // underlying bytecode is cleared below. Note that this only applies in case // the --ignition-preserve-bytecode flag is not passed. if (!FLAG_ignition_preserve_bytecode) { InterpreterActivationsFinder activations_finder(function->shared()); if (HasInterpreterActivations(isolate, &activations_finder)) { if (FLAG_trace_opt) { OFStream os(stdout); os << "[unable to switch " << Brief(*function) << " due to activations]" << std::endl; } if (activations_finder.MarkActivationsForBaselineOnReturn(isolate)) { if (FLAG_trace_opt) { OFStream os(stdout); os << "[marking " << Brief(function->shared()) << " for baseline recompilation on return]" << std::endl; } } return MaybeHandle<Code>(); } } if (FLAG_trace_opt) { OFStream os(stdout); os << "[switching method " << Brief(*function) << " to baseline code]" << std::endl; } // Parse and update CompilationInfo with the results. if (!Parse(info.parse_info())) return MaybeHandle<Code>(); Handle<SharedFunctionInfo> shared = info.shared_info(); DCHECK_EQ(shared->language_mode(), info.literal()->language_mode()); // Compile baseline code using the full code generator. if (!Compiler::Analyze(info.parse_info()) || !FullCodeGenerator::MakeCode(&info)) { if (!isolate->has_pending_exception()) isolate->StackOverflow(); return MaybeHandle<Code>(); } // TODO(4280): For now we play it safe and remove the bytecode array when we // switch to baseline code. We might consider keeping around the bytecode so // that it can be used as the "source of truth" eventually. Note that this // only applies in case the --ignition-preserve-bytecode flag is not passed. if (!FLAG_ignition_preserve_bytecode) shared->ClearBytecodeArray(); // Update the shared function info with the scope info. InstallSharedScopeInfo(&info, shared); // Install compilation result on the shared function info InstallSharedCompilationResult(&info, shared); // Record the function compilation event. RecordFunctionCompilation(CodeEventListener::LAZY_COMPILE_TAG, &info); return info.code(); } MaybeHandle<Code> GetLazyCode(Handle<JSFunction> function) { Isolate* isolate = function->GetIsolate(); DCHECK(!isolate->has_pending_exception()); DCHECK(!function->is_compiled()); TimerEventScope<TimerEventCompileCode> compile_timer(isolate); RuntimeCallTimerScope runtimeTimer(isolate, &RuntimeCallStats::CompileCodeLazy); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.CompileCode"); AggregatedHistogramTimerScope timer(isolate->counters()->compile_lazy()); Handle<Code> cached_code; if (GetCodeFromOptimizedCodeMap(function, BailoutId::None()) .ToHandle(&cached_code)) { if (FLAG_trace_opt) { PrintF("[found optimized code for "); function->ShortPrint(); PrintF(" during unoptimized compile]\n"); } DCHECK(function->shared()->is_compiled()); return cached_code; } if (function->shared()->is_compiled()) { return Handle<Code>(function->shared()->code()); } if (function->shared()->HasBytecodeArray()) { Handle<Code> entry = isolate->builtins()->InterpreterEntryTrampoline(); function->shared()->ReplaceCode(*entry); return entry; } Zone zone(isolate->allocator()); ParseInfo parse_info(&zone, function); CompilationInfo info(&parse_info, function); Handle<Code> result; ASSIGN_RETURN_ON_EXCEPTION(isolate, result, GetUnoptimizedCode(&info), Code); if (FLAG_always_opt) { Handle<Code> opt_code; if (GetOptimizedCode(function, Compiler::NOT_CONCURRENT) .ToHandle(&opt_code)) { result = opt_code; } } return result; } Handle<SharedFunctionInfo> NewSharedFunctionInfoForLiteral( Isolate* isolate, FunctionLiteral* literal, Handle<Script> script) { Handle<Code> code = isolate->builtins()->CompileLazy(); Handle<ScopeInfo> scope_info = handle(ScopeInfo::Empty(isolate)); Handle<SharedFunctionInfo> result = isolate->factory()->NewSharedFunctionInfo( literal->name(), literal->materialized_literal_count(), literal->kind(), code, scope_info); SharedFunctionInfo::InitFromFunctionLiteral(result, literal); SharedFunctionInfo::SetScript(result, script); return result; } Handle<SharedFunctionInfo> CompileToplevel(CompilationInfo* info) { Isolate* isolate = info->isolate(); TimerEventScope<TimerEventCompileCode> timer(isolate); RuntimeCallTimerScope