// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_ARM64 #include "src/arm64/frames-arm64.h" #include "src/codegen.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/full-codegen/full-codegen.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) // Load the built-in Array function from the current context. static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ Ldr(result, GlobalObjectMemOperand()); __ Ldr(result, FieldMemOperand(result, JSGlobalObject::kNativeContextOffset)); // Load the InternalArray function from the native context. __ Ldr(result, MemOperand(result, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); } // Load the built-in InternalArray function from the current context. static void GenerateLoadInternalArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ Ldr(result, GlobalObjectMemOperand()); __ Ldr(result, FieldMemOperand(result, JSGlobalObject::kNativeContextOffset)); // Load the InternalArray function from the native context. __ Ldr(result, ContextMemOperand(result, Context::INTERNAL_ARRAY_FUNCTION_INDEX)); } void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- x0 : number of arguments excluding receiver // (only guaranteed when the called function // is not marked as DontAdaptArguments) // -- x1 : called function // -- sp[0] : last argument // -- ... // -- sp[4 * (argc - 1)] : first argument // -- sp[4 * argc] : receiver // ----------------------------------- __ AssertFunction(x1); // Make sure we operate in the context of the called function (for example // ConstructStubs implemented in C++ will be run in the context of the caller // instead of the callee, due to the way that [[Construct]] is defined for // ordinary functions). // TODO(bmeurer): Can we make this more robust? __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset)); // Insert extra arguments. int num_extra_args = 0; if (extra_args == NEEDS_CALLED_FUNCTION) { num_extra_args = 1; __ Push(x1); } else { DCHECK(extra_args == NO_EXTRA_ARGUMENTS); } // JumpToExternalReference expects x0 to contain the number of arguments // including the receiver and the extra arguments. But x0 is only valid // if the called function is marked as DontAdaptArguments, otherwise we // need to load the argument count from the SharedFunctionInfo. __ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldrsw( x2, FieldMemOperand(x2, SharedFunctionInfo::kFormalParameterCountOffset)); __ Cmp(x2, SharedFunctionInfo::kDontAdaptArgumentsSentinel); __ Csel(x0, x0, x2, eq); __ Add(x0, x0, num_extra_args + 1); __ JumpToExternalReference(ExternalReference(id, masm->isolate())); } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- ASM_LOCATION("Builtins::Generate_InternalArrayCode"); Label generic_array_code; // Get the InternalArray function. GenerateLoadInternalArrayFunction(masm, x1); if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ Ldr(x10, FieldMemOperand(x1, JSFunction::kPrototypeOrInitialMapOffset)); __ Tst(x10, kSmiTagMask); __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction); __ CompareObjectType(x10, x11, x12, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- ASM_LOCATION("Builtins::Generate_ArrayCode"); Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the Array function. GenerateLoadArrayFunction(masm, x1); if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ Ldr(x10, FieldMemOperand(x1, JSFunction::kPrototypeOrInitialMapOffset)); __ Tst(x10, kSmiTagMask); __ Assert(ne, kUnexpectedInitialMapForArrayFunction); __ CompareObjectType(x10, x11, x12, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); } // Run the native code for the Array function called as a normal function. __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); __ Mov(x3, x1); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } // static void Builtins::Generate_StringConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- x1 : constructor function // -- lr : return address // -- sp[(argc - n - 1) * 8] : arg[n] (zero based) // -- sp[argc * 8] : receiver // ----------------------------------- ASM_LOCATION("Builtins::Generate_StringConstructor"); // 1. Load the first argument into x0 and get rid of the rest (including the // receiver). Label no_arguments; { __ Cbz(x0, &no_arguments); __ Sub(x0, x0, 1); __ Drop(x0); __ Ldr(x0, MemOperand(jssp, 2 * kPointerSize, PostIndex)); } // 2a. At least one argument, return x0 if it's a string, otherwise // dispatch to appropriate conversion. Label to_string, symbol_descriptive_string; { __ JumpIfSmi(x0, &to_string); STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE); __ CompareObjectType(x0, x1, x1, FIRST_NONSTRING_TYPE); __ B(hi, &to_string); __ B(eq, &symbol_descriptive_string); __ Ret(); } // 2b. No arguments, return the empty string (and pop the receiver). __ Bind(&no_arguments); { __ LoadRoot(x0, Heap::kempty_stringRootIndex); __ Drop(1); __ Ret(); } // 3a. Convert x0 to a string. __ Bind(&to_string); { ToStringStub stub(masm->isolate()); __ TailCallStub(&stub); } // 3b. Convert symbol in x0 to a string. __ Bind(&symbol_descriptive_string); { __ Push(x0); __ TailCallRuntime(Runtime::kSymbolDescriptiveString, 1, 1); } } // static void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- x1 : constructor function // -- x3 : new target // -- lr : return address // -- sp[(argc - n - 1) * 8] : arg[n] (zero based) // -- sp[argc * 8] : receiver // ----------------------------------- ASM_LOCATION("Builtins::Generate_StringConstructor_ConstructStub"); // 1. Load the first argument into x2 and get rid of the rest (including the // receiver). { Label