// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/heap/heap.h" #include <unordered_map> #include <unordered_set> #include "src/accessors.h" #include "src/api.h" #include "src/assembler-inl.h" #include "src/ast/context-slot-cache.h" #include "src/base/bits.h" #include "src/base/once.h" #include "src/base/utils/random-number-generator.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/compilation-cache.h" #include "src/compiler-dispatcher/optimizing-compile-dispatcher.h" #include "src/conversions.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/feedback-vector.h" #include "src/global-handles.h" #include "src/heap/array-buffer-tracker-inl.h" #include "src/heap/code-stats.h" #include "src/heap/concurrent-marking.h" #include "src/heap/embedder-tracing.h" #include "src/heap/gc-idle-time-handler.h" #include "src/heap/gc-tracer.h" #include "src/heap/incremental-marking.h" #include "src/heap/item-parallel-job.h" #include "src/heap/mark-compact-inl.h" #include "src/heap/mark-compact.h" #include "src/heap/memory-reducer.h" #include "src/heap/object-stats.h" #include "src/heap/objects-visiting-inl.h" #include "src/heap/objects-visiting.h" #include "src/heap/remembered-set.h" #include "src/heap/scavenge-job.h" #include "src/heap/scavenger-inl.h" #include "src/heap/store-buffer.h" #include "src/interpreter/interpreter.h" #include "src/objects/object-macros.h" #include "src/objects/shared-function-info.h" #include "src/regexp/jsregexp.h" #include "src/runtime-profiler.h" #include "src/snapshot/natives.h" #include "src/snapshot/serializer-common.h" #include "src/snapshot/snapshot.h" #include "src/tracing/trace-event.h" #include "src/utils-inl.h" #include "src/utils.h" #include "src/v8.h" #include "src/v8threads.h" #include "src/vm-state-inl.h" namespace v8 { namespace internal { struct Heap::StrongRootsList { Object** start; Object** end; StrongRootsList* next; }; class IdleScavengeObserver : public AllocationObserver { public: IdleScavengeObserver(Heap& heap, intptr_t step_size) : AllocationObserver(step_size), heap_(heap) {} void Step(int bytes_allocated, Address, size_t) override { heap_.ScheduleIdleScavengeIfNeeded(bytes_allocated); } private: Heap& heap_; }; Heap::Heap() : external_memory_(0), external_memory_limit_(kExternalAllocationSoftLimit), external_memory_at_last_mark_compact_(0), isolate_(nullptr), code_range_size_(0), // semispace_size_ should be a power of 2 and old_generation_size_ should // be a multiple of Page::kPageSize. max_semi_space_size_(8 * (kPointerSize / 4) * MB), initial_semispace_size_(kMinSemiSpaceSizeInKB * KB), max_old_generation_size_(700ul * (kPointerSize / 4) * MB), initial_max_old_generation_size_(max_old_generation_size_), initial_old_generation_size_(max_old_generation_size_ / kInitalOldGenerationLimitFactor), old_generation_size_configured_(false), // Variables set based on semispace_size_ and old_generation_size_ in // ConfigureHeap. // Will be 4 * reserved_semispace_size_ to ensure that young // generation can be aligned to its size. maximum_committed_(0), survived_since_last_expansion_(0), survived_last_scavenge_(0), always_allocate_scope_count_(0), memory_pressure_level_(MemoryPressureLevel::kNone), out_of_memory_callback_(nullptr), out_of_memory_callback_data_(nullptr), contexts_disposed_(0), number_of_disposed_maps_(0), new_space_(nullptr), old_space_(NULL), code_space_(NULL), map_space_(NULL), lo_space_(NULL), gc_state_(NOT_IN_GC), gc_post_processing_depth_(0), allocations_count_(0), raw_allocations_hash_(0), ms_count_(0), gc_count_(0), mmap_region_base_(0), remembered_unmapped_pages_index_(0), #ifdef DEBUG allocation_timeout_(0), #endif // DEBUG old_generation_allocation_limit_(initial_old_generation_size_), inline_allocation_disabled_(false), tracer_(nullptr), promoted_objects_size_(0), promotion_ratio_(0), semi_space_copied_object_size_(0), previous_semi_space_copied_object_size_(0), semi_space_copied_rate_(0), nodes_died_in_new_space_(0), nodes_copied_in_new_space_(0), nodes_promoted_(0), maximum_size_scavenges_(0), last_idle_notification_time_(0.0), last_gc_time_(0.0), mark_compact_collector_(nullptr), minor_mark_compact_collector_(nullptr), memory_allocator_(nullptr), store_buffer_(nullptr), incremental_marking_(nullptr), concurrent_marking_(nullptr), gc_idle_time_handler_(nullptr), memory_reducer_(nullptr), live_object_stats_(nullptr), dead_object_stats_(nullptr), scavenge_job_(nullptr), parallel_scavenge_semaphore_(0), idle_scavenge_observer_(nullptr), new_space_allocation_counter_(0), old_generation_allocation_counter_at_last_gc_(0), old_generation_size_at_last_gc_(0), global_pretenuring_feedback_(nullptr), is_marking_flag_(false), ring_buffer_full_(false), ring_buffer_end_(0), configured_(false), current_gc_flags_(Heap::kNoGCFlags), current_gc_callback_flags_(GCCallbackFlags::kNoGCCallbackFlags), external_string_table_(this), gc_callbacks_depth_(0), deserialization_complete_(false), strong_roots_list_(NULL), heap_iterator_depth_(0), local_embedder_heap_tracer_(nullptr), fast_promotion_mode_(false), use_tasks_(true), force_oom_(false), delay_sweeper_tasks_for_testing_(false), pending_layout_change_object_(nullptr) { // Ensure old_generation_size_ is a multiple of kPageSize. DCHECK((max_old_generation_size_ & (Page::kPageSize - 1)) == 0); memset(roots_, 0, sizeof(roots_[0]) * kRootListLength); set_native_contexts_list(NULL); set_allocation_sites_list(Smi::kZero); set_encountered_weak_collections(Smi::kZero); set_encountered_transition_arrays(Smi::kZero); // Put a dummy entry in the remembered pages so we can find the list the // minidump even if there are no real unmapped pages. RememberUnmappedPage(NULL, false); } size_t Heap::Capacity() { if (!HasBeenSetUp()) return 0; return new_space_->Capacity() + OldGenerationCapacity(); } size_t Heap::OldGenerationCapacity() { if (!HasBeenSetUp()) return 0; return old_space_->Capacity() + code_space_->Capacity() + map_space_->Capacity() + lo_space_->SizeOfObjects(); } size_t Heap::CommittedOldGenerationMemory() { if (!HasBeenSetUp()) return 0; return old_space_->CommittedMemory() + code_space_->CommittedMemory() + map_space_->CommittedMemory() + lo_space_->Size(); } size_t Heap::CommittedMemory() { if (!HasBeenSetUp()) return 0; return new_space_->CommittedMemory() + CommittedOldGenerationMemory(); } size_t Heap::CommittedPhysicalMemory() { if (!HasBeenSetUp()) return 0; return new_space_->CommittedPhysicalMemory() + old_space_->CommittedPhysicalMemory() + code_space_->CommittedPhysicalMemory() + map_space_->CommittedPhysicalMemory() + lo_space_->CommittedPhysicalMemory(); } size_t Heap::CommittedMemoryExecutable() { if (!HasBeenSetUp()) return 0; return static_cast<size_t>(memory_allocator()->SizeExecutable()); } void Heap::UpdateMaximumCommitted() { if (!HasBeenSetUp()) return; const size_t current_committed_memory = CommittedMemory(); if (current_committed_memory > maximum_committed_) { maximum_committed_ = current_committed_memory; } } size_t Heap::Available() { if (!HasBeenSetUp()) return 0; size_t total = 0; AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { total += space->Available(); } return total; } bool Heap::HasBeenSetUp() { return old_space_ != NULL && code_space_ != NULL && map_space_ != NULL && lo_space_ != NULL; } GarbageCollector Heap::SelectGarbageCollector(AllocationSpace space, const char** reason) { // Is global GC requested? if (space != NEW_SPACE) { isolate_->counters()->gc_compactor_caused_by_request()->Increment(); *reason = "GC in old space requested"; return MARK_COMPACTOR; } if (FLAG_gc_global || (FLAG_stress_compaction && (gc_count_ & 1) != 0)) { *reason = "GC in old space forced by flags"; return MARK_COMPACTOR; } if (incremental_marking()->NeedsFinalization() && AllocationLimitOvershotByLargeMargin()) { *reason = "Incremental marking needs finalization"; return MARK_COMPACTOR; } // Is there enough space left in OLD to guarantee that a scavenge can // succeed? // // Note that MemoryAllocator->MaxAvailable() undercounts the memory available // for object promotion. It counts only the bytes that the memory // allocator has not yet allocated from the OS and assigned to any space, // and does not count available bytes already in the old space or code // space. Undercounting is safe---we may get an unrequested full GC when // a scavenge would have succeeded. if (memory_allocator()->MaxAvailable() <= new_space_->Size()) { isolate_->counters() ->gc_compactor_caused_by_oldspace_exhaustion() ->Increment(); *reason = "scavenge might not succeed"; return MARK_COMPACTOR; } // Default *reason = NULL; return YoungGenerationCollector(); } void Heap::SetGCState(HeapState state) { gc_state_ = state; } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsBeforeGC() { // Heap::ReportHeapStatistics will also log NewSpace statistics when // compiled --log-gc is set. The following logic is used to avoid // double logging. #ifdef DEBUG if (FLAG_heap_stats || FLAG_log_gc) new_space_->CollectStatistics(); if (FLAG_heap_stats) { ReportHeapStatistics("Before GC"); } else if (FLAG_log_gc) { new_space_->ReportStatistics(); } if (FLAG_heap_stats || FLAG_log_gc) new_space_->ClearHistograms(); #else if (FLAG_log_gc) { new_space_->CollectStatistics(); new_space_->ReportStatistics(); new_space_->ClearHistograms(); } #endif // DEBUG } void Heap::PrintShortHeapStatistics() { if (!FLAG_trace_gc_verbose) return; PrintIsolate(isolate_, "Memory allocator, used: %6" PRIuS " KB," " available: %6" PRIuS " KB\n", memory_allocator()->Size() / KB, memory_allocator()->Available() / KB); PrintIsolate(isolate_, "New space, used: %6" PRIuS " KB" ", available: %6" PRIuS " KB" ", committed: %6" PRIuS " KB\n", new_space_->Size() / KB, new_space_->Available() / KB, new_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Old space, used: %6" PRIuS " KB" ", available: %6" PRIuS " KB" ", committed: %6" PRIuS " KB\n", old_space_->SizeOfObjects() / KB, old_space_->Available() / KB, old_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Code space, used: %6" PRIuS " KB" ", available: %6" PRIuS " KB" ", committed: %6" PRIuS "KB\n", code_space_->SizeOfObjects() / KB, code_space_->Available() / KB, code_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Map space, used: %6" PRIuS " KB" ", available: %6" PRIuS " KB" ", committed: %6" PRIuS " KB\n", map_space_->SizeOfObjects() / KB, map_space_->Available() / KB, map_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "Large object space, used: %6" PRIuS " KB" ", available: %6" PRIuS " KB" ", committed: %6" PRIuS " KB\n", lo_space_->SizeOfObjects() / KB, lo_space_->Available() / KB, lo_space_->CommittedMemory() / KB); PrintIsolate(isolate_, "All spaces, used: %6" PRIuS " KB" ", available: %6" PRIuS " KB" ", committed: %6" PRIuS "KB\n", this->SizeOfObjects() / KB, this->Available() / KB, this->CommittedMemory() / KB); PrintIsolate(isolate_, "External memory reported: %6" PRId64 " KB\n", external_memory_ / KB); PrintIsolate(isolate_, "External memory global %zu KB\n", external_memory_callback_() / KB); PrintIsolate(isolate_, "Total time spent in GC : %.1f ms\n", total_gc_time_ms_); } // TODO(1238405): Combine the infrastructure for --heap-stats and // --log-gc to avoid the complicated preprocessor and flag testing. void Heap::ReportStatisticsAfterGC() { // Similar to the before GC, we use some complicated logic to ensure that // NewSpace statistics are logged exactly once when --log-gc is turned on. #if defined(DEBUG) if (FLAG_heap_stats) { new_space_->CollectStatistics(); ReportHeapStatistics("After GC"); } else if (FLAG_log_gc) { new_space_->ReportStatistics(); } #else if (FLAG_log_gc) new_space_->ReportStatistics(); #endif // DEBUG for (int i = 0; i < static_cast<int>(v8::Isolate::kUseCounterFeatureCount); ++i) { int count = deferred_counters_[i]; deferred_counters_[i] = 0; while (count > 0) { count--; isolate()->CountUsage(static_cast<v8::Isolate::UseCounterFeature>(i)); } } } void Heap::AddRetainingPathTarget(Handle<HeapObject> object) { if (!FLAG_track_retaining_path) { PrintF("Retaining path tracking requires --trace-retaining-path\n"); } else { Handle<WeakFixedArray> array = WeakFixedArray::Add( handle(retaining_path_targets(), isolate()), object); set_retaining_path_targets(*array); } } bool Heap::IsRetainingPathTarget(HeapObject* object) { WeakFixedArray::Iterator it(retaining_path_targets()); HeapObject* target; while ((target = it.Next<HeapObject>()) != nullptr) { if (target == object) return true; } return false; } namespace { const char* RootToString(Root root) { switch (root) { #define ROOT_CASE(root_id, ignore, description) \ case Root::root_id: \ return description; ROOT_ID_LIST(ROOT_CASE) #undef ROOT_CASE case Root::kCodeFlusher: return "(Code flusher)"; case Root::kPartialSnapshotCache: return "(Partial snapshot cache)"; case Root::kWeakCollections: return "(Weak collections)"; case Root::kWrapperTracing: return "(Wrapper tracing)"; case Root::kUnknown: return "(Unknown)"; } UNREACHABLE(); return nullptr; } } // namespace void Heap::PrintRetainingPath(HeapObject* target) { PrintF("\n\n\n"); PrintF("#################################################\n"); PrintF("Retaining path for %p:\n", static_cast<void*>(target)); HeapObject* object = target; std::vector<HeapObject*> retaining_path; Root root = Root::kUnknown; while (true) { retaining_path.push_back(object); if (retainer_.count(object)) { object = retainer_[object]; } else { if (retaining_root_.count(object)) { root = retaining_root_[object]; } break; } } int distance = static_cast<int>(retaining_path.size()); for (auto object : retaining_path) { PrintF("\n"); PrintF("^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n"); PrintF("Distance from root %d: ", distance); object->ShortPrint(); PrintF("\n"); #ifdef OBJECT_PRINT object->Print(); PrintF("\n"); #endif --distance; } PrintF("\n"); PrintF("^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n"); PrintF("Root: %s\n", RootToString(root)); PrintF("-------------------------------------------------\n"); } void Heap::AddRetainer(HeapObject* retainer, HeapObject* object) { retainer_[object] = retainer; if (IsRetainingPathTarget(object)) { PrintRetainingPath(object); } } void Heap::AddRetainingRoot(Root root, HeapObject* object) { retaining_root_[object] = root; if (IsRetainingPathTarget(object)) { PrintRetainingPath(object); } } void Heap::IncrementDeferredCount(v8::Isolate::UseCounterFeature feature) { deferred_counters_[feature]++; } bool Heap::UncommitFromSpace() { return new_space_->UncommitFromSpace(); } void Heap::GarbageCollectionPrologue() { TRACE_GC(tracer(), GCTracer::Scope::HEAP_PROLOGUE); { AllowHeapAllocation for_the_first_part_of_prologue; gc_count_++; #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } // Reset GC statistics. promoted_objects_size_ = 0; previous_semi_space_copied_object_size_ = semi_space_copied_object_size_; semi_space_copied_object_size_ = 0; nodes_died_in_new_space_ = 0; nodes_copied_in_new_space_ = 0; nodes_promoted_ = 0; UpdateMaximumCommitted(); #ifdef DEBUG DCHECK(!AllowHeapAllocation::IsAllowed() && gc_state_ == NOT_IN_GC); if (FLAG_gc_verbose) Print(); ReportStatisticsBeforeGC(); #endif // DEBUG if (new_space_->IsAtMaximumCapacity()) { maximum_size_scavenges_++; } else { maximum_size_scavenges_ = 0; } CheckNewSpaceExpansionCriteria(); UpdateNewSpaceAllocationCounter(); if (FLAG_track_retaining_path) { retainer_.clear(); retaining_root_.clear(); } } size_t Heap::SizeOfObjects() { size_t total = 0; AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { total += space->SizeOfObjects(); } return total; } const char* Heap::GetSpaceName(int idx) { switch (idx) { case NEW_SPACE: return "new_space"; case OLD_SPACE: return "old_space"; case MAP_SPACE: return "map_space"; case CODE_SPACE: return "code_space"; case LO_SPACE: return "large_object_space"; default: UNREACHABLE(); } return nullptr; } void Heap::SetRootCodeStubs(UnseededNumberDictionary* value) { roots_[kCodeStubsRootIndex] = value; } void Heap::RepairFreeListsAfterDeserialization() { PagedSpaces spaces(this); for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->RepairFreeListsAfterDeserialization(); } } void Heap::MergeAllocationSitePretenuringFeedback( const base::HashMap& local_pretenuring_feedback) { AllocationSite* site = nullptr; for (base::HashMap::Entry* local_entry = local_pretenuring_feedback.Start(); local_entry != nullptr; local_entry = local_pretenuring_feedback.Next(local_entry)) { site = reinterpret_cast<AllocationSite*>(local_entry->key); MapWord map_word = site->map_word(); if (map_word.IsForwardingAddress()) { site = AllocationSite::cast(map_word.ToForwardingAddress()); } // We have not validated the allocation site yet, since we have not // dereferenced the site during collecting information. // This is an inlined check of AllocationMemento::IsValid. if (!site->IsAllocationSite() || site->IsZombie()) continue; int value = static_cast<int>(reinterpret_cast<intptr_t>(local_entry->value)); DCHECK_GT(value, 0); if (site->IncrementMementoFoundCount(value)) { global_pretenuring_feedback_->LookupOrInsert(site, ObjectHash(site->address())); } } } class Heap::SkipStoreBufferScope { public: explicit SkipStoreBufferScope(StoreBuffer* store_buffer) : store_buffer_(store_buffer) { store_buffer_->MoveAllEntriesToRememberedSet(); store_buffer_->SetMode(StoreBuffer::IN_GC); } ~SkipStoreBufferScope() { DCHECK(store_buffer_->Empty()); store_buffer_->SetMode(StoreBuffer::NOT_IN_GC); } private: StoreBuffer* store_buffer_; }; class Heap::PretenuringScope { public: explicit PretenuringScope(Heap* heap) : heap_(heap) { heap_->global_pretenuring_feedback_ = new base::HashMap(kInitialFeedbackCapacity); } ~PretenuringScope() { delete heap_->global_pretenuring_feedback_; heap_->global_pretenuring_feedback_ = nullptr; } private: Heap* heap_; }; namespace { inline bool MakePretenureDecision( AllocationSite* site, AllocationSite::PretenureDecision current_decision, double ratio, bool maximum_size_scavenge) { // Here we just allow state transitions from undecided or maybe tenure // to don't tenure, maybe tenure, or tenure. if ((current_decision == AllocationSite::kUndecided || current_decision == AllocationSite::kMaybeTenure)) { if (ratio >= AllocationSite::kPretenureRatio) { // We just transition into tenure state when the semi-space was at // maximum capacity. if (maximum_size_scavenge) { site->set_deopt_dependent_code(true); site->set_pretenure_decision(AllocationSite::kTenure); // Currently we just need to deopt when we make a state transition to // tenure. return true; } site->set_pretenure_decision(AllocationSite::kMaybeTenure); } else { site->set_pretenure_decision(AllocationSite::kDontTenure); } } return false; } inline bool DigestPretenuringFeedback(Isolate* isolate, AllocationSite* site, bool maximum_size_scavenge) { bool deopt = false; int create_count = site->memento_create_count(); int found_count = site->memento_found_count(); bool minimum_mementos_created = create_count >= AllocationSite::kPretenureMinimumCreated; double ratio = minimum_mementos_created || FLAG_trace_pretenuring_statistics ? static_cast<double>(found_count) / create_count : 0.0; AllocationSite::PretenureDecision current_decision = site->pretenure_decision(); if (minimum_mementos_created) { deopt = MakePretenureDecision(site, current_decision, ratio, maximum_size_scavenge); } if (FLAG_trace_pretenuring_statistics) { PrintIsolate(isolate, "pretenuring: AllocationSite(%p): (created, found, ratio) " "(%d, %d, %f) %s => %s\n", static_cast<void*>(site), create_count, found_count, ratio, site->PretenureDecisionName(current_decision), site->PretenureDecisionName(site->pretenure_decision())); } // Clear feedback calculation fields until the next gc. site->set_memento_found_count(0); site->set_memento_create_count(0); return deopt; } } // namespace void Heap::ProcessPretenuringFeedback() { bool trigger_deoptimization = false; if (FLAG_allocation_site_pretenuring) { int tenure_decisions = 0; int dont_tenure_decisions = 0; int allocation_mementos_found = 0; int allocation_sites = 0; int active_allocation_sites = 0; AllocationSite* site = nullptr; // Step 1: Digest feedback for recorded allocation sites. bool maximum_size_scavenge = MaximumSizeScavenge(); for (base::HashMap::Entry* e = global_pretenuring_feedback_->Start(); e != nullptr; e = global_pretenuring_feedback_->Next(e)) { allocation_sites++; site = reinterpret_cast<AllocationSite*>(e->key); int found_count = site->memento_found_count(); // An entry in the storage does not imply that the count is > 0 because // allocation sites might have been reset due to too many objects dying // in old space. if (found_count > 0) { DCHECK(site->IsAllocationSite()); active_allocation_sites++; allocation_mementos_found += found_count; if (DigestPretenuringFeedback(isolate_, site, maximum_size_scavenge)) { trigger_deoptimization = true; } if (site->GetPretenureMode() == TENURED) { tenure_decisions++; } else { dont_tenure_decisions++; } } } // Step 2: Deopt maybe tenured allocation sites if necessary. bool deopt_maybe_tenured = DeoptMaybeTenuredAllocationSites(); if (deopt_maybe_tenured) { Object* list_element = allocation_sites_list(); while (list_element->IsAllocationSite()) { site = AllocationSite::cast(list_element); DCHECK(site->IsAllocationSite()); allocation_sites++; if (site->IsMaybeTenure()) { site->set_deopt_dependent_code(true); trigger_deoptimization = true; } list_element = site->weak_next(); } } if (trigger_deoptimization) { isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); } if (FLAG_trace_pretenuring_statistics && (allocation_mementos_found > 0 || tenure_decisions > 0 || dont_tenure_decisions > 0)) { PrintIsolate(isolate(), "pretenuring: deopt_maybe_tenured=%d visited_sites=%d " "active_sites=%d " "mementos=%d tenured=%d not_tenured=%d\n", deopt_maybe_tenured ? 1 : 0, allocation_sites, active_allocation_sites, allocation_mementos_found, tenure_decisions, dont_tenure_decisions); } } } void Heap::DeoptMarkedAllocationSites() { // TODO(hpayer): If iterating over the allocation sites list becomes a // performance issue, use a cache data structure in heap instead. Object* list_element = allocation_sites_list(); while (list_element->IsAllocationSite()) { AllocationSite* site = AllocationSite::cast(list_element); if (site->deopt_dependent_code()) { site->dependent_code()->MarkCodeForDeoptimization( isolate_, DependentCode::kAllocationSiteTenuringChangedGroup); site->set_deopt_dependent_code(false); } list_element = site->weak_next(); } Deoptimizer::DeoptimizeMarkedCode(isolate_); } void Heap::GarbageCollectionEpilogue() { TRACE_GC(tracer(), GCTracer::Scope::HEAP_EPILOGUE); // In release mode, we only zap the from space under heap verification. if (Heap::ShouldZapGarbage()) { ZapFromSpace(); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif AllowHeapAllocation for_the_rest_of_the_epilogue; #ifdef DEBUG if (FLAG_print_global_handles) isolate_->global_handles()->Print(); if (FLAG_print_handles) PrintHandles(); if (FLAG_gc_verbose) Print(); if (FLAG_code_stats) ReportCodeStatistics("After GC"); if (FLAG_check_handle_count) CheckHandleCount(); #endif UpdateMaximumCommitted(); isolate_->counters()->alive_after_last_gc()->Set( static_cast<int>(SizeOfObjects())); isolate_->counters()->string_table_capacity()->Set( string_table()->Capacity()); isolate_->counters()->number_of_symbols()->Set( string_table()->NumberOfElements()); if (CommittedMemory() > 0) { isolate_->counters()->external_fragmentation_total()->AddSample( static_cast<int>(100 - (SizeOfObjects() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_new_space()->AddSample(static_cast<int>( (new_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_old_space()->AddSample(static_cast<int>( (old_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_code_space()->AddSample( static_cast<int>((code_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_map_space()->AddSample(static_cast<int>( (map_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_fraction_lo_space()->AddSample(static_cast<int>( (lo_space()->CommittedMemory() * 100.0) / CommittedMemory())); isolate_->counters()->heap_sample_total_committed()->AddSample( static_cast<int>(CommittedMemory() / KB)); isolate_->counters()->heap_sample_total_used()->AddSample( static_cast<int>(SizeOfObjects() / KB)); isolate_->counters()->heap_sample_map_space_committed()->AddSample( static_cast<int>(map_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_code_space_committed()->AddSample( static_cast<int>(code_space()->CommittedMemory() / KB)); isolate_->counters()->heap_sample_maximum_committed()->AddSample( static_cast<int>(MaximumCommittedMemory() / KB)); } #define UPDATE_COUNTERS_FOR_SPACE(space) \ isolate_->counters()->space##_bytes_available()->Set( \ static_cast<int>(space()->Available())); \ isolate_->counters()->space##_bytes_committed()->Set( \ static_cast<int>(space()->CommittedMemory())); \ isolate_->counters()->space##_bytes_used()->Set( \ static_cast<int>(space()->SizeOfObjects())); #define UPDATE_FRAGMENTATION_FOR_SPACE(space) \ if (space()->CommittedMemory() > 0) { \ isolate_->counters()->external_fragmentation_##space()->AddSample( \ static_cast<int>(100 - \ (space()->SizeOfObjects() * 100.0) / \ space()->CommittedMemory())); \ } #define UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(space) \ UPDATE_COUNTERS_FOR_SPACE(space) \ UPDATE_FRAGMENTATION_FOR_SPACE(space) UPDATE_COUNTERS_FOR_SPACE(new_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(old_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(code_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(map_space) UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE(lo_space) #undef UPDATE_COUNTERS_FOR_SPACE #undef UPDATE_FRAGMENTATION_FOR_SPACE #undef UPDATE_COUNTERS_AND_FRAGMENTATION_FOR_SPACE #ifdef DEBUG ReportStatisticsAfterGC(); #endif // DEBUG // Remember the last top pointer so that we can later find out // whether we allocated in new space since the last GC. new_space_top_after_last_gc_ = new_space()->top(); last_gc_time_ = MonotonicallyIncreasingTimeInMs(); { TRACE_GC(tracer(), GCTracer::Scope::HEAP_EPILOGUE_REDUCE_NEW_SPACE); ReduceNewSpaceSize(); } } void Heap::PreprocessStackTraces() { WeakFixedArray::Iterator iterator(weak_stack_trace_list()); FixedArray* elements; while ((elements = iterator.Next<FixedArray>()) != nullptr) { for (int j = 1; j < elements->length(); j += 4) { Object* maybe_code = elements->get(j + 2); // If GC happens while adding a stack trace to the weak fixed array, // which has been copied into a larger backing store, we may run into // a stack trace that has already been preprocessed. Guard against this. if (!maybe_code->IsAbstractCode()) break; AbstractCode* abstract_code = AbstractCode::cast(maybe_code); int offset = Smi::ToInt(elements->get(j + 3)); int pos = abstract_code->SourcePosition(offset); elements->set(j + 2, Smi::FromInt(pos)); } } // We must not compact the weak fixed list here, as we may be in the middle // of writing to it, when the GC triggered. Instead, we reset the root value. set_weak_stack_trace_list(Smi::kZero); } class GCCallbacksScope { public: explicit GCCallbacksScope(Heap* heap) : heap_(heap) { heap_->gc_callbacks_depth_++; } ~GCCallbacksScope() { heap_->gc_callbacks_depth_--; } bool CheckReenter() { return heap_->gc_callbacks_depth_ == 1; } private: Heap* heap_; }; void Heap::HandleGCRequest() { if (HighMemoryPressure()) { incremental_marking()->reset_request_type(); CheckMemoryPressure(); } else if (incremental_marking()->request_type() == IncrementalMarking::COMPLETE_MARKING) { incremental_marking()->reset_request_type(); CollectAllGarbage(current_gc_flags_, GarbageCollectionReason::kFinalizeMarkingViaStackGuard, current_gc_callback_flags_); } else if (incremental_marking()->request_type() == IncrementalMarking::FINALIZATION && incremental_marking()->IsMarking() && !incremental_marking()->finalize_marking_completed()) { incremental_marking()->reset_request_type(); FinalizeIncrementalMarking( GarbageCollectionReason::kFinalizeMarkingViaStackGuard); } } void Heap::ScheduleIdleScavengeIfNeeded(int bytes_allocated) { scavenge_job_->ScheduleIdleTaskIfNeeded(this, bytes_allocated); } void Heap::FinalizeIncrementalMarking(GarbageCollectionReason gc_reason) { if (FLAG_trace_incremental_marking) { isolate()->PrintWithTimestamp( "[IncrementalMarking] (%s).