runtimeTimer(isolate, &RuntimeCallStats::CompileCode); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.CompileCode"); PostponeInterruptsScope postpone(isolate); DCHECK(!isolate->native_context().is_null()); ParseInfo* parse_info = info->parse_info(); Handle<Script> script = parse_info->script(); // TODO(svenpanne) Obscure place for this, perhaps move to OnBeforeCompile? FixedArray* array = isolate->native_context()->embedder_data(); script->set_context_data(array->get(v8::Context::kDebugIdIndex)); isolate->debug()->OnBeforeCompile(script); parse_info->set_toplevel(); Handle<SharedFunctionInfo> result; { VMState<COMPILER> state(info->isolate()); if (parse_info->literal() == NULL) { // Parse the script if needed (if it's already parsed, literal() is // non-NULL). If compiling for debugging, we may eagerly compile inner // functions, so do not parse lazily in that case. ScriptCompiler::CompileOptions options = parse_info->compile_options(); bool parse_allow_lazy = options == ScriptCompiler::kConsumeParserCache || String::cast(script->source())->length() > FLAG_min_preparse_length; parse_info->set_allow_lazy_parsing(parse_allow_lazy); if (!parse_allow_lazy && (options == ScriptCompiler::kProduceParserCache || options == ScriptCompiler::kConsumeParserCache)) { // We are going to parse eagerly, but we either 1) have cached data // produced by lazy parsing or 2) are asked to generate cached data. // Eager parsing cannot benefit from cached data, and producing cached // data while parsing eagerly is not implemented. parse_info->set_cached_data(nullptr); parse_info->set_compile_options(ScriptCompiler::kNoCompileOptions); } if (!Parse(parse_info)) { return Handle<SharedFunctionInfo>::null(); } } FunctionLiteral* lit = parse_info->literal(); // Measure how long it takes to do the compilation; only take the // rest of the function into account to avoid overlap with the // parsing statistics. RuntimeCallTimerScope runtimeTimer( isolate, parse_info->is_eval() ? &RuntimeCallStats::CompileEval : &RuntimeCallStats::Compile); HistogramTimer* rate = parse_info->is_eval() ? info->isolate()->counters()->compile_eval() : info->isolate()->counters()->compile(); HistogramTimerScope timer(rate); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), parse_info->is_eval() ? "V8.CompileEval" : "V8.Compile"); // Allocate a shared function info object. DCHECK_EQ(kNoSourcePosition, lit->function_token_position()); result = NewSharedFunctionInfoForLiteral(isolate, lit, script); result->set_is_toplevel(true); parse_info->set_shared_info(result); // Compile the code. if (!CompileUnoptimizedCode(info)) { return Handle<SharedFunctionInfo>::null(); } Handle<String> script_name = script->name()->IsString() ? Handle<String>(String::cast(script->name())) : isolate->factory()->empty_string(); CodeEventListener::LogEventsAndTags log_tag = parse_info->is_eval() ? CodeEventListener::EVAL_TAG : Logger::ToNativeByScript(CodeEventListener::SCRIPT_TAG, *script); PROFILE(isolate, CodeCreateEvent(log_tag, result->abstract_code(), *result, *script_name)); if (!script.is_null()) script->set_compilation_state(Script::COMPILATION_STATE_COMPILED); } return result; } } // namespace // ---------------------------------------------------------------------------- // Implementation of Compiler bool Compiler::Analyze(ParseInfo* info) { DCHECK_NOT_NULL(info->literal()); if (!Rewriter::Rewrite(info)) return false; DeclarationScope::Analyze(info, AnalyzeMode::kRegular); if (!Renumber(info)) return false; DCHECK_NOT_NULL(info->scope()); return true; } bool Compiler::ParseAndAnalyze(ParseInfo* info) { if (!Parse(info)) return false; if (!Compiler::Analyze(info)) return false; DCHECK_NOT_NULL(info->literal()); DCHECK_NOT_NULL(info->scope()); return true; } bool Compiler::Compile(Handle<JSFunction> function, ClearExceptionFlag flag) { if (function->is_compiled()) return true; Isolate* isolate = function->GetIsolate(); DCHECK(AllowCompilation::IsAllowed(isolate)); // Start a compilation. Handle<Code> code; if (!GetLazyCode(function).ToHandle(&code)) { if (flag == CLEAR_EXCEPTION) { isolate->clear_pending_exception(); } return false; } // Install code on