no_arguments, done; __ Cbz(x0, &no_arguments); __ Sub(x0, x0, 1); __ Drop(x0); __ Ldr(x2, MemOperand(jssp, 2 * kPointerSize, PostIndex)); __ B(&done); __ Bind(&no_arguments); __ Drop(1); __ LoadRoot(x2, Heap::kempty_stringRootIndex); __ Bind(&done); } // 2. Make sure x2 is a string. { Label convert, done_convert; __ JumpIfSmi(x2, &convert); __ JumpIfObjectType(x2, x4, x4, FIRST_NONSTRING_TYPE, &done_convert, lo); __ Bind(&convert); { FrameScope scope(masm, StackFrame::INTERNAL); ToStringStub stub(masm->isolate()); __ Push(x1, x3); __ Move(x0, x2); __ CallStub(&stub); __ Move(x2, x0); __ Pop(x3, x1); } __ Bind(&done_convert); } // 3. Check if new target and constructor differ. Label new_object; __ Cmp(x1, x3); __ B(ne, &new_object); // 4. Allocate a JSValue wrapper for the string. { // ----------- S t a t e ------------- // -- x2 : the first argument // -- x1 : constructor function // -- x3 : new target // -- lr : return address // ----------------------------------- __ Allocate(JSValue::kSize, x0, x4, x5, &new_object, TAG_OBJECT); // Initialize the JSValue in eax. __ LoadGlobalFunctionInitialMap(x1, x3, x4); __ Str(x3, FieldMemOperand(x0, HeapObject::kMapOffset)); __ LoadRoot(x3, Heap::kEmptyFixedArrayRootIndex); __ Str(x3, FieldMemOperand(x0, JSObject::kPropertiesOffset)); __ Str(x3, FieldMemOperand(x0, JSObject::kElementsOffset)); __ Str(x2, FieldMemOperand(x0, JSValue::kValueOffset)); STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); __ Ret(); } // 5. Fallback to the runtime to create new object. __ bind(&new_object); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(x2, x1, x3); // first argument, constructor, new target __ CallRuntime(Runtime::kNewObject, 2); __ Pop(x2); } __ Str(x2, FieldMemOperand(x0, JSValue::kValueOffset)); __ Ret(); } static void CallRuntimePassFunction(MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- x1 : target function (preserved for callee) // -- x3 : new target (preserved for callee) // ----------------------------------- FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the target function and the new target. // Push another copy as a parameter to the runtime call. __ Push(x1, x3, x1); __ CallRuntime(function_id, 1); // Restore target function and new target. __ Pop(x3, x1); } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(x2, FieldMemOperand(x2, SharedFunctionInfo::kCodeOffset)); __ Add(x2, x2, Code::kHeaderSize - kHeapObjectTag); __ Br(x2); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm) { __ Add(x0, x0, Code::kHeaderSize - kHeapObjectTag); __ Br(x0); } void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, not // checking may delay installing ready functions, and always checking would be // quite expensive. A good compromise is to first check against stack limit as // a cue for an interrupt signal. Label ok; __ CompareRoot(masm->StackPointer(), Heap::kStackLimitRootIndex); __ B(hs, &ok); CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode); GenerateTailCallToReturnedCode(masm); __ Bind(&ok); GenerateTailCallToSharedCode(masm); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool create_implicit_receiver) { // ----------- S t a t e ------------- // -- x0 : number of arguments // -- x1 : constructor function // -- x2 : allocation site or undefined // -- x3 : new target // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- ASM_LOCATION("Builtins::Generate_JSConstructStubHelper"); Isolate* isolate = masm->isolate(); // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the four incoming parameters on the stack. Register argc = x0; Register constructor = x1; Register allocation_site = x2; Register new_target = x3; // Preserve the incoming parameters on the stack. __ AssertUndefinedOrAllocationSite(allocation_site, x10); __ SmiTag(argc); __ Push(allocation_site, argc); if (create_implicit_receiver) { // sp[0]: new.target // sp[1]: Constructor function. // sp[2]: number of arguments (smi-tagged) // sp[3]: allocation site // Try to allocate the object without transitioning into C code. If any of // the preconditions is not met, the code bails out to the runtime call. Label rt_call, allocated; if (FLAG_inline_new) { // Verify that the new target is a JSFunction. __ JumpIfNotObjectType(new_target, x10, x11, JS_FUNCTION_TYPE, &rt_call); // Load the initial map and verify that it is in fact a map. Register init_map = x2; __ Ldr(init_map, FieldMemOperand(new_target, JSFunction::kPrototypeOrInitialMapOffset)); __ JumpIfSmi(init_map, &rt_call); __ JumpIfNotObjectType(init_map, x10, x11, MAP_TYPE, &rt_call); // Fall back to runtime if the expected base constructor and base // constructor differ. __ Ldr(x10, FieldMemOperand(init_map, Map::kConstructorOrBackPointerOffset)); __ Cmp(constructor, x10); __ B(ne, &rt_call); // Check that the constructor is not constructing a JSFunction (see // comments in Runtime_NewObject in runtime.cc). In which case the // initial // map's instance type would be JS_FUNCTION_TYPE. __ CompareInstanceType(init_map, x10, JS_FUNCTION_TYPE); __ B(eq, &rt_call); Register constructon_count = x14; if (!is_api_function) { Label allocate; MemOperand bit_field3 = FieldMemOperand(init_map, Map::kBitField3Offset); // Check if slack tracking is enabled. __ Ldr(x4, bit_field3); __ DecodeField<Map::Counter>(constructon_count, x4); __ Cmp(constructon_count, Operand(Map::kSlackTrackingCounterEnd)); __ B(lt, &allocate); // Decrease generous allocation count. __ Subs(x4, x4, Operand(1 << Map::Counter::kShift)); __ Str(x4, bit_field3); __ Cmp(constructon_count, Operand(Map::kSlackTrackingCounterEnd)); __ B(ne, &allocate); // Push