\n", Heap::GarbageCollectionReasonToString(gc_reason)); } HistogramTimerScope incremental_marking_scope( isolate()->counters()->gc_incremental_marking_finalize()); TRACE_EVENT0("v8", "V8.GCIncrementalMarkingFinalize"); TRACE_GC(tracer(), GCTracer::Scope::MC_INCREMENTAL_FINALIZE); { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), GCTracer::Scope::MC_INCREMENTAL_EXTERNAL_PROLOGUE); VMState<EXTERNAL> state(isolate_); HandleScope handle_scope(isolate_); CallGCPrologueCallbacks(kGCTypeIncrementalMarking, kNoGCCallbackFlags); } } incremental_marking()->FinalizeIncrementally(); { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), GCTracer::Scope::MC_INCREMENTAL_EXTERNAL_EPILOGUE); VMState<EXTERNAL> state(isolate_); HandleScope handle_scope(isolate_); CallGCEpilogueCallbacks(kGCTypeIncrementalMarking, kNoGCCallbackFlags); } } } HistogramTimer* Heap::GCTypeTimer(GarbageCollector collector) { if (IsYoungGenerationCollector(collector)) { return isolate_->counters()->gc_scavenger(); } else { if (!incremental_marking()->IsStopped()) { if (ShouldReduceMemory()) { return isolate_->counters()->gc_finalize_reduce_memory(); } else { return isolate_->counters()->gc_finalize(); } } else { return isolate_->counters()->gc_compactor(); } } } void Heap::CollectAllGarbage(int flags, GarbageCollectionReason gc_reason, const v8::GCCallbackFlags gc_callback_flags) { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. set_current_gc_flags(flags); CollectGarbage(OLD_SPACE, gc_reason, gc_callback_flags); set_current_gc_flags(kNoGCFlags); } void Heap::CollectAllAvailableGarbage(GarbageCollectionReason gc_reason) { // Since we are ignoring the return value, the exact choice of space does // not matter, so long as we do not specify NEW_SPACE, which would not // cause a full GC. // Major GC would invoke weak handle callbacks on weakly reachable // handles, but won't collect weakly reachable objects until next // major GC. Therefore if we collect aggressively and weak handle callback // has been invoked, we rerun major GC to release objects which become // garbage. // Note: as weak callbacks can execute arbitrary code, we cannot // hope that eventually there will be no weak callbacks invocations. // Therefore stop recollecting after several attempts. if (gc_reason == GarbageCollectionReason::kLastResort) { InvokeOutOfMemoryCallback(); } RuntimeCallTimerScope runtime_timer( isolate(), &RuntimeCallStats::GC_Custom_AllAvailableGarbage); if (isolate()->concurrent_recompilation_enabled()) { // The optimizing compiler may be unnecessarily holding on to memory. DisallowHeapAllocation no_recursive_gc; isolate()->optimizing_compile_dispatcher()->Flush( OptimizingCompileDispatcher::BlockingBehavior::kDontBlock); } isolate()->ClearSerializerData(); set_current_gc_flags(kMakeHeapIterableMask | kReduceMemoryFootprintMask); isolate_->compilation_cache()->Clear(); const int kMaxNumberOfAttempts = 7; const int kMinNumberOfAttempts = 2; for (int attempt = 0; attempt < kMaxNumberOfAttempts; attempt++) { if (!CollectGarbage(OLD_SPACE, gc_reason, v8::kGCCallbackFlagCollectAllAvailableGarbage) && attempt + 1 >= kMinNumberOfAttempts) { break; } } set_current_gc_flags(kNoGCFlags); new_space_->Shrink(); UncommitFromSpace(); } void Heap::ReportExternalMemoryPressure() { if (external_memory_ > (external_memory_at_last_mark_compact_ + external_memory_hard_limit())) { CollectAllGarbage( kReduceMemoryFootprintMask | kFinalizeIncrementalMarkingMask, GarbageCollectionReason::kExternalMemoryPressure, static_cast<GCCallbackFlags>(kGCCallbackFlagCollectAllAvailableGarbage | kGCCallbackFlagCollectAllExternalMemory)); return; } if (incremental_marking()->IsStopped()) { if (incremental_marking()->CanBeActivated()) { StartIncrementalMarking( i::Heap::kNoGCFlags, GarbageCollectionReason::kExternalMemoryPressure, static_cast<GCCallbackFlags>( kGCCallbackFlagSynchronousPhantomCallbackProcessing | kGCCallbackFlagCollectAllExternalMemory)); } else { CollectAllGarbage(i::Heap::kNoGCFlags, GarbageCollectionReason::kExternalMemoryPressure, kGCCallbackFlagSynchronousPhantomCallbackProcessing); } } else { // Incremental marking is turned on an has already been started. const double kMinStepSize = 5; const double kMaxStepSize = 10; const double ms_step = Min(kMaxStepSize, Max(kMinStepSize, static_cast<double>(external_memory_) / external_memory_limit_ * kMinStepSize)); const double deadline = MonotonicallyIncreasingTimeInMs() + ms_step; incremental_marking()->AdvanceIncrementalMarking( deadline, IncrementalMarking::GC_VIA_STACK_GUARD, IncrementalMarking::FORCE_COMPLETION, StepOrigin::kV8); } } void Heap::EnsureFillerObjectAtTop() { // There may be an allocation memento behind objects in new space. Upon // evacuation of a non-full new space (or if we are on the last page) there // may be uninitialized memory behind top. We fill the remainder of the page // with a filler. Address to_top = new_space_->top(); Page* page = Page::FromAddress(to_top - kPointerSize); if (page->Contains(to_top)) { int remaining_in_page = static_cast<int>(page->area_end() - to_top); CreateFillerObjectAt(to_top, remaining_in_page, ClearRecordedSlots::kNo); } } bool Heap::CollectGarbage(AllocationSpace space, GarbageCollectionReason gc_reason, const v8::GCCallbackFlags gc_callback_flags) { // The VM is in the GC state until exiting this function. VMState<GC> state(isolate()); const char* collector_reason = NULL; GarbageCollector collector = SelectGarbageCollector(space, &collector_reason); #ifdef DEBUG // Reset the allocation timeout to the GC interval, but make sure to // allow at least a few allocations after a collection. The reason // for this is that we have a lot of allocation sequences and we // assume that a garbage collection will allow the subsequent // allocation attempts to go through. allocation_timeout_ = Max(6, FLAG_gc_interval); #endif EnsureFillerObjectAtTop(); if (IsYoungGenerationCollector(collector) && !incremental_marking()->IsStopped()) { if (FLAG_trace_incremental_marking) { isolate()->PrintWithTimestamp( "[IncrementalMarking] Scavenge during marking.\n"); } } bool next_gc_likely_to_collect_more = false; size_t committed_memory_before = 0; if (collector == MARK_COMPACTOR) { committed_memory_before = CommittedOldGenerationMemory(); } { tracer()->Start(collector, gc_reason, collector_reason); DCHECK(AllowHeapAllocation::IsAllowed()); DisallowHeapAllocation no_allocation_during_gc; GarbageCollectionPrologue(); { HistogramTimer* gc_type_timer = GCTypeTimer(collector); HistogramTimerScope histogram_timer_scope(gc_type_timer); TRACE_EVENT0("v8", gc_type_timer->name()); next_gc_likely_to_collect_more = PerformGarbageCollection(collector, gc_callback_flags); } GarbageCollectionEpilogue(); if (collector == MARK_COMPACTOR && FLAG_track_detached_contexts) { isolate()->CheckDetachedContextsAfterGC(); } if (collector == MARK_COMPACTOR) { size_t committed_memory_after = CommittedOldGenerationMemory(); size_t used_memory_after = PromotedSpaceSizeOfObjects(); MemoryReducer::Event event; event.type = MemoryReducer::kMarkCompact; event.time_ms = MonotonicallyIncreasingTimeInMs(); // Trigger one more GC if // - this GC decreased committed memory, // - there is high fragmentation, // - there are live detached contexts. event.next_gc_likely_to_collect_more = (committed_memory_before > committed_memory_after + MB) || HasHighFragmentation(used_memory_after, committed_memory_after) || (detached_contexts()->length() > 0); event.committed_memory = committed_memory_after; if (deserialization_complete_) { memory_reducer_->NotifyMarkCompact(event); } memory_pressure_level_.SetValue(MemoryPressureLevel::kNone); } tracer()->Stop(collector); } if (collector == MARK_COMPACTOR && (gc_callback_flags & (kGCCallbackFlagForced | kGCCallbackFlagCollectAllAvailableGarbage)) != 0) { isolate()->CountUsage(v8::Isolate::kForcedGC); } // Start incremental marking for the next cycle. The heap snapshot // generator needs incremental marking to stay off after it aborted. // We do this only for scavenger to avoid a loop where mark-compact // causes another mark-compact. if (IsYoungGenerationCollector(collector) && !ShouldAbortIncrementalMarking()) { StartIncrementalMarkingIfAllocationLimitIsReached( kNoGCFlags, kGCCallbackScheduleIdleGarbageCollection); } return next_gc_likely_to_collect_more; } int Heap::NotifyContextDisposed(bool dependant_context) { if (!dependant_context) { tracer()->ResetSurvivalEvents(); old_generation_size_configured_ = false; MemoryReducer::Event event; event.type = MemoryReducer::kPossibleGarbage; event.time_ms = MonotonicallyIncreasingTimeInMs(); memory_reducer_->NotifyPossibleGarbage(event); } if (isolate()->concurrent_recompilation_enabled()) { // Flush the queued recompilation tasks. isolate()->optimizing_compile_dispatcher()->Flush( OptimizingCompileDispatcher::BlockingBehavior::kDontBlock); } number_of_disposed_maps_ = retained_maps()->Length(); tracer()->AddContextDisposalTime(MonotonicallyIncreasingTimeInMs()); return ++contexts_disposed_; } void Heap::StartIncrementalMarking(int gc_flags, GarbageCollectionReason gc_reason, GCCallbackFlags gc_callback_flags) { DCHECK(incremental_marking()->IsStopped()); set_current_gc_flags(gc_flags); current_gc_callback_flags_ = gc_callback_flags; incremental_marking()->Start(gc_reason); } void Heap::StartIncrementalMarkingIfAllocationLimitIsReached( int gc_flags, const GCCallbackFlags gc_callback_flags) { if (incremental_marking()->IsStopped()) { IncrementalMarkingLimit reached_limit = IncrementalMarkingLimitReached(); if (reached_limit == IncrementalMarkingLimit::kSoftLimit) { incremental_marking()->incremental_marking_job()->ScheduleTask(this); } else if (reached_limit == IncrementalMarkingLimit::kHardLimit) { StartIncrementalMarking(gc_flags, GarbageCollectionReason::kAllocationLimit, gc_callback_flags); } } } void Heap::StartIdleIncrementalMarking( GarbageCollectionReason gc_reason, const GCCallbackFlags gc_callback_flags) { gc_idle_time_handler_->ResetNoProgressCounter(); StartIncrementalMarking(kReduceMemoryFootprintMask, gc_reason, gc_callback_flags); } void Heap::MoveElements(FixedArray* array, int dst_index, int src_index, int len) { if (len == 0) return; DCHECK(array->map() != fixed_cow_array_map()); Object** dst = array->data_start() + dst_index; Object** src = array->data_start() + src_index; if (FLAG_concurrent_marking && incremental_marking()->IsMarking()) { if (dst < src) { for (int i = 0; i < len; i++) { base::AsAtomicPointer::Relaxed_Store( dst + i, base::AsAtomicPointer::Relaxed_Load(src + i)); } } else { for (int i = len - 1; i >= 0; i--) { base::AsAtomicPointer::Relaxed_Store( dst + i, base::AsAtomicPointer::Relaxed_Load(src + i)); } } } else { MemMove(dst, src, len * kPointerSize); } FIXED_ARRAY_ELEMENTS_WRITE_BARRIER(this, array, dst_index, len); } #ifdef VERIFY_HEAP // Helper class for verifying the string table. class StringTableVerifier : public ObjectVisitor { public: void VisitPointers(HeapObject* host, Object** start, Object** end) override { // Visit all HeapObject pointers in [start, end). for (Object** p = start; p < end; p++) { if ((*p)->IsHeapObject()) { HeapObject* object = HeapObject::cast(*p); Isolate* isolate = object->GetIsolate(); // Check that the string is actually internalized. CHECK(object->IsTheHole(isolate) || object->IsUndefined(isolate) || object->IsInternalizedString()); } } } }; static void VerifyStringTable(Heap* heap) { StringTableVerifier verifier; heap->string_table()->IterateElements(&verifier); } #endif // VERIFY_HEAP bool Heap::ReserveSpace(Reservation* reservations, List<Address>* maps) { bool gc_performed = true; int counter = 0; static const int kThreshold = 20; while (gc_performed && counter++ < kThreshold) { gc_performed = false; for (int space = NEW_SPACE; space < SerializerDeserializer::kNumberOfSpaces; space++) { Reservation* reservation = &reservations[space]; DCHECK_LE(1, reservation->size()); if (reservation->at(0).size == 0) continue; bool perform_gc = false; if (space == MAP_SPACE) { // We allocate each map individually to avoid fragmentation. maps->Clear(); DCHECK_EQ(1, reservation->size()); int num_maps = reservation->at(0).size / Map::kSize; for (int i = 0; i < num_maps; i++) { // The deserializer will update the skip list. AllocationResult allocation = map_space()->AllocateRawUnaligned( Map::kSize, PagedSpace::IGNORE_SKIP_LIST); HeapObject* free_space = nullptr; if (allocation.To(&free_space)) { // Mark with a free list node, in case we have a GC before // deserializing. Address free_space_address = free_space->address(); CreateFillerObjectAt(free_space_address, Map::kSize, ClearRecordedSlots::kNo); maps->Add(free_space_address); } else { perform_gc = true; break; } } } else if (space == LO_SPACE) { // Just check that we can allocate during deserialization. DCHECK_EQ(1, reservation->size()); perform_gc = !CanExpandOldGeneration(reservation->at(0).size); } else { for (auto& chunk : *reservation) { AllocationResult allocation; int size = chunk.size; DCHECK_LE(static_cast<size_t>(size), MemoryAllocator::PageAreaSize( static_cast<AllocationSpace>(space))); if (space == NEW_SPACE) { allocation = new_space()->AllocateRawUnaligned(size); } else { // The deserializer will update the skip list. allocation = paged_space(space)->AllocateRawUnaligned( size, PagedSpace::IGNORE_SKIP_LIST); } HeapObject* free_space = nullptr; if (allocation.To(&free_space)) { // Mark with a free list node, in case we have a GC before // deserializing. Address free_space_address = free_space->address(); CreateFillerObjectAt(free_space_address, size, ClearRecordedSlots::kNo); DCHECK(space < SerializerDeserializer::kNumberOfPreallocatedSpaces); chunk.start = free_space_address; chunk.end = free_space_address + size; } else { perform_gc = true; break; } } } if (perform_gc) { if (space == NEW_SPACE) { CollectGarbage(NEW_SPACE, GarbageCollectionReason::kDeserializer); } else { if (counter > 1) { CollectAllGarbage( kReduceMemoryFootprintMask | kAbortIncrementalMarkingMask, GarbageCollectionReason::kDeserializer); } else { CollectAllGarbage(kAbortIncrementalMarkingMask, GarbageCollectionReason::kDeserializer); } } gc_performed = true; break; // Abort for-loop over spaces and retry. } } } return !gc_performed; } void Heap::EnsureFromSpaceIsCommitted() { if (new_space_->CommitFromSpaceIfNeeded()) return; // Committing memory to from space failed. // Memory is exhausted and we will die. V8::FatalProcessOutOfMemory("Committing semi space failed."); } void Heap::ClearNormalizedMapCaches() { if (isolate_->bootstrapper()->IsActive() && !incremental_marking()->IsMarking()) { return; } Object* context = native_contexts_list(); while (!context->IsUndefined(isolate())) { // GC can happen when the context is not fully initialized, // so the cache can be undefined. Object* cache = Context::cast(context)->get(Context::NORMALIZED_MAP_CACHE_INDEX); if (!cache->IsUndefined(isolate())) { NormalizedMapCache::cast(cache)->Clear(); } context = Context::cast(context)->next_context_link(); } } void Heap::UpdateSurvivalStatistics(int start_new_space_size) { if (start_new_space_size == 0) return; promotion_ratio_ = (static_cast<double>(promoted_objects_size_) / static_cast<double>(start_new_space_size) * 100); if (previous_semi_space_copied_object_size_ > 0) { promotion_rate_ = (static_cast<double>(promoted_objects_size_) / static_cast<double>(previous_semi_space_copied_object_size_) * 100); } else { promotion_rate_ = 0; } semi_space_copied_rate_ = (static_cast<double>(semi_space_copied_object_size_) / static_cast<double>(start_new_space_size) * 100); double survival_rate = promotion_ratio_ + semi_space_copied_rate_; tracer()->AddSurvivalRatio(survival_rate); } bool Heap::PerformGarbageCollection( GarbageCollector collector, const v8::GCCallbackFlags gc_callback_flags) { int freed_global_handles = 0; if (!IsYoungGenerationCollector(collector)) { PROFILE(isolate_, CodeMovingGCEvent()); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyStringTable(this); } #endif GCType gc_type = collector == MARK_COMPACTOR ? kGCTypeMarkSweepCompact : kGCTypeScavenge; { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), GCTracer::Scope::HEAP_EXTERNAL_PROLOGUE); VMState<EXTERNAL> state(isolate_); HandleScope handle_scope(isolate_); CallGCPrologueCallbacks(gc_type, kNoGCCallbackFlags); } } EnsureFromSpaceIsCommitted(); int start_new_space_size = static_cast<int>(Heap::new_space()->Size()); { Heap::PretenuringScope pretenuring_scope(this); Heap::SkipStoreBufferScope skip_store_buffer_scope(store_buffer_); switch (collector) { case MARK_COMPACTOR: UpdateOldGenerationAllocationCounter(); // Perform mark-sweep with optional compaction. MarkCompact(); old_generation_size_configured_ = true; // This should be updated before PostGarbageCollectionProcessing, which // can cause another GC. Take into account the objects promoted during // GC. old_generation_allocation_counter_at_last_gc_ += static_cast<size_t>(promoted_objects_size_); old_generation_size_at_last_gc_ = PromotedSpaceSizeOfObjects(); break; case MINOR_MARK_COMPACTOR: MinorMarkCompact(); break; case SCAVENGER: if ((fast_promotion_mode_ && CanExpandOldGeneration(new_space()->Size()))) { tracer()->NotifyYoungGenerationHandling( YoungGenerationHandling::kFastPromotionDuringScavenge); EvacuateYoungGeneration(); } else { tracer()->NotifyYoungGenerationHandling( YoungGenerationHandling::kRegularScavenge); Scavenge(); } break; } ProcessPretenuringFeedback(); } UpdateSurvivalStatistics(start_new_space_size); ConfigureInitialOldGenerationSize(); if (!fast_promotion_mode_ || collector == MARK_COMPACTOR) { ComputeFastPromotionMode(promotion_ratio_ + semi_space_copied_rate_); } isolate_->counters()->objs_since_last_young()->Set(0); gc_post_processing_depth_++; { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), GCTracer::Scope::HEAP_EXTERNAL_WEAK_GLOBAL_HANDLES); freed_global_handles = isolate_->global_handles()->PostGarbageCollectionProcessing( collector, gc_callback_flags); } gc_post_processing_depth_--; isolate_->eternal_handles()->PostGarbageCollectionProcessing(this); // Update relocatables. Relocatable::PostGarbageCollectionProcessing(isolate_); double gc_speed = tracer()->CombinedMarkCompactSpeedInBytesPerMillisecond(); double mutator_speed = tracer()->CurrentOldGenerationAllocationThroughputInBytesPerMillisecond(); size_t old_gen_size = PromotedSpaceSizeOfObjects(); if (collector == MARK_COMPACTOR) { // Register the amount of external allocated memory. external_memory_at_last_mark_compact_ = external_memory_; external_memory_limit_ = external_memory_ + kExternalAllocationSoftLimit; SetOldGenerationAllocationLimit(old_gen_size, gc_speed, mutator_speed); } else if (HasLowYoungGenerationAllocationRate() && old_generation_size_configured_) { DampenOldGenerationAllocationLimit(old_gen_size, gc_speed, mutator_speed); } { GCCallbacksScope scope(this); if (scope.CheckReenter()) { AllowHeapAllocation allow_allocation; TRACE_GC(tracer(), GCTracer::Scope::HEAP_EXTERNAL_EPILOGUE); VMState<EXTERNAL> state(isolate_); HandleScope handle_scope(isolate_); CallGCEpilogueCallbacks(gc_type, gc_callback_flags); } } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { VerifyStringTable(this); } #endif return freed_global_handles > 0; } void Heap::CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags) { RuntimeCallTimerScope runtime_timer(isolate(), &RuntimeCallStats::GCPrologueCallback); for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) { if (gc_type & gc_prologue_callbacks_[i].gc_type) { if (!gc_prologue_callbacks_[i].pass_isolate) { v8::GCCallback callback = reinterpret_cast<v8::GCCallback>( gc_prologue_callbacks_[i].callback); callback(gc_type, flags); } else { v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this->isolate()); gc_prologue_callbacks_[i].callback(isolate, gc_type, flags); } } } } void Heap::CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags gc_callback_flags) { RuntimeCallTimerScope runtime_timer(isolate(), &RuntimeCallStats::GCEpilogueCallback); for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) { if (gc_type & gc_epilogue_callbacks_[i].gc_type) { if (!gc_epilogue_callbacks_[i].pass_isolate) { v8::GCCallback callback = reinterpret_cast<v8::GCCallback>( gc_epilogue_callbacks_[i].callback); callback(gc_type, gc_callback_flags); } else { v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this->isolate()); gc_epilogue_callbacks_[i].callback(isolate, gc_type, gc_callback_flags); } } } } void Heap::MarkCompact() { PauseAllocationObserversScope pause_observers(this); SetGCState(MARK_COMPACT); LOG(isolate_, ResourceEvent("markcompact", "begin")); uint64_t size_of_objects_before_gc = SizeOfObjects(); mark_compact_collector()->Prepare(); ms_count_++; MarkCompactPrologue(); mark_compact_collector()->CollectGarbage(); LOG(isolate_, ResourceEvent("markcompact", "end")); MarkCompactEpilogue(); if (FLAG_allocation_site_pretenuring) { EvaluateOldSpaceLocalPretenuring(size_of_objects_before_gc); } } void Heap::MinorMarkCompact() { DCHECK(FLAG_minor_mc); SetGCState(MINOR_MARK_COMPACT); LOG(isolate_, ResourceEvent("MinorMarkCompact", "begin")); TRACE_GC(tracer(), GCTracer::Scope::MINOR_MC); AlwaysAllocateScope always_allocate(isolate()); PauseAllocationObserversScope pause_observers(this); IncrementalMarking::PauseBlackAllocationScope pause_black_allocation( incremental_marking()); minor_mark_compact_collector()->CollectGarbage(); LOG(isolate_, ResourceEvent("MinorMarkCompact", "end")); SetGCState(NOT_IN_GC); } void Heap::MarkCompactEpilogue() { TRACE_GC(tracer(), GCTracer::Scope::MC_EPILOGUE); SetGCState(NOT_IN_GC); isolate_->counters()->objs_since_last_full()->Set(0); incremental_marking()->Epilogue(); PreprocessStackTraces(); DCHECK(incremental_marking()->IsStopped()); mark_compact_collector()->marking_worklist()->StopUsing(); } void Heap::MarkCompactPrologue() { TRACE_GC(tracer(), GCTracer::Scope::MC_PROLOGUE); isolate_->context_slot_cache()->Clear(); isolate_->descriptor_lookup_cache()->Clear(); RegExpResultsCache::Clear(string_split_cache()); RegExpResultsCache::Clear(regexp_multiple_cache()); isolate_->compilation_cache()->MarkCompactPrologue(); FlushNumberStringCache(); ClearNormalizedMapCaches(); } void Heap::CheckNewSpaceExpansionCriteria() { if (FLAG_experimental_new_space_growth_heuristic) { if (new_space_->TotalCapacity() < new_space_->MaximumCapacity() && survived_last_scavenge_ * 100 / new_space_->TotalCapacity() >= 10) { // Grow the size of new space if there is room to grow, and more than 10% // have survived the last scavenge. new_space_->Grow(); survived_since_last_expansion_ = 0; } } else if (new_space_->TotalCapacity() < new_space_->MaximumCapacity() && survived_since_last_expansion_ > new_space_->TotalCapacity()) { // Grow the size of new space if there is room to grow, and enough data // has survived scavenge since the last expansion. new_space_->Grow(); survived_since_last_expansion_ = 0; } } static bool IsUnscavengedHeapObject(Heap* heap, Object** p) { return heap->InNewSpace(*p) && !HeapObject::cast(*p)->map_word().IsForwardingAddress(); } class ScavengeWeakObjectRetainer : public WeakObjectRetainer { public: explicit ScavengeWeakObjectRetainer(Heap* heap) : heap_(heap) {} virtual Object* RetainAs(Object* object) { if (!heap_->InFromSpace(object)) { return object; } MapWord map_word = HeapObject::cast(object)->map_word(); if (map_word.IsForwardingAddress()) { return map_word.ToForwardingAddress(); } return NULL; } private: Heap* heap_; }; void Heap::EvacuateYoungGeneration() { TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_FAST_PROMOTE); base::LockGuard<base::Mutex> guard(relocation_mutex()); ConcurrentMarking::PauseScope pause_scope(concurrent_marking()); if (!FLAG_concurrent_marking) { DCHECK(fast_promotion_mode_); DCHECK(CanExpandOldGeneration(new_space()->Size())); } mark_compact_collector()->sweeper().EnsureNewSpaceCompleted(); SetGCState(SCAVENGE); LOG(isolate_, ResourceEvent("scavenge", "begin")); // Move pages from new->old generation. PageRange range(new_space()->bottom(), new_space()->top()); for (auto it = range.begin(); it != range.end();) { Page* p = (*++it)->prev_page(); p->Unlink(); Page::ConvertNewToOld(p); if (incremental_marking()->IsMarking()) mark_compact_collector()->RecordLiveSlotsOnPage(p); } // Reset new space. if (!new_space()->Rebalance()) { FatalProcessOutOfMemory("NewSpace::Rebalance"); } new_space()->ResetAllocationInfo(); new_space()->set_age_mark(new_space()->top()); // Fix up special trackers. external_string_table_.PromoteAllNewSpaceStrings(); // GlobalHandles are updated in PostGarbageCollectonProcessing IncrementYoungSurvivorsCounter(new_space()->Size()); IncrementPromotedObjectsSize(new_space()->Size()); IncrementSemiSpaceCopiedObjectSize(0); LOG(isolate_, ResourceEvent("scavenge", "end")); SetGCState(NOT_IN_GC); } static bool IsLogging(Isolate* isolate) { return FLAG_verify_predictable || isolate->logger()->is_logging() || isolate->is_profiling() || (isolate->heap_profiler() != nullptr && isolate->heap_profiler()->is_tracking_object_moves()); } class ScavengingItem : public ItemParallelJob::Item { public: virtual ~ScavengingItem() {} virtual void Process(Scavenger* scavenger) = 0; }; class ScavengingTask final : public