closure. function->ReplaceCode(*code); JSFunction::EnsureLiterals(function); // Check postconditions on success. DCHECK(!isolate->has_pending_exception()); DCHECK(function->shared()->is_compiled()); DCHECK(function->is_compiled()); return true; } bool Compiler::CompileBaseline(Handle<JSFunction> function) { Isolate* isolate = function->GetIsolate(); DCHECK(AllowCompilation::IsAllowed(isolate)); // Start a compilation. Handle<Code> code; if (!GetBaselineCode(function).ToHandle(&code)) { // Baseline generation failed, get unoptimized code. DCHECK(function->shared()->is_compiled()); code = handle(function->shared()->code()); isolate->clear_pending_exception(); } // Install code on closure. function->ReplaceCode(*code); JSFunction::EnsureLiterals(function); // Check postconditions on success. DCHECK(!isolate->has_pending_exception()); DCHECK(function->shared()->is_compiled()); DCHECK(function->is_compiled()); return true; } bool Compiler::CompileOptimized(Handle<JSFunction> function, ConcurrencyMode mode) { if (function->IsOptimized()) return true; Isolate* isolate = function->GetIsolate(); DCHECK(AllowCompilation::IsAllowed(isolate)); // Start a compilation. Handle<Code> code; if (!GetOptimizedCode(function, mode).ToHandle(&code)) { // Optimization failed, get unoptimized code. DCHECK(!isolate->has_pending_exception()); if (function->shared()->is_compiled()) { code = handle(function->shared()->code(), isolate); } else if (function->shared()->HasBytecodeArray()) { code = isolate->builtins()->InterpreterEntryTrampoline(); function->shared()->ReplaceCode(*code); } else { Zone zone(isolate->allocator()); ParseInfo parse_info(&zone, function); CompilationInfo info(&parse_info, function); if (!GetUnoptimizedCode(&info).ToHandle(&code)) { return false; } } } // Install code on closure. function->ReplaceCode(*code); JSFunction::EnsureLiterals(function); // Check postconditions on success. DCHECK(!isolate->has_pending_exception()); DCHECK(function->shared()->is_compiled()); DCHECK(function->is_compiled()); return true; } bool Compiler::CompileDebugCode(Handle<JSFunction> function) { Isolate* isolate = function->GetIsolate(); DCHECK(AllowCompilation::IsAllowed(isolate)); // Start a compilation. Zone zone(isolate->allocator()); ParseInfo parse_info(&zone, function); CompilationInfo info(&parse_info, Handle<JSFunction>::null()); if (IsEvalToplevel(handle(function->shared()))) { parse_info.set_eval(); parse_info.set_toplevel(); parse_info.set_allow_lazy_parsing(false); } info.MarkAsDebug(); if (GetUnoptimizedCode(&info).is_null()) { isolate->clear_pending_exception(); return false; } // Check postconditions on success. DCHECK(!isolate->has_pending_exception()); DCHECK(function->shared()->is_compiled()); DCHECK(function->shared()->HasDebugCode()); return true; } bool Compiler::CompileDebugCode(Handle<SharedFunctionInfo> shared) { Isolate* isolate = shared->GetIsolate(); DCHECK(AllowCompilation::IsAllowed(isolate)); // Start a compilation. Zone zone(isolate->allocator()); ParseInfo parse_info(&zone, shared); CompilationInfo info(&parse_info, Handle<JSFunction>::null()); if (IsEvalToplevel(shared)) { parse_info.set_eval(); parse_info.set_toplevel(); parse_info.set_allow_lazy_parsing(false); } info.MarkAsDebug(); if (GetUnoptimizedCode(&info).is_null()) { isolate->clear_pending_exception(); return false; } // Check postconditions on success. DCHECK(!isolate->has_pending_exception()); DCHECK(shared->is_compiled()); DCHECK(shared->HasDebugCode()); return true; } MaybeHandle<JSArray> Compiler::CompileForLiveEdit(Handle<Script> script) { Isolate* isolate = script->GetIsolate(); DCHECK(AllowCompilation::IsAllowed(isolate)); // In order to ensure that live edit function info collection finds the newly // generated shared function infos, clear the script's list temporarily // and restore it at the end of this method. Handle<Object> old_function_infos(script->shared_function_infos(), isolate); script->set_shared_function_infos(Smi::kZero); // Start a compilation. Zone zone(isolate->allocator()); ParseInfo parse_info(&zone, script); CompilationInfo info(&parse_info, Handle<JSFunction>::null()); info.MarkAsDebug(); // TODO(635): support extensions. const bool compilation_succeeded = !CompileToplevel(&info).is_null(); Handle<JSArray> infos; if (compilation_succeeded) { // Check postconditions on success. DCHECK(!isolate->has_pending_exception()); infos = LiveEditFunctionTracker::Collect(parse_info.literal(), script, &zone, isolate); } // Restore the original function info list in order to remain side-effect // free as much as possible, since some code expects the old shared function // infos to stick around. script->set_shared_function_infos(*old_function_infos); return infos; } bool Compiler::EnsureBytecode(CompilationInfo* info) { if (!ShouldUseIgnition(info)) return false; if (!info->shared_info()->HasBytecodeArray()) { Handle<Code> original_code(info->shared_info()->code()); if (GetUnoptimizedCode(info).is_null()) return false; if (info->shared_info()->HasAsmWasmData()) return false; DCHECK(info->shared_info()->is_compiled()); if (original_code->kind() == Code::FUNCTION) { // Generating bytecode will install the {InterpreterEntryTrampoline} as // shared code on the function. To avoid an implicit tier down we restore // original baseline code in case it existed beforehand. info->shared_info()->ReplaceCode(*original_code); } } DCHECK(info->shared_info()->HasBytecodeArray()); return true; } // TODO(turbofan): In the future, unoptimized code with deopt support could // be generated lazily once deopt is triggered. bool Compiler::EnsureDeoptimizationSupport(CompilationInfo* info) { DCHECK_NOT_NULL(info->literal()); DCHECK_NOT_NULL(info->scope()); Handle<SharedFunctionInfo> shared = info->shared_info(); if (!shared->has_deoptimization_support()) { Zone zone(info->isolate()->allocator()); CompilationInfo unoptimized(info->parse_info(), info->closure()); unoptimized.EnableDeoptimizationSupport(); // TODO(4280): For now we do not switch generators or async functions to // baseline code because there might be suspended activations stored in // generator objects on the heap. We could eventually go directly to // TurboFan in this case. if (IsResumableFunction(shared->kind())) return false; // TODO(4280): For now we disable switching to baseline code in the presence // of interpreter activations of the given function. The reasons is that the // underlying bytecode is cleared below. The expensive check for activations // only needs to be done when the given function has bytecode, otherwise we // can be sure there are no activations. Note that this only applies in case // the --ignition-preserve-bytecode flag is not passed. if (!FLAG_ignition_preserve_bytecode && shared->HasBytecodeArray()) { InterpreterActivationsFinder activations_finder(*shared); if (HasInterpreterActivations(info->isolate(), &activations_finder)) { return false; } } // When we call PrepareForSerializing below, we will change the shared // ParseInfo. Make sure to reset it. bool old_will_serialize_value = info->parse_info()->will_serialize(); // If the current code has reloc info for serialization, also include // reloc info for serialization for the new code, so that deopt support // can be added without losing IC state. if (shared->code()->kind() == Code::FUNCTION && shared->code()->has_reloc_info_for_serialization()) { unoptimized.PrepareForSerializing(); } EnsureFeedbackMetadata(&unoptimized); if (!FullCodeGenerator::MakeCode(&unoptimized)) return false; info->parse_info()->set_will_serialize(old_will_serialize_value); // TODO(4280): For now we play it safe and remove the bytecode array when we // switch to baseline code. We might consider keeping around the bytecode so // that it can be used as the "source of truth" eventually. Note that this // only applies in case the --ignition-preserve-bytecode flag is not passed. if (!FLAG_ignition_preserve_bytecode && shared->HasBytecodeArray()) { shared->ClearBytecodeArray(); } // The scope info might not have been set if a lazily compiled // function is inlined before being called for the first time. if (shared->scope_info() == ScopeInfo::Empty(info->isolate())) { InstallSharedScopeInfo(info, shared); } // Install compilation result on the shared function info shared->EnableDeoptimizationSupport(*unoptimized.code()); // The existing unoptimized code was replaced with the new