// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_S390 #include "src/ic/ic.h" #include "src/codegen.h" #include "src/ic/ic-compiler.h" #include "src/ic/stub-cache.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Static IC stub generators. // #define __ ACCESS_MASM(masm) // Helper function used from LoadIC GenerateNormal. // // elements: Property dictionary. It is not clobbered if a jump to the miss // label is done. // name: Property name. It is not clobbered if a jump to the miss label is // done // result: Register for the result. It is only updated if a jump to the miss // label is not done. Can be the same as elements or name clobbering // one of these in the case of not jumping to the miss label. // The two scratch registers need to be different from elements, name and // result. // The generated code assumes that the receiver has slow properties, // is not a global object and does not have interceptors. static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss, Register elements, Register name, Register result, Register scratch1, Register scratch2) { // Main use of the scratch registers. // scratch1: Used as temporary and to hold the capacity of the property // dictionary. // scratch2: Used as temporary. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements, name, scratch1, scratch2); // If probing finds an entry check that the value is a normal // property. __ bind(&done); // scratch2 == elements + 4 * index const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; __ LoadP(scratch1, FieldMemOperand(scratch2, kDetailsOffset)); __ LoadRR(r0, scratch2); __ LoadSmiLiteral(scratch2, Smi::FromInt(PropertyDetails::TypeField::kMask)); __ AndP(scratch2, scratch1); __ bne(miss); __ LoadRR(scratch2, r0); // Get the value at the masked, scaled index and return. __ LoadP(result, FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize)); } // Helper function used from StoreIC::GenerateNormal. // // elements: Property dictionary. It is not clobbered if a jump to the miss // label is done. // name: Property name. It is not clobbered if a jump to the miss label is // done // value: The value to store. // The two scratch registers need to be different from elements, name and // result. // The generated code assumes that the receiver has slow properties, // is not a global object and does not have interceptors. static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss, Register elements, Register name, Register value, Register scratch1, Register scratch2) { // Main use of the scratch registers. // scratch1: Used as temporary and to hold the capacity of the property // dictionary. // scratch2: Used as temporary. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements, name, scratch1, scratch2); // If probing finds an entry in the dictionary check that the value // is a normal property that is not read only. __ bind(&done); // scratch2 == elements + 4 * index const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; int kTypeAndReadOnlyMask = PropertyDetails::TypeField::kMask | PropertyDetails::AttributesField::encode(READ_ONLY); __ LoadP(scratch1, FieldMemOperand(scratch2, kDetailsOffset)); __ LoadRR(r0, scratch2); __ LoadSmiLiteral(scratch2, Smi::FromInt(kTypeAndReadOnlyMask)); __ AndP(scratch2, scratch1); __ bne(miss /*, cr0*/); __ LoadRR(scratch2, r0); // Store the value at the masked, scaled index and return. const int kValueOffset = kElementsStartOffset + kPointerSize; __ AddP(scratch2, Operand(kValueOffset - kHeapObjectTag)); __ StoreP(value, MemOperand(scratch2)); // Update the write barrier. Make sure not to clobber the value. __ LoadRR(scratch1, value); __ RecordWrite(elements, scratch2, scratch1, kLRHasNotBeenSaved, kDontSaveFPRegs); } void LoadIC::GenerateNormal(MacroAssembler* masm) { Register dictionary = r2; DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister())); DCHECK(!dictionary.is(LoadDescriptor::NameRegister())); Label slow; __ LoadP(dictionary, FieldMemOperand(LoadDescriptor::ReceiverRegister(), JSObject::kPropertiesOffset)); GenerateDictionaryLoad(masm, &slow, dictionary, LoadDescriptor::NameRegister(), r2, r5, r6); __ Ret(); // Dictionary load failed, go slow (but don't miss). __ bind(&slow); GenerateRuntimeGetProperty(masm); } // A register that isn't one of the parameters to the load ic. static const Register LoadIC_TempRegister() { return r5; } static void LoadIC_PushArgs(MacroAssembler* masm) { Register receiver = LoadDescriptor::ReceiverRegister(); Register name = LoadDescriptor::NameRegister(); Register slot = LoadDescriptor::SlotRegister(); Register vector = LoadWithVectorDescriptor::VectorRegister(); __ Push(receiver, name, slot, vector); } void LoadIC::GenerateMiss(MacroAssembler* masm) { // The return address is in lr. Isolate* isolate = masm->isolate(); DCHECK(!AreAliased(r6, r7, LoadWithVectorDescriptor::SlotRegister(), LoadWithVectorDescriptor::VectorRegister())); __ IncrementCounter(isolate->counters()->ic_load_miss(), 1, r6, r7); LoadIC_PushArgs(masm); // Perform tail call to the entry. __ TailCallRuntime(Runtime::kLoadIC_Miss); } void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) { // The return address is in lr. __ LoadRR(LoadIC_TempRegister(), LoadDescriptor::ReceiverRegister()); __ Push(LoadIC_TempRegister(), LoadDescriptor::NameRegister()); // Do tail-call to runtime routine. __ TailCallRuntime(Runtime::kGetProperty); } void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) { // The return address is in lr. Isolate* isolate = masm->isolate(); DCHECK(!AreAliased(r6, r7, LoadWithVectorDescriptor::SlotRegister(), LoadWithVectorDescriptor::VectorRegister())); __ IncrementCounter(isolate->counters()->ic_keyed_load_miss(), 1, r6, r7); LoadIC_PushArgs(masm); // Perform tail call to the entry. __ TailCallRuntime(Runtime::kKeyedLoadIC_Miss); } void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) { // The return address is in lr. __ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister()); // Do tail-call to runtime routine. __ TailCallRuntime(Runtime::kKeyedGetProperty); } static void StoreIC_PushArgs(MacroAssembler* masm) { __ Push(StoreWithVectorDescriptor::ValueRegister(), StoreWithVectorDescriptor::SlotRegister(), StoreWithVectorDescriptor::VectorRegister(), StoreWithVectorDescriptor::ReceiverRegister(), StoreWithVectorDescriptor::NameRegister()); } void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) { StoreIC_PushArgs(masm); __ TailCallRuntime(Runtime::kKeyedStoreIC_Miss); } void KeyedStoreIC::GenerateSlow(MacroAssembler* masm) { StoreIC_PushArgs(masm); // The slow case calls into the runtime to complete the store without causing // an IC miss that would otherwise cause a transition to the generic stub. __ TailCallRuntime(Runtime::kKeyedStoreIC_Slow); } void StoreIC::GenerateMiss(MacroAssembler* masm) { StoreIC_PushArgs(masm); // Perform tail call to the entry. __ TailCallRuntime(Runtime::kStoreIC_Miss); } void StoreIC::GenerateNormal(MacroAssembler* masm) { Label miss; Register receiver = StoreDescriptor::ReceiverRegister(); Register name = StoreDescriptor::NameRegister(); Register value = StoreDescriptor::ValueRegister(); Register dictionary = r7; DCHECK(receiver.is(r3)); DCHECK(name.is(r4)); DCHECK(value.is(r2)); DCHECK(StoreWithVectorDescriptor::VectorRegister().is(r5)); DCHECK(StoreWithVectorDescriptor::SlotRegister().is(r6)); __ LoadP(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); GenerateDictionaryStore(masm, &miss, dictionary, name, value, r8, r9); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->ic_store_normal_hit(), 1, r8, r9); __ Ret(); __ bind(&miss); __ IncrementCounter(counters->ic_store_normal_miss(), 1, r8, r9); GenerateMiss(masm); } #undef __ Condition CompareIC::ComputeCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return eq; case Token::LT: return lt; case Token::GT: return gt; case Token::LTE: return le; case Token::GTE: return ge; default: UNREACHABLE(); return kNoCondition; } } bool CompareIC::HasInlinedSmiCode(Address address) { // The address of the instruction following the call. Address cmp_instruction_address = Assembler::return_address_from_call_start(address); // If the instruction following the call is not a CHI, nothing // was inlined. return (Instruction::S390OpcodeValue(cmp_instruction_address) == CHI); } // // This code is paired with the JumpPatchSite class in full-codegen-s390.cc // void PatchInlinedSmiCode(Isolate* isolate, Address address, InlinedSmiCheck check) { Address cmp_instruction_address = Assembler::return_address_from_call_start(address); // If the instruction following the call is not a cmp rx, #yyy, nothing // was inlined. Instr instr = Assembler::instr_at(cmp_instruction_address); if (Instruction::S390OpcodeValue(cmp_instruction_address) != CHI) { return; } if (Instruction::S390OpcodeValue(address) != BRASL) { return; } // The delta to the start of the map check instruction and the // condition code uses at the patched jump. int delta = instr & 0x0000ffff; // If the delta is 0 the instruction is cmp r0, #0 which also signals that // nothing was inlined. if (delta == 0) { return; } if (FLAG_trace_ic) { PrintF("[ patching ic at %p, cmp=%p, delta=%d\n", static_cast<void*>(address), static_cast<void*>(cmp_instruction_address), delta); } // Expected sequence to enable by changing the following // CR/CGR Rx, Rx // 2 / 4 bytes // LR R0, R0 // 2 bytes // 31-bit only! // BRC/BRCL // 4 / 6 bytes // into // TMLL Rx, XXX // 4 bytes // BRC/BRCL // 4 / 6 bytes // And vice versa to disable. // The following constant is the size of the CR/CGR + LR + LR const int kPatchAreaSizeNoBranch = 4; Address patch_address = cmp_instruction_address - delta; Address branch_address = patch_address + kPatchAreaSizeNoBranch; Instr instr_at_patch = Assembler::instr_at(patch_address); SixByteInstr branch_instr = Assembler::instr_at(branch_address); // This is patching a conditional "jump if not smi/jump if smi" site. size_t patch_size = 0; if (Instruction::S390OpcodeValue(branch_address) == BRC) { patch_size = kPatchAreaSizeNoBranch + 4; } else if (Instruction::S390OpcodeValue(branch_address) == BRCL) { patch_size = kPatchAreaSizeNoBranch + 6; } else { DCHECK(false); } CodePatcher patcher(isolate, patch_address, patch_size); Register reg; reg.reg_code = instr_at_patch & 0xf; if (check == ENABLE_INLINED_SMI_CHECK) { patcher.masm()->TestIfSmi(reg); } else { // Emit the NOP to ensure sufficient place for patching // (replaced by LR + NILL) DCHECK(check == DISABLE_INLINED_SMI_CHECK); patcher.masm()->CmpP(reg, reg); #ifndef V8_TARGET_ARCH_S390X patcher.masm()->nop(); #endif } Condition cc = al; if (Instruction::S390OpcodeValue(branch_address) == BRC) { cc = static_cast<Condition>((branch_instr & 0x00f00000) >> 20); DCHECK((cc == ne) || (cc == eq)); cc = (cc == ne) ? eq : ne; patcher.masm()->brc(cc, Operand((branch_instr & 0xffff) << 1)); } else if (Instruction::S390OpcodeValue(branch_address) == BRCL) { cc = static_cast<Condition>( (branch_instr & (static_cast<uint64_t>(0x00f0) << 32)) >> 36); DCHECK((cc == ne) || (cc == eq)); cc = (cc == ne) ? eq : ne; patcher.masm()->brcl(cc, Operand((branch_instr & 0xffffffff) << 1)); } else { DCHECK(false); } } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_S390