ItemParallelJob::Task { public: ScavengingTask(Heap* heap, Scavenger* scavenger, Scavenger::Barrier* barrier) : ItemParallelJob::Task(heap->isolate()), heap_(heap), scavenger_(scavenger), barrier_(barrier) {} void RunInParallel() final { double scavenging_time = 0.0; { barrier_->Start(); TimedScope scope(&scavenging_time); ScavengingItem* item = nullptr; while ((item = GetItem<ScavengingItem>()) != nullptr) { item->Process(scavenger_); item->MarkFinished(); } while (!barrier_->Done()) { scavenger_->Process(barrier_); barrier_->Wait(); } scavenger_->Process(); } if (FLAG_trace_parallel_scavenge) { PrintIsolate(heap_->isolate(), "scavenge[%p]: time=%.2f copied=%zu promoted=%zu\n", static_cast<void*>(this), scavenging_time, scavenger_->bytes_copied(), scavenger_->bytes_promoted()); } }; private: Heap* const heap_; Scavenger* const scavenger_; Scavenger::Barrier* const barrier_; }; class PageScavengingItem final : public ScavengingItem { public: explicit PageScavengingItem(Heap* heap, MemoryChunk* chunk) : heap_(heap), chunk_(chunk) {} virtual ~PageScavengingItem() {} void Process(Scavenger* scavenger) final { base::LockGuard<base::RecursiveMutex> guard(chunk_->mutex()); RememberedSet<OLD_TO_NEW>::Iterate( chunk_, [this, scavenger](Address addr) { return scavenger->CheckAndScavengeObject(heap_, addr); }, SlotSet::KEEP_EMPTY_BUCKETS); RememberedSet<OLD_TO_NEW>::IterateTyped( chunk_, [this, scavenger](SlotType type, Address host_addr, Address addr) { return UpdateTypedSlotHelper::UpdateTypedSlot( heap_->isolate(), type, addr, [this, scavenger](Object** addr) { // We expect that objects referenced by code are long // living. If we do not force promotion, then we need to // clear old_to_new slots in dead code objects after // mark-compact. return scavenger->CheckAndScavengeObject( heap_, reinterpret_cast<Address>(addr)); }); }); } private: Heap* const heap_; MemoryChunk* const chunk_; }; int Heap::NumberOfScavengeTasks() { if (!FLAG_parallel_scavenge) return 1; const int num_scavenge_tasks = static_cast<int>(new_space()->TotalCapacity()) / MB; return Max( 1, Min(Min(num_scavenge_tasks, kMaxScavengerTasks), static_cast<int>( V8::GetCurrentPlatform()->NumberOfAvailableBackgroundThreads()))); } void Heap::Scavenge() { TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE); base::LockGuard<base::Mutex> guard(relocation_mutex()); ConcurrentMarking::PauseScope pause_scope(concurrent_marking()); // There are soft limits in the allocation code, designed to trigger a mark // sweep collection by failing allocations. There is no sense in trying to // trigger one during scavenge: scavenges allocation should always succeed. AlwaysAllocateScope scope(isolate()); // Bump-pointer allocations done during scavenge are not real allocations. // Pause the inline allocation steps. PauseAllocationObserversScope pause_observers(this); IncrementalMarking::PauseBlackAllocationScope pause_black_allocation( incremental_marking()); mark_compact_collector()->sweeper().EnsureNewSpaceCompleted(); SetGCState(SCAVENGE); // Implements Cheney's copying algorithm LOG(isolate_, ResourceEvent("scavenge", "begin")); // Used for updating survived_since_last_expansion_ at function end. size_t survived_watermark = PromotedSpaceSizeOfObjects(); // Flip the semispaces. After flipping, to space is empty, from space has // live objects. new_space_->Flip(); new_space_->ResetAllocationInfo(); ItemParallelJob job(isolate()->cancelable_task_manager(), ¶llel_scavenge_semaphore_); const int kMainThreadId = 0; Scavenger* scavengers[kMaxScavengerTasks]; const bool is_logging = IsLogging(isolate()); const int num_scavenge_tasks = NumberOfScavengeTasks(); Scavenger::Barrier barrier; CopiedList copied_list(num_scavenge_tasks); PromotionList promotion_list(num_scavenge_tasks); for (int i = 0; i < num_scavenge_tasks; i++) { scavengers[i] = new Scavenger(this, is_logging, &copied_list, &promotion_list, i); job.AddTask(new ScavengingTask(this, scavengers[i], &barrier)); } RememberedSet<OLD_TO_NEW>::IterateMemoryChunks( this, [this, &job](MemoryChunk* chunk) { job.AddItem(new PageScavengingItem(this, chunk)); }); RootScavengeVisitor root_scavenge_visitor(this, scavengers[kMainThreadId]); { // Identify weak unmodified handles. Requires an unmodified graph. TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE_WEAK_GLOBAL_HANDLES_IDENTIFY); isolate()->global_handles()->IdentifyWeakUnmodifiedObjects( &JSObject::IsUnmodifiedApiObject); } { // Copy roots. TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE_ROOTS); IterateRoots(&root_scavenge_visitor, VISIT_ALL_IN_SCAVENGE); } { // Weak collections are held strongly by the Scavenger. TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE_WEAK); IterateEncounteredWeakCollections(&root_scavenge_visitor); } { // Parallel phase scavenging all copied and promoted objects. TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE_PARALLEL); job.Run(); DCHECK(copied_list.IsGlobalEmpty()); DCHECK(promotion_list.IsGlobalEmpty()); } { // Scavenge weak global handles. TRACE_GC(tracer(), GCTracer::Scope::SCAVENGER_SCAVENGE_WEAK_GLOBAL_HANDLES_PROCESS); isolate()->global_handles()->MarkNewSpaceWeakUnmodifiedObjectsPending( &IsUnscavengedHeapObject); isolate()->global_handles()->IterateNewSpaceWeakUnmodifiedRoots( &root_scavenge_visitor); scavengers[kMainThreadId]->Process(); } for (int i = 0; i < num_scavenge_tasks; i++) { scavengers[i]->Finalize(); delete scavengers[i]; } UpdateNewSpaceReferencesInExternalStringTable( &UpdateNewSpaceReferenceInExternalStringTableEntry); incremental_marking()->UpdateMarkingWorklistAfterScavenge(); ScavengeWeakObjectRetainer weak_object_retainer(this); ProcessYoungWeakReferences(&weak_object_retainer); // Set age mark. new_space_->set_age_mark(new_space_->top()); ArrayBufferTracker::FreeDeadInNewSpace(this); RememberedSet<OLD_TO_NEW>::IterateMemoryChunks(this, [](MemoryChunk* chunk) { RememberedSet<OLD_TO_NEW>::PreFreeEmptyBuckets(chunk); }); // Update how much has survived scavenge. DCHECK_GE(PromotedSpaceSizeOfObjects(), survived_watermark); IncrementYoungSurvivorsCounter(PromotedSpaceSizeOfObjects() + new_space_->Size() - survived_watermark); // Scavenger may find new wrappers by iterating objects promoted onto a black // page. local_embedder_heap_tracer()->RegisterWrappersWithRemoteTracer(); LOG(isolate_, ResourceEvent("scavenge", "end")); SetGCState(NOT_IN_GC); } void Heap::ComputeFastPromotionMode(double survival_rate) { const size_t survived_in_new_space = survived_last_scavenge_ * 100 / new_space_->Capacity(); fast_promotion_mode_ = !FLAG_optimize_for_size && FLAG_fast_promotion_new_space && !ShouldReduceMemory() && new_space_->IsAtMaximumCapacity() && survived_in_new_space >= kMinPromotedPercentForFastPromotionMode; if (FLAG_trace_gc_verbose) { PrintIsolate( isolate(), "Fast promotion mode: %s survival rate: %" PRIuS "%%\n", fast_promotion_mode_ ? "true" : "false", survived_in_new_space); } } String* Heap::UpdateNewSpaceReferenceInExternalStringTableEntry(Heap* heap, Object** p) { MapWord first_word = HeapObject::cast(*p)->map_word(); if (!first_word.IsForwardingAddress()) { // Unreachable external string can be finalized. String* string = String::cast(*p); if (!string->IsExternalString()) { // Original external string has been internalized. DCHECK(string->IsThinString()); return NULL; } heap->FinalizeExternalString(string); return NULL; } // String is still reachable. String* string = String::cast(first_word.ToForwardingAddress()); if (string->IsThinString()) string = ThinString::cast(string)->actual(); // Internalization can replace external strings with non-external strings. return string->IsExternalString() ? string : nullptr; } void Heap::UpdateNewSpaceReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { if (external_string_table_.new_space_strings_.is_empty()) return; Object** start = &external_string_table_.new_space_strings_[0]; Object** end = start + external_string_table_.new_space_strings_.length(); Object** last = start; for (Object** p = start; p < end; ++p) { String* target = updater_func(this, p); if (target == NULL) continue; DCHECK(target->IsExternalString()); if (InNewSpace(target)) { // String is still in new space. Update the table entry. *last = target; ++last; } else { // String got promoted. Move it to the old string list. external_string_table_.AddOldString(target); } } DCHECK(last <= end); external_string_table_.ShrinkNewStrings(static_cast<int>(last - start)); } void Heap::UpdateReferencesInExternalStringTable( ExternalStringTableUpdaterCallback updater_func) { // Update old space string references. if (external_string_table_.old_space_strings_.length() > 0) { Object** start = &external_string_table_.old_space_strings_[0]; Object** end = start + external_string_table_.old_space_strings_.length(); for (Object** p = start; p < end; ++p) *p = updater_func(this, p); } UpdateNewSpaceReferencesInExternalStringTable(updater_func); } void Heap::ProcessAllWeakReferences(WeakObjectRetainer* retainer) { ProcessNativeContexts(retainer); ProcessAllocationSites(retainer); } void Heap::ProcessYoungWeakReferences(WeakObjectRetainer* retainer) { ProcessNativeContexts(retainer); } void Heap::ProcessNativeContexts(WeakObjectRetainer* retainer) { Object* head = VisitWeakList<Context>(this, native_contexts_list(), retainer); // Update the head of the list of contexts. set_native_contexts_list(head); } void Heap::ProcessAllocationSites(WeakObjectRetainer* retainer) { Object* allocation_site_obj = VisitWeakList<AllocationSite>(this, allocation_sites_list(), retainer); set_allocation_sites_list(allocation_site_obj); } void Heap::ProcessWeakListRoots(WeakObjectRetainer* retainer) { set_native_contexts_list(retainer->RetainAs(native_contexts_list())); set_allocation_sites_list(retainer->RetainAs(allocation_sites_list())); } void Heap::ResetAllAllocationSitesDependentCode(PretenureFlag flag) { DisallowHeapAllocation no_allocation_scope; Object* cur = allocation_sites_list(); bool marked = false; while (cur->IsAllocationSite()) { AllocationSite* casted = AllocationSite::cast(cur); if (casted->GetPretenureMode() == flag) { casted->ResetPretenureDecision(); casted->set_deopt_dependent_code(true); marked = true; RemoveAllocationSitePretenuringFeedback(casted); } cur = casted->weak_next(); } if (marked) isolate_->stack_guard()->RequestDeoptMarkedAllocationSites(); } void Heap::EvaluateOldSpaceLocalPretenuring( uint64_t size_of_objects_before_gc) { uint64_t size_of_objects_after_gc = SizeOfObjects(); double old_generation_survival_rate = (static_cast<double>(size_of_objects_after_gc) * 100) / static_cast<double>(size_of_objects_before_gc); if (old_generation_survival_rate < kOldSurvivalRateLowThreshold) { // Too many objects died in the old generation, pretenuring of wrong // allocation sites may be the cause for that. We have to deopt all // dependent code registered in the allocation sites to re-evaluate // our pretenuring decisions. ResetAllAllocationSitesDependentCode(TENURED); if (FLAG_trace_pretenuring) { PrintF( "Deopt all allocation sites dependent code due to low survival " "rate in the old generation %f\n", old_generation_survival_rate); } } } void Heap::VisitExternalResources(v8::ExternalResourceVisitor* visitor) { DisallowHeapAllocation no_allocation; // All external strings are listed in the external string table. class ExternalStringTableVisitorAdapter : public RootVisitor { public: explicit ExternalStringTableVisitorAdapter( v8::ExternalResourceVisitor* visitor) : visitor_(visitor) {} virtual void VisitRootPointers(Root root, Object** start, Object** end) { for (Object** p = start; p < end; p++) { DCHECK((*p)->IsExternalString()); visitor_->VisitExternalString( Utils::ToLocal(Handle<String>(String::cast(*p)))); } } private: v8::ExternalResourceVisitor* visitor_; } external_string_table_visitor(visitor); external_string_table_.IterateAll(&external_string_table_visitor); } STATIC_ASSERT((FixedDoubleArray::kHeaderSize & kDoubleAlignmentMask) == 0); // NOLINT STATIC_ASSERT((FixedTypedArrayBase::kDataOffset & kDoubleAlignmentMask) == 0); // NOLINT #ifdef V8_HOST_ARCH_32_BIT STATIC_ASSERT((HeapNumber::kValueOffset & kDoubleAlignmentMask) != 0); // NOLINT #endif int Heap::GetMaximumFillToAlign(AllocationAlignment alignment) { switch (alignment) { case kWordAligned: return 0; case kDoubleAligned: case kDoubleUnaligned: return kDoubleSize - kPointerSize; default: UNREACHABLE(); } return 0; } int Heap::GetFillToAlign(Address address, AllocationAlignment alignment) { intptr_t offset = OffsetFrom(address); if (alignment == kDoubleAligned && (offset & kDoubleAlignmentMask) != 0) return kPointerSize; if (alignment == kDoubleUnaligned && (offset & kDoubleAlignmentMask) == 0) return kDoubleSize - kPointerSize; // No fill if double is always aligned. return 0; } HeapObject* Heap::PrecedeWithFiller(HeapObject* object, int filler_size) { CreateFillerObjectAt(object->address(), filler_size, ClearRecordedSlots::kNo); return HeapObject::FromAddress(object->address() + filler_size); } HeapObject* Heap::AlignWithFiller(HeapObject* object, int object_size, int allocation_size, AllocationAlignment alignment) { int filler_size = allocation_size - object_size; DCHECK(filler_size > 0); int pre_filler = GetFillToAlign(object->address(), alignment); if (pre_filler) { object = PrecedeWithFiller(object, pre_filler); filler_size -= pre_filler; } if (filler_size) CreateFillerObjectAt(object->address() + object_size, filler_size, ClearRecordedSlots::kNo); return object; } HeapObject* Heap::DoubleAlignForDeserialization(HeapObject* object, int size) { return AlignWithFiller(object, size - kPointerSize, size, kDoubleAligned); } void Heap::RegisterNewArrayBuffer(JSArrayBuffer* buffer) { ArrayBufferTracker::RegisterNew(this, buffer); } void Heap::UnregisterArrayBuffer(JSArrayBuffer* buffer) { ArrayBufferTracker::Unregister(this, buffer); } void Heap::ConfigureInitialOldGenerationSize() { if (!old_generation_size_configured_ && tracer()->SurvivalEventsRecorded()) { old_generation_allocation_limit_ = Max(MinimumAllocationLimitGrowingStep(), static_cast<size_t>( static_cast<double>(old_generation_allocation_limit_) * (tracer()->AverageSurvivalRatio() / 100))); } } AllocationResult Heap::AllocatePartialMap(InstanceType instance_type, int instance_size) { Object* result = nullptr; AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE); if (!allocation.To(&result)) return allocation; // Map::cast cannot be used due to uninitialized map field. Map* map = reinterpret_cast<Map*>(result); map->set_map_after_allocation(reinterpret_cast<Map*>(root(kMetaMapRootIndex)), SKIP_WRITE_BARRIER); map->set_instance_type(instance_type); map->set_instance_size(instance_size); // Initialize to only containing tagged fields. if (FLAG_unbox_double_fields) { map->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } // GetVisitorId requires a properly initialized LayoutDescriptor. map->set_visitor_id(Map::GetVisitorId(map)); map->clear_unused(); map->set_inobject_properties_or_constructor_function_index(0); map->set_unused_property_fields(0); map->set_bit_field(0); map->set_bit_field2(0); int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | Map::OwnsDescriptors::encode(true) | Map::ConstructionCounter::encode(Map::kNoSlackTracking); map->set_bit_field3(bit_field3); map->set_weak_cell_cache(Smi::kZero); return map; } AllocationResult Heap::AllocateMap(InstanceType instance_type, int instance_size, ElementsKind elements_kind) { HeapObject* result = nullptr; AllocationResult allocation = AllocateRaw(Map::kSize, MAP_SPACE); if (!allocation.To(&result)) return allocation; isolate()->counters()->maps_created()->Increment(); result->set_map_after_allocation(meta_map(), SKIP_WRITE_BARRIER); Map* map = Map::cast(result); map->set_instance_type(instance_type); map->set_prototype(null_value(), SKIP_WRITE_BARRIER); map->set_constructor_or_backpointer(null_value(), SKIP_WRITE_BARRIER); map->set_instance_size(instance_size); map->clear_unused(); map->set_inobject_properties_or_constructor_function_index(0); map->set_code_cache(empty_fixed_array(), SKIP_WRITE_BARRIER); map->set_dependent_code(DependentCode::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); map->set_weak_cell_cache(Smi::kZero); map->set_raw_transitions(Smi::kZero); map->set_unused_property_fields(0); map->set_instance_descriptors(empty_descriptor_array()); if (FLAG_unbox_double_fields) { map->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } // Must be called only after |instance_type|, |instance_size| and // |layout_descriptor| are set. map->set_visitor_id(Map::GetVisitorId(map)); map->set_bit_field(0); map->set_bit_field2(1 << Map::kIsExtensible); int bit_field3 = Map::EnumLengthBits::encode(kInvalidEnumCacheSentinel) | Map::OwnsDescriptors::encode(true) | Map::ConstructionCounter::encode(Map::kNoSlackTracking); map->set_bit_field3(bit_field3); map->set_elements_kind(elements_kind); map->set_new_target_is_base(true); return map; } AllocationResult Heap::AllocateFillerObject(int size, bool double_align, AllocationSpace space) { HeapObject* obj = nullptr; { AllocationAlignment align = double_align ? kDoubleAligned : kWordAligned; AllocationResult allocation = AllocateRaw(size, space, align); if (!allocation.To(&obj)) return allocation; } #ifdef DEBUG MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); DCHECK(chunk->owner()->identity() == space); #endif CreateFillerObjectAt(obj->address(), size, ClearRecordedSlots::kNo); return obj; } const Heap::StringTypeTable Heap::string_type_table[] = { #define STRING_TYPE_ELEMENT(type, size, name, camel_name) \ { type, size, k##camel_name##MapRootIndex } \ , STRING_TYPE_LIST(STRING_TYPE_ELEMENT) #undef STRING_TYPE_ELEMENT }; const Heap::ConstantStringTable Heap::constant_string_table[] = { {"", kempty_stringRootIndex}, #define CONSTANT_STRING_ELEMENT(name, contents) \ { contents, k##name##RootIndex } \ , INTERNALIZED_STRING_LIST(CONSTANT_STRING_ELEMENT) #undef CONSTANT_STRING_ELEMENT }; const Heap::StructTable Heap::struct_table[] = { #define STRUCT_TABLE_ELEMENT(NAME, Name, name) \ { NAME##_TYPE, Name::kSize, k##Name##MapRootIndex } \ , STRUCT_LIST(STRUCT_TABLE_ELEMENT) #undef STRUCT_TABLE_ELEMENT }; namespace { void FinalizePartialMap(Heap* heap, Map* map) { map->set_code_cache(heap->empty_fixed_array()); map->set_dependent_code(DependentCode::cast(heap->empty_fixed_array())); map->set_raw_transitions(Smi::kZero); map->set_instance_descriptors(heap->empty_descriptor_array()); if (FLAG_unbox_double_fields) { map->set_layout_descriptor(LayoutDescriptor::FastPointerLayout()); } map->set_prototype(heap->null_value()); map->set_constructor_or_backpointer(heap->null_value()); } } // namespace bool Heap::CreateInitialMaps() { HeapObject* obj = nullptr; { AllocationResult allocation = AllocatePartialMap(MAP_TYPE, Map::kSize); if (!allocation.To(&obj)) return false; } // Map::cast cannot be used due to uninitialized map field. Map* new_meta_map = reinterpret_cast<Map*>(obj); set_meta_map(new_meta_map); new_meta_map->set_map_after_allocation(new_meta_map); { // Partial map allocation #define ALLOCATE_PARTIAL_MAP(instance_type, size, field_name) \ { \ Map* map; \ if (!AllocatePartialMap((instance_type), (size)).To(&map)) return false; \ set_##field_name##_map(map); \ } ALLOCATE_PARTIAL_MAP(FIXED_ARRAY_TYPE, kVariableSizeSentinel, fixed_array); fixed_array_map()->set_elements_kind(HOLEY_ELEMENTS); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, undefined); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, null); ALLOCATE_PARTIAL_MAP(ODDBALL_TYPE, Oddball::kSize, the_hole); #undef ALLOCATE_PARTIAL_MAP } // Allocate the empty array. { AllocationResult allocation = AllocateEmptyFixedArray(); if (!allocation.To(&obj)) return false; } set_empty_fixed_array(FixedArray::cast(obj)); { AllocationResult allocation = Allocate(null_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_null_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kNull); { AllocationResult allocation = Allocate(undefined_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_undefined_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kUndefined); DCHECK(!InNewSpace(undefined_value())); { AllocationResult allocation = Allocate(the_hole_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_the_hole_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kTheHole); // Set preliminary exception sentinel value before actually initializing it. set_exception(null_value()); // Allocate the empty descriptor array. { AllocationResult allocation = AllocateEmptyFixedArray(); if (!allocation.To(&obj)) return false; } set_empty_descriptor_array(DescriptorArray::cast(obj)); // Fix the instance_descriptors for the existing maps. FinalizePartialMap(this, meta_map()); FinalizePartialMap(this, fixed_array_map()); FinalizePartialMap(this, undefined_map()); undefined_map()->set_is_undetectable(); FinalizePartialMap(this, null_map()); null_map()->set_is_undetectable(); FinalizePartialMap(this, the_hole_map()); { // Map allocation #define ALLOCATE_MAP(instance_type, size, field_name) \ { \ Map* map; \ if (!AllocateMap((instance_type), size).To(&map)) return false; \ set_##field_name##_map(map); \ } #define ALLOCATE_VARSIZE_MAP(instance_type, field_name) \ ALLOCATE_MAP(instance_type, kVariableSizeSentinel, field_name) #define ALLOCATE_PRIMITIVE_MAP(instance_type, size, field_name, \ constructor_function_index) \ { \ ALLOCATE_MAP((instance_type), (size), field_name); \ field_name##_map()->SetConstructorFunctionIndex( \ (constructor_function_index)); \ } ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, fixed_cow_array) fixed_cow_array_map()->set_elements_kind(HOLEY_ELEMENTS); DCHECK_NE(fixed_array_map(), fixed_cow_array_map()); ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, scope_info) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_info) ALLOCATE_VARSIZE_MAP(FEEDBACK_VECTOR_TYPE, feedback_vector) ALLOCATE_PRIMITIVE_MAP(HEAP_NUMBER_TYPE, HeapNumber::kSize, heap_number, Context::NUMBER_FUNCTION_INDEX) ALLOCATE_MAP(MUTABLE_HEAP_NUMBER_TYPE, HeapNumber::kSize, mutable_heap_number) ALLOCATE_PRIMITIVE_MAP(SYMBOL_TYPE, Symbol::kSize, symbol, Context::SYMBOL_FUNCTION_INDEX) ALLOCATE_MAP(FOREIGN_TYPE, Foreign::kSize, foreign) ALLOCATE_PRIMITIVE_MAP(ODDBALL_TYPE, Oddball::kSize, boolean, Context::BOOLEAN_FUNCTION_INDEX); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, uninitialized); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, arguments_marker); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, exception); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, termination_exception); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, optimized_out); ALLOCATE_MAP(ODDBALL_TYPE, Oddball::kSize, stale_register); ALLOCATE_MAP(JS_PROMISE_CAPABILITY_TYPE, JSPromiseCapability::kSize, js_promise_capability); for (unsigned i = 0; i < arraysize(string_type_table); i++) { const StringTypeTable& entry = string_type_table[i]; { AllocationResult allocation = AllocateMap(entry.type, entry.size); if (!allocation.To(&obj)) return false; } Map* map = Map::cast(obj); map->SetConstructorFunctionIndex(Context::STRING_FUNCTION_INDEX); // Mark cons string maps as unstable, because their objects can change // maps during GC. if (StringShape(entry.type).IsCons()) map->mark_unstable(); roots_[entry.index] = map; } { // Create a separate external one byte string map for native sources. AllocationResult allocation = AllocateMap(SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE, ExternalOneByteString::kShortSize); if (!allocation.To(&obj)) return false; Map* map = Map::cast(obj); map->SetConstructorFunctionIndex(Context::STRING_FUNCTION_INDEX); set_native_source_string_map(map); } ALLOCATE_VARSIZE_MAP(FIXED_DOUBLE_ARRAY_TYPE, fixed_double_array) fixed_double_array_map()->set_elements_kind(HOLEY_DOUBLE_ELEMENTS); ALLOCATE_VARSIZE_MAP(BYTE_ARRAY_TYPE, byte_array) ALLOCATE_VARSIZE_MAP(BYTECODE_ARRAY_TYPE, bytecode_array) ALLOCATE_VARSIZE_MAP(FREE_SPACE_TYPE, free_space) ALLOCATE_VARSIZE_MAP(PROPERTY_ARRAY_TYPE, property_array) ALLOCATE_VARSIZE_MAP(SMALL_ORDERED_HASH_MAP_TYPE, small_ordered_hash_map) ALLOCATE_VARSIZE_MAP(SMALL_ORDERED_HASH_SET_TYPE, small_ordered_hash_set) #define ALLOCATE_FIXED_TYPED_ARRAY_MAP(Type, type, TYPE, ctype, size) \ ALLOCATE_VARSIZE_MAP(FIXED_##TYPE##_ARRAY_TYPE, fixed_##type##_array) TYPED_ARRAYS(ALLOCATE_FIXED_TYPED_ARRAY_MAP) #undef ALLOCATE_FIXED_TYPED_ARRAY_MAP ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, sloppy_arguments_elements) ALLOCATE_VARSIZE_MAP(CODE_TYPE, code) ALLOCATE_MAP(CELL_TYPE, Cell::kSize, cell) ALLOCATE_MAP(PROPERTY_CELL_TYPE, PropertyCell::kSize, global_property_cell) ALLOCATE_MAP(WEAK_CELL_TYPE, WeakCell::kSize, weak_cell) ALLOCATE_MAP(CELL_TYPE, Cell::kSize, no_closures_cell) ALLOCATE_MAP(CELL_TYPE, Cell::kSize, one_closure_cell) ALLOCATE_MAP(CELL_TYPE, Cell::kSize, many_closures_cell) ALLOCATE_MAP(FILLER_TYPE, kPointerSize, one_pointer_filler) ALLOCATE_MAP(FILLER_TYPE, 2 * kPointerSize, two_pointer_filler) ALLOCATE_VARSIZE_MAP(TRANSITION_ARRAY_TYPE, transition_array) for (unsigned i = 0; i < arraysize(struct_table); i++) { const StructTable& entry = struct_table[i]; Map* map; if (!AllocateMap(entry.type, entry.size).To(&map)) return false; roots_[entry.index] = map; } ALLOCATE_VARSIZE_MAP(HASH_TABLE_TYPE, hash_table) ALLOCATE_VARSIZE_MAP(HASH_TABLE_TYPE, ordered_hash_table) ALLOCATE_VARSIZE_MAP(HASH_TABLE_TYPE, unseeded_number_dictionary) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, function_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, catch_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, with_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, debug_evaluate_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, block_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, module_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, eval_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, script_context) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, script_context_table) ALLOCATE_VARSIZE_MAP(FIXED_ARRAY_TYPE, native_context) native_context_map()->set_visitor_id(kVisitNativeContext); ALLOCATE_MAP(SHARED_FUNCTION_INFO_TYPE, SharedFunctionInfo::kAlignedSize, shared_function_info) ALLOCATE_MAP(JS_MESSAGE_OBJECT_TYPE, JSMessageObject::kSize, message_object) ALLOCATE_MAP(JS_OBJECT_TYPE, JSObject::kHeaderSize + kPointerSize, external) external_map()->set_is_extensible(false); #undef ALLOCATE_PRIMITIVE_MAP #undef ALLOCATE_VARSIZE_MAP #undef ALLOCATE_MAP } { AllocationResult allocation = AllocateEmptyScopeInfo(); if (!allocation.To(&obj)) return false; } set_empty_scope_info(ScopeInfo::cast(obj)); { AllocationResult allocation = Allocate(boolean_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_true_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kTrue); { AllocationResult