the constructor, new_target and map to the stack, and // the map again as an argument to the runtime call. __ Push(constructor, new_target, init_map, init_map); __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); __ Pop(init_map, new_target, constructor); __ Mov(constructon_count, Operand(Map::kSlackTrackingCounterEnd - 1)); __ Bind(&allocate); } // Now allocate the JSObject on the heap. Register obj_size = x10; Register new_obj = x4; Register next_obj = obj_size; // May overlap. __ Ldrb(obj_size, FieldMemOperand(init_map, Map::kInstanceSizeOffset)); __ Allocate(obj_size, new_obj, next_obj, x11, &rt_call, SIZE_IN_WORDS); // Allocated the JSObject, now initialize the fields. Map is set to // initial map and properties and elements are set to empty fixed array. // NB. the object pointer is not tagged, so MemOperand is used. Register write_address = x5; Register empty = x7; __ Mov(write_address, new_obj); __ LoadRoot(empty, Heap::kEmptyFixedArrayRootIndex); STATIC_ASSERT(0 * kPointerSize == JSObject::kMapOffset); __ Str(init_map, MemOperand(write_address, kPointerSize, PostIndex)); STATIC_ASSERT(1 * kPointerSize == JSObject::kPropertiesOffset); STATIC_ASSERT(2 * kPointerSize == JSObject::kElementsOffset); __ Stp(empty, empty, MemOperand(write_address, 2 * kPointerSize, PostIndex)); STATIC_ASSERT(3 * kPointerSize == JSObject::kHeaderSize); // Fill all of the in-object properties with the appropriate filler. Register filler = x7; __ LoadRoot(filler, Heap::kUndefinedValueRootIndex); if (!is_api_function) { Label no_inobject_slack_tracking; // Check if slack tracking is enabled. __ Cmp(constructon_count, Operand(Map::kSlackTrackingCounterEnd)); __ B(lt, &no_inobject_slack_tracking); constructon_count = NoReg; // Allocate object with a slack. Register unused_props = x11; __ Ldr(unused_props, FieldMemOperand(init_map, Map::kInstanceAttributesOffset)); __ Ubfx(unused_props, unused_props, Map::kUnusedPropertyFieldsByte * kBitsPerByte, kBitsPerByte); Register end_of_pre_allocated = x11; __ Sub(end_of_pre_allocated, next_obj, Operand(unused_props, LSL, kPointerSizeLog2)); unused_props = NoReg; if (FLAG_debug_code) { __ Cmp(write_address, end_of_pre_allocated); __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields); } // Fill the pre-allocated fields with undef. __ InitializeFieldsWithFiller(write_address, end_of_pre_allocated, filler); // Fill the remaining fields with one pointer filler map. __ LoadRoot(filler, Heap::kOnePointerFillerMapRootIndex); __ bind(&no_inobject_slack_tracking); } // Fill all of the property fields with undef. __ InitializeFieldsWithFiller(write_address, next_obj, filler); // Add the object tag to make the JSObject real, so that we can continue // and jump into the continuation code at any time from now on. __ Add(new_obj, new_obj, kHeapObjectTag); // Continue with JSObject being successfully allocated. __ B(&allocated); } // Allocate the new receiver object using the runtime call. // x1: constructor function // x3: new target __ Bind(&rt_call); // Push the constructor and new_target twice, second pair as arguments // to the runtime call. __ Push(constructor, new_target, constructor, new_target); __ CallRuntime(Runtime::kNewObject, 2); __ Mov(x4, x0); __ Pop(new_target, constructor); // Receiver for constructor call allocated. // x1: constructor function // x3: new target // x4: JSObject __ Bind(&allocated); // Reload the number of arguments from the stack. // Set it up in x0 for the function call below. // jssp[0]: number of arguments (smi-tagged) __ Peek(argc, 0); // Load number of arguments. } __ SmiUntag(argc); // Push new.target onto the construct frame. This is stored just below the // receiver on the stack. if (create_implicit_receiver) { // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ Push(new_target, x4, x4); } else { __ push(new_target); __ PushRoot(Heap::kTheHoleValueRootIndex); } // Set up pointer to last argument. __ Add(x2, fp, StandardFrameConstants::kCallerSPOffset); // Copy arguments and receiver to the expression stack. // Copy 2 values every loop to use ldp/stp. // x0: number of arguments // x1: constructor function // x2: address of last argument (caller sp) // x3: new target // jssp[0]: receiver // jssp[1]: receiver // jssp[2]: new.target // jssp[3]: number of arguments (smi-tagged) // Compute the start address of the copy in x3. __ Add(x4, x2, Operand(argc, LSL, kPointerSizeLog2)); Label loop, entry, done_copying_arguments; __ B(&entry); __ Bind(&loop); __ Ldp(x10, x11, MemOperand(x4, -2 * kPointerSize, PreIndex)); __ Push(x11, x10); __ Bind(&entry); __ Cmp(x4, x2); __ B(gt, &loop); // Because we copied values 2 by 2 we may have copied one extra value. // Drop it if that is the case. __ B(eq, &done_copying_arguments); __ Drop(1); __ Bind(&done_copying_arguments); // Call the function. // x0: number of arguments // x1: constructor function // x3: new target if (is_api_function) { __ Ldr(cp, FieldMemOperand(constructor, JSFunction::kContextOffset)); Handle<Code> code = masm->isolate()->builtins()->HandleApiCallConstruct(); __ Call(code, RelocInfo::CODE_TARGET); } else { ParameterCount actual(argc); __ InvokeFunction(constructor, new_target, actual, CALL_FUNCTION, NullCallWrapper()); } // Store offset of return address for deoptimizer. if (create_implicit_receiver && !is_api_function) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore the context from the frame. // x0: result // jssp[0]: receiver // jssp[1]: new.target // jssp[2]: number of arguments (smi-tagged) __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); if (create_implicit_receiver) { // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. // x0: result // jssp[0]: receiver (newly allocated object) // jssp[1]: number of arguments (smi-tagged) __ JumpIfSmi(x0, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. __ JumpIfObjectType(x0, x1, x3, FIRST_SPEC_OBJECT_TYPE, &exit, ge); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ Bind(&use_receiver); __ Peek(x0, 0); // Remove the receiver from the stack, remove caller arguments, and // return. __ Bind(&exit); // x0: result // jssp[0]: receiver (newly allocated object) // jssp[1]: new target // jssp[2]: number of arguments (smi-tagged) __ Peek(x1, 2 * kXRegSize); } else { __ Peek(x1, kXRegSize); } // Leave construct frame. } __ DropBySMI(x1); __ Drop(1); if (create_implicit_receiver) { __ IncrementCounter(isolate->counters()->constructed_objects(), 1, x1, x2); } __ Ret(); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, true); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, true); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false); } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(x1); __ CallRuntime(Runtime::kThrowConstructedNonConstructable, 1); } enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt }; // Clobbers x10, x15; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc, IsTagged argc_is_tagged) { // Check the stack for overflow. // We are not trying to catch interruptions (e.g. debug break and // preemption) here, so the "real stack limit" is checked. Label enough_stack_space; __ LoadRoot(x10, Heap::kRealStackLimitRootIndex); // Make x10 the space we have left. The stack might already be overflowed // here which will cause x10 to become negative. // TODO(jbramley): Check that the stack usage here is safe. __ Sub(x10, jssp, x10); // Check if the arguments will overflow the stack. if (argc_is_tagged == kArgcIsSmiTagged) { __ Cmp(x10, Operand::UntagSmiAndScale(argc, kPointerSizeLog2)); } else { DCHECK(argc_is_tagged == kArgcIsUntaggedInt); __ Cmp(x10, Operand(argc, LSL, kPointerSizeLog2)); } __ B(gt, &enough_stack_space); __ CallRuntime(Runtime::kThrowStackOverflow, 0); // We should never return from the APPLY_OVERFLOW builtin. if (__ emit_debug_code()) { __ Unreachable(); } __ Bind(&enough_stack_space); } // Input: // x0: new.target. // x1: function. // x2: receiver. // x3: argc. // x4: argv. // Output: // x0: result. static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from JSEntryStub::GenerateBody(). Register new_target = x0; Register function = x1; Register receiver = x2; Register argc = x3; Register argv = x4; Register scratch = x10; ProfileEntryHookStub::MaybeCallEntryHook(masm); // Clear the context before we push it when entering the internal frame. __ Mov(cp, 0); { // Enter an internal frame. FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). __ Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress, masm->isolate()))); __ Ldr(cp, MemOperand(scratch)); __ InitializeRootRegister(); // Push the function and the receiver onto the stack. __ Push(function, receiver); // Check if we have enough stack space to push all arguments. // Expects argument count in eax. Clobbers ecx, edx, edi. Generate_CheckStackOverflow(masm, argc, kArgcIsUntaggedInt); // Copy arguments to the stack in a loop, in reverse order. // x3: argc. // x4: argv. Label loop, entry; // Compute the copy end address. __ Add(scratch, argv, Operand(argc, LSL, kPointerSizeLog2)); __ B(&entry); __ Bind(&loop); __ Ldr(x11, MemOperand(argv, kPointerSize, PostIndex)); __ Ldr(x12, MemOperand(x11)); // Dereference the handle. __ Push(x12); // Push the argument. __ Bind(&entry); __ Cmp(scratch, argv); __ B(ne, &loop); __ Mov(scratch, argc); __ Mov(argc, new_target); __ Mov(new_target, scratch); // x0: argc. // x3: new.target. // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. // The original values have been saved in JSEntryStub::GenerateBody(). __ LoadRoot(x19, Heap::kUndefinedValueRootIndex); __ Mov(x20, x19); __ Mov(x21, x19); __ Mov(x22, x19); __ Mov(x23, x19); __ Mov(x24, x19); __ Mov(x25, x19); // Don't initialize the reserved registers. // x26 : root register (root). // x27 : context pointer (cp). // x28 : JS stack pointer (jssp). // x29 : frame pointer (fp). Handle<Code> builtin = is_construct ? masm->isolate()->builtins()->Construct() : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the JS internal frame and remove the parameters (except function), // and return. } // Result is in x0. Return. __ Ret(); } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // - x1: the JS function object being called. // - x3: the new target // - cp: our context. // - fp: our caller's frame pointer. // - jssp: stack pointer. // - lr: return address. // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-arm64.h for its layout. // TODO(rmcilroy): We will need to include the current bytecode pointer in the // frame. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ Push(lr, fp, cp, x1); __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp); __ Push(x3); // Get the bytecode array from the function object and load the pointer to the // first entry into kInterpreterBytecodeRegister. __ Ldr(x0, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(kInterpreterBytecodeArrayRegister, FieldMemOperand(x0, SharedFunctionInfo::kFunctionDataOffset)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ AssertNotSmi(kInterpreterBytecodeArrayRegister, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); __ CompareObjectType(kInterpreterBytecodeArrayRegister, x0, x0, BYTECODE_ARRAY_TYPE); __ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Allocate the local and temporary register file on the stack. { // Load frame size from the BytecodeArray object. __ Ldr(w11, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; DCHECK(jssp.Is(__ StackPointer())); __ Sub(x10, jssp, Operand(x11)); __ CompareRoot(x10, Heap::kRealStackLimitRootIndex); __ B(hs, &ok); __ CallRuntime(Runtime::kThrowStackOverflow, 0); __ Bind(&ok); // If ok, push undefined as the initial value for all register file entries. // Note: there should always be at least one stack slot for the return // register in the register file. Label loop_header; __ LoadRoot(x10, Heap::kUndefinedValueRootIndex); // TODO(rmcilroy): Ensure we always have an even number of registers to // allow stack to be 16 bit aligned (and remove need for jssp). __ Lsr(x11, x11, kPointerSizeLog2); __ PushMultipleTimes(x10, x11); __ Bind(&loop_header); } // TODO(rmcilroy): List of things not currently dealt with here but done in // fullcodegen's prologue: // - Support profiler (specifically profiling_counter). // - Call ProfileEntryHookStub when isolate has a function_entry_hook. // - Allow simulator stop operations if FLAG_stop_at is set. // - Code aging of the BytecodeArray object. // Perform stack guard check. { Label ok; __ CompareRoot(jssp, Heap::kStackLimitRootIndex); __ B(hs, &ok); __ Push(kInterpreterBytecodeArrayRegister); __ CallRuntime(Runtime::kStackGuard, 0); __ Pop(kInterpreterBytecodeArrayRegister); __ Bind(&ok); } // Load accumulator, register file, bytecode offset, dispatch table into // registers. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); __ Sub(kInterpreterRegisterFileRegister, fp, Operand(2 * kPointerSize + StandardFrameConstants::kFixedFrameSizeFromFp)); __ Mov(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); __ LoadRoot(kInterpreterDispatchTableRegister, Heap::kInterpreterTableRootIndex); __ Add(kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); // Dispatch to the first bytecode handler for the function. __ Ldrb(x1, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ Mov(x1, Operand(x1, LSL, kPointerSizeLog2)); __ Ldr(ip0, MemOperand(kInterpreterDispatchTableRegister, x1)); // TODO(rmcilroy): Make dispatch table point to code entrys to avoid untagging // and header removal. __ Add(ip0, ip0, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Call(ip0); } void Builtins::Generate_InterpreterExitTrampoline(MacroAssembler* masm) { // TODO(rmcilroy): List of things not currently dealt with here but done in // fullcodegen's EmitReturnSequence. // - Supporting FLAG_trace for Runtime::TraceExit. // - Support profiler (specifically decrementing profiling_counter // appropriately and calling out to HandleInterrupts if necessary). // The return value is in accumulator, which is already in x0. // Leave the frame (also dropping the register file). __ LeaveFrame(StackFrame::JAVA_SCRIPT); // Drop receiver + arguments and return. __ Ldr(w1, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kParameterSizeOffset)); __ Drop(x1, 1); __ Ret(); } void Builtins::Generate_CompileLazy(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kCompileLazy); GenerateTailCallToReturnedCode(masm); } void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kCompileOptimized_NotConcurrent); GenerateTailCallToReturnedCode(masm); } void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kCompileOptimized_Concurrent); GenerateTailCallToReturnedCode(masm); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code fast, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // The following caller-saved registers must be saved and restored when // calling through to the runtime: // x0 - The address from which to resume execution. // x1 - isolate // x3 - new target // lr - The return address for the JSFunction itself. It has not yet been // preserved on the stack because the frame setup code was replaced // with a call to this stub, to handle code ageing. { FrameScope scope(masm, StackFrame::MANUAL); __ Push(x0, x1, x3, fp, lr); __ Mov(x1, ExternalReference::isolate_address(masm->isolate())); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); __ Pop(lr, fp, x3, x1, x0); } // The calling function has been made young again, so return to execute the // real frame set-up code. __ Br(x0); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } \ void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact // that make_code_young doesn't do any garbage collection which allows us to // save/restore the registers without worrying about which of them contain // pointers. // The following caller-saved registers must be saved and restored when // calling through to the runtime: // x0 - The address from which to resume execution. // x1 - isolate // x3 - new target // lr - The return address for the JSFunction itself. It has not yet been // preserved on the stack because the frame setup code was replaced // with a call to this stub, to handle code ageing. { FrameScope scope(masm, StackFrame::MANUAL); __ Push(x0, x1, x3, fp, lr); __ Mov(x1, ExternalReference::isolate_address(masm->isolate())); __ CallCFunction( ExternalReference::get_mark_code_as_executed_function( masm->isolate()), 2); __ Pop(lr, fp, x3, x1, x0); // Perform prologue operations usually performed by the young code stub. __ EmitFrameSetupForCodeAgePatching(masm); } // Jump to point after the code-age stub. __ Add(x0, x0, kNoCodeAgeSequenceLength); __ Br(x0); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) { Generate_MarkCodeAsExecutedOnce(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. // TODO(jbramley): Is