one. RecordFunctionCompilation(CodeEventListener::LAZY_COMPILE_TAG, &unoptimized); } return true; } // static Compiler::CompilationTier Compiler::NextCompilationTier(JSFunction* function) { Handle<SharedFunctionInfo> shared(function->shared(), function->GetIsolate()); if (shared->code()->is_interpreter_trampoline_builtin()) { if (FLAG_turbo_from_bytecode && UseTurboFan(shared)) { return OPTIMIZED; } else { return BASELINE; } } else { return OPTIMIZED; } } MaybeHandle<JSFunction> Compiler::GetFunctionFromEval( Handle<String> source, Handle<SharedFunctionInfo> outer_info, Handle<Context> context, LanguageMode language_mode, ParseRestriction restriction, int eval_scope_position, int eval_position, int line_offset, int column_offset, Handle<Object> script_name, ScriptOriginOptions options) { Isolate* isolate = source->GetIsolate(); int source_length = source->length(); isolate->counters()->total_eval_size()->Increment(source_length); isolate->counters()->total_compile_size()->Increment(source_length); CompilationCache* compilation_cache = isolate->compilation_cache(); MaybeHandle<SharedFunctionInfo> maybe_shared_info = compilation_cache->LookupEval(source, outer_info, context, language_mode, eval_scope_position); Handle<SharedFunctionInfo> shared_info; Handle<Script> script; if (!maybe_shared_info.ToHandle(&shared_info)) { script = isolate->factory()->NewScript(source); if (!script_name.is_null()) { script->set_name(*script_name); script->set_line_offset(line_offset); script->set_column_offset(column_offset); } script->set_origin_options(options); script->set_compilation_type(Script::COMPILATION_TYPE_EVAL); Script::SetEvalOrigin(script, outer_info, eval_position); Zone zone(isolate->allocator()); ParseInfo parse_info(&zone, script); CompilationInfo info(&parse_info, Handle<JSFunction>::null()); parse_info.set_eval(); parse_info.set_language_mode(language_mode); parse_info.set_parse_restriction(restriction); if (!context->IsNativeContext()) { parse_info.set_outer_scope_info(handle(context->scope_info())); } shared_info = CompileToplevel(&info); if (shared_info.is_null()) { return MaybeHandle<JSFunction>(); } else { // If caller is strict mode, the result must be in strict mode as well. DCHECK(is_sloppy(language_mode) || is_strict(shared_info->language_mode())); compilation_cache->PutEval(source, outer_info, context, shared_info, eval_scope_position); } } Handle<JSFunction> result = isolate->factory()->NewFunctionFromSharedFunctionInfo( shared_info, context, NOT_TENURED); // OnAfterCompile has to be called after we create the JSFunction, which we // may require to recompile the eval for debugging, if we find a function // that contains break points in the eval script. isolate->debug()->OnAfterCompile(script); return result; } namespace { bool CodeGenerationFromStringsAllowed(Isolate* isolate, Handle<Context> context) { DCHECK(context->allow_code_gen_from_strings()->IsFalse(isolate)); // Check with callback if set. AllowCodeGenerationFromStringsCallback callback = isolate->allow_code_gen_callback(); if (callback == NULL) { // No callback set and code generation disallowed. return false; } else { // Callback set. Let it decide if code generation is allowed. VMState<EXTERNAL> state(isolate); return callback(v8::Utils::ToLocal(context)); } } } // namespace MaybeHandle<JSFunction> Compiler::GetFunctionFromString( Handle<Context> context, Handle<String> source, ParseRestriction restriction) { Isolate* const isolate = context->GetIsolate(); Handle<Context> native_context(context->native_context(), isolate); // Check if native context allows code generation from // strings. Throw an exception if it doesn't. if (native_context->allow_code_gen_from_strings()->IsFalse(isolate) && !CodeGenerationFromStringsAllowed(isolate, native_context)) { Handle<Object> error_message = native_context->ErrorMessageForCodeGenerationFromStrings(); THROW_NEW_ERROR(isolate, NewEvalError(MessageTemplate::kCodeGenFromStrings, error_message), JSFunction); } // Compile source string in the native context. int eval_scope_position = 0; int eval_position = kNoSourcePosition; Handle<SharedFunctionInfo> outer_info(native_context->closure()->shared()); return Compiler::GetFunctionFromEval(source, outer_info, native_context, SLOPPY, restriction, eval_scope_position, eval_position); } Handle<SharedFunctionInfo> Compiler::GetSharedFunctionInfoForScript( Handle<String> source, Handle<Object> script_name, int line_offset, int column_offset, ScriptOriginOptions resource_options, Handle<Object> source_map_url, Handle<Context> context, v8::Extension* extension, ScriptData** cached_data, ScriptCompiler::CompileOptions compile_options, NativesFlag natives, bool is_module) { Isolate* isolate = source->GetIsolate(); if (compile_options == ScriptCompiler::kNoCompileOptions) { cached_data = NULL; } else if (compile_options == ScriptCompiler::kProduceParserCache || compile_options == ScriptCompiler::kProduceCodeCache) { DCHECK(cached_data && !*cached_data); DCHECK(extension == NULL); DCHECK(!isolate->debug()->is_loaded()); } else { DCHECK(compile_options == ScriptCompiler::kConsumeParserCache || compile_options == ScriptCompiler::kConsumeCodeCache); DCHECK(cached_data && *cached_data); DCHECK(extension == NULL); } int source_length = source->length(); isolate->counters()->total_load_size()->Increment(source_length); isolate->counters()->total_compile_size()->Increment(source_length); LanguageMode language_mode = construct_language_mode(FLAG_use_strict); CompilationCache* compilation_cache = isolate->compilation_cache(); // Do a lookup in the compilation cache but not for extensions. MaybeHandle<SharedFunctionInfo> maybe_result; Handle<SharedFunctionInfo> result; if (extension == NULL) { // First check per-isolate compilation cache. maybe_result = compilation_cache->LookupScript( source, script_name, line_offset, column_offset, resource_options, context, language_mode); if (maybe_result.is_null() && FLAG_serialize_toplevel && compile_options == ScriptCompiler::kConsumeCodeCache && !isolate->debug()->is_loaded()) { // Then check cached code provided by embedder. HistogramTimerScope timer(isolate->counters()->compile_deserialize()); RuntimeCallTimerScope runtimeTimer(isolate, &RuntimeCallStats::CompileDeserialize); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.CompileDeserialize"); Handle<SharedFunctionInfo> result; if (CodeSerializer::Deserialize(isolate, *cached_data, source) .ToHandle(&result)) { // Promote to per-isolate compilation cache. compilation_cache->PutScript(source, context, language_mode, result); return result; } // Deserializer failed. Fall through to compile. } } base::ElapsedTimer timer; if (FLAG_profile_deserialization && FLAG_serialize_toplevel && compile_options == ScriptCompiler::kProduceCodeCache) { timer.Start(); } if (!maybe_result.ToHandle(&result) || (FLAG_serialize_toplevel && compile_options == ScriptCompiler::kProduceCodeCache)) { // No cache entry found, or embedder wants a code cache. Compile the script. // Create a script object describing the script to be compiled. Handle<Script> script = isolate->factory()->NewScript(source); if (natives == NATIVES_CODE) { script->set_type(Script::TYPE_NATIVE); script->set_hide_source(true); } else if (natives == EXTENSION_CODE) { script->set_type(Script::TYPE_EXTENSION); script->set_hide_source(true); } if (!script_name.is_null()) { script->set_name(*script_name); script->set_line_offset(line_offset); script->set_column_offset(column_offset); } script->set_origin_options(resource_options); if (!source_map_url.is_null()) { script->set_source_mapping_url(*source_map_url); } // Compile the function and add it to the cache. Zone zone(isolate->allocator()); ParseInfo parse_info(&zone, script); CompilationInfo info(&parse_info, Handle<JSFunction>::null()); if (is_module) parse_info.set_module(); if (compile_options != ScriptCompiler::kNoCompileOptions) { parse_info.set_cached_data(cached_data); } parse_info.set_compile_options(compile_options); parse_info.set_extension(extension); if (!context->IsNativeContext()) { parse_info.set_outer_scope_info(handle(context->scope_info())); } if (FLAG_serialize_toplevel && compile_options == ScriptCompiler::kProduceCodeCache) { info.PrepareForSerializing(); } parse_info.set_language_mode( static_cast<LanguageMode>(parse_info.language_mode() | language_mode)); result = CompileToplevel(&info); if (extension == NULL && !result.is_null()) { compilation_cache->PutScript(source, context, language_mode, result); if (FLAG_serialize_toplevel && compile_options == ScriptCompiler::kProduceCodeCache) { HistogramTimerScope histogram_timer( isolate->counters()->compile_serialize()); RuntimeCallTimerScope runtimeTimer(isolate, &RuntimeCallStats::CompileSerialize); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.CompileSerialize"); *cached_data = CodeSerializer::Serialize(isolate, result, source); if (FLAG_profile_deserialization) { PrintF("[Compiling and serializing took %0.3f ms]\n", timer.Elapsed().InMillisecondsF()); } } } if (result.is_null()) { isolate->ReportPendingMessages(); } else { isolate->debug()->OnAfterCompile(script); } } else if (result->ic_age() != isolate->heap()->global_ic_age()) { result->ResetForNewContext(isolate->heap()->global_ic_age()); } return result; } Handle<SharedFunctionInfo> Compiler::GetSharedFunctionInfoForStreamedScript( Handle<Script> script, ParseInfo* parse_info, int source_length) { Isolate* isolate = script->GetIsolate(); // TODO(titzer): increment the counters in caller. isolate->counters()->total_load_size()->Increment(source_length); isolate->counters()->total_compile_size()->Increment(source_length); LanguageMode language_mode = construct_language_mode(FLAG_use_strict); parse_info->set_language_mode( static_cast<LanguageMode>(parse_info->language_mode() | language_mode)); CompilationInfo compile_info(parse_info, Handle<JSFunction>::null()); // The source was parsed lazily, so compiling for debugging is not possible. DCHECK(!compile_info.is_debug()); Handle<SharedFunctionInfo> result = CompileToplevel(&compile_info); if (!result.is_null()) isolate->debug()->OnAfterCompile(script); return result; } Handle<SharedFunctionInfo> Compiler::GetSharedFunctionInfo( FunctionLiteral* literal, Handle<Script> script, CompilationInfo* outer_info) { // Precondition: code has been parsed and scopes have been analyzed. Isolate* isolate = outer_info->isolate(); MaybeHandle<SharedFunctionInfo> maybe_existing; // Find any previously allocated shared function info for the given literal. if (outer_info->shared_info()->never_compiled()) { // On the first compile, there are no existing shared function info for // inner functions yet, so do not try to find them. All bets are off for // live edit though. SLOW_DCHECK(script->FindSharedFunctionInfo(literal).is_null() || isolate->debug()->live_edit_enabled()); } else { maybe_existing = script->FindSharedFunctionInfo(literal); } // We found an existing shared function info. If it has any sort of code // attached, don't worry about compiling and simply return it. Otherwise, // continue to decide whether to eagerly compile. // Note that we also carry on if we are compiling eager to obtain code for // debugging, unless we already have code with debug break slots. Handle<SharedFunctionInfo> existing; if (maybe_existing.ToHandle(&existing)) { DCHECK(!existing->is_toplevel()); if (existing->HasBaselineCode() || existing->HasBytecodeArray()) { if (!outer_info->is_debug() || existing->HasDebugCode()) { return existing; } } } // Allocate a shared function info object. Handle<SharedFunctionInfo> result; if (!maybe_existing.ToHandle(&result)) { result = NewSharedFunctionInfoForLiteral(isolate, literal, script); result->set_is_toplevel(false); // If the outer function has been compiled before, we cannot be sure that // shared function info for this function literal has been created for the // first time. It may have already been compiled previously. result->set_never_compiled(outer_info->shared_info()->never_compiled()); } Zone zone(isolate->allocator()); ParseInfo parse_info(&zone, script); CompilationInfo info(&parse_info, Handle<JSFunction>::null()); parse_info.set_literal(literal); parse_info.set_shared_info(result); parse_info.set_language_mode(literal->scope()->language_mode()); if (outer_info->will_serialize()) info.PrepareForSerializing(); if (outer_info->is_debug()) info.MarkAsDebug(); // Generate code TimerEventScope<TimerEventCompileCode> timer(isolate); RuntimeCallTimerScope runtimeTimer(isolate, &RuntimeCallStats::CompileCode); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.CompileCode"); if (!literal->ShouldEagerCompile()) { info.SetCode(isolate->builtins()->CompileLazy()); Scope* outer_scope = literal->scope()->GetOuterScopeWithContext(); if (outer_scope) { result->set_outer_scope_info(*outer_scope->scope_info()); } } else if (Renumber(info.parse_info()) && GenerateUnoptimizedCode(&info)) { // Code generation will ensure that the feedback vector is present and // appropriately sized. DCHECK(!info.code().is_null()); if (literal->should_be_used_once_hint()) { info.code()->MarkToBeExecutedOnce(isolate); } } else { return Handle<SharedFunctionInfo>::null(); } if (maybe_existing.is_null()) { RecordFunctionCompilation(CodeEventListener::FUNCTION_TAG, &info); } return result; } Handle<SharedFunctionInfo> Compiler::GetSharedFunctionInfoForNative( v8::Extension* extension, Handle<String> name) { Isolate* isolate = name->GetIsolate(); v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate); // Compute the function template for the native function. v8::Local<v8::FunctionTemplate> fun_template = extension->GetNativeFunctionTemplate(v8_isolate, v8::Utils::ToLocal(name)); DCHECK(!fun_template.IsEmpty()); // Instantiate the function and create a shared function info from it. Handle<JSFunction> fun = Handle<JSFunction>::cast(Utils::OpenHandle( *fun_template->GetFunction(v8_isolate->GetCurrentContext()) .ToLocalChecked())); Handle<Code> code = Handle<Code>(fun->shared()->code()); Handle<Code> construct_stub = Handle<Code>(fun->shared()->construct_stub()); Handle<SharedFunctionInfo> shared = isolate->factory()->NewSharedFunctionInfo( name, fun->shared()->num_literals(), FunctionKind::kNormalFunction, code, Handle<ScopeInfo>(fun->shared()->scope_info())); shared->set_outer_scope_info(fun->shared()->outer_scope_info()); shared->SetConstructStub(*construct_stub); shared->set_feedback_metadata(fun->shared()->feedback_metadata()); // Copy the function data to the shared function info. shared->set_function_data(fun->shared()->function_data()); int parameters = fun->shared()->internal_formal_parameter_count(); shared->set_internal_formal_parameter_count(parameters); return shared; } MaybeHandle<Code> Compiler::GetOptimizedCodeForOSR(Handle<JSFunction> function, BailoutId osr_ast_id, JavaScriptFrame* osr_frame) { DCHECK(!osr_ast_id.IsNone()); DCHECK_NOT_NULL(osr_frame); return GetOptimizedCode(function, NOT_CONCURRENT, osr_ast_id, osr_frame); } CompilationJob* Compiler::PrepareUnoptimizedCompilationJob( CompilationInfo* info) { VMState<COMPILER> state(info->isolate()); std::unique_ptr<CompilationJob> job(GetUnoptimizedCompilationJob(info)); if (job->PrepareJob() != CompilationJob::SUCCEEDED) { return nullptr; } return job.release(); } bool Compiler::FinalizeCompilationJob(CompilationJob* raw_job) { // Take ownership of compilation job. Deleting job also tears down the zone. std::unique_ptr<CompilationJob> job(raw_job); VMState<COMPILER> state(job->info()->isolate()); if (job->info()->IsOptimizing()) { return FinalizeOptimizedCompilationJob(job.get()) == CompilationJob::SUCCEEDED; } else { if (FinalizeUnoptimizedCompilationJob(job.get()) == CompilationJob::SUCCEEDED) { RecordFunctionCompilation(CodeEventListener::LAZY_COMPILE_TAG, job->info()); return true; } return false; } } void Compiler::PostInstantiation(Handle<JSFunction> function, PretenureFlag pretenure) { Handle<SharedFunctionInfo> shared(function->shared()); if (FLAG_always_opt && shared->allows_lazy_compilation()) { function->MarkForOptimization(); } CodeAndLiterals cached = shared->SearchOptimizedCodeMap( function->context()->native_context(), BailoutId::None()); if (cached.code != nullptr) { // Caching of optimized code enabled and optimized code found. DCHECK(!cached.code->marked_for_deoptimization()); DCHECK(function->shared()->is_compiled()); function->ReplaceCode(cached.code); } if (cached.literals != nullptr) { DCHECK(shared->is_compiled()); function->set_literals(cached.literals); } else if (shared->is_compiled()) { // TODO(mvstanton): pass pretenure flag to EnsureLiterals. JSFunction::EnsureLiterals(function); } } } // namespace internal } // namespace v8