allocation = Allocate(boolean_map(), OLD_SPACE); if (!allocation.To(&obj)) return false; } set_false_value(Oddball::cast(obj)); Oddball::cast(obj)->set_kind(Oddball::kFalse); { // Empty arrays { ByteArray* byte_array; if (!AllocateByteArray(0, TENURED).To(&byte_array)) return false; set_empty_byte_array(byte_array); } { PropertyArray* property_array; if (!AllocatePropertyArray(0, TENURED).To(&property_array)) return false; set_empty_property_array(property_array); } #define ALLOCATE_EMPTY_FIXED_TYPED_ARRAY(Type, type, TYPE, ctype, size) \ { \ FixedTypedArrayBase* obj; \ if (!AllocateEmptyFixedTypedArray(kExternal##Type##Array).To(&obj)) \ return false; \ set_empty_fixed_##type##_array(obj); \ } TYPED_ARRAYS(ALLOCATE_EMPTY_FIXED_TYPED_ARRAY) #undef ALLOCATE_EMPTY_FIXED_TYPED_ARRAY } DCHECK(!InNewSpace(empty_fixed_array())); return true; } AllocationResult Heap::AllocateHeapNumber(MutableMode mode, PretenureFlag pretenure) { // Statically ensure that it is safe to allocate heap numbers in paged // spaces. int size = HeapNumber::kSize; STATIC_ASSERT(HeapNumber::kSize <= kMaxRegularHeapObjectSize); AllocationSpace space = SelectSpace(pretenure); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, space, kDoubleUnaligned); if (!allocation.To(&result)) return allocation; } Map* map = mode == MUTABLE ? mutable_heap_number_map() : heap_number_map(); HeapObject::cast(result)->set_map_after_allocation(map, SKIP_WRITE_BARRIER); return result; } AllocationResult Heap::AllocateCell(Object* value) { int size = Cell::kSize; STATIC_ASSERT(Cell::kSize <= kMaxRegularHeapObjectSize); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_after_allocation(cell_map(), SKIP_WRITE_BARRIER); Cell::cast(result)->set_value(value); return result; } AllocationResult Heap::AllocatePropertyCell(Name* name) { DCHECK(name->IsUniqueName()); int size = PropertyCell::kSize; STATIC_ASSERT(PropertyCell::kSize <= kMaxRegularHeapObjectSize); HeapObject* result = nullptr; AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; result->set_map_after_allocation(global_property_cell_map(), SKIP_WRITE_BARRIER); PropertyCell* cell = PropertyCell::cast(result); cell->set_dependent_code(DependentCode::cast(empty_fixed_array()), SKIP_WRITE_BARRIER); cell->set_property_details(PropertyDetails(Smi::kZero)); cell->set_name(name); cell->set_value(the_hole_value()); return result; } AllocationResult Heap::AllocateWeakCell(HeapObject* value) { int size = WeakCell::kSize; STATIC_ASSERT(WeakCell::kSize <= kMaxRegularHeapObjectSize); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_after_allocation(weak_cell_map(), SKIP_WRITE_BARRIER); WeakCell::cast(result)->initialize(value); return result; } AllocationResult Heap::AllocateTransitionArray(int capacity) { DCHECK(capacity > 0); HeapObject* raw_array = nullptr; { AllocationResult allocation = AllocateRawFixedArray(capacity, TENURED); if (!allocation.To(&raw_array)) return allocation; } raw_array->set_map_after_allocation(transition_array_map(), SKIP_WRITE_BARRIER); TransitionArray* array = TransitionArray::cast(raw_array); array->set_length(capacity); MemsetPointer(array->data_start(), undefined_value(), capacity); // Transition arrays are tenured. When black allocation is on we have to // add the transition array to the list of encountered_transition_arrays. if (incremental_marking()->black_allocation()) { array->set_next_link(encountered_transition_arrays(), UPDATE_WEAK_WRITE_BARRIER); set_encountered_transition_arrays(array); } else { array->set_next_link(undefined_value(), SKIP_WRITE_BARRIER); } return array; } bool Heap::CreateApiObjects() { HandleScope scope(isolate()); set_message_listeners(*TemplateList::New(isolate(), 2)); HeapObject* obj = nullptr; { AllocationResult allocation = AllocateStruct(INTERCEPTOR_INFO_TYPE); if (!allocation.To(&obj)) return false; } InterceptorInfo* info = InterceptorInfo::cast(obj); info->set_flags(0); set_noop_interceptor_info(info); return true; } void Heap::CreateJSEntryStub() { JSEntryStub stub(isolate(), StackFrame::ENTRY); set_js_entry_code(*stub.GetCode()); } void Heap::CreateJSConstructEntryStub() { JSEntryStub stub(isolate(), StackFrame::CONSTRUCT_ENTRY); set_js_construct_entry_code(*stub.GetCode()); } void Heap::CreateFixedStubs() { // Here we create roots for fixed stubs. They are needed at GC // for cooking and uncooking (check out frames.cc). // The eliminates the need for doing dictionary lookup in the // stub cache for these stubs. HandleScope scope(isolate()); // Canonicalize handles, so that we can share constant pool entries pointing // to code targets without dereferencing their handles. CanonicalHandleScope canonical(isolate()); // Create stubs that should be there, so we don't unexpectedly have to // create them if we need them during the creation of another stub. // Stub creation mixes raw pointers and handles in an unsafe manner so // we cannot create stubs while we are creating stubs. CodeStub::GenerateStubsAheadOfTime(isolate()); // MacroAssembler::Abort calls (usually enabled with --debug-code) depend on // CEntryStub, so we need to call GenerateStubsAheadOfTime before JSEntryStub // is created. // gcc-4.4 has problem generating correct code of following snippet: // { JSEntryStub stub; // js_entry_code_ = *stub.GetCode(); // } // { JSConstructEntryStub stub; // js_construct_entry_code_ = *stub.GetCode(); // } // To workaround the problem, make separate functions without inlining. Heap::CreateJSEntryStub(); Heap::CreateJSConstructEntryStub(); } void Heap::CreateInitialObjects() { HandleScope scope(isolate()); Factory* factory = isolate()->factory(); // The -0 value must be set before NewNumber works. set_minus_zero_value(*factory->NewHeapNumber(-0.0, IMMUTABLE, TENURED)); DCHECK(std::signbit(minus_zero_value()->Number()) != 0); set_nan_value(*factory->NewHeapNumber( std::numeric_limits<double>::quiet_NaN(), IMMUTABLE, TENURED)); set_hole_nan_value( *factory->NewHeapNumberFromBits(kHoleNanInt64, IMMUTABLE, TENURED)); set_infinity_value(*factory->NewHeapNumber(V8_INFINITY, IMMUTABLE, TENURED)); set_minus_infinity_value( *factory->NewHeapNumber(-V8_INFINITY, IMMUTABLE, TENURED)); // Allocate initial string table. set_string_table(*StringTable::New(isolate(), kInitialStringTableSize)); // Allocate // Finish initializing oddballs after creating the string table. Oddball::Initialize(isolate(), factory->undefined_value(), "undefined", factory->nan_value(), "undefined", Oddball::kUndefined); // Initialize the null_value. Oddball::Initialize(isolate(), factory->null_value(), "null", handle(Smi::kZero, isolate()), "object", Oddball::kNull); // Initialize the_hole_value. Oddball::Initialize(isolate(), factory->the_hole_value(), "hole", factory->hole_nan_value(), "undefined", Oddball::kTheHole); // Initialize the true_value. Oddball::Initialize(isolate(), factory->true_value(), "true", handle(Smi::FromInt(1), isolate()), "boolean", Oddball::kTrue); // Initialize the false_value. Oddball::Initialize(isolate(), factory->false_value(), "false", handle(Smi::kZero, isolate()), "boolean", Oddball::kFalse); set_uninitialized_value( *factory->NewOddball(factory->uninitialized_map(), "uninitialized", handle(Smi::FromInt(-1), isolate()), "undefined", Oddball::kUninitialized)); set_arguments_marker( *factory->NewOddball(factory->arguments_marker_map(), "arguments_marker", handle(Smi::FromInt(-4), isolate()), "undefined", Oddball::kArgumentsMarker)); set_termination_exception(*factory->NewOddball( factory->termination_exception_map(), "termination_exception", handle(Smi::FromInt(-3), isolate()), "undefined", Oddball::kOther)); set_exception(*factory->NewOddball(factory->exception_map(), "exception", handle(Smi::FromInt(-5), isolate()), "undefined", Oddball::kException)); set_optimized_out(*factory->NewOddball(factory->optimized_out_map(), "optimized_out", handle(Smi::FromInt(-6), isolate()), "undefined", Oddball::kOptimizedOut)); set_stale_register( *factory->NewOddball(factory->stale_register_map(), "stale_register", handle(Smi::FromInt(-7), isolate()), "undefined", Oddball::kStaleRegister)); for (unsigned i = 0; i < arraysize(constant_string_table); i++) { Handle<String> str = factory->InternalizeUtf8String(constant_string_table[i].contents); roots_[constant_string_table[i].index] = *str; } // Create the code_stubs dictionary. The initial size is set to avoid // expanding the dictionary during bootstrapping. set_code_stubs(*UnseededNumberDictionary::New(isolate(), 128)); { HandleScope scope(isolate()); #define SYMBOL_INIT(name) \ { \ Handle<String> name##d = factory->NewStringFromStaticChars(#name); \ Handle<Symbol> symbol(isolate()->factory()->NewPrivateSymbol()); \ symbol->set_name(*name##d); \ roots_[k##name##RootIndex] = *symbol; \ } PRIVATE_SYMBOL_LIST(SYMBOL_INIT) #undef SYMBOL_INIT } { HandleScope scope(isolate()); #define SYMBOL_INIT(name, description) \ Handle<Symbol> name = factory->NewSymbol(); \ Handle<String> name##d = factory->NewStringFromStaticChars(#description); \ name->set_name(*name##d); \ roots_[k##name##RootIndex] = *name; PUBLIC_SYMBOL_LIST(SYMBOL_INIT) #undef SYMBOL_INIT #define SYMBOL_INIT(name, description) \ Handle<Symbol> name = factory->NewSymbol(); \ Handle<String> name##d = factory->NewStringFromStaticChars(#description); \ name->set_is_well_known_symbol(true); \ name->set_name(*name##d); \ roots_[k##name##RootIndex] = *name; WELL_KNOWN_SYMBOL_LIST(SYMBOL_INIT) #undef SYMBOL_INIT // Mark "Interesting Symbols" appropriately. to_string_tag_symbol->set_is_interesting_symbol(true); } Handle<NameDictionary> empty_property_dictionary = NameDictionary::New(isolate(), 1, TENURED, USE_CUSTOM_MINIMUM_CAPACITY); DCHECK(!empty_property_dictionary->HasSufficientCapacityToAdd(1)); set_empty_property_dictionary(*empty_property_dictionary); set_public_symbol_table(*empty_property_dictionary); set_api_symbol_table(*empty_property_dictionary); set_api_private_symbol_table(*empty_property_dictionary); set_number_string_cache( *factory->NewFixedArray(kInitialNumberStringCacheSize * 2, TENURED)); // Allocate cache for single character one byte strings. set_single_character_string_cache( *factory->NewFixedArray(String::kMaxOneByteCharCode + 1, TENURED)); // Allocate cache for string split and regexp-multiple. set_string_split_cache(*factory->NewFixedArray( RegExpResultsCache::kRegExpResultsCacheSize, TENURED)); set_regexp_multiple_cache(*factory->NewFixedArray( RegExpResultsCache::kRegExpResultsCacheSize, TENURED)); set_undefined_cell(*factory->NewCell(factory->undefined_value())); // Microtask queue uses the empty fixed array as a sentinel for "empty". // Number of queued microtasks stored in Isolate::pending_microtask_count(). set_microtask_queue(empty_fixed_array()); { Handle<FixedArray> empty_sloppy_arguments_elements = factory->NewFixedArray(2, TENURED); empty_sloppy_arguments_elements->set_map_after_allocation( sloppy_arguments_elements_map(), SKIP_WRITE_BARRIER); set_empty_sloppy_arguments_elements(*empty_sloppy_arguments_elements); } { Handle<WeakCell> cell = factory->NewWeakCell(factory->undefined_value()); set_empty_weak_cell(*cell); cell->clear(); } set_detached_contexts(empty_fixed_array()); set_retained_maps(ArrayList::cast(empty_fixed_array())); set_retaining_path_targets(undefined_value()); set_weak_object_to_code_table(*WeakHashTable::New(isolate(), 16, TENURED)); set_weak_new_space_object_to_code_list( ArrayList::cast(*(factory->NewFixedArray(16, TENURED)))); weak_new_space_object_to_code_list()->SetLength(0); set_code_coverage_list(undefined_value()); set_script_list(Smi::kZero); Handle<SeededNumberDictionary> slow_element_dictionary = SeededNumberDictionary::New(isolate(), 1, TENURED, USE_CUSTOM_MINIMUM_CAPACITY); DCHECK(!slow_element_dictionary->HasSufficientCapacityToAdd(1)); slow_element_dictionary->set_requires_slow_elements(); set_empty_slow_element_dictionary(*slow_element_dictionary); set_materialized_objects(*factory->NewFixedArray(0, TENURED)); // Handling of script id generation is in Heap::NextScriptId(). set_last_script_id(Smi::FromInt(v8::UnboundScript::kNoScriptId)); set_next_template_serial_number(Smi::kZero); // Allocate the empty OrderedHashTable. Handle<FixedArray> empty_ordered_hash_table = factory->NewFixedArray(OrderedHashMap::kHashTableStartIndex, TENURED); empty_ordered_hash_table->set_map_no_write_barrier( *factory->ordered_hash_table_map()); for (int i = 0; i < empty_ordered_hash_table->length(); ++i) { empty_ordered_hash_table->set(i, Smi::kZero); } set_empty_ordered_hash_table(*empty_ordered_hash_table); // Allocate the empty script. Handle<Script> script = factory->NewScript(factory->empty_string()); script->set_type(Script::TYPE_NATIVE); set_empty_script(*script); Handle<PropertyCell> cell = factory->NewPropertyCell(factory->empty_string()); cell->set_value(Smi::FromInt(Isolate::kProtectorValid)); set_array_protector(*cell); cell = factory->NewPropertyCell(factory->empty_string()); cell->set_value(the_hole_value()); set_empty_property_cell(*cell); cell = factory->NewPropertyCell(factory->empty_string()); cell->set_value(Smi::FromInt(Isolate::kProtectorValid)); set_array_iterator_protector(*cell); Handle<Cell> is_concat_spreadable_cell = factory->NewCell( handle(Smi::FromInt(Isolate::kProtectorValid), isolate())); set_is_concat_spreadable_protector(*is_concat_spreadable_cell); cell = factory->NewPropertyCell(factory->empty_string()); cell->set_value(Smi::FromInt(Isolate::kProtectorValid)); set_species_protector(*cell); cell = factory->NewPropertyCell(factory->empty_string()); cell->set_value(Smi::FromInt(Isolate::kProtectorValid)); set_string_length_protector(*cell); Handle<Cell> fast_array_iteration_cell = factory->NewCell( handle(Smi::FromInt(Isolate::kProtectorValid), isolate())); set_fast_array_iteration_protector(*fast_array_iteration_cell); cell = factory->NewPropertyCell(factory->empty_string()); cell->set_value(Smi::FromInt(Isolate::kProtectorValid)); set_array_buffer_neutering_protector(*cell); set_serialized_templates(empty_fixed_array()); set_serialized_global_proxy_sizes(empty_fixed_array()); set_weak_stack_trace_list(Smi::kZero); set_noscript_shared_function_infos(Smi::kZero); // Initialize context slot cache. isolate_->context_slot_cache()->Clear(); // Initialize descriptor cache. isolate_->descriptor_lookup_cache()->Clear(); // Initialize compilation cache. isolate_->compilation_cache()->Clear(); // Finish creating JSPromiseCapabilityMap { // TODO(caitp): This initialization can be removed once PromiseCapability // object is no longer used by builtins implemented in javascript. Handle<Map> map = factory->js_promise_capability_map(); map->set_inobject_properties_or_constructor_function_index(3); Map::EnsureDescriptorSlack(map, 3); PropertyAttributes attrs = static_cast<PropertyAttributes>(READ_ONLY | DONT_DELETE); { // promise Descriptor d = Descriptor::DataField(factory->promise_string(), JSPromiseCapability::kPromiseIndex, attrs, Representation::Tagged()); map->AppendDescriptor(&d); } { // resolve Descriptor d = Descriptor::DataField(factory->resolve_string(), JSPromiseCapability::kResolveIndex, attrs, Representation::Tagged()); map->AppendDescriptor(&d); } { // reject Descriptor d = Descriptor::DataField(factory->reject_string(), JSPromiseCapability::kRejectIndex, attrs, Representation::Tagged()); map->AppendDescriptor(&d); } map->set_is_extensible(false); set_js_promise_capability_map(*map); } } bool Heap::RootCanBeWrittenAfterInitialization(Heap::RootListIndex root_index) { switch (root_index) { case kNumberStringCacheRootIndex: case kCodeStubsRootIndex: case kScriptListRootIndex: case kMaterializedObjectsRootIndex: case kMicrotaskQueueRootIndex: case kDetachedContextsRootIndex: case kWeakObjectToCodeTableRootIndex: case kWeakNewSpaceObjectToCodeListRootIndex: case kRetainedMapsRootIndex: case kRetainingPathTargetsRootIndex: case kCodeCoverageListRootIndex: case kNoScriptSharedFunctionInfosRootIndex: case kWeakStackTraceListRootIndex: case kSerializedTemplatesRootIndex: case kSerializedGlobalProxySizesRootIndex: case kPublicSymbolTableRootIndex: case kApiSymbolTableRootIndex: case kApiPrivateSymbolTableRootIndex: case kMessageListenersRootIndex: // Smi values #define SMI_ENTRY(type, name, Name) case k##Name##RootIndex: SMI_ROOT_LIST(SMI_ENTRY) #undef SMI_ENTRY // String table case kStringTableRootIndex: return true; default: return false; } } bool Heap::RootCanBeTreatedAsConstant(RootListIndex root_index) { bool can_be = !RootCanBeWrittenAfterInitialization(root_index) && !InNewSpace(root(root_index)); DCHECK_IMPLIES(can_be, IsImmovable(HeapObject::cast(root(root_index)))); return can_be; } int Heap::FullSizeNumberStringCacheLength() { // Compute the size of the number string cache based on the max newspace size. // The number string cache has a minimum size based on twice the initial cache // size to ensure that it is bigger after being made 'full size'. size_t number_string_cache_size = max_semi_space_size_ / 512; number_string_cache_size = Max(static_cast<size_t>(kInitialNumberStringCacheSize * 2), Min<size_t>(0x4000u, number_string_cache_size)); // There is a string and a number per entry so the length is twice the number // of entries. return static_cast<int>(number_string_cache_size * 2); } void Heap::FlushNumberStringCache() { // Flush the number to string cache. int len = number_string_cache()->length(); for (int i = 0; i < len; i++) { number_string_cache()->set_undefined(i); } } Map* Heap::MapForFixedTypedArray(ExternalArrayType array_type) { return Map::cast(roots_[RootIndexForFixedTypedArray(array_type)]); } Heap::RootListIndex Heap::RootIndexForFixedTypedArray( ExternalArrayType array_type) { switch (array_type) { #define ARRAY_TYPE_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \ case kExternal##Type##Array: \ return kFixed##Type##ArrayMapRootIndex; TYPED_ARRAYS(ARRAY_TYPE_TO_ROOT_INDEX) #undef ARRAY_TYPE_TO_ROOT_INDEX default: UNREACHABLE(); } } Heap::RootListIndex Heap::RootIndexForEmptyFixedTypedArray( ElementsKind elementsKind) { switch (elementsKind) { #define ELEMENT_KIND_TO_ROOT_INDEX(Type, type, TYPE, ctype, size) \ case TYPE##_ELEMENTS: \ return kEmptyFixed##Type##ArrayRootIndex; TYPED_ARRAYS(ELEMENT_KIND_TO_ROOT_INDEX) #undef ELEMENT_KIND_TO_ROOT_INDEX default: UNREACHABLE(); } } FixedTypedArrayBase* Heap::EmptyFixedTypedArrayForMap(const Map* map) { return FixedTypedArrayBase::cast( roots_[RootIndexForEmptyFixedTypedArray(map->elements_kind())]); } AllocationResult Heap::AllocateForeign(Address address, PretenureFlag pretenure) { // Statically ensure that it is safe to allocate foreigns in paged spaces. STATIC_ASSERT(Foreign::kSize <= kMaxRegularHeapObjectSize); AllocationSpace space = (pretenure == TENURED) ? OLD_SPACE : NEW_SPACE; Foreign* result = nullptr; AllocationResult allocation = Allocate(foreign_map(), space); if (!allocation.To(&result)) return allocation; result->set_foreign_address(address); return result; } AllocationResult Heap::AllocateSmallOrderedHashSet(int capacity, PretenureFlag pretenure) { DCHECK_EQ(0, capacity % SmallOrderedHashSet::kLoadFactor); CHECK_GE(SmallOrderedHashSet::kMaxCapacity, capacity); int size = SmallOrderedHashSet::Size(capacity); AllocationSpace space = SelectSpace(pretenure); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, space); if (!allocation.To(&result)) return allocation; } result->set_map_after_allocation(small_ordered_hash_set_map(), SKIP_WRITE_BARRIER); Handle<SmallOrderedHashSet> table(SmallOrderedHashSet::cast(result)); table->Initialize(isolate(), capacity); return result; } AllocationResult Heap::AllocateSmallOrderedHashMap(int capacity, PretenureFlag pretenure) { DCHECK_EQ(0, capacity % SmallOrderedHashMap::kLoadFactor); CHECK_GE(SmallOrderedHashMap::kMaxCapacity, capacity); int size = SmallOrderedHashMap::Size(capacity); AllocationSpace space = SelectSpace(pretenure); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, space); if (!allocation.To(&result)) return allocation; } result->set_map_after_allocation(small_ordered_hash_map_map(), SKIP_WRITE_BARRIER); Handle<SmallOrderedHashMap> table(SmallOrderedHashMap::cast(result)); table->Initialize(isolate(), capacity); return result; } AllocationResult Heap::AllocateByteArray(int length, PretenureFlag pretenure) { if (length < 0 || length > ByteArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); } int size = ByteArray::SizeFor(length); AllocationSpace space = SelectSpace(pretenure); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, space); if (!allocation.To(&result)) return allocation; } result->set_map_after_allocation(byte_array_map(), SKIP_WRITE_BARRIER); ByteArray::cast(result)->set_length(length); ByteArray::cast(result)->clear_padding(); return result; } AllocationResult Heap::AllocateBytecodeArray(int length, const byte* const raw_bytecodes, int frame_size, int parameter_count, FixedArray* constant_pool) { if (length < 0 || length > BytecodeArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); } // Bytecode array is pretenured, so constant pool array should be to. DCHECK(!InNewSpace(constant_pool)); int size = BytecodeArray::SizeFor(length); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_after_allocation(bytecode_array_map(), SKIP_WRITE_BARRIER); BytecodeArray* instance = BytecodeArray::cast(result); instance->set_length(length); instance->set_frame_size(frame_size); instance->set_parameter_count(parameter_count); instance->set_interrupt_budget(interpreter::Interpreter::InterruptBudget()); instance->set_osr_loop_nesting_level(0); instance->set_bytecode_age(BytecodeArray::kNoAgeBytecodeAge); instance->set_constant_pool(constant_pool); instance->set_handler_table(empty_fixed_array()); instance->set_source_position_table(empty_byte_array()); CopyBytes(instance->GetFirstBytecodeAddress(), raw_bytecodes, length); instance->clear_padding(); return result; } HeapObject* Heap::CreateFillerObjectAt(Address addr, int size, ClearRecordedSlots mode) { if (size == 0) return nullptr; HeapObject* filler = HeapObject::FromAddress(addr); if (size == kPointerSize) { filler->set_map_after_allocation( reinterpret_cast<Map*>(root(kOnePointerFillerMapRootIndex)), SKIP_WRITE_BARRIER); } else if (size == 2 * kPointerSize) { filler->set_map_after_allocation( reinterpret_cast<Map*>(root(kTwoPointerFillerMapRootIndex)), SKIP_WRITE_BARRIER); } else { DCHECK_GT(size, 2 * kPointerSize); filler->set_map_after_allocation( reinterpret_cast<Map*>(root(kFreeSpaceMapRootIndex)), SKIP_WRITE_BARRIER); FreeSpace::cast(filler)->relaxed_write_size(size); } if (mode == ClearRecordedSlots::kYes) { UNREACHABLE(); } // At this point, we may be deserializing the heap from a snapshot, and // none of the maps have been created yet and are NULL. DCHECK((filler->map() == NULL && !deserialization_complete_) || filler->map()->IsMap()); return filler; } bool Heap::CanMoveObjectStart(HeapObject* object) { if (!FLAG_move_object_start) return false; // Sampling heap profiler may have a reference to the object. if (isolate()->heap_profiler()->is_sampling_allocations()) return false; Address address = object->address(); if (lo_space()->Contains(object)) return false; // We can move the object start if the page was already swept. return Page::FromAddress(address)->SweepingDone(); } bool Heap::IsImmovable(HeapObject* object) { MemoryChunk* chunk = MemoryChunk::FromAddress(object->address()); return chunk->NeverEvacuate() || chunk->owner()->identity() == LO_SPACE; } void Heap::AdjustLiveBytes(HeapObject* object, int by) { // As long as the inspected object is black and we are currently not iterating // the heap using HeapIterator, we can update the live byte count. We cannot // update while using HeapIterator because the iterator is temporarily // marking the whole object graph, without updating live bytes. if (lo_space()->Contains(object)) { lo_space()->AdjustLiveBytes(by); } else if (!in_heap_iterator() && !mark_compact_collector()->sweeping_in_progress() && ObjectMarking::IsBlack<IncrementalMarking::kAtomicity>( object, MarkingState::Internal(object))) { DCHECK(MemoryChunk::FromAddress(object->address())->SweepingDone()); #ifdef V8_CONCURRENT_MARKING MarkingState::Internal(object).IncrementLiveBytes<AccessMode::ATOMIC>(by); #else MarkingState::Internal(object).IncrementLiveBytes(by); #endif } } FixedArrayBase* Heap::LeftTrimFixedArray(FixedArrayBase* object, int elements_to_trim) { CHECK_NOT_NULL(object); DCHECK(CanMoveObjectStart(object)); DCHECK(!object->IsFixedTypedArrayBase()); DCHECK(!object->IsByteArray()); const int element_size = object->IsFixedArray() ? kPointerSize : kDoubleSize; const int bytes_to_trim = elements_to_trim * element_size; Map* map = object->map(); // For now this trick is only applied to objects in new and paged space. // In large object space the object's start must coincide with chunk // and thus the trick is just not applicable. DCHECK(!lo_space()->Contains(object)); DCHECK(object->map() != fixed_cow_array_map()); STATIC_ASSERT(FixedArrayBase::kMapOffset == 0); STATIC_ASSERT(FixedArrayBase::kLengthOffset == kPointerSize); STATIC_ASSERT(FixedArrayBase::kHeaderSize == 2 * kPointerSize); const int len = object->length(); DCHECK(elements_to_trim <= len); // Calculate location of new array start. Address old_start = object->address(); Address new_start = old_start + bytes_to_trim; if (incremental_marking()->IsMarking()) { incremental_marking()->NotifyLeftTrimming( object, HeapObject::FromAddress(new_start)); } // Technically in new space this write might be omitted (except for // debug mode which iterates through the heap), but to play safer // we still do it. // Recorded slots will be cleared by the sweeper. CreateFillerObjectAt(old_start, bytes_to_trim, ClearRecordedSlots::kNo); // Initialize header of the trimmed array. Since left trimming is only // performed on pages which are not concurrently swept creating a filler // object does not require synchronization. RELAXED_WRITE_FIELD(object, bytes_to_trim, map); RELAXED_WRITE_FIELD(object, bytes_to_trim + kPointerSize, Smi::FromInt(len - elements_to_trim)); FixedArrayBase* new_object = FixedArrayBase::cast(HeapObject::FromAddress(new_start)); // Maintain consistency of live bytes during incremental marking AdjustLiveBytes(new_object, -bytes_to_trim); // Remove recorded slots for the new map and length offset. ClearRecordedSlot(new_object, HeapObject::RawField(new_object, 0)); ClearRecordedSlot(new_object, HeapObject::RawField( new_object, FixedArrayBase::kLengthOffset)); // Notify the heap profiler of change in object layout. OnMoveEvent(new_object, object, new_object->Size()); return new_object; } void Heap::RightTrimFixedArray(FixedArrayBase* object, int elements_to_trim) { const int len = object->length(); DCHECK_LE(elements_to_trim, len); DCHECK_GE(elements_to_trim, 0); int bytes_to_trim; if (object->IsFixedTypedArrayBase()) { InstanceType type = object->map()->instance_type(); bytes_to_trim = FixedTypedArrayBase::TypedArraySize(type, len) - FixedTypedArrayBase::TypedArraySize(type, len - elements_to_trim); } else if (object->IsByteArray()) { int new_size = ByteArray::SizeFor(len - elements_to_trim); bytes_to_trim = ByteArray::SizeFor(len) - new_size; DCHECK_GE(bytes_to_trim, 0); } else if (object->IsFixedArray() || object->IsTransitionArray()) { bytes_to_trim = elements_to_trim * kPointerSize; } else { DCHECK(object->IsFixedDoubleArray()); bytes_to_trim = elements_to_trim * kDoubleSize; } // For now this trick is only applied to objects in new and paged space. DCHECK(object->map() != fixed_cow_array_map()); if (bytes_to_trim == 0) { // No need to create filler and update live bytes counters, just initialize // header of the trimmed array. object->synchronized_set_length(len - elements_to_trim); return; } // Calculate location of new array end. Address old_end = object->address() + object->Size(); Address new_end = old_end - bytes_to_trim; // Technically in new space this write might be omitted (except for // debug mode which iterates through the heap), but to play safer // we still do it. // We do not create a filler for objects in large object space. // TODO(hpayer): We should shrink the large object page if the size // of the object changed significantly. if (!lo_space()->Contains(object)) { // Recorded slots will be cleared by the sweeper. HeapObject* filler = CreateFillerObjectAt(new_end, bytes_to_trim, ClearRecordedSlots::kNo); DCHECK_NOT_NULL(filler); // Clear the mark bits of the black area that belongs now to the filler. // This is an optimization. The sweeper will release black fillers anyway. if (incremental_marking()->black_allocation() && ObjectMarking::IsBlackOrGrey<IncrementalMarking::kAtomicity>( filler, MarkingState::Internal(filler))) { Page* page = Page::FromAddress(new_end); MarkingState::Internal(page).bitmap()->ClearRange( page->AddressToMarkbitIndex(new_end), page->AddressToMarkbitIndex(new_end + bytes_to_trim)); } } // Initialize header of the trimmed array. We are storing the new length // using release store after creating a filler for the left-over space to // avoid races with the sweeper thread. object->synchronized_set_length(len - elements_to_trim); // Maintain consistency of live bytes during incremental marking AdjustLiveBytes(object, -bytes_to_trim); // Notify the heap profiler of change in object layout. The array may not be // moved during GC, and size has to be adjusted nevertheless. HeapProfiler* profiler = isolate()->heap_profiler(); if (profiler->is_tracking_allocations()) { profiler->UpdateObjectSizeEvent(object->address(), object->Size()); } } AllocationResult Heap::AllocateFixedTypedArrayWithExternalPointer( int length, ExternalArrayType array_type, void* external_pointer, PretenureFlag pretenure) { int size = FixedTypedArrayBase::kHeaderSize; AllocationSpace space = SelectSpace(pretenure); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, space); if (!allocation.To(&result)) return allocation; } result->set_map_after_allocation(MapForFixedTypedArray(array_type), SKIP_WRITE_BARRIER); FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(result); elements->set_base_pointer(Smi::kZero, SKIP_WRITE_BARRIER); elements->set_external_pointer(external_pointer, SKIP_WRITE_BARRIER); elements->set_length(length); return elements; } static void ForFixedTypedArray(ExternalArrayType array_type, int* element_size, ElementsKind* element_kind) { switch (array_type) { #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ case kExternal##Type##Array: \ *element_size = size; \ *element_kind = TYPE##_ELEMENTS; \ return; TYPED_ARRAYS(TYPED_ARRAY_CASE) #undef TYPED_ARRAY_CASE default: *element_size = 0; // Bogus *element_kind = UINT8_ELEMENTS; // Bogus UNREACHABLE(); } } AllocationResult Heap::AllocateFixedTypedArray(int length, ExternalArrayType array_type, bool initialize, PretenureFlag pretenure) { int element_size; ElementsKind elements_kind; ForFixedTypedArray(array_type, &element_size, &elements_kind); int size = OBJECT_POINTER_ALIGN(length * element_size + FixedTypedArrayBase::kDataOffset); AllocationSpace space = SelectSpace(pretenure); HeapObject* object = nullptr; AllocationResult allocation = AllocateRaw( size, space, array_type == kExternalFloat64Array ? kDoubleAligned : kWordAligned); if (!allocation.To(&object)) return allocation; object->set_map_after_allocation(MapForFixedTypedArray(array_type), SKIP_WRITE_BARRIER); FixedTypedArrayBase* elements = FixedTypedArrayBase::cast(object); elements->set_base_pointer(elements, SKIP_WRITE_BARRIER); elements->set_external_pointer( ExternalReference::fixed_typed_array_base_data_offset().address(), SKIP_WRITE_BARRIER); elements->set_length(length); if (initialize) memset(elements->DataPtr(), 0, elements->DataSize()); return elements; } AllocationResult Heap::AllocateCode(int object_size, bool immovable) { DCHECK(IsAligned(static_cast<intptr_t>(object_size), kCodeAlignment)); AllocationResult allocation = AllocateRaw(object_size, CODE_SPACE); HeapObject* result = nullptr; if (!allocation.To(&result)) return allocation; if (immovable) { Address address = result->address(); MemoryChunk* chunk = MemoryChunk::FromAddress(address); // Code objects which should stay at a fixed address are allocated either // in the first page of code space (objects on the first page of each space // are never moved), in large object space, or (during snapshot creation) // the containing page is marked as immovable. if (!Heap::IsImmovable(result) && !code_space_->FirstPage()->Contains(address)) { if (isolate()->serializer_enabled()) { chunk->MarkNeverEvacuate(); } else { // Discard the first code allocation, which was on a page where it could // be moved. CreateFillerObjectAt(result->address(), object_size, ClearRecordedSlots::kNo); allocation = lo_space_->AllocateRaw(object_size, EXECUTABLE); if (!allocation.To(&result)) return allocation; OnAllocationEvent(result, object_size); } } } result->set_map_after_allocation(code_map(), SKIP_WRITE_BARRIER); Code* code = Code::cast(result); DCHECK(IsAligned(bit_cast<intptr_t>(code->address()), kCodeAlignment)); DCHECK(!memory_allocator()->code_range()->valid() || memory_allocator()->code_range()->contains(code->address()) || object_size <= code_space()->AreaSize()); return code; } AllocationResult Heap::CopyCode(Code* code) { AllocationResult allocation; HeapObject* result = nullptr; // Allocate an object the same size as the code object. int obj_size = code->Size(); allocation = AllocateRaw(obj_size, CODE_SPACE); if (!allocation.To(&result)) return allocation; // Copy code object. Address old_addr = code->address(); Address new_addr = result->address(); CopyBlock(new_addr, old_addr, obj_size); Code* new_code = Code::cast(result); // Relocate the copy. DCHECK(IsAligned(bit_cast<intptr_t>(new_code->address()), kCodeAlignment)); DCHECK(!memory_allocator()->code_range()->valid() || memory_allocator()->code_range()->contains(code->address()) || obj_size <= code_space()->AreaSize()); new_code->Relocate(new_addr - old_addr); // We have to iterate over the object and process its pointers when black // allocation is on. incremental_marking()->ProcessBlackAllocatedObject(new_code); // Record all references to embedded objects in the new code object. RecordWritesIntoCode(new_code); return new_code; } AllocationResult Heap::CopyBytecodeArray(BytecodeArray* bytecode_array) { int size = BytecodeArray::SizeFor(bytecode_array->length()); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_after_allocation(bytecode_array_map(), SKIP_WRITE_BARRIER); BytecodeArray* copy = BytecodeArray::cast(result); copy->set_length(bytecode_array->length()); copy->set_frame_size(bytecode_array->frame_size()); copy->set_parameter_count(bytecode_array->parameter_count()); copy->set_constant_pool(bytecode_array->constant_pool()); copy->set_handler_table(bytecode_array->handler_table()); copy->set_source_position_table(bytecode_array->source_position_table()); copy->set_interrupt_budget(bytecode_array->interrupt_budget()); copy->set_osr_loop_nesting_level(bytecode_array->osr_loop_nesting_level()); copy->set_bytecode_age(bytecode_array->bytecode_age()); bytecode_array->CopyBytecodesTo(copy); return copy; } void Heap::InitializeAllocationMemento(AllocationMemento* memento, AllocationSite* allocation_site) { memento->set_map_after_allocation(allocation_memento_map(), SKIP_WRITE_BARRIER); DCHECK(allocation_site->map() == allocation_site_map()); memento->set_allocation_site(allocation_site, SKIP_WRITE_BARRIER); if (FLAG_allocation_site_pretenuring) { allocation_site->IncrementMementoCreateCount(); } } AllocationResult Heap::Allocate(Map* map, AllocationSpace space, AllocationSite* allocation_site) { DCHECK(gc_state_ == NOT_IN_GC); DCHECK(map->instance_type() != MAP_TYPE); int size = map->instance_size(); if (allocation_site != NULL) { size += AllocationMemento::kSize; } HeapObject* result = nullptr; AllocationResult allocation = AllocateRaw(size, space); if (!allocation.To(&result)) return allocation; // New space objects are allocated white. WriteBarrierMode write_barrier_mode = space == NEW_SPACE ? SKIP_WRITE_BARRIER : UPDATE_WRITE_BARRIER; result->set_map_after_allocation(map, write_barrier_mode); if (allocation_site != NULL) { AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>( reinterpret_cast<Address>(result) + map->instance_size()); InitializeAllocationMemento(alloc_memento, allocation_site); } return result; } void Heap::InitializeJSObjectFromMap(JSObject* obj, Object* properties, Map* map) { obj->set_raw_properties_or_hash(properties); obj->initialize_elements(); // TODO(1240798): Initialize the object's body using valid initial values // according to the object's initial map. For example, if the map's // instance type is JS_ARRAY_TYPE, the length field should be initialized // to a number (e.g. Smi::kZero) and the elements initialized to a // fixed array (e.g. Heap::empty_fixed_array()). Currently, the object // verification code has to cope with (temporarily) invalid objects. See // for example, JSArray::JSArrayVerify). InitializeJSObjectBody(obj, map, JSObject::kHeaderSize); } void Heap::InitializeJSObjectBody(JSObject* obj, Map* map, int start_offset) { if (start_offset == map->instance_size()) return; DCHECK_LT(start_offset, map->instance_size()); // We cannot always fill with one_pointer_filler_map because objects // created from API functions expect their embedder fields to be initialized // with undefined_value. // Pre-allocated fields need to be initialized with undefined_value as well // so that object accesses before the constructor completes (e.g. in the // debugger) will not cause a crash. // In case of Array subclassing the |map| could already be transitioned // to different elements kind from the initial map on which we track slack. bool in_progress = map->IsInobjectSlackTrackingInProgress(); Object* filler; if (in_progress) { filler = one_pointer_filler_map(); } else { filler = undefined_value(); } obj->InitializeBody(map, start_offset, Heap::undefined_value(), filler); if (in_progress) { map->FindRootMap()->InobjectSlackTrackingStep(); } } AllocationResult Heap::AllocateJSObjectFromMap( Map* map, PretenureFlag pretenure, AllocationSite* allocation_site) { // JSFunctions should be allocated using AllocateFunction to be // properly initialized. DCHECK(map->instance_type() != JS_FUNCTION_TYPE); // Both types of global objects should be allocated using // AllocateGlobalObject to be properly initialized. DCHECK(map->instance_type() != JS_GLOBAL_OBJECT_TYPE); // Allocate the backing storage for the properties. FixedArray* properties = empty_fixed_array(); // Allocate the JSObject. AllocationSpace space = SelectSpace(pretenure); JSObject* js_obj = nullptr; AllocationResult allocation = Allocate(map, space, allocation_site); if (!allocation.To(&js_obj)) return allocation; // Initialize the JSObject. InitializeJSObjectFromMap(js_obj, properties, map); DCHECK(js_obj->HasFastElements() || js_obj->HasFixedTypedArrayElements() || js_obj->HasFastStringWrapperElements() || js_obj->HasFastArgumentsElements()); return js_obj; } AllocationResult Heap::AllocateJSObject(JSFunction* constructor, PretenureFlag pretenure, AllocationSite* allocation_site) { DCHECK(constructor->has_initial_map()); // Allocate the object based on the constructors initial map. AllocationResult allocation = AllocateJSObjectFromMap( constructor->initial_map(), pretenure, allocation_site); #ifdef DEBUG // Make sure result is NOT a global object if valid. HeapObject* obj = nullptr; DCHECK(!allocation.To(&obj) || !obj->IsJSGlobalObject()); #endif return allocation; } AllocationResult Heap::CopyJSObject(JSObject* source, AllocationSite* site) { // Make the clone. Map* map = source->map(); // We can only clone regexps, normal objects, api objects, errors or arrays. // Copying anything else will break invariants. CHECK(map->instance_type() == JS_REGEXP_TYPE || map->instance_type() == JS_OBJECT_TYPE || map->instance_type() == JS_ERROR_TYPE || map->instance_type() == JS_ARRAY_TYPE || map->instance_type() == JS_API_OBJECT_TYPE || map->instance_type() == WASM_INSTANCE_TYPE || map->instance_type() == WASM_MEMORY_TYPE || map->instance_type() == WASM_MODULE_TYPE || map->instance_type() == WASM_TABLE_TYPE || map->instance_type() == JS_SPECIAL_API_OBJECT_TYPE); int object_size = map->instance_size(); HeapObject* clone = nullptr; DCHECK(site == NULL || AllocationSite::CanTrack(map->instance_type())); int adjusted_object_size = site != NULL ? object_size + AllocationMemento::kSize : object_size; AllocationResult allocation = AllocateRaw(adjusted_object_size, NEW_SPACE); if (!allocation.To(&clone)) return allocation; SLOW_DCHECK(InNewSpace(clone)); // Since we know the clone is allocated in new space, we can copy // the contents without worrying about updating the write barrier. CopyBlock(clone->address(), source->address(), object_size); if (site != NULL) { AllocationMemento* alloc_memento = reinterpret_cast<AllocationMemento*>( reinterpret_cast<Address>(clone) + object_size); InitializeAllocationMemento(alloc_memento, site); } SLOW_DCHECK(JSObject::cast(clone)->GetElementsKind() == source->GetElementsKind()); FixedArrayBase* elements = FixedArrayBase::cast(source->elements()); // Update elements if necessary. if (elements->length() > 0) { FixedArrayBase* elem = nullptr; { AllocationResult allocation; if (elements->map() == fixed_cow_array_map()) { allocation = FixedArray::cast(elements); } else if (source->HasDoubleElements()) { allocation = CopyFixedDoubleArray(FixedDoubleArray::cast(elements)); } else { allocation = CopyFixedArray(FixedArray::cast(elements)); } if (!allocation.To(&elem)) return allocation; } JSObject::cast(clone)->set_elements(elem, SKIP_WRITE_BARRIER); } // Update properties if necessary. if (source->HasFastProperties()) { if (source->property_array()->length() > 0) { PropertyArray* properties = source->property_array(); PropertyArray* prop = nullptr; { // TODO(gsathya): Do not copy hash code. AllocationResult allocation = CopyPropertyArray(properties); if (!allocation.To(&prop)) return allocation; } JSObject::cast(clone)->set_raw_properties_or_hash(prop, SKIP_WRITE_BARRIER); } } else { FixedArray* properties = FixedArray::cast(source->property_dictionary()); FixedArray* prop = nullptr; { AllocationResult allocation = CopyFixedArray(properties); if (!allocation.To(&prop)) return allocation; } JSObject::cast(clone)->set_raw_properties_or_hash(prop, SKIP_WRITE_BARRIER); } // Return the new clone. return clone; } static inline void WriteOneByteData(Vector<const char> vector, uint8_t* chars, int len) { // Only works for one byte strings. DCHECK(vector.length() == len); MemCopy(chars, vector.start(), len); } static inline void WriteTwoByteData(Vector<const char> vector, uint16_t* chars, int len) { const uint8_t* stream = reinterpret_cast<const uint8_t*>(vector.start()); size_t stream_length = vector.length(); while (stream_length != 0) { size_t consumed = 0; uint32_t c = unibrow::Utf8::ValueOf(stream, stream_length, &consumed); DCHECK(c != unibrow::Utf8::kBadChar); DCHECK(consumed <= stream_length); stream_length -= consumed; stream += consumed; if (c > unibrow::Utf16::kMaxNonSurrogateCharCode) { len -= 2; if (len < 0) break; *chars++ = unibrow::Utf16::LeadSurrogate(c); *chars++ = unibrow::Utf16::TrailSurrogate(c); } else { len -= 1; if (len < 0) break; *chars++ = c; } } DCHECK(stream_length == 0); DCHECK(len == 0); } static inline void WriteOneByteData(String* s, uint8_t* chars, int len) { DCHECK(s->length() == len); String::WriteToFlat(s, chars, 0, len); } static inline void WriteTwoByteData(String* s, uint16_t* chars, int len) { DCHECK(s->length() == len); String::WriteToFlat(s, chars, 0, len); } template <bool is_one_byte, typename T> AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field) { DCHECK(chars >= 0); // Compute map and object size. int size; Map* map; DCHECK_LE(0, chars); DCHECK_GE(String::kMaxLength, chars); if (is_one_byte) { map = one_byte_internalized_string_map(); size = SeqOneByteString::SizeFor(chars); } else { map = internalized_string_map(); size = SeqTwoByteString::SizeFor(chars); } // Allocate string. HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->set_map_after_allocation(map, SKIP_WRITE_BARRIER); // Set length and hash fields of the allocated string. String* answer = String::cast(result); answer->set_length(chars); answer->set_hash_field(hash_field); DCHECK_EQ(size, answer->Size()); if (is_one_byte) { WriteOneByteData(t, SeqOneByteString::cast(answer)->GetChars(), chars); } else { WriteTwoByteData(t, SeqTwoByteString::cast(answer)->GetChars(), chars); } return answer; } // Need explicit instantiations. template AllocationResult Heap::AllocateInternalizedStringImpl<true>(String*, int, uint32_t); template AllocationResult Heap::AllocateInternalizedStringImpl<false>(String*, int, uint32_t); template AllocationResult Heap::AllocateInternalizedStringImpl<false>( Vector<const char>, int, uint32_t); AllocationResult Heap::AllocateRawOneByteString(int length, PretenureFlag pretenure) { DCHECK_LE(0, length); DCHECK_GE(String::kMaxLength, length); int size = SeqOneByteString::SizeFor(length); DCHECK(size <= SeqOneByteString::kMaxSize); AllocationSpace space = SelectSpace(pretenure); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, space); if (!allocation.To(&result)) return allocation; } // Partially initialize the object. result->set_map_after_allocation(one_byte_string_map(), SKIP_WRITE_BARRIER); String::cast(result)->set_length(length); String::cast(result)->set_hash_field(String::kEmptyHashField); DCHECK_EQ(size, HeapObject::cast(result)->Size()); return result; } AllocationResult Heap::AllocateRawTwoByteString(int length, PretenureFlag pretenure) { DCHECK_LE(0, length); DCHECK_GE(String::kMaxLength, length); int size = SeqTwoByteString::SizeFor(length); DCHECK(size <= SeqTwoByteString::kMaxSize); AllocationSpace space = SelectSpace(pretenure); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, space); if (!allocation.To(&result)) return allocation; } // Partially initialize the object. result->set_map_after_allocation(string_map(), SKIP_WRITE_BARRIER); String::cast(result)->set_length(length); String::cast(result)->set_hash_field(String::kEmptyHashField); DCHECK_EQ(size, HeapObject::cast(result)->Size()); return result; } AllocationResult Heap::AllocateEmptyFixedArray() { int size = FixedArray::SizeFor(0); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } // Initialize the object. result->set_map_after_allocation(fixed_array_map(), SKIP_WRITE_BARRIER); FixedArray::cast(result)->set_length(0); return result; } AllocationResult Heap::AllocateEmptyScopeInfo() { int size = FixedArray::SizeFor(0); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRaw(size, OLD_SPACE); if (!allocation.To(&result)) return allocation; } // Initialize the object. result->set_map_after_allocation(scope_info_map(), SKIP_WRITE_BARRIER); FixedArray::cast(result)->set_length(0); return result; } AllocationResult Heap::CopyAndTenureFixedCOWArray(FixedArray* src) { if (!InNewSpace(src)) { return src; } int len = src->length(); HeapObject* obj = nullptr; { AllocationResult allocation = AllocateRawFixedArray(len, TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_after_allocation(fixed_array_map(), SKIP_WRITE_BARRIER); FixedArray* result = FixedArray::cast(obj); result->set_length(len); // Copy the content. DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); // TODO(mvstanton): The map is set twice because of protection against calling // set() on a COW FixedArray. Issue v8:3221 created to track this, and // we might then be able to remove this whole method. HeapObject::cast(obj)->set_map_after_allocation(fixed_cow_array_map(), SKIP_WRITE_BARRIER); return result; } AllocationResult Heap::AllocateEmptyFixedTypedArray( ExternalArrayType array_type) { return AllocateFixedTypedArray(0, array_type, false, TENURED); } namespace { template <typename T> void initialize_length(T* array, int length) { array->set_length(length); } template <> void initialize_length<PropertyArray>(PropertyArray* array, int length) { array->initialize_length(length); } } // namespace template <typename T> AllocationResult Heap::CopyArrayAndGrow(T* src, int grow_by, PretenureFlag pretenure) { int old_len = src->length(); int new_len = old_len + grow_by; DCHECK(new_len >= old_len); HeapObject* obj = nullptr; { AllocationResult allocation = AllocateRawFixedArray(new_len, pretenure); if (!allocation.To(&obj)) return allocation; } obj->set_map_after_allocation(src->map(), SKIP_WRITE_BARRIER); T* result = T::cast(obj); initialize_length(result, new_len); // Copy the content. DisallowHeapAllocation no_gc; WriteBarrierMode mode = obj->GetWriteBarrierMode(no_gc); for (int i = 0; i < old_len; i++) result->set(i, src->get(i), mode); MemsetPointer(result->data_start() + old_len, undefined_value(), grow_by); return result; } template AllocationResult Heap::CopyArrayAndGrow(FixedArray* src, int grow_by, PretenureFlag pretenure); template AllocationResult Heap::CopyArrayAndGrow(PropertyArray* src, int grow_by, PretenureFlag pretenure); AllocationResult Heap::CopyFixedArrayUpTo(FixedArray* src, int new_len, PretenureFlag pretenure) { if (new_len == 0) return empty_fixed_array(); DCHECK_LE(new_len, src->length()); HeapObject* obj = nullptr; { AllocationResult allocation = AllocateRawFixedArray(new_len, pretenure); if (!allocation.To(&obj)) return allocation; } obj->set_map_after_allocation(fixed_array_map(), SKIP_WRITE_BARRIER); FixedArray* result = FixedArray::cast(obj); result->set_length(new_len); // Copy the content. DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); for (int i = 0; i < new_len; i++) result->set(i, src->get(i), mode); return result; } template <typename T> AllocationResult Heap::CopyArrayWithMap(T* src, Map* map) { int len = src->length(); HeapObject* obj = nullptr; { AllocationResult allocation = AllocateRawFixedArray(len, NOT_TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_after_allocation(map, SKIP_WRITE_BARRIER); T* result = T::cast(obj); DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); // Eliminate the write barrier if possible. if (mode == SKIP_WRITE_BARRIER) { CopyBlock(obj->address() + kPointerSize, src->address() + kPointerSize, T::SizeFor(len) - kPointerSize); return obj; } // Slow case: Just copy the content one-by-one. initialize_length(result, len); for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); return result; } template AllocationResult Heap::CopyArrayWithMap(FixedArray* src, Map* map); template AllocationResult Heap::CopyArrayWithMap(PropertyArray* src, Map* map); AllocationResult Heap::CopyFixedArrayWithMap(FixedArray* src, Map* map) { return CopyArrayWithMap(src, map); } AllocationResult Heap::CopyPropertyArray(PropertyArray* src) { return CopyArrayWithMap(src, property_array_map()); } AllocationResult Heap::CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map) { int len = src->length(); HeapObject* obj = nullptr; { AllocationResult allocation = AllocateRawFixedDoubleArray(len, NOT_TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_after_allocation(map, SKIP_WRITE_BARRIER); CopyBlock(obj->address() + FixedDoubleArray::kLengthOffset, src->address() + FixedDoubleArray::kLengthOffset, FixedDoubleArray::SizeFor(len) - FixedDoubleArray::kLengthOffset); return obj; } AllocationResult Heap::CopyFeedbackVector(FeedbackVector* src) { int len = src->length(); HeapObject* obj = nullptr; { AllocationResult allocation = AllocateRawFeedbackVector(len, NOT_TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_after_allocation(feedback_vector_map(), SKIP_WRITE_BARRIER); FeedbackVector* result = FeedbackVector::cast(obj); DisallowHeapAllocation no_gc; WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc); // Eliminate the write barrier if possible. if (mode == SKIP_WRITE_BARRIER) { CopyBlock(result->address() + kPointerSize, result->address() + kPointerSize, FeedbackVector::SizeFor(len) - kPointerSize); return result; } // Slow case: Just copy the content one-by-one. result->set_shared_function_info(src->shared_function_info()); result->set_optimized_code_cell(src->optimized_code_cell()); result->set_invocation_count(src->invocation_count()); result->set_profiler_ticks(src->profiler_ticks()); result->set_deopt_count(src->deopt_count()); for (int i = 0; i < len; i++) result->set(i, src->get(i), mode); return result; } AllocationResult Heap::AllocateRawFixedArray(int length, PretenureFlag pretenure) { if (length < 0 || length > FixedArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); } int size = FixedArray::SizeFor(length); AllocationSpace space = SelectSpace(pretenure); AllocationResult result = AllocateRaw(size, space); if (!result.IsRetry() && size > kMaxRegularHeapObjectSize && FLAG_use_marking_progress_bar) { MemoryChunk* chunk = MemoryChunk::FromAddress(result.ToObjectChecked()->address()); chunk->SetFlag<AccessMode::ATOMIC>(MemoryChunk::HAS_PROGRESS_BAR); } return result; } AllocationResult Heap::AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure, Object* filler) { DCHECK(length >= 0); DCHECK(empty_fixed_array()->IsFixedArray()); if (length == 0) return empty_fixed_array(); DCHECK(!InNewSpace(filler)); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRawFixedArray(length, pretenure); if (!allocation.To(&result)) return allocation; } result->set_map_after_allocation(fixed_array_map(), SKIP_WRITE_BARRIER); FixedArray* array = FixedArray::cast(result); array->set_length(length); MemsetPointer(array->data_start(), filler, length); return array; } AllocationResult Heap::AllocatePropertyArray(int length, PretenureFlag pretenure) { DCHECK(length >= 0); DCHECK(!InNewSpace(undefined_value())); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRawFixedArray(length, pretenure); if (!allocation.To(&result)) return allocation; } result->set_map_after_allocation(property_array_map(), SKIP_WRITE_BARRIER); PropertyArray* array = PropertyArray::cast(result); array->initialize_length(length); MemsetPointer(array->data_start(), undefined_value(), length); return result; } AllocationResult Heap::AllocateUninitializedFixedArray(int length) { if (length == 0) return empty_fixed_array(); HeapObject* obj = nullptr; { AllocationResult allocation = AllocateRawFixedArray(length, NOT_TENURED); if (!allocation.To(&obj)) return allocation; } obj->set_map_after_allocation(fixed_array_map(), SKIP_WRITE_BARRIER); FixedArray::cast(obj)->set_length(length); return obj; } AllocationResult Heap::AllocateUninitializedFixedDoubleArray( int length, PretenureFlag pretenure) { if (length == 0) return empty_fixed_array(); HeapObject* elements = nullptr; AllocationResult allocation = AllocateRawFixedDoubleArray(length, pretenure); if (!allocation.To(&elements)) return allocation; elements->set_map_after_allocation(fixed_double_array_map(), SKIP_WRITE_BARRIER); FixedDoubleArray::cast(elements)->set_length(length); return elements; } AllocationResult Heap::AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure) { if (length < 0 || length > FixedDoubleArray::kMaxLength) { v8::internal::Heap::FatalProcessOutOfMemory("invalid array length", true); } int size = FixedDoubleArray::SizeFor(length); AllocationSpace space = SelectSpace(pretenure); HeapObject* object = nullptr; { AllocationResult allocation = AllocateRaw(size, space, kDoubleAligned); if (!allocation.To(&object)) return allocation; } return object; } AllocationResult Heap::AllocateRawFeedbackVector(int length, PretenureFlag pretenure) { DCHECK(length >= 0); int size = FeedbackVector::SizeFor(length); AllocationSpace space = SelectSpace(pretenure); HeapObject* object = nullptr; { AllocationResult allocation = AllocateRaw(size, space); if (!allocation.To(&object)) return allocation; } return object; } AllocationResult Heap::AllocateFeedbackVector(SharedFunctionInfo* shared, PretenureFlag pretenure) { int length = shared->feedback_metadata()->slot_count(); HeapObject* result = nullptr; { AllocationResult allocation = AllocateRawFeedbackVector(length, pretenure); if (!allocation.To(&result)) return allocation; } // Initialize the object's map. result->set_map_after_allocation(feedback_vector_map(), SKIP_WRITE_BARRIER); FeedbackVector* vector = FeedbackVector::cast(result); vector->set_shared_function_info(shared); vector->set_optimized_code_cell(Smi::FromEnum(OptimizationMarker::kNone)); vector->set_length(length); vector->set_invocation_count(0); vector->set_profiler_ticks(0); vector->set_deopt_count(0); // TODO(leszeks): Initialize based on the feedback metadata. MemsetPointer(vector->slots_start(), undefined_value(), length); return vector; } AllocationResult Heap::AllocateSymbol() { // Statically ensure that it is safe to allocate symbols in paged spaces. STATIC_ASSERT(Symbol::kSize <= kMaxRegularHeapObjectSize); HeapObject* result = nullptr; AllocationResult allocation = AllocateRaw(Symbol::kSize, OLD_SPACE); if (!allocation.To(&result)) return allocation; result->set_map_after_allocation(symbol_map(), SKIP_WRITE_BARRIER); // Generate a random hash value. int hash = isolate()->GenerateIdentityHash(Name::kHashBitMask); Symbol::cast(result) ->set_hash_field(Name::kIsNotArrayIndexMask | (hash << Name::kHashShift)); Symbol::cast(result)->set_name(undefined_value()); Symbol::cast(result)->set_flags(0); DCHECK(!Symbol::cast(result)->is_private()); return result; } AllocationResult Heap::AllocateStruct(InstanceType type) { Map* map; switch (type) { #define MAKE_CASE(NAME, Name, name) \ case NAME##_TYPE: \ map = name##_map(); \ break; STRUCT_LIST(MAKE_CASE) #undef MAKE_CASE default: UNREACHABLE(); } int size = map->instance_size(); Struct* result = nullptr; { AllocationResult allocation = Allocate(map, OLD_SPACE); if (!allocation.To(&result)) return allocation; } result->InitializeBody(size); return result; } void Heap::MakeHeapIterable() { mark_compact_collector()->EnsureSweepingCompleted(); } static double ComputeMutatorUtilization(double mutator_speed, double gc_speed) { const double kMinMutatorUtilization = 0.0; const double kConservativeGcSpeedInBytesPerMillisecond = 200000; if (mutator_speed == 0) return kMinMutatorUtilization; if (gc_speed == 0) gc_speed = kConservativeGcSpeedInBytesPerMillisecond; // Derivation: // mutator_utilization = mutator_time / (mutator_time + gc_time) // mutator_time = 1 / mutator_speed // gc_time = 1 / gc_speed // mutator_utilization = (1 / mutator_speed) / // (1 / mutator_speed + 1 / gc_speed) // mutator_utilization = gc_speed / (mutator_speed + gc_speed) return gc_speed / (mutator_speed + gc_speed); } double Heap::YoungGenerationMutatorUtilization() { double mutator_speed = static_cast<double>( tracer()->NewSpaceAllocationThroughputInBytesPerMillisecond()); double gc_speed = tracer()->ScavengeSpeedInBytesPerMillisecond(kForSurvivedObjects); double result = ComputeMutatorUtilization(mutator_speed, gc_speed); if (FLAG_trace_mutator_utilization) { isolate()->PrintWithTimestamp( "Young generation mutator utilization = %.3f (" "mutator_speed=%.f, gc_speed=%.f)\n", result, mutator_speed, gc_speed); } return result; } double Heap::OldGenerationMutatorUtilization() { double mutator_speed = static_cast<double>( tracer()->OldGenerationAllocationThroughputInBytesPerMillisecond()); double gc_speed = static_cast<double>( tracer()->CombinedMarkCompactSpeedInBytesPerMillisecond()); double result = ComputeMutatorUtilization(mutator_speed, gc_speed); if (FLAG_trace_mutator_utilization) { isolate()->PrintWithTimestamp( "Old generation mutator utilization = %.3f (" "mutator_speed=%.f, gc_speed=%.f)\n", result, mutator_speed, gc_speed); } return result; } bool Heap::HasLowYoungGenerationAllocationRate() { const double high_mutator_utilization = 0.993; return YoungGenerationMutatorUtilization() > high_mutator_utilization; } bool Heap::HasLowOldGenerationAllocationRate() { const double high_mutator_utilization = 0.993; return OldGenerationMutatorUtilization() > high_mutator_utilization; } bool Heap::HasLowAllocationRate() { return HasLowYoungGenerationAllocationRate() && HasLowOldGenerationAllocationRate(); } bool Heap::HasHighFragmentation() { size_t used = PromotedSpaceSizeOfObjects(); size_t committed = CommittedOldGenerationMemory(); return HasHighFragmentation(used, committed); } bool Heap::HasHighFragmentation(size_t used, size_t committed) { const size_t kSlack = 16 * MB; // Fragmentation is high if committed > 2 * used + kSlack. // Rewrite the exression to avoid overflow. DCHECK_GE(committed, used); return committed - used > used + kSlack; } bool Heap::ShouldOptimizeForMemoryUsage() { return FLAG_optimize_for_size || isolate()->IsIsolateInBackground() || HighMemoryPressure(); } void Heap::ActivateMemoryReducerIfNeeded() { // Activate memory reducer when switching to background if // - there was no mark compact since the start. // - the committed memory can be potentially reduced. // 2 pages for the old, code, and map space + 1 page for new space. const int kMinCommittedMemory = 7 * Page::kPageSize; if (ms_count_ == 0 && CommittedMemory() > kMinCommittedMemory && isolate()->IsIsolateInBackground()) { MemoryReducer::Event event; event.type = MemoryReducer::kPossibleGarbage; event.time_ms = MonotonicallyIncreasingTimeInMs(); memory_reducer_->NotifyPossibleGarbage(event); } } void Heap::ReduceNewSpaceSize() { // TODO(ulan): Unify this constant with the similar constant in // GCIdleTimeHandler once the change is merged to 4.5. static const size_t kLowAllocationThroughput = 1000; const double allocation_throughput = tracer()->CurrentAllocationThroughputInBytesPerMillisecond(); if (FLAG_predictable) return; if (ShouldReduceMemory() || ((allocation_throughput != 0) && (allocation_throughput < kLowAllocationThroughput))) { new_space_->Shrink(); UncommitFromSpace(); } } void Heap::FinalizeIncrementalMarkingIfComplete( GarbageCollectionReason gc_reason) { if (incremental_marking()->IsMarking() && (incremental_marking()->IsReadyToOverApproximateWeakClosure() || (!incremental_marking()->finalize_marking_completed() && mark_compact_collector()->marking_worklist()->IsEmpty() && local_embedder_heap_tracer()->ShouldFinalizeIncrementalMarking()))) { FinalizeIncrementalMarking(gc_reason); } else if (incremental_marking()->IsComplete() || (mark_compact_collector()->marking_worklist()->IsEmpty() && local_embedder_heap_tracer() ->ShouldFinalizeIncrementalMarking())) { CollectAllGarbage(current_gc_flags_, gc_reason, current_gc_callback_flags_); } } void Heap::RegisterDeserializedObjectsForBlackAllocation( Reservation* reservations, List<HeapObject*>* large_objects, List<Address>* maps) { // TODO(ulan): pause black allocation during deserialization to avoid // iterating all these objects in one go. if (!incremental_marking()->black_allocation()) return; // Iterate black objects in old space, code space, map space, and large // object space for side effects. for (int i = OLD_SPACE; i < Serializer::kNumberOfSpaces; i++) { const Heap::Reservation& res = reservations[i]; for (auto& chunk : res) { Address addr = chunk.start; while (addr < chunk.end) { HeapObject* obj = HeapObject::FromAddress(addr); // Objects can have any color because incremental marking can // start in the middle of Heap::ReserveSpace(). if (ObjectMarking::IsBlack<IncrementalMarking::kAtomicity>( obj, MarkingState::Internal(obj))) { incremental_marking()->ProcessBlackAllocatedObject(obj); } addr += obj->Size(); } } } // We potentially deserialized wrappers which require registering with the // embedder as the marker will not find them. local_embedder_heap_tracer()->RegisterWrappersWithRemoteTracer(); // Large object space doesn't use reservations, so it needs custom handling. for (HeapObject* object : *large_objects) { incremental_marking()->ProcessBlackAllocatedObject(object); } // Map space doesn't use reservations, so it needs custom handling. for (Address addr : *maps) { incremental_marking()->ProcessBlackAllocatedObject( HeapObject::FromAddress(addr)); } } void Heap::NotifyObjectLayoutChange(HeapObject* object, int size, const DisallowHeapAllocation&) { DCHECK(InOldSpace(object) || InNewSpace(object)); if (FLAG_incremental_marking && incremental_marking()->IsMarking()) { incremental_marking()->MarkBlackAndPush(object); if (InOldSpace(object) && incremental_marking()->IsCompacting()) { // The concurrent marker might have recorded slots for the object. // Register this object as invalidated to filter out the slots. MemoryChunk* chunk = MemoryChunk::FromAddress(object->address()); chunk->RegisterObjectWithInvalidatedSlots(object, size); } } #ifdef VERIFY_HEAP DCHECK(pending_layout_change_object_ == nullptr); pending_layout_change_object_ = object; #endif } #ifdef VERIFY_HEAP // Helper class for collecting slot addresses. class SlotCollectingVisitor final : public ObjectVisitor { public: void VisitPointers(HeapObject* host, Object** start, Object** end) override { for (Object** p = start; p < end; p++) { slots_.push_back(p); } } int number_of_slots() { return static_cast<int>(slots_.size()); } Object** slot(int i) { return slots_[i]; } private: std::vector<Object**> slots_; }; void Heap::VerifyObjectLayoutChange(HeapObject* object, Map* new_map) { // Check that Heap::NotifyObjectLayout was called for object transitions // that are not safe for concurrent marking. // If you see this check triggering for a freshly allocated object, // use object->set_map_after_allocation() to initialize its map. if (pending_layout_change_object_ == nullptr) { if (object->IsJSObject()) { DCHECK(!object->map()->TransitionRequiresSynchronizationWithGC(new_map)); } else { // Check that the set of slots before and after the transition match. SlotCollectingVisitor old_visitor; object->IterateFast(&old_visitor); MapWord old_map_word = object->map_word(); // Temporarily set the new map to iterate new slots. object->set_map_word(MapWord::FromMap(new_map)); SlotCollectingVisitor new_visitor; object->IterateFast(&new_visitor); // Restore the old map. object->set_map_word(old_map_word); DCHECK_EQ(new_visitor.number_of_slots(), old_visitor.number_of_slots()); for (int i = 0; i < new_visitor.number_of_slots(); i++) { DCHECK_EQ(new_visitor.slot(i), old_visitor.slot(i)); } } } else { DCHECK_EQ(pending_layout_change_object_, object); pending_layout_change_object_ = nullptr; } } #endif GCIdleTimeHeapState Heap::ComputeHeapState() { GCIdleTimeHeapState heap_state; heap_state.contexts_disposed = contexts_disposed_; heap_state.contexts_disposal_rate = tracer()->ContextDisposalRateInMilliseconds(); heap_state.size_of_objects = static_cast<size_t>(SizeOfObjects()); heap_state.incremental_marking_stopped = incremental_marking()->IsStopped(); return heap_state; } bool Heap::PerformIdleTimeAction(GCIdleTimeAction action, GCIdleTimeHeapState heap_state, double deadline_in_ms) { bool result = false; switch (action.type) { case DONE: result = true; break; case DO_INCREMENTAL_STEP: { const double remaining_idle_time_in_ms = incremental_marking()->AdvanceIncrementalMarking( deadline_in_ms, IncrementalMarking::NO_GC_VIA_STACK_GUARD, IncrementalMarking::FORCE_COMPLETION, StepOrigin::kTask); if (remaining_idle_time_in_ms > 0.0) { FinalizeIncrementalMarkingIfComplete( GarbageCollectionReason::kFinalizeMarkingViaTask); } result = incremental_marking()->IsStopped(); break; } case DO_FULL_GC: { DCHECK(contexts_disposed_ > 0); HistogramTimerScope scope(isolate_->counters()->gc_context()); TRACE_EVENT0("v8", "V8.GCContext"); CollectAllGarbage(kNoGCFlags, GarbageCollectionReason::kContextDisposal); break; } case DO_NOTHING: break; } return result; } void Heap::IdleNotificationEpilogue(GCIdleTimeAction action, GCIdleTimeHeapState heap_state, double start_ms, double deadline_in_ms) { double idle_time_in_ms = deadline_in_ms - start_ms; double current_time = MonotonicallyIncreasingTimeInMs(); last_idle_notification_time_ = current_time; double deadline_difference = deadline_in_ms - current_time; contexts_disposed_ = 0; if (deadline_in_ms - start_ms > GCIdleTimeHandler::kMaxFrameRenderingIdleTime) { int committed_memory = static_cast<int>(CommittedMemory() / KB); int used_memory = static_cast<int>(heap_state.size_of_objects / KB); isolate()->counters()->aggregated_memory_heap_committed()->AddSample( start_ms, committed_memory); isolate()->counters()->aggregated_memory_heap_used()->AddSample( start_ms, used_memory); } if ((FLAG_trace_idle_notification && action.type > DO_NOTHING) || FLAG_trace_idle_notification_verbose) { isolate_->PrintWithTimestamp( "Idle notification: requested idle time %.2f ms, used idle time %.2f " "ms, deadline usage %.2f ms [", idle_time_in_ms, idle_time_in_ms - deadline_difference, deadline_difference); action.Print(); PrintF("]"); if (FLAG_trace_idle_notification_verbose) { PrintF("["); heap_state.Print(); PrintF("]"); } PrintF("\n"); } } double Heap::MonotonicallyIncreasingTimeInMs() { return V8::GetCurrentPlatform()->MonotonicallyIncreasingTime() * static_cast<double>(base::Time::kMillisecondsPerSecond); } bool Heap::IdleNotification(int idle_time_in_ms) { return IdleNotification( V8::GetCurrentPlatform()->MonotonicallyIncreasingTime() + (static_cast<double>(idle_time_in_ms) / static_cast<double>(base::Time::kMillisecondsPerSecond))); } bool Heap::IdleNotification(double deadline_in_seconds) { CHECK(HasBeenSetUp()); double deadline_in_ms = deadline_in_seconds * static_cast<double>(base::Time::kMillisecondsPerSecond); HistogramTimerScope idle_notification_scope( isolate_->counters()->gc_idle_notification()); TRACE_EVENT0("v8", "V8.GCIdleNotification"); double start_ms = MonotonicallyIncreasingTimeInMs(); double idle_time_in_ms = deadline_in_ms - start_ms; tracer()->SampleAllocation(start_ms, NewSpaceAllocationCounter(), OldGenerationAllocationCounter()); GCIdleTimeHeapState heap_state = ComputeHeapState(); GCIdleTimeAction action = gc_idle_time_handler_->Compute(idle_time_in_ms, heap_state); bool result = PerformIdleTimeAction(action, heap_state, deadline_in_ms); IdleNotificationEpilogue(action, heap_state, start_ms, deadline_in_ms); return result; } bool Heap::RecentIdleNotificationHappened() { return (last_idle_notification_time_ + GCIdleTimeHandler::kMaxScheduledIdleTime) > MonotonicallyIncreasingTimeInMs(); } class MemoryPressureInterruptTask : public CancelableTask { public: explicit MemoryPressureInterruptTask(Heap* heap) : CancelableTask(heap->isolate()), heap_(heap) {} virtual ~MemoryPressureInterruptTask() {} private: // v8::internal::CancelableTask overrides. void RunInternal() override { heap_->CheckMemoryPressure(); } Heap* heap_; DISALLOW_COPY_AND_ASSIGN(MemoryPressureInterruptTask); }; void Heap::CheckMemoryPressure() { if (HighMemoryPressure()) { if (isolate()->concurrent_recompilation_enabled()) { // The optimizing compiler may be unnecessarily holding on to memory. DisallowHeapAllocation no_recursive_gc; isolate()->optimizing_compile_dispatcher()->Flush( OptimizingCompileDispatcher::BlockingBehavior::kDontBlock); } } if (memory_pressure_level_.Value() == MemoryPressureLevel::kCritical) { CollectGarbageOnMemoryPressure(); } else if (memory_pressure_level_.Value() == MemoryPressureLevel::kModerate) { if (FLAG_incremental_marking && incremental_marking()->IsStopped()) { StartIncrementalMarking(kReduceMemoryFootprintMask, GarbageCollectionReason::kMemoryPressure); } } if (memory_reducer_) { MemoryReducer::Event event; event.type = MemoryReducer::kPossibleGarbage; event.time_ms = MonotonicallyIncreasingTimeInMs(); memory_reducer_->NotifyPossibleGarbage(event); } } void Heap::CollectGarbageOnMemoryPressure() { const int kGarbageThresholdInBytes = 8 * MB; const double kGarbageThresholdAsFractionOfTotalMemory = 0.1; // This constant is the maximum response time in RAIL performance model. const double kMaxMemoryPressurePauseMs = 100; double start = MonotonicallyIncreasingTimeInMs(); CollectAllGarbage(kReduceMemoryFootprintMask | kAbortIncrementalMarkingMask, GarbageCollectionReason::kMemoryPressure, kGCCallbackFlagCollectAllAvailableGarbage); double end = MonotonicallyIncreasingTimeInMs(); // Estimate how much memory we can free. int64_t potential_garbage = (CommittedMemory() - SizeOfObjects()) + external_memory_; // If we can potentially free large amount of memory, then start GC right // away instead of waiting for memory reducer. if (potential_garbage >= kGarbageThresholdInBytes && potential_garbage >= CommittedMemory() * kGarbageThresholdAsFractionOfTotalMemory) { // If we spent less than half of the time budget, then perform full GC // Otherwise, start incremental marking. if (end - start < kMaxMemoryPressurePauseMs / 2) { CollectAllGarbage( kReduceMemoryFootprintMask | kAbortIncrementalMarkingMask, GarbageCollectionReason::kMemoryPressure, kGCCallbackFlagCollectAllAvailableGarbage); } else { if (FLAG_incremental_marking && incremental_marking()->IsStopped()) { StartIncrementalMarking(kReduceMemoryFootprintMask, GarbageCollectionReason::kMemoryPressure); } } } } void Heap::MemoryPressureNotification(MemoryPressureLevel level, bool is_isolate_locked) { MemoryPressureLevel previous = memory_pressure_level_.Value(); memory_pressure_level_.SetValue(level); if ((previous != MemoryPressureLevel::kCritical && level == MemoryPressureLevel::kCritical) || (previous == MemoryPressureLevel::kNone && level == MemoryPressureLevel::kModerate)) { if (is_isolate_locked) { CheckMemoryPressure(); } else { ExecutionAccess access(isolate()); isolate()->stack_guard()->RequestGC(); V8::GetCurrentPlatform()->CallOnForegroundThread( reinterpret_cast<v8::Isolate*>(isolate()), new MemoryPressureInterruptTask(this)); } } } void Heap::SetOutOfMemoryCallback(v8::debug::OutOfMemoryCallback callback, void* data) { out_of_memory_callback_ = callback; out_of_memory_callback_data_ = data; } void Heap::InvokeOutOfMemoryCallback() { if (out_of_memory_callback_) { out_of_memory_callback_(out_of_memory_callback_data_); } } void Heap::CollectCodeStatistics() { CodeStatistics::ResetCodeAndMetadataStatistics(isolate()); // We do not look for code in new space, or map space. If code // somehow ends up in those spaces, we would miss it here. CodeStatistics::CollectCodeStatistics(code_space_, isolate()); CodeStatistics::CollectCodeStatistics(old_space_, isolate()); CodeStatistics::CollectCodeStatistics(lo_space_, isolate()); } #ifdef DEBUG void Heap::Print() { if (!HasBeenSetUp()) return; isolate()->PrintStack(stdout); AllSpaces spaces(this); for (Space* space = spaces.next(); space != NULL; space = spaces.next()) { space->Print(); } } void Heap::ReportCodeStatistics(const char* title) { PrintF(">>>>>> Code Stats (%s) >>>>>>\n", title); CollectCodeStatistics(); CodeStatistics::ReportCodeStatistics(isolate()); } // This function expects that NewSpace's allocated objects histogram is // populated (via a call to CollectStatistics or else as a side effect of a // just-completed scavenge collection). void Heap::ReportHeapStatistics(const char* title) { USE(title); PrintF(">>>>>> =============== %s (%d) =============== >>>>>>\n", title, gc_count_); PrintF("old_generation_allocation_limit_ %" PRIuS "\n", old_generation_allocation_limit_); PrintF("\n"); PrintF("Number of handles : %d\n", HandleScope::NumberOfHandles(isolate_)); isolate_->global_handles()->PrintStats(); PrintF("\n"); PrintF("Heap statistics : "); memory_allocator()->ReportStatistics(); PrintF("To space : "); new_space_->ReportStatistics(); PrintF("Old space : "); old_space_->ReportStatistics(); PrintF("Code space : "); code_space_->ReportStatistics(); PrintF("Map space : "); map_space_->ReportStatistics(); PrintF("Large object space : "); lo_space_->ReportStatistics(); PrintF(">>>>>> ========================================= >>>>>>\n"); } #endif // DEBUG const char* Heap::GarbageCollectionReasonToString( GarbageCollectionReason gc_reason) { switch (gc_reason) { case GarbageCollectionReason::kAllocationFailure: return "allocation failure"; case GarbageCollectionReason::kAllocationLimit: return "allocation limit"; case GarbageCollectionReason::kContextDisposal: return "context disposal"; case GarbageCollectionReason::kCountersExtension: return "counters extension"; case GarbageCollectionReason::kDebugger: return "debugger"; case GarbageCollectionReason::kDeserializer: return "deserialize"; case GarbageCollectionReason::kExternalMemoryPressure: return "external memory pressure"; case GarbageCollectionReason::kFinalizeMarkingViaStackGuard: return "finalize incremental marking via stack guard"; case GarbageCollectionReason::kFinalizeMarkingViaTask: return "finalize incremental marking via task"; case GarbageCollectionReason::kFullHashtable: return "full hash-table"; case GarbageCollectionReason::kHeapProfiler: return "heap profiler"; case GarbageCollectionReason::kIdleTask: return "idle task"; case GarbageCollectionReason::kLastResort: return "last resort"; case GarbageCollectionReason::kLowMemoryNotification: return "low memory notification"; case GarbageCollectionReason::kMakeHeapIterable: return "make heap iterable"; case GarbageCollectionReason::kMemoryPressure: return "memory pressure"; case GarbageCollectionReason::kMemoryReducer: return "memory reducer"; case GarbageCollectionReason::kRuntime: return "runtime"; case GarbageCollectionReason::kSamplingProfiler: return "sampling profiler"; case GarbageCollectionReason::kSnapshotCreator: return "snapshot creator"; case GarbageCollectionReason::kTesting: return "testing"; case GarbageCollectionReason::kUnknown: return "unknown"; } UNREACHABLE(); } bool Heap::Contains(HeapObject* value) { if (memory_allocator()->IsOutsideAllocatedSpace(value->address())) { return false; } return HasBeenSetUp() && (new_space_->ToSpaceContains(value) || old_space_->Contains(value) || code_space_->Contains(value) || map_space_->Contains(value) || lo_space_->Contains(value)); } bool Heap::ContainsSlow(Address addr) { if (memory_allocator()->IsOutsideAllocatedSpace(addr)) { return false; } return HasBeenSetUp() && (new_space_->ToSpaceContainsSlow(addr) || old_space_->ContainsSlow(addr) || code_space_->ContainsSlow(addr) || map_space_->ContainsSlow(addr) || lo_space_->ContainsSlow(addr)); } bool Heap::InSpace(HeapObject* value, AllocationSpace space) { if (memory_allocator()->IsOutsideAllocatedSpace(value->address())) { return false; } if (!HasBeenSetUp()) return false; switch (space) { case NEW_SPACE: return new_space_->ToSpaceContains(value); case OLD_SPACE: return old_space_->Contains(value); case CODE_SPACE: return code_space_->Contains(value); case MAP_SPACE: return map_space_->Contains(value); case LO_SPACE: return lo_space_->Contains(value); } UNREACHABLE(); } bool Heap::InSpaceSlow(Address addr, AllocationSpace space) { if (memory_allocator()->IsOutsideAllocatedSpace(addr)) { return false; } if (!HasBeenSetUp()) return false; switch (space) { case NEW_SPACE: return new_space_->ToSpaceContainsSlow(addr); case OLD_SPACE: return old_space_->ContainsSlow(addr); case CODE_SPACE: return code_space_->ContainsSlow(addr); case MAP_SPACE: return map_space_->ContainsSlow(addr); case LO_SPACE: return lo_space_->ContainsSlow(addr); } UNREACHABLE(); } bool Heap::IsValidAllocationSpace(AllocationSpace space) { switch (space) { case NEW_SPACE: case OLD_SPACE: case CODE_SPACE: case MAP_SPACE: case LO_SPACE: return true; default: return false; } } bool Heap::RootIsImmortalImmovable(int root_index) { switch (root_index) { #define IMMORTAL_IMMOVABLE_ROOT(name) case Heap::k##name##RootIndex: IMMORTAL_IMMOVABLE_ROOT_LIST(IMMORTAL_IMMOVABLE_ROOT) #undef IMMORTAL_IMMOVABLE_ROOT #define INTERNALIZED_STRING(name, value) case Heap::k##name##RootIndex: INTERNALIZED_STRING_LIST(INTERNALIZED_STRING) #undef INTERNALIZED_STRING #define STRING_TYPE(NAME, size, name, Name) case Heap::k##Name##MapRootIndex: STRING_TYPE_LIST(STRING_TYPE) #undef STRING_TYPE return true; default: return false; } } #ifdef VERIFY_HEAP void Heap::Verify() { CHECK(HasBeenSetUp()); HandleScope scope(isolate()); // We have to wait here for the sweeper threads to have an iterable heap. mark_compact_collector()->EnsureSweepingCompleted(); VerifyPointersVisitor visitor; IterateRoots(&visitor, VISIT_ONLY_STRONG); VerifySmisVisitor smis_visitor; IterateSmiRoots(&smis_visitor); new_space_->Verify(); old_space_->Verify(&visitor); map_space_->Verify(&visitor); VerifyPointersVisitor no_dirty_regions_visitor; code_space_->Verify(&no_dirty_regions_visitor); lo_space_->Verify(); mark_compact_collector()->VerifyWeakEmbeddedObjectsInCode(); if (FLAG_omit_map_checks_for_leaf_maps) { mark_compact_collector()->VerifyOmittedMapChecks(); } } class SlotVerifyingVisitor : public ObjectVisitor { public: SlotVerifyingVisitor(std::set<Address>* untyped, std::set<std::pair<SlotType, Address> >* typed) : untyped_(untyped), typed_(typed) {} virtual bool ShouldHaveBeenRecorded(HeapObject* host, Object* target) = 0; void VisitPointers(HeapObject* host, Object** start, Object** end) override { for (Object** slot = start; slot < end; slot++) { if (ShouldHaveBeenRecorded(host, *slot)) { CHECK_GT(untyped_->count(reinterpret_cast<Address>(slot)), 0); } } } void VisitCodeTarget(Code* host, RelocInfo* rinfo) override { Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address()); if (ShouldHaveBeenRecorded(host, target)) { CHECK( InTypedSet(CODE_TARGET_SLOT, rinfo->pc()) || (rinfo->IsInConstantPool() && InTypedSet(CODE_ENTRY_SLOT, rinfo->constant_pool_entry_address()))); } } void VisitCodeAgeSequence(Code* host, RelocInfo* rinfo) override { Object* target = rinfo->code_age_stub(); if (ShouldHaveBeenRecorded(host, target)) { CHECK( InTypedSet(CODE_TARGET_SLOT, rinfo->pc()) || (rinfo->IsInConstantPool() && InTypedSet(CODE_ENTRY_SLOT, rinfo->constant_pool_entry_address()))); } } void VisitDebugTarget(Code* host, RelocInfo* rinfo) override { Object* target = Code::GetCodeFromTargetAddress(rinfo->debug_call_address()); if (ShouldHaveBeenRecorded(host, target)) { CHECK( InTypedSet(DEBUG_TARGET_SLOT, rinfo->pc()) || (rinfo->IsInConstantPool() && InTypedSet(CODE_ENTRY_SLOT, rinfo->constant_pool_entry_address()))); } } void VisitEmbeddedPointer(Code* host, RelocInfo* rinfo) override { Object* target = rinfo->target_object(); if (ShouldHaveBeenRecorded(host, target)) { CHECK(InTypedSet(EMBEDDED_OBJECT_SLOT, rinfo->pc()) || (rinfo->IsInConstantPool() && InTypedSet(OBJECT_SLOT, rinfo->constant_pool_entry_address()))); } } private: bool InTypedSet(SlotType type, Address slot) { return typed_->count(std::make_pair(type, slot)) > 0; } std::set<Address>* untyped_; std::set<std::pair<SlotType, Address> >* typed_; }; class OldToNewSlotVerifyingVisitor : public SlotVerifyingVisitor { public: OldToNewSlotVerifyingVisitor(Heap* heap, std::set<Address>* untyped, std::set<std::pair<SlotType, Address> >* typed) : SlotVerifyingVisitor(untyped, typed), heap_(heap) {} bool ShouldHaveBeenRecorded(HeapObject* host, Object* target) override { DCHECK_IMPLIES(target->IsHeapObject() && heap_->InNewSpace(target), heap_->InToSpace(target)); return target->IsHeapObject() && heap_->InNewSpace(target) && !heap_->InNewSpace(host); } private: Heap* heap_; }; template <RememberedSetType direction> void CollectSlots(MemoryChunk* chunk, Address start, Address end, std::set<Address>* untyped, std::set<std::pair<SlotType, Address> >* typed) { RememberedSet<direction>::Iterate(chunk, [start, end, untyped](Address slot) { if (start <= slot && slot < end) { untyped->insert(slot); } return KEEP_SLOT; }, SlotSet::PREFREE_EMPTY_BUCKETS); RememberedSet<direction>::IterateTyped( chunk, [start, end, typed](SlotType type, Address host, Address slot) { if (start <= slot && slot < end) { typed->insert(std::make_pair(type, slot)); } return KEEP_SLOT; }); } void Heap::VerifyRememberedSetFor(HeapObject* object) { MemoryChunk* chunk = MemoryChunk::FromAddress(object->address()); base::LockGuard<base::RecursiveMutex> lock_guard(chunk->mutex()); Address start = object->address(); Address end = start + object->Size(); std::set<Address> old_to_new; std::set<std::pair<SlotType, Address> > typed_old_to_new; if (!InNewSpace(object)) { store_buffer()->MoveAllEntriesToRememberedSet(); CollectSlots<OLD_TO_NEW>(chunk, start, end, &old_to_new, &typed_old_to_new); OldToNewSlotVerifyingVisitor visitor(this, &old_to_new, &typed_old_to_new); object->IterateBody(&visitor); } // TODO(ulan): Add old to old slot set verification once all weak objects // have their own instance types and slots are recorded for all weal fields. } #endif void Heap::ZapFromSpace() { if (!new_space_->IsFromSpaceCommitted()) return; for (Page* page : PageRange(new_space_->FromSpaceStart(), new_space_->FromSpaceEnd())) { for (Address cursor = page->area_start(), limit = page->area_end(); cursor < limit; cursor += kPointerSize) { Memory::Address_at(cursor) = kFromSpaceZapValue; } } } void Heap::IterateRoots(RootVisitor* v, VisitMode mode) { IterateStrongRoots(v, mode); IterateWeakRoots(v, mode); } void Heap::IterateWeakRoots(RootVisitor* v, VisitMode mode) { const bool isMinorGC = mode == VISIT_ALL_IN_SCAVENGE || mode == VISIT_ALL_IN_MINOR_MC_MARK || mode == VISIT_ALL_IN_MINOR_MC_UPDATE; v->VisitRootPointer(Root::kStringTable, reinterpret_cast<Object**>( &roots_[kStringTableRootIndex])); v->Synchronize(VisitorSynchronization::kStringTable); if (!isMinorGC && mode != VISIT_ALL_IN_SWEEP_NEWSPACE) { // Scavenge collections have special processing for this. external_string_table_.IterateAll(v); } v->Synchronize(VisitorSynchronization::kExternalStringsTable); } void Heap::IterateSmiRoots(RootVisitor* v) { // Acquire execution access since we are going to read stack limit values. ExecutionAccess access(isolate()); v->VisitRootPointers(Root::kSmiRootList, &roots_[kSmiRootsStart], &roots_[kRootListLength]); v->Synchronize(VisitorSynchronization::kSmiRootList); } void Heap::IterateEncounteredWeakCollections(RootVisitor* visitor) { visitor->VisitRootPointer(Root::kWeakCollections, &encountered_weak_collections_); } // We cannot avoid stale handles to left-trimmed objects, but can only make // sure all handles still needed are updated. Filter out a stale pointer // and clear the slot to allow post processing of handles (needed because // the sweeper might actually free the underlying page). class FixStaleLeftTrimmedHandlesVisitor : public RootVisitor { public: explicit FixStaleLeftTrimmedHandlesVisitor(Heap* heap) : heap_(heap) { USE(heap_); } void VisitRootPointer(Root root, Object** p) override { FixHandle(p); } void VisitRootPointers(Root root, Object** start, Object** end) override { for (Object** p = start; p < end; p++) FixHandle(p); } private: inline void FixHandle(Object** p) { HeapObject* current = reinterpret_cast<HeapObject*>(*p); if (!current->IsHeapObject()) return; const MapWord map_word = current->map_word(); if (!map_word.IsForwardingAddress() && current->IsFiller()) { #ifdef DEBUG // We need to find a FixedArrayBase map after walking the fillers. while (current->IsFiller()) { Address next = reinterpret_cast<Address>(current); if (current->map() == heap_->one_pointer_filler_map()) { next += kPointerSize; } else if (current->map() == heap_->two_pointer_filler_map()) { next += 2 * kPointerSize; } else { next += current->Size(); } current = reinterpret_cast<HeapObject*>(next); } DCHECK(current->IsFixedArrayBase()); #endif // DEBUG *p = nullptr; } } Heap* heap_; }; void Heap::IterateStrongRoots(RootVisitor* v, VisitMode mode) { const bool isMinorGC = mode == VISIT_ALL_IN_SCAVENGE || mode == VISIT_ALL_IN_MINOR_MC_MARK || mode == VISIT_ALL_IN_MINOR_MC_UPDATE; v->VisitRootPointers(Root::kStrongRootList, &roots_[0], &roots_[kStrongRootListLength]); v->Synchronize(VisitorSynchronization::kStrongRootList); // The serializer/deserializer iterates the root list twice, first to pick // off immortal immovable roots to make sure they end up on the first page, // and then again for the rest. if (mode == VISIT_ONLY_STRONG_ROOT_LIST) return; isolate_->bootstrapper()->Iterate(v); v->Synchronize(VisitorSynchronization::kBootstrapper); isolate_->Iterate(v); v->Synchronize(VisitorSynchronization::kTop); Relocatable::Iterate(isolate_, v); v->Synchronize(VisitorSynchronization::kRelocatable); isolate_->debug()->Iterate(v); v->Synchronize(VisitorSynchronization::kDebug); isolate_->compilation_cache()->Iterate(v); v->Synchronize(VisitorSynchronization::kCompilationCache); // Iterate over local handles in handle scopes. FixStaleLeftTrimmedHandlesVisitor left_trim_visitor(this); isolate_->handle_scope_implementer()->Iterate(&left_trim_visitor); isolate_->handle_scope_implementer()->Iterate(v); isolate_->IterateDeferredHandles(v); v->Synchronize(VisitorSynchronization::kHandleScope); // Iterate over the builtin code objects and code stubs in the // heap. Note that it is not necessary to iterate over code objects // on scavenge collections. if (!isMinorGC) { isolate_->builtins()->IterateBuiltins(v); v->Synchronize(VisitorSynchronization::kBuiltins); isolate_->interpreter()->IterateDispatchTable(v); v->Synchronize(VisitorSynchronization::kDispatchTable); } // Iterate over global handles. switch (mode) { case VISIT_ONLY_STRONG_ROOT_LIST: UNREACHABLE(); break; case VISIT_ONLY_STRONG_FOR_SERIALIZATION: break; case VISIT_ONLY_STRONG: isolate_->global_handles()->IterateStrongRoots(v); break; case VISIT_ALL_IN_SCAVENGE: isolate_->global_handles()->IterateNewSpaceStrongAndDependentRoots(v); break; case VISIT_ALL_IN_MINOR_MC_MARK: // Global handles are processed manually be the minor MC. break; case VISIT_ALL_IN_MINOR_MC_UPDATE: // Global handles are processed manually be the minor MC. break; case VISIT_ALL_IN_SWEEP_NEWSPACE: case VISIT_ALL: isolate_->global_handles()->IterateAllRoots(v); break; } v->Synchronize(VisitorSynchronization::kGlobalHandles); // Iterate over eternal handles. if (isMinorGC) { isolate_->eternal_handles()->IterateNewSpaceRoots(v); } else { isolate_->eternal_handles()->IterateAllRoots(v); } v->Synchronize(VisitorSynchronization::kEternalHandles); // Iterate over pointers being held by inactive threads. isolate_->thread_manager()->Iterate(v); v->Synchronize(VisitorSynchronization::kThreadManager); // Iterate over other strong roots (currently only identity maps). for (StrongRootsList* list = strong_roots_list_; list; list = list->next) { v->VisitRootPointers(Root::kStrongRoots, list->start, list->end); } v->Synchronize(VisitorSynchronization::kStrongRoots); // Iterate over the partial snapshot cache unless serializing. if (mode != VISIT_ONLY_STRONG_FOR_SERIALIZATION) { SerializerDeserializer::Iterate(isolate_, v); } // We don't do a v->Synchronize call here, because in debug mode that will // output a flag to the snapshot. However at this point the serializer and // deserializer are deliberately a little unsynchronized (see above) so the // checking of the sync flag in the snapshot would fail. } // TODO(1236194): Since the heap size is configurable on the command line // and through the API, we should gracefully handle the case that the heap // size is not big enough to fit all the initial objects. bool Heap::ConfigureHeap(size_t max_semi_space_size_in_kb, size_t max_old_generation_size_in_mb, size_t code_range_size_in_mb) { if (HasBeenSetUp()) return false; // Overwrite default configuration. if (max_semi_space_size_in_kb != 0) { max_semi_space_size_ = ROUND_UP(max_semi_space_size_in_kb * KB, Page::kPageSize); } if (max_old_generation_size_in_mb != 0) { max_old_generation_size_ = max_old_generation_size_in_mb * MB; } // If max space size flags are specified overwrite the configuration. if (FLAG_max_semi_space_size > 0) { max_semi_space_size_ = static_cast<size_t>(FLAG_max_semi_space_size) * MB; } if (FLAG_max_old_space_size > 0) { max_old_generation_size_ = static_cast<size_t>(FLAG_max_old_space_size) * MB; } if (Page::kPageSize > MB) { max_semi_space_size_ = ROUND_UP(max_semi_space_size_, Page::kPageSize); max_old_generation_size_ = ROUND_UP(max_old_generation_size_, Page::kPageSize); } if (FLAG_stress_compaction) { // This will cause more frequent GCs when stressing. max_semi_space_size_ = MB; } // The new space size must be a power of two to support single-bit testing // for containment. max_semi_space_size_ = base::bits::RoundUpToPowerOfTwo32( static_cast<uint32_t>(max_semi_space_size_)); if (max_semi_space_size_ == kMaxSemiSpaceSizeInKB * KB) { // Start with at least 1*MB semi-space on machines with a lot of memory. initial_semispace_size_ = Max(initial_semispace_size_, static_cast<size_t>(1 * MB)); } if (FLAG_min_semi_space_size > 0) { size_t initial_semispace_size = static_cast<size_t>(FLAG_min_semi_space_size) * MB; if (initial_semispace_size > max_semi_space_size_) { initial_semispace_size_ = max_semi_space_size_; if (FLAG_trace_gc) { PrintIsolate(isolate_, "Min semi-space size cannot be more than the maximum " "semi-space size of %" PRIuS " MB\n", max_semi_space_size_ / MB); } } else { initial_semispace_size_ = ROUND_UP(initial_semispace_size, Page::kPageSize); } } initial_semispace_size_ = Min(initial_semispace_size_, max_semi_space_size_); if (FLAG_semi_space_growth_factor < 2) { FLAG_semi_space_growth_factor = 2; } // The old generation is paged and needs at least one page for each space. int paged_space_count = LAST_PAGED_SPACE - FIRST_PAGED_SPACE + 1; initial_max_old_generation_size_ = max_old_generation_size_ = Max(static_cast<size_t>(paged_space_count * Page::kPageSize), max_old_generation_size_); if (FLAG_initial_old_space_size > 0) { initial_old_generation_size_ = FLAG_initial_old_space_size * MB; } else { initial_old_generation_size_ = max_old_generation_size_ / kInitalOldGenerationLimitFactor; } old_generation_allocation_limit_ = initial_old_generation_size_; // We rely on being able to allocate new arrays in paged spaces. DCHECK(kMaxRegularHeapObjectSize >= (JSArray::kSize + FixedArray::SizeFor(JSArray::kInitialMaxFastElementArray) + AllocationMemento::kSize)); code_range_size_ = code_range_size_in_mb * MB; configured_ = true; return true; } void Heap::AddToRingBuffer(const char* string) { size_t first_part = Min(strlen(string), kTraceRingBufferSize - ring_buffer_end_); memcpy(trace_ring_buffer_ + ring_buffer_end_, string, first_part); ring_buffer_end_ += first_part; if (first_part < strlen(string)) { ring_buffer_full_ = true; size_t second_part = strlen(string) - first_part; memcpy(trace_ring_buffer_, string + first_part, second_part); ring_buffer_end_ = second_part; } } void Heap::GetFromRingBuffer(char* buffer) { size_t copied = 0; if (ring_buffer_full_) { copied = kTraceRingBufferSize - ring_buffer_end_; memcpy(buffer, trace_ring_buffer_ + ring_buffer_end_, copied); } memcpy(buffer + copied, trace_ring_buffer_, ring_buffer_end_); } bool Heap::ConfigureHeapDefault() { return ConfigureHeap(0, 0, 0); } void Heap::RecordStats(HeapStats* stats, bool take_snapshot) { *stats->start_marker = HeapStats::kStartMarker; *stats->end_marker = HeapStats::kEndMarker; *stats->new_space_size = new_space_->Size(); *stats->new_space_capacity = new_space_->Capacity(); *stats->old_space_size = old_space_->SizeOfObjects(); *stats->old_space_capacity = old_space_->Capacity(); *stats->code_space_size = code_space_->SizeOfObjects(); *stats->code_space_capacity = code_space_->Capacity(); *stats->map_space_size = map_space_->SizeOfObjects(); *stats->map_space_capacity = map_space_->Capacity(); *stats->lo_space_size = lo_space_->Size(); isolate_->global_handles()->RecordStats(stats); *stats->memory_allocator_size = memory_allocator()->Size(); *stats->memory_allocator_capacity = memory_allocator()->Size() + memory_allocator()->Available(); *stats->os_error = base::OS::GetLastError(); *stats->malloced_memory = isolate_->allocator()->GetCurrentMemoryUsage(); *stats->malloced_peak_memory = isolate_->allocator()->GetMaxMemoryUsage(); if (take_snapshot) { HeapIterator iterator(this); for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) { InstanceType type = obj->map()->instance_type(); DCHECK(0 <= type && type <= LAST_TYPE); stats->objects_per_type[type]++; stats->size_per_type[type] += obj->Size(); } } if (stats->last_few_messages != NULL) GetFromRingBuffer(stats->last_few_messages); if (stats->js_stacktrace != NULL) { FixedStringAllocator fixed(stats->js_stacktrace, kStacktraceBufferSize - 1); StringStream accumulator(&fixed, StringStream::kPrintObjectConcise); if (gc_state() == Heap::NOT_IN_GC) { isolate()->PrintStack(&accumulator, Isolate::kPrintStackVerbose); } else { accumulator.Add("Cannot get stack trace in GC."); } } } size_t Heap::PromotedSpaceSizeOfObjects() { return old_space_->SizeOfObjects() + code_space_->SizeOfObjects() + map_space_->SizeOfObjects() + lo_space_->SizeOfObjects(); } uint64_t Heap::PromotedExternalMemorySize() { if (external_memory_ <= external_memory_at_last_mark_compact_) return 0; return static_cast<uint64_t>(external_memory_ - external_memory_at_last_mark_compact_); } const double Heap::kMinHeapGrowingFactor = 1.1; const double Heap::kMaxHeapGrowingFactor = 4.0; const double Heap::kMaxHeapGrowingFactorMemoryConstrained = 2.0; const double Heap::kMaxHeapGrowingFactorIdle = 1.5; const double Heap::kConservativeHeapGrowingFactor = 1.3; const double Heap::kTargetMutatorUtilization = 0.97; // Given GC speed in bytes per ms, the allocation throughput in bytes per ms // (mutator speed), this function returns the heap growing factor that will // achieve the kTargetMutatorUtilisation if the GC speed and the mutator speed // remain the same until the next GC. // // For a fixed time-frame T = TM + TG, the mutator utilization is the ratio // TM / (TM + TG), where TM is the time spent in the mutator and TG is the // time spent in the garbage collector. // // Let MU be kTargetMutatorUtilisation, the desired mutator utilization for the // time-frame from the end of the current GC to the end of the next GC. Based // on the MU we can compute the heap growing factor F as // // F = R * (1 - MU) / (R * (1 - MU) - MU), where R = gc_speed / mutator_speed. // // This formula can be derived as follows. // // F = Limit / Live by definition, where the Limit is the allocation limit, // and the Live is size of live objects. // Let’s assume that we already know the Limit. Then: // TG = Limit / gc_speed // TM = (TM + TG) * MU, by definition of MU. // TM = TG * MU / (1 - MU) // TM = Limit * MU / (gc_speed * (1 - MU)) // On the other hand, if the allocation throughput remains constant: // Limit = Live + TM * allocation_throughput = Live + TM * mutator_speed // Solving it for TM, we get // TM = (Limit - Live) / mutator_speed // Combining the two equation for TM: // (Limit - Live) / mutator_speed = Limit * MU / (gc_speed * (1 - MU)) // (Limit - Live) = Limit * MU * mutator_speed / (gc_speed * (1 - MU)) // substitute R = gc_speed / mutator_speed // (Limit - Live) = Limit * MU / (R * (1 - MU)) // substitute F = Limit / Live // F - 1 = F * MU / (R * (1 - MU)) // F - F * MU / (R * (1 - MU)) = 1 // F * (1 - MU / (R * (1 - MU))) = 1 // F * (R * (1 - MU) - MU) / (R * (1 - MU)) = 1 // F = R * (1 - MU) / (R * (1 - MU) - MU) double Heap::HeapGrowingFactor(double gc_speed, double mutator_speed, double max_factor) { DCHECK(max_factor >= kMinHeapGrowingFactor); DCHECK(max_factor <= kMaxHeapGrowingFactor); if (gc_speed == 0 || mutator_speed == 0) return max_factor; const double speed_ratio = gc_speed / mutator_speed; const double mu = kTargetMutatorUtilization; const double a = speed_ratio * (1 - mu); const double b = speed_ratio * (1 - mu) - mu; // The factor is a / b, but we need to check for small b first. double factor = (a < b * max_factor) ? a / b : max_factor; factor = Min(factor, max_factor); factor = Max(factor, kMinHeapGrowingFactor); return factor; } double Heap::MaxHeapGrowingFactor(size_t max_old_generation_size) { const double min_small_factor = 1.3; const double max_small_factor = 2.0; const double high_factor = 4.0; size_t max_old_generation_size_in_mb = max_old_generation_size / MB; max_old_generation_size_in_mb = Max(max_old_generation_size_in_mb, static_cast<size_t>(kMinOldGenerationSize)); // If we are on a device with lots of memory, we allow a high heap // growing factor. if (max_old_generation_size_in_mb >= kMaxOldGenerationSize) { return high_factor; } DCHECK_GE(max_old_generation_size_in_mb, kMinOldGenerationSize); DCHECK_LT(max_old_generation_size_in_mb, kMaxOldGenerationSize); // On smaller devices we linearly scale the factor: (X-A)/(B-A)*(D-C)+C double factor = (max_old_generation_size_in_mb - kMinOldGenerationSize) * (max_small_factor - min_small_factor) / (kMaxOldGenerationSize - kMinOldGenerationSize) + min_small_factor; return factor; } size_t Heap::CalculateOldGenerationAllocationLimit(double factor, size_t old_gen_size) { CHECK(factor > 1.0); CHECK(old_gen_size > 0); uint64_t limit = static_cast<uint64_t>(old_gen_size * factor); limit = Max(limit, static_cast<uint64_t>(old_gen_size) + MinimumAllocationLimitGrowingStep()); limit += new_space_->Capacity(); uint64_t halfway_to_the_max = (static_cast<uint64_t>(old_gen_size) + max_old_generation_size_) / 2; return static_cast<size_t>(Min(limit, halfway_to_the_max)); } size_t Heap::MinimumAllocationLimitGrowingStep() { const size_t kRegularAllocationLimitGrowingStep = 8; const size_t kLowMemoryAllocationLimitGrowingStep = 2; size_t limit = (Page::kPageSize > MB ? Page::kPageSize : MB); return limit * (ShouldOptimizeForMemoryUsage() ? kLowMemoryAllocationLimitGrowingStep : kRegularAllocationLimitGrowingStep); } void Heap::SetOldGenerationAllocationLimit(size_t old_gen_size, double gc_speed, double mutator_speed) { double max_factor = MaxHeapGrowingFactor(max_old_generation_size_); double factor = HeapGrowingFactor(gc_speed, mutator_speed, max_factor); if (FLAG_trace_gc_verbose) { isolate_->PrintWithTimestamp( "Heap growing factor %.1f based on mu=%.3f, speed_ratio=%.f " "(gc=%.f, mutator=%.f)\n", factor, kTargetMutatorUtilization, gc_speed / mutator_speed, gc_speed, mutator_speed); } if (memory_reducer_->ShouldGrowHeapSlowly() || ShouldOptimizeForMemoryUsage()) { factor = Min(factor, kConservativeHeapGrowingFactor); } if (FLAG_stress_compaction || ShouldReduceMemory()) { factor = kMinHeapGrowingFactor; } if (FLAG_heap_growing_percent > 0) { factor = 1.0 + FLAG_heap_growing_percent / 100.0; } old_generation_allocation_limit_ = CalculateOldGenerationAllocationLimit(factor, old_gen_size); if (FLAG_trace_gc_verbose) { isolate_->PrintWithTimestamp( "Grow: old size: %" PRIuS " KB, new limit: %" PRIuS " KB (%.1f)\n", old_gen_size / KB, old_generation_allocation_limit_ / KB, factor); } } void Heap::DampenOldGenerationAllocationLimit(size_t old_gen_size, double gc_speed, double mutator_speed) { double max_factor = MaxHeapGrowingFactor(max_old_generation_size_); double factor = HeapGrowingFactor(gc_speed, mutator_speed, max_factor); size_t limit = CalculateOldGenerationAllocationLimit(factor, old_gen_size); if (limit < old_generation_allocation_limit_) { if (FLAG_trace_gc_verbose) { isolate_->PrintWithTimestamp( "Dampen: old size: %" PRIuS " KB, old limit: %" PRIuS " KB, " "new limit: %" PRIuS " KB (%.1f)\n", old_gen_size / KB, old_generation_allocation_limit_ / KB, limit / KB, factor); } old_generation_allocation_limit_ = limit; } } bool Heap::ShouldOptimizeForLoadTime() { return isolate()->rail_mode() == PERFORMANCE_LOAD && !AllocationLimitOvershotByLargeMargin() && MonotonicallyIncreasingTimeInMs() < isolate()->LoadStartTimeMs() + kMaxLoadTimeMs; } // This predicate is called when an old generation space cannot allocated from // the free list and is about to add a new page. Returning false will cause a // major GC. It happens when the old generation allocation limit is reached and // - either we need to optimize for memory usage, // - or the incremental marking is not in progress and we cannot start it. bool Heap::ShouldExpandOldGenerationOnSlowAllocation() { if (always_allocate() || OldGenerationSpaceAvailable() > 0) return true; // We reached the old generation allocation limit. if (ShouldOptimizeForMemoryUsage()) return false; if (ShouldOptimizeForLoadTime()) return true; if (incremental_marking()->NeedsFinalization()) { return !AllocationLimitOvershotByLargeMargin(); } if (incremental_marking()->IsStopped() && IncrementalMarkingLimitReached() == IncrementalMarkingLimit::kNoLimit) { // We cannot start incremental marking. return false; } return true; } // This function returns either kNoLimit, kSoftLimit, or kHardLimit. // The kNoLimit means that either incremental marking is disabled or it is too // early to start incremental marking. // The kSoftLimit means that incremental marking should be started soon. // The kHardLimit means that incremental marking should be started immediately. Heap::IncrementalMarkingLimit Heap::IncrementalMarkingLimitReached() { // Code using an AlwaysAllocateScope assumes that the GC state does not // change; that implies that no marking steps must be performed. if (!incremental_marking()->CanBeActivated() || always_allocate()) { // Incremental marking is disabled or it is too early to start. return IncrementalMarkingLimit::kNoLimit; } if (FLAG_stress_incremental_marking) { return IncrementalMarkingLimit::kHardLimit; } if (PromotedSpaceSizeOfObjects() <= IncrementalMarking::kActivationThreshold) { // Incremental marking is disabled or it is too early to start. return IncrementalMarkingLimit::kNoLimit; } if ((FLAG_stress_compaction && (gc_count_ & 1) != 0) || HighMemoryPressure()) { // If there is high memory pressure or stress testing is enabled, then // start marking immediately. return IncrementalMarkingLimit::kHardLimit; } size_t old_generation_space_available = OldGenerationSpaceAvailable(); if (old_generation_space_available > new_space_->Capacity()) { return IncrementalMarkingLimit::kNoLimit; } if (ShouldOptimizeForMemoryUsage()) { return IncrementalMarkingLimit::kHardLimit; } if (ShouldOptimizeForLoadTime()) { return IncrementalMarkingLimit::kNoLimit; } if (old_generation_space_available == 0) { return IncrementalMarkingLimit::kHardLimit; } return IncrementalMarkingLimit::kSoftLimit; } void Heap::EnableInlineAllocation() { if (!inline_allocation_disabled_) return; inline_allocation_disabled_ = false; // Update inline allocation limit for new space. new_space()->UpdateInlineAllocationLimit(0); } void Heap::DisableInlineAllocation() { if (inline_allocation_disabled_) return; inline_allocation_disabled_ = true; // Update inline allocation limit for new space. new_space()->UpdateInlineAllocationLimit(0); // Update inline allocation limit for old spaces. PagedSpaces spaces(this); for (PagedSpace* space = spaces.next(); space != NULL; space = spaces.next()) { space->EmptyAllocationInfo(); } } bool Heap::SetUp() { #ifdef DEBUG allocation_timeout_ = FLAG_gc_interval; #endif // Initialize heap spaces and initial maps and objects. Whenever something // goes wrong, just return false. The caller should check the results and // call Heap::TearDown() to release allocated memory. // // If the heap is not yet configured (e.g. through the API), configure it. // Configuration is based on the flags new-space-size (really the semispace // size) and old-space-size if set or the initial values of semispace_size_ // and old_generation_size_ otherwise. if (!configured_) { if (!ConfigureHeapDefault()) return false; } mmap_region_base_ = reinterpret_cast<uintptr_t>(base::OS::GetRandomMmapAddr()) & ~kMmapRegionMask; // Set up memory allocator. memory_allocator_ = new MemoryAllocator(isolate_); if (!memory_allocator_->SetUp(MaxReserved(), code_range_size_)) return false; store_buffer_ = new StoreBuffer(this); incremental_marking_ = new IncrementalMarking(this); for (int i = 0; i <= LAST_SPACE; i++) { space_[i] = nullptr; } space_[NEW_SPACE] = new_space_ = new NewSpace(this); if (!new_space_->SetUp(initial_semispace_size_, max_semi_space_size_)) { return false; } new_space_top_after_last_gc_ = new_space()->top(); space_[OLD_SPACE] = old_space_ = new OldSpace(this, OLD_SPACE, NOT_EXECUTABLE); if (!old_space_->SetUp()) return false; space_[CODE_SPACE] = code_space_ = new OldSpace(this, CODE_SPACE, EXECUTABLE); if (!code_space_->SetUp()) return false; space_[MAP_SPACE] = map_space_ = new MapSpace(this, MAP_SPACE); if (!map_space_->SetUp()) return false; // The large object code space may contain code or data. We set the memory // to be non-executable here for safety, but this means we need to enable it // explicitly when allocating large code objects. space_[LO_SPACE] = lo_space_ = new LargeObjectSpace(this, LO_SPACE); if (!lo_space_->SetUp()) return false; // Set up the seed that is used to randomize the string hash function. DCHECK(hash_seed() == 0); if (FLAG_randomize_hashes) InitializeHashSeed(); for (int i = 0; i < static_cast<int>(v8::Isolate::kUseCounterFeatureCount); i++) { deferred_counters_[i] = 0; } tracer_ = new GCTracer(this); mark_compact_collector_ = new MarkCompactCollector(this); incremental_marking_->set_marking_worklist( mark_compact_collector_->marking_worklist()); if (FLAG_concurrent_marking) { MarkCompactCollector::MarkingWorklist* marking_worklist = mark_compact_collector_->marking_worklist(); concurrent_marking_ = new ConcurrentMarking( this, marking_worklist->shared(), marking_worklist->bailout(), mark_compact_collector_->weak_cells()); } else { concurrent_marking_ = new ConcurrentMarking(this, nullptr, nullptr, nullptr); } minor_mark_compact_collector_ = new MinorMarkCompactCollector(this); gc_idle_time_handler_ = new GCIdleTimeHandler(); memory_reducer_ = new MemoryReducer(this); if (V8_UNLIKELY(FLAG_gc_stats)) { live_object_stats_ = new ObjectStats(this); dead_object_stats_ = new ObjectStats(this); } scavenge_job_ = new ScavengeJob(); local_embedder_heap_tracer_ = new LocalEmbedderHeapTracer(); LOG(isolate_, IntPtrTEvent("heap-capacity", Capacity())); LOG(isolate_, IntPtrTEvent("heap-available", Available())); store_buffer()->SetUp(); mark_compact_collector()->SetUp(); if (minor_mark_compact_collector() != nullptr) { minor_mark_compact_collector()->SetUp(); } idle_scavenge_observer_ = new IdleScavengeObserver( *this, ScavengeJob::kBytesAllocatedBeforeNextIdleTask); new_space()->AddAllocationObserver(idle_scavenge_observer_); SetGetExternallyAllocatedMemoryInBytesCallback( DefaultGetExternallyAllocatedMemoryInBytesCallback); return true; } void Heap::InitializeHashSeed() { if (FLAG_hash_seed == 0) { int rnd = isolate()->random_number_generator()->NextInt(); set_hash_seed(Smi::FromInt(rnd & Name::kHashBitMask)); } else { set_hash_seed(Smi::FromInt(FLAG_hash_seed)); } } bool Heap::CreateHeapObjects() { // Create initial maps. if (!CreateInitialMaps()) return false; if (!CreateApiObjects()) return false; // Create initial objects CreateInitialObjects(); CHECK_EQ(0u, gc_count_); set_native_contexts_list(undefined_value()); set_allocation_sites_list(undefined_value()); return true; } void Heap::SetStackLimits() { DCHECK(isolate_ != NULL); DCHECK(isolate_ == isolate()); // On 64 bit machines, pointers are generally out of range of Smis. We write // something that looks like an out of range Smi to the GC. // Set up the special root array entries containing the stack limits. // These are actually addresses, but the tag makes the GC ignore it. roots_[kStackLimitRootIndex] = reinterpret_cast<Object*>( (isolate_->stack_guard()->jslimit() & ~kSmiTagMask) | kSmiTag); roots_[kRealStackLimitRootIndex] = reinterpret_cast<Object*>( (isolate_->stack_guard()->real_jslimit() & ~kSmiTagMask) | kSmiTag); } void Heap::ClearStackLimits() { roots_[kStackLimitRootIndex] = Smi::kZero; roots_[kRealStackLimitRootIndex] = Smi::kZero; } void Heap::PrintAllocationsHash() { uint32_t hash = StringHasher::GetHashCore(raw_allocations_hash_); PrintF("\n### Allocations = %u, hash = 0x%08x\n", allocations_count(), hash); } void Heap::NotifyDeserializationComplete() { PagedSpaces spaces(this); for (PagedSpace* s = spaces.next(); s != NULL; s = spaces.next()) { if (isolate()->snapshot_available()) s->ShrinkImmortalImmovablePages(); #ifdef DEBUG // All pages right after bootstrapping must be marked as never-evacuate. for (Page* p : *s) { CHECK(p->NeverEvacuate()); } #endif // DEBUG } deserialization_complete_ = true; } void Heap::SetEmbedderHeapTracer(EmbedderHeapTracer* tracer) { DCHECK_EQ(gc_state_, HeapState::NOT_IN_GC); local_embedder_heap_tracer()->SetRemoteTracer(tracer); } void Heap::TracePossibleWrapper(JSObject* js_object) { DCHECK(js_object->WasConstructedFromApiFunction()); if (js_object->GetEmbedderFieldCount() >= 2 && js_object->GetEmbedderField(0) && js_object->GetEmbedderField(0) != undefined_value() && js_object->GetEmbedderField(1) != undefined_value()) { DCHECK(reinterpret_cast<intptr_t>(js_object->GetEmbedderField(0)) % 2 == 0); local_embedder_heap_tracer()->AddWrapperToTrace(std::pair<void*, void*>( reinterpret_cast<void*>(js_object->GetEmbedderField(0)), reinterpret_cast<void*>(js_object->GetEmbedderField(1)))); } } void Heap::RegisterExternallyReferencedObject(Object** object) { // The embedder is not aware of whether numbers are materialized as heap // objects are just passed around as Smis. if (!(*object)->IsHeapObject()) return; HeapObject* heap_object = HeapObject::cast(*object); DCHECK(Contains(heap_object)); if (FLAG_incremental_marking_wrappers && incremental_marking()->IsMarking()) { incremental_marking()->WhiteToGreyAndPush(heap_object); } else { DCHECK(mark_compact_collector()->in_use()); mark_compact_collector()->MarkExternallyReferencedObject(heap_object); } } void Heap::TearDown() { use_tasks_ = false; #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif UpdateMaximumCommitted(); if (FLAG_verify_predictable) { PrintAllocationsHash(); } new_space()->RemoveAllocationObserver(idle_scavenge_observer_); delete idle_scavenge_observer_; idle_scavenge_observer_ = nullptr; if (mark_compact_collector_ != nullptr) { mark_compact_collector_->TearDown(); delete mark_compact_collector_; mark_compact_collector_ = nullptr; } if (minor_mark_compact_collector_ != nullptr) { minor_mark_compact_collector_->TearDown(); delete minor_mark_compact_collector_; minor_mark_compact_collector_ = nullptr; } delete incremental_marking_; incremental_marking_ = nullptr; delete concurrent_marking_; concurrent_marking_ = nullptr; delete gc_idle_time_handler_; gc_idle_time_handler_ = nullptr; if (memory_reducer_ != nullptr) { memory_reducer_->TearDown(); delete memory_reducer_; memory_reducer_ = nullptr; } if (live_object_stats_ != nullptr) { delete live_object_stats_; live_object_stats_ = nullptr; } if (dead_object_stats_ != nullptr) { delete dead_object_stats_; dead_object_stats_ = nullptr; } delete local_embedder_heap_tracer_; local_embedder_heap_tracer_ = nullptr; delete scavenge_job_; scavenge_job_ = nullptr; isolate_->global_handles()->TearDown(); external_string_table_.TearDown(); delete tracer_; tracer_ = nullptr; new_space_->TearDown(); delete new_space_; new_space_ = nullptr; if (old_space_ != NULL) { delete old_space_; old_space_ = NULL; } if (code_space_ != NULL) { delete code_space_; code_space_ = NULL; } if (map_space_ != NULL) { delete map_space_; map_space_ = NULL; } if (lo_space_ != NULL) { lo_space_->TearDown(); delete lo_space_; lo_space_ = NULL; } store_buffer()->TearDown(); memory_allocator()->TearDown(); StrongRootsList* next = NULL; for (StrongRootsList* list = strong_roots_list_; list; list = next) { next = list->next; delete list; } strong_roots_list_ = NULL; delete store_buffer_; store_buffer_ = nullptr; delete memory_allocator_; memory_allocator_ = nullptr; } void Heap::AddGCPrologueCallback(v8::Isolate::GCCallback callback, GCType gc_type, bool pass_isolate) { DCHECK(callback != NULL); GCCallbackPair pair(callback, gc_type, pass_isolate); DCHECK(!gc_prologue_callbacks_.Contains(pair)); return gc_prologue_callbacks_.Add(pair); } void Heap::RemoveGCPrologueCallback(v8::Isolate::GCCallback callback) { DCHECK(callback != NULL); for (int i = 0; i < gc_prologue_callbacks_.length(); ++i) { if (gc_prologue_callbacks_[i].callback == callback) { gc_prologue_callbacks_.Remove(i); return; } } UNREACHABLE(); } void Heap::AddGCEpilogueCallback(v8::Isolate::GCCallback callback, GCType gc_type, bool pass_isolate) { DCHECK(callback != NULL); GCCallbackPair pair(callback, gc_type, pass_isolate); DCHECK(!gc_epilogue_callbacks_.Contains(pair)); return gc_epilogue_callbacks_.Add(pair); } void Heap::RemoveGCEpilogueCallback(v8::Isolate::GCCallback callback) { DCHECK(callback != NULL); for (int i = 0; i < gc_epilogue_callbacks_.length(); ++i) { if (gc_epilogue_callbacks_[i].callback == callback) { gc_epilogue_callbacks_.Remove(i); return; } } UNREACHABLE(); } // TODO(ishell): Find a better place for this. void Heap::AddWeakNewSpaceObjectToCodeDependency(Handle<HeapObject> obj, Handle<WeakCell> code) { DCHECK(InNewSpace(*obj)); DCHECK(!InNewSpace(*code)); Handle<ArrayList> list(weak_new_space_object_to_code_list(), isolate()); list = ArrayList::Add(list, isolate()->factory()->NewWeakCell(obj), code); if (*list != weak_new_space_object_to_code_list()) { set_weak_new_space_object_to_code_list(*list); } } // TODO(ishell): Find a better place for this. void Heap::AddWeakObjectToCodeDependency(Handle<HeapObject> obj, Handle<DependentCode> dep) { DCHECK(!InNewSpace(*obj)); DCHECK(!InNewSpace(*dep)); Handle<WeakHashTable> table(weak_object_to_code_table(), isolate()); table = WeakHashTable::Put(table, obj, dep); if (*table != weak_object_to_code_table()) set_weak_object_to_code_table(*table); DCHECK_EQ(*dep, LookupWeakObjectToCodeDependency(obj)); } DependentCode* Heap::LookupWeakObjectToCodeDependency(Handle<HeapObject> obj) { Object* dep = weak_object_to_code_table()->Lookup(obj); if (dep->IsDependentCode()) return DependentCode::cast(dep); return DependentCode::cast(empty_fixed_array()); } namespace { void CompactWeakFixedArray(Object* object) { if (object->IsWeakFixedArray()) { WeakFixedArray* array = WeakFixedArray::cast(object); array->Compact<WeakFixedArray::NullCallback>(); } } } // anonymous namespace void Heap::CompactWeakFixedArrays() { // Find known WeakFixedArrays and compact them. HeapIterator iterator(this); for (HeapObject* o = iterator.next(); o != NULL; o = iterator.next()) { if (o->IsPrototypeInfo()) { Object* prototype_users = PrototypeInfo::cast(o)->prototype_users(); if (prototype_users->IsWeakFixedArray()) { WeakFixedArray* array = WeakFixedArray::cast(prototype_users); array->Compact<JSObject::PrototypeRegistryCompactionCallback>(); } } } CompactWeakFixedArray(noscript_shared_function_infos()); CompactWeakFixedArray(script_list()); CompactWeakFixedArray(weak_stack_trace_list()); } void Heap::AddRetainedMap(Handle<Map> map) { Handle<WeakCell> cell = Map::WeakCellForMap(map); Handle<ArrayList> array(retained_maps(), isolate()); if (array->IsFull()) { CompactRetainedMaps(*array); } array = ArrayList::Add( array, cell, handle(Smi::FromInt(FLAG_retain_maps_for_n_gc), isolate()), ArrayList::kReloadLengthAfterAllocation); if (*array != retained_maps()) { set_retained_maps(*array); } } void Heap::CompactRetainedMaps(ArrayList* retained_maps) { DCHECK_EQ(retained_maps, this->retained_maps()); int length = retained_maps->Length(); int new_length = 0; int new_number_of_disposed_maps = 0; // This loop compacts the array by removing cleared weak cells. for (int i = 0; i < length; i += 2) { DCHECK(retained_maps->Get(i)->IsWeakCell()); WeakCell* cell = WeakCell::cast(retained_maps->Get(i)); Object* age = retained_maps->Get(i + 1); if (cell->cleared()) continue; if (i != new_length) { retained_maps->Set(new_length, cell); retained_maps->Set(new_length + 1, age); } if (i < number_of_disposed_maps_) { new_number_of_disposed_maps += 2; } new_length += 2; } number_of_disposed_maps_ = new_number_of_disposed_maps; Object* undefined = undefined_value(); for (int i = new_length; i < length; i++) { retained_maps->Clear(i, undefined); } if (new_length != length) retained_maps->SetLength(new_length); } void Heap::FatalProcessOutOfMemory(const char* location, bool is_heap_oom) { v8::internal::V8::FatalProcessOutOfMemory(location, is_heap_oom); } #ifdef DEBUG class PrintHandleVisitor : public RootVisitor { public: void VisitRootPointers(Root root, Object** start, Object** end) override { for (Object** p = start; p < end; p++) PrintF(" handle %p to %p\n", reinterpret_cast<void*>(p), reinterpret_cast<void*>(*p)); } }; void Heap::PrintHandles() { PrintF("Handles:\n"); PrintHandleVisitor v; isolate_->handle_scope_implementer()->Iterate(&v); } #endif class CheckHandleCountVisitor : public RootVisitor { public: CheckHandleCountVisitor() : handle_count_(0) {} ~CheckHandleCountVisitor() override { CHECK(handle_count_ < HandleScope::kCheckHandleThreshold); } void VisitRootPointers(Root root, Object** start, Object** end) override { handle_count_ += end - start; } private: ptrdiff_t handle_count_; }; void Heap::CheckHandleCount() { CheckHandleCountVisitor v; isolate_->handle_scope_implementer()->Iterate(&v); } void Heap::ClearRecordedSlot(HeapObject* object, Object** slot) { Address slot_addr = reinterpret_cast<Address>(slot); Page* page = Page::FromAddress(slot_addr); if (!page->InNewSpace()) { DCHECK_EQ(page->owner()->identity(), OLD_SPACE); store_buffer()->DeleteEntry(slot_addr); } } bool Heap::HasRecordedSlot(HeapObject* object, Object** slot) { if (InNewSpace(object)) { return false; } Address slot_addr = reinterpret_cast<Address>(slot); Page* page = Page::FromAddress(slot_addr); DCHECK_EQ(page->owner()->identity(), OLD_SPACE); store_buffer()->MoveAllEntriesToRememberedSet(); return RememberedSet<OLD_TO_NEW>::Contains(page, slot_addr) || RememberedSet<OLD_TO_OLD>::Contains(page, slot_addr); } void Heap::ClearRecordedSlotRange(Address start, Address end) { Page* page = Page::FromAddress(start); if (!page->InNewSpace()) { DCHECK_EQ(page->owner()->identity(), OLD_SPACE); store_buffer()->DeleteEntry(start, end); } } void Heap::RecordWriteIntoCodeSlow(Code* host, RelocInfo* rinfo, Object* value) { DCHECK(InNewSpace(value)); Page* source_page = Page::FromAddress(reinterpret_cast<Address>(host)); RelocInfo::Mode rmode = rinfo->rmode(); Address addr = rinfo->pc(); SlotType slot_type = SlotTypeForRelocInfoMode(rmode); if (rinfo->IsInConstantPool()) { addr = rinfo->constant_pool_entry_address(); if (RelocInfo::IsCodeTarget(rmode)) { slot_type = CODE_ENTRY_SLOT; } else { DCHECK(RelocInfo::IsEmbeddedObject(rmode)); slot_type = OBJECT_SLOT; } } RememberedSet<OLD_TO_NEW>::InsertTyped( source_page, reinterpret_cast<Address>(host), slot_type, addr); } void Heap::RecordWritesIntoCode(Code* code) { for (RelocIterator it(code, RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT)); !it.done(); it.next()) { RecordWriteIntoCode(code, it.rinfo(), it.rinfo()->target_object()); } } Space* AllSpaces::next() { switch (counter_++) { case NEW_SPACE: return heap_->new_space(); case OLD_SPACE: return heap_->old_space(); case CODE_SPACE: return heap_->code_space(); case MAP_SPACE: return heap_->map_space(); case LO_SPACE: return heap_->lo_space(); default: return NULL; } } PagedSpace* PagedSpaces::next() { switch (counter_++) { case OLD_SPACE: return heap_->old_space(); case CODE_SPACE: return heap_->code_space(); case MAP_SPACE: return heap_->map_space(); default: return NULL; } } OldSpace* OldSpaces::next() { switch (counter_++) { case OLD_SPACE: return heap_->old_space(); case CODE_SPACE: return heap_->code_space(); default: return NULL; } } SpaceIterator::SpaceIterator(Heap* heap) : heap_(heap), current_space_(FIRST_SPACE - 1) {} SpaceIterator::~SpaceIterator() { } bool SpaceIterator::has_next() { // Iterate until no more spaces. return current_space_ != LAST_SPACE; } Space* SpaceIterator::next() { DCHECK(has_next()); return heap_->space(++current_space_); } class HeapObjectsFilter { public: virtual ~HeapObjectsFilter() {} virtual bool SkipObject(HeapObject* object) = 0; }; class UnreachableObjectsFilter : public HeapObjectsFilter { public: explicit UnreachableObjectsFilter(Heap* heap) : heap_(heap) { MarkReachableObjects(); } ~UnreachableObjectsFilter() { for (auto it : reachable_) { delete it.second; it.second = nullptr; } } bool SkipObject(HeapObject* object) { if (object->IsFiller()) return true; MemoryChunk* chunk = MemoryChunk::FromAddress(object->address()); if (reachable_.count(chunk) == 0) return true; return reachable_[chunk]->count(object) == 0; } private: bool MarkAsReachable(HeapObject* object) { MemoryChunk* chunk = MemoryChunk::FromAddress(object->address()); if (reachable_.count(chunk) == 0) { reachable_[chunk] = new std::unordered_set<HeapObject*>(); } if (reachable_[chunk]->count(object)) return false; reachable_[chunk]->insert(object); return true; } class MarkingVisitor : public ObjectVisitor, public RootVisitor { public: explicit MarkingVisitor(UnreachableObjectsFilter* filter) : filter_(filter), marking_stack_(10) {} void VisitPointers(HeapObject* host, Object** start, Object** end) override { MarkPointers(start, end); } void VisitRootPointers(Root root, Object** start, Object** end) override { MarkPointers(start, end); } void TransitiveClosure() { while (!marking_stack_.is_empty()) { HeapObject* obj = marking_stack_.RemoveLast(); obj->Iterate(this); } } private: void MarkPointers(Object** start, Object** end) { for (Object** p = start; p < end; p++) { if (!(*p)->IsHeapObject()) continue; HeapObject* obj = HeapObject::cast(*p); if (filter_->MarkAsReachable(obj)) { marking_stack_.Add(obj); } } } UnreachableObjectsFilter* filter_; List<HeapObject*> marking_stack_; }; friend class MarkingVisitor; void MarkReachableObjects() { MarkingVisitor visitor(this); heap_->IterateRoots(&visitor, VISIT_ALL); visitor.TransitiveClosure(); } Heap* heap_; DisallowHeapAllocation no_allocation_; std::unordered_map<MemoryChunk*, std::unordered_set<HeapObject*>*> reachable_; }; HeapIterator::HeapIterator(Heap* heap, HeapIterator::HeapObjectsFiltering filtering) : no_heap_allocation_(), heap_(heap), filtering_(filtering), filter_(nullptr), space_iterator_(nullptr), object_iterator_(nullptr) { heap_->MakeHeapIterable(); heap_->heap_iterator_start(); // Start the iteration. space_iterator_ = new SpaceIterator(heap_); switch (filtering_) { case kFilterUnreachable: filter_ = new UnreachableObjectsFilter(heap_); break; default: break; } object_iterator_ = space_iterator_->next()->GetObjectIterator(); } HeapIterator::~HeapIterator() { heap_->heap_iterator_end(); #ifdef DEBUG // Assert that in filtering mode we have iterated through all // objects. Otherwise, heap will be left in an inconsistent state. if (filtering_ != kNoFiltering) { DCHECK(object_iterator_ == nullptr); } #endif delete space_iterator_; delete filter_; } HeapObject* HeapIterator::next() { if (filter_ == nullptr) return NextObject(); HeapObject* obj = NextObject(); while ((obj != nullptr) && (filter_->SkipObject(obj))) obj = NextObject(); return obj; } HeapObject* HeapIterator::NextObject() { // No iterator means we are done. if (object_iterator_.get() == nullptr) return nullptr; if (HeapObject* obj = object_iterator_.get()->Next()) { // If the current iterator has more objects we are fine. return obj; } else { // Go though the spaces looking for one that has objects. while (space_iterator_->has_next()) { object_iterator_ = space_iterator_->next()->GetObjectIterator(); if (HeapObject* obj = object_iterator_.get()->Next()) { return obj; } } } // Done with the last space. object_iterator_.reset(nullptr); return nullptr; } void Heap::UpdateTotalGCTime(double duration) { if (FLAG_trace_gc_verbose) { total_gc_time_ms_ += duration; } } void Heap::ExternalStringTable::CleanUpNewSpaceStrings() { int last = 0; Isolate* isolate = heap_->isolate(); for (int i = 0; i < new_space_strings_.length(); ++i) { Object* o = new_space_strings_[i]; if (o->IsTheHole(isolate)) { continue; } if (o->IsThinString()) { o = ThinString::cast(o)->actual(); if (!o->IsExternalString()) continue; } DCHECK(o->IsExternalString()); if (heap_->InNewSpace(o)) { new_space_strings_[last++] = o; } else { old_space_strings_.Add(o); } } new_space_strings_.Rewind(last); new_space_strings_.Trim(); } void Heap::ExternalStringTable::CleanUpAll() { CleanUpNewSpaceStrings(); int last = 0; Isolate* isolate = heap_->isolate(); for (int i = 0; i < old_space_strings_.length(); ++i) { Object* o = old_space_strings_[i]; if (o->IsTheHole(isolate)) { continue; } if (o->IsThinString()) { o = ThinString::cast(o)->actual(); if (!o->IsExternalString()) continue; } DCHECK(o->IsExternalString()); DCHECK(!heap_->InNewSpace(o)); old_space_strings_[last++] = o; } old_space_strings_.Rewind(last); old_space_strings_.Trim(); #ifdef VERIFY_HEAP if (FLAG_verify_heap) { Verify(); } #endif } void Heap::ExternalStringTable::TearDown() { for (int i = 0; i < new_space_strings_.length(); ++i) { Object* o = new_space_strings_[i]; if (o->IsThinString()) { o = ThinString::cast(o)->actual(); if (!o->IsExternalString()) continue; } heap_->FinalizeExternalString(ExternalString::cast(o)); } new_space_strings_.Free(); for (int i = 0; i < old_space_strings_.length(); ++i) { Object* o = old_space_strings_[i]; if (o->IsThinString()) { o = ThinString::cast(o)->actual(); if (!o->IsExternalString()) continue; } heap_->FinalizeExternalString(ExternalString::cast(o)); } old_space_strings_.Free(); } void Heap::RememberUnmappedPage(Address page, bool compacted) { uintptr_t p = reinterpret_cast<uintptr_t>(page); // Tag the page pointer to make it findable in the dump file. if (compacted) { p ^= 0xc1ead & (Page::kPageSize - 1); // Cleared. } else { p ^= 0x1d1ed & (Page::kPageSize - 1); // I died. } remembered_unmapped_pages_[remembered_unmapped_pages_index_] = reinterpret_cast<Address>(p); remembered_unmapped_pages_index_++; remembered_unmapped_pages_index_ %= kRememberedUnmappedPages; } void Heap::RegisterStrongRoots(Object** start, Object** end) { StrongRootsList* list = new StrongRootsList(); list->next = strong_roots_list_; list->start = start; list->end = end; strong_roots_list_ = list; } void Heap::UnregisterStrongRoots(Object** start) { StrongRootsList* prev = NULL; StrongRootsList* list = strong_roots_list_; while (list != nullptr) { StrongRootsList* next = list->next; if (list->start == start) { if (prev) { prev->next = next; } else { strong_roots_list_ = next; } delete list; } else { prev = list; } list = next; } } size_t Heap::NumberOfTrackedHeapObjectTypes() { return ObjectStats::OBJECT_STATS_COUNT; } size_t Heap::ObjectCountAtLastGC(size_t index) { if (live_object_stats_ == nullptr || index >= ObjectStats::OBJECT_STATS_COUNT) return 0; return live_object_stats_->object_count_last_gc(index); } size_t Heap::ObjectSizeAtLastGC(size_t index) { if (live_object_stats_ == nullptr || index >= ObjectStats::OBJECT_STATS_COUNT) return 0; return live_object_stats_->object_size_last_gc(index); } bool Heap::GetObjectTypeName(size_t index, const char** object_type, const char** object_sub_type) { if (index >= ObjectStats::OBJECT_STATS_COUNT) return false; switch (static_cast<int>(index)) { #define COMPARE_AND_RETURN_NAME(name) \ case name: \ *object_type = #name; \ *object_sub_type = ""; \ return true; INSTANCE_TYPE_LIST(COMPARE_AND_RETURN_NAME) #undef COMPARE_AND_RETURN_NAME #define COMPARE_AND_RETURN_NAME(name) \ case ObjectStats::FIRST_CODE_KIND_SUB_TYPE + Code::name: \ *object_type = "CODE_TYPE"; \ *object_sub_type = "CODE_KIND/" #name; \ return true; CODE_KIND_LIST(COMPARE_AND_RETURN_NAME) #undef COMPARE_AND_RETURN_NAME #define COMPARE_AND_RETURN_NAME(name) \ case ObjectStats::FIRST_FIXED_ARRAY_SUB_TYPE + name: \ *object_type = "FIXED_ARRAY_TYPE"; \ *object_sub_type = #name; \ return true; FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(COMPARE_AND_RETURN_NAME) #undef COMPARE_AND_RETURN_NAME #define COMPARE_AND_RETURN_NAME(name) \ case ObjectStats::FIRST_CODE_AGE_SUB_TYPE + Code::k##name##CodeAge - \ Code::kFirstCodeAge: \ *object_type = "CODE_TYPE"; \ *object_sub_type = "CODE_AGE/" #name; \ return true; CODE_AGE_LIST_COMPLETE(COMPARE_AND_RETURN_NAME) #undef COMPARE_AND_RETURN_NAME } return false; } const char* AllocationSpaceName(AllocationSpace space) { switch (space) { case NEW_SPACE: return "NEW_SPACE"; case OLD_SPACE: return "OLD_SPACE"; case CODE_SPACE: return "CODE_SPACE"; case MAP_SPACE: return "MAP_SPACE"; case LO_SPACE: return "LO_SPACE"; default: UNREACHABLE(); } return NULL; } void VerifyPointersVisitor::VisitPointers(HeapObject* host, Object** start, Object** end) { VerifyPointers(start, end); } void VerifyPointersVisitor::VisitRootPointers(Root root, Object** start, Object** end) { VerifyPointers(start, end); } void VerifyPointersVisitor::VerifyPointers(Object** start, Object** end) { for (Object** current = start; current < end; current++) { if ((*current)->IsHeapObject()) { HeapObject* object = HeapObject::cast(*current); CHECK(object->GetIsolate()->heap()->Contains(object)); CHECK(object->map()->IsMap()); } else { CHECK((*current)->IsSmi()); } } } void VerifySmisVisitor::VisitRootPointers(Root root, Object** start, Object** end) { for (Object** current = start; current < end; current++) { CHECK((*current)->IsSmi()); } } bool Heap::AllowedToBeMigrated(HeapObject* obj, AllocationSpace dst) { // Object migration is governed by the following rules: // // 1) Objects in new-space can be migrated to the old space // that matches their target space or they stay in new-space. // 2) Objects in old-space stay in the same space when migrating. // 3) Fillers (two or more words) can migrate due to left-trimming of // fixed arrays in new-space or old space. // 4) Fillers (one word) can never migrate, they are skipped by // incremental marking explicitly to prevent invalid pattern. // // Since this function is used for debugging only, we do not place // asserts here, but check everything explicitly. if (obj->map() == one_pointer_filler_map()) return false; InstanceType type = obj->map()->instance_type(); MemoryChunk* chunk = MemoryChunk::FromAddress(obj->address()); AllocationSpace src = chunk->owner()->identity(); switch (src) { case NEW_SPACE: return dst == src || dst == OLD_SPACE; case OLD_SPACE: return dst == src && (dst == OLD_SPACE || obj->IsFiller() || obj->IsExternalString()); case CODE_SPACE: return dst == src && type == CODE_TYPE; case MAP_SPACE: case LO_SPACE: return false; } UNREACHABLE(); } } // namespace internal } // namespace v8