it correct (and appropriate) to use safepoint // registers here? According to the comment above, we should only need to // preserve the registers with parameters. __ PushXRegList(kSafepointSavedRegisters); // Pass the function and deoptimization type to the runtime system. __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles); __ PopXRegList(kSafepointSavedRegisters); } // Ignore state (pushed by Deoptimizer::EntryGenerator::Generate). __ Drop(1); // Jump to the miss handler. Deoptimizer::EntryGenerator::Generate loads this // into lr before it jumps here. __ Br(lr); } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { { FrameScope scope(masm, StackFrame::INTERNAL); // Pass the deoptimization type to the runtime system. __ Mov(x0, Smi::FromInt(static_cast<int>(type))); __ Push(x0); __ CallRuntime(Runtime::kNotifyDeoptimized, 1); } // Get the full codegen state from the stack and untag it. Register state = x6; __ Peek(state, 0); __ SmiUntag(state); // Switch on the state. Label with_tos_register, unknown_state; __ CompareAndBranch( state, FullCodeGenerator::NO_REGISTERS, ne, &with_tos_register); __ Drop(1); // Remove state. __ Ret(); __ Bind(&with_tos_register); // Reload TOS register. __ Peek(x0, kPointerSize); __ CompareAndBranch(state, FullCodeGenerator::TOS_REG, ne, &unknown_state); __ Drop(2); // Remove state and TOS. __ Ret(); __ Bind(&unknown_state); __ Abort(kInvalidFullCodegenState); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } static void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver, Register function_template_info, Register scratch0, Register scratch1, Register scratch2, Label* receiver_check_failed) { Register signature = scratch0; Register map = scratch1; Register constructor = scratch2; // If the receiver is not an object, jump to receiver_check_failed. __ CompareObjectType(receiver, map, x16, FIRST_JS_OBJECT_TYPE); __ B(lo, receiver_check_failed); // If there is no signature, return the holder. __ Ldr(signature, FieldMemOperand(function_template_info, FunctionTemplateInfo::kSignatureOffset)); __ CompareRoot(signature, Heap::kUndefinedValueRootIndex); Label receiver_check_passed; __ B(eq, &receiver_check_passed); // Walk the prototype chain. Label prototype_loop_start; __ Bind(&prototype_loop_start); // End if the receiver is null or if it's a hidden type. __ CompareRoot(receiver, Heap::kNullValueRootIndex); __ B(eq, receiver_check_failed); __ Ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ Ldr(x16, FieldMemOperand(map, Map::kBitField3Offset)); __ Tst(x16, Operand(Map::IsHiddenPrototype::kMask)); __ B(ne, receiver_check_failed); // Get the constructor, if any __ GetMapConstructor(constructor, map, x16, x16); __ cmp(x16, Operand(JS_FUNCTION_TYPE)); Label next_prototype; __ B(ne, &next_prototype); Register type = constructor; __ Ldr(type, FieldMemOperand(constructor, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(type, FieldMemOperand(type, SharedFunctionInfo::kFunctionDataOffset)); // Loop through the chain of inheriting function templates. Label function_template_loop; __ Bind(&function_template_loop); // If the signatures match, we have a compatible receiver. __ Cmp(signature, type); __ B(eq, &receiver_check_passed); // If the current type is not a FunctionTemplateInfo, load the next prototype // in the chain. __ JumpIfSmi(type, &next_prototype); __ CompareObjectType(type, x16, x17, FUNCTION_TEMPLATE_INFO_TYPE); __ B(ne, &next_prototype); // Otherwise load the parent function template and iterate. __ Ldr(type, FieldMemOperand(type, FunctionTemplateInfo::kParentTemplateOffset)); __ B(&function_template_loop); // Load the next prototype and iterate. __ Bind(&next_prototype); __ Ldr(receiver, FieldMemOperand(map, Map::kPrototypeOffset)); __ B(&prototype_loop_start); __ Bind(&receiver_check_passed); } void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : number of arguments excluding receiver // -- x1 : callee // -- lr : return address // -- sp[0] : last argument // -- ... // -- sp[8 * (argc - 1)] : first argument // -- sp[8 * argc] : receiver // ----------------------------------- // Load the receiver. __ Ldr(x2, MemOperand(jssp, x0, LSL, kPointerSizeLog2)); // Update the receiver if this is a contextual call. Label set_global_proxy, valid_receiver; __ CompareRoot(x2, Heap::kUndefinedValueRootIndex); __ B(eq, &set_global_proxy); __ Bind(&valid_receiver); // Load the FunctionTemplateInfo. __ Ldr(x3, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(x3, FieldMemOperand(x3, SharedFunctionInfo::kFunctionDataOffset)); // Do the compatible receiver check. Label receiver_check_failed; CompatibleReceiverCheck(masm, x2, x3, x4, x5, x6, &receiver_check_failed); // Get the callback offset from the FunctionTemplateInfo, and jump to the // beginning of the code. __ Ldr(x4, FieldMemOperand(x3, FunctionTemplateInfo::kCallCodeOffset)); __ Ldr(x4, FieldMemOperand(x4, CallHandlerInfo::kFastHandlerOffset)); __ Add(x4, x4, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(x4); __ Bind(&set_global_proxy); __ Ldr(x2, GlobalObjectMemOperand()); __ Ldr(x2, FieldMemOperand(x2, JSGlobalObject::kGlobalProxyOffset)); __ Str(x2, MemOperand(jssp, x0, LSL, kPointerSizeLog2)); __ B(&valid_receiver); // Compatible receiver check failed: throw an Illegal Invocation exception. __ Bind(&receiver_check_failed); // Drop the arguments (including the receiver) __ add(x0, x0, Operand(1)); __ Drop(x0); __ TailCallRuntime(Runtime::kThrowIllegalInvocation, 0, 1); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { // Lookup the function in the JavaScript frame. __ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ Push(x0); __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1); } // If the code object is null, just return to the unoptimized code. Label skip; __ CompareAndBranch(x0, Smi::FromInt(0), ne, &skip); __ Ret(); __ Bind(&skip); // Load deoptimization data from the code object. // <deopt_data> = <code>[#deoptimization_data_offset] __ Ldr(x1, MemOperand(x0, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] __ Ldrsw(w1, UntagSmiFieldMemOperand(x1, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex))); // Compute the target address = code_obj + header_size + osr_offset // <entry_addr> = <code_obj> + #header_size + <osr_offset> __ Add(x0, x0, x1); __ Add(lr, x0, Code::kHeaderSize - kHeapObjectTag); // And "return" to the OSR entry point of the function. __ Ret(); } void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) { // We check the stack limit as indicator that recompilation might be done. Label ok; __ CompareRoot(jssp, Heap::kStackLimitRootIndex); __ B(hs, &ok); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kStackGuard, 0); } __ Jump(masm->isolate()->builtins()->OnStackReplacement(), RelocInfo::CODE_TARGET); __ Bind(&ok); __ Ret(); } void Builtins::Generate_FunctionCall(MacroAssembler* masm) { Register argc = x0; Register function = x1; Register scratch1 = x10; Register scratch2 = x11; ASM_LOCATION("Builtins::Generate_FunctionCall"); // 1. Make sure we have at least one argument. { Label done; __ Cbnz(argc, &done); __ LoadRoot(scratch1, Heap::kUndefinedValueRootIndex); __ Push(scratch1); __ Mov(argc, 1); __ Bind(&done); } // 2. Get the callable to call (passed as receiver) from the stack. __ Peek(function, Operand(argc, LSL, kXRegSizeLog2)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. { Label loop; // Calculate the copy start address (destination). Copy end address is jssp. __ Add(scratch2, jssp, Operand(argc, LSL, kPointerSizeLog2)); __ Sub(scratch1, scratch2, kPointerSize); __ Bind(&loop); __ Ldr(x12, MemOperand(scratch1, -kPointerSize, PostIndex)); __ Str(x12, MemOperand(scratch2, -kPointerSize, PostIndex)); __ Cmp(scratch1, jssp); __ B(ge, &loop); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ Sub(argc, argc, 1); __ Drop(1); } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } static void Generate_PushAppliedArguments(MacroAssembler* masm, const int vectorOffset, const int argumentsOffset, const int indexOffset, const int limitOffset) { Label entry, loop; Register receiver = LoadDescriptor::ReceiverRegister(); Register key = LoadDescriptor::NameRegister(); Register slot = LoadDescriptor::SlotRegister(); Register vector = LoadWithVectorDescriptor::VectorRegister(); __ Ldr(key, MemOperand(fp, indexOffset)); __ B(&entry); // Load the current argument from the arguments array. __ Bind(&loop); __ Ldr(receiver, MemOperand(fp, argumentsOffset)); // Use inline caching to speed up access to arguments. int slot_index = TypeFeedbackVector::PushAppliedArgumentsIndex(); __ Mov(slot, Operand(Smi::FromInt(slot_index))); __ Ldr(vector, MemOperand(fp, vectorOffset)); Handle<Code> ic = KeyedLoadICStub(masm->isolate(), LoadICState(kNoExtraICState)).GetCode(); __ Call(ic, RelocInfo::CODE_TARGET); // Push the nth argument. __ Push(x0); __ Ldr(key, MemOperand(fp, indexOffset)); __ Add(key, key, Smi::FromInt(1)); __ Str(key, MemOperand(fp, indexOffset)); // Test if the copy loop has finished copying all the elements from the // arguments object. __ Bind(&entry); __ Ldr(x1, MemOperand(fp, limitOffset)); __ Cmp(key, x1); __ B(ne, &loop); // On exit, the pushed arguments count is in x0, untagged __ Mov(x0, key); __ SmiUntag(x0); } static void Generate_ApplyHelper(MacroAssembler* masm, bool targetIsArgument) { const int kFormalParameters = targetIsArgument ? 3 : 2; const int kStackSize = kFormalParameters + 1; { FrameScope frame_scope(masm, StackFrame::INTERNAL); const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize; const int kReceiverOffset = kArgumentsOffset + kPointerSize; const int kFunctionOffset = kReceiverOffset + kPointerSize; const int kVectorOffset = InternalFrameConstants::kCodeOffset - 1 * kPointerSize; const int kIndexOffset = kVectorOffset - (2 * kPointerSize); const int kLimitOffset = kVectorOffset - (1 * kPointerSize); Register args = x12; Register receiver = x14; Register function = x15; Register apply_function = x1; // Push the vector. __ Ldr( apply_function, FieldMemOperand(apply_function, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(apply_function, FieldMemOperand(apply_function, SharedFunctionInfo::kFeedbackVectorOffset)); __ Push(apply_function); // Get the length of the arguments via a builtin call. __ Ldr(function, MemOperand(fp, kFunctionOffset)); __ Ldr(args, MemOperand(fp, kArgumentsOffset)); __ Push(function, args); if (targetIsArgument) { __ InvokeBuiltin(Context::REFLECT_APPLY_PREPARE_BUILTIN_INDEX, CALL_FUNCTION); } else { __ InvokeBuiltin(Context::APPLY_PREPARE_BUILTIN_INDEX, CALL_FUNCTION); } Register argc = x0; Generate_CheckStackOverflow(masm, argc, kArgcIsSmiTagged); // Push current limit, index and receiver. __ Mov(x1, 0); // Initial index. __ Ldr(receiver, MemOperand(fp, kReceiverOffset)); __ Push(argc, x1, receiver); // Copy all arguments from the array to the stack. Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset, kIndexOffset, kLimitOffset); // At the end of the loop, the number of arguments is stored in x0, untagged // Call the callable. // TODO(bmeurer): This should be a tail call according to ES6. __ Ldr(x1, MemOperand(fp, kFunctionOffset)); __ Call(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } __ Drop(kStackSize); __ Ret(); } static void Generate_ConstructHelper(MacroAssembler* masm) { const int kFormalParameters = 3; const int kStackSize = kFormalParameters + 1; { FrameScope frame_scope(masm, StackFrame::INTERNAL); const int kNewTargetOffset = kFPOnStackSize + kPCOnStackSize; const int kArgumentsOffset = kNewTargetOffset + kPointerSize; const int kFunctionOffset = kArgumentsOffset + kPointerSize; const int kVectorOffset = InternalFrameConstants::kCodeOffset - 1 * kPointerSize; const int kIndexOffset = kVectorOffset - (2 * kPointerSize); const int kLimitOffset = kVectorOffset - (1 * kPointerSize); // Is x11 safe to use? Register newTarget = x11; Register args = x12; Register function = x15; Register construct_function = x1; // Push the vector. __ Ldr(construct_function, FieldMemOperand(construct_function, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(construct_function, FieldMemOperand(construct_function, SharedFunctionInfo::kFeedbackVectorOffset)); __ Push(construct_function); // If newTarget is not supplied, set it to constructor Label validate_arguments; __ Ldr(x0, MemOperand(fp, kNewTargetOffset)); __ CompareRoot(x0, Heap::kUndefinedValueRootIndex); __ B(ne, &validate_arguments); __ Ldr(x0, MemOperand(fp, kFunctionOffset)); __ Str(x0, MemOperand(fp, kNewTargetOffset)); // Validate arguments __ Bind(&validate_arguments); __ Ldr(function, MemOperand(fp, kFunctionOffset)); __ Ldr(args, MemOperand(fp, kArgumentsOffset)); __ Ldr(newTarget, MemOperand(fp, kNewTargetOffset)); __ Push(function, args, newTarget); __ InvokeBuiltin(Context::REFLECT_CONSTRUCT_PREPARE_BUILTIN_INDEX, CALL_FUNCTION); Register argc = x0; Generate_CheckStackOverflow(masm, argc, kArgcIsSmiTagged); // Push current limit and index & constructor function as callee. __ Mov(x1, 0); // Initial index. __ Push(argc, x1, function); // Copy all arguments from the array to the stack. Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset, kIndexOffset, kLimitOffset); // Use undefined feedback vector __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); __ Ldr(x1, MemOperand(fp, kFunctionOffset)); __ Ldr(x3, MemOperand(fp, kNewTargetOffset)); // Call the function. __ Call(masm->isolate()->builtins()->Construct(), RelocInfo::CONSTRUCT_CALL); // Leave internal frame. } __ Drop(kStackSize); __ Ret(); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { ASM_LOCATION("Builtins::Generate_FunctionApply"); Generate_ApplyHelper(masm, false); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { ASM_LOCATION("Builtins::Generate_ReflectApply"); Generate_ApplyHelper(masm, true); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { ASM_LOCATION("Builtins::Generate_ReflectConstruct"); Generate_ConstructHelper(masm); } static void ArgumentAdaptorStackCheck(MacroAssembler* masm, Label* stack_overflow) { // ----------- S t a t e ------------- // -- x0 : actual number of arguments // -- x1 : function (passed through to callee) // -- x2 : expected number of arguments // -- x3 : new target (passed through to callee) // ----------------------------------- // Check the stack for overflow. // We are not trying to catch interruptions (e.g. debug break and // preemption) here, so the "real stack limit" is checked. Label enough_stack_space; __ LoadRoot(x10, Heap::kRealStackLimitRootIndex); // Make x10 the space we have left. The stack might already be overflowed // here which will cause x10 to become negative. __ Sub(x10, jssp, x10); // Check if the arguments will overflow the stack. __ Cmp(x10, Operand(x2, LSL, kPointerSizeLog2)); __ B(le, stack_overflow); } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ SmiTag(x10, x0); __ Mov(x11, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ Push(lr, fp); __ Push(x11, x1, x10); __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then drop the parameters and the receiver. __ Ldr(x10, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize))); __ Mov(jssp, fp); __ Pop(fp, lr); __ DropBySMI(x10, kXRegSize); __ Drop(1); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(x1); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that function is not a "classConstructor". Label class_constructor; __ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(w3, FieldMemOperand(x2, SharedFunctionInfo::kCompilerHintsOffset)); __ TestAndBranchIfAnySet( w3, (1 << SharedFunctionInfo::kIsDefaultConstructor) | (1 << SharedFunctionInfo::kIsSubclassConstructor) | (1 << SharedFunctionInfo::kIsBaseConstructor), &class_constructor); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ TestAndBranchIfAnySet(w3, (1 << SharedFunctionInfo::kNative) | (1 << SharedFunctionInfo::kStrictModeFunction), &done_convert); { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the function to call (checked to be a JSFunction) // -- x2 : the shared function info. // -- cp : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(x3); } else { Label convert_to_object, convert_receiver; __ Peek(x3, Operand(x0, LSL, kXRegSizeLog2)); __ JumpIfSmi(x3, &convert_to_object); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(x3, x4, x4, FIRST_JS_RECEIVER_TYPE); __ B(hs, &done_convert); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(x3, Heap::kUndefinedValueRootIndex, &convert_global_proxy); __ JumpIfNotRoot(x3, Heap::kNullValueRootIndex, &convert_to_object); __ Bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(x3); } __ B(&convert_receiver); } __ Bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameScope scope(masm, StackFrame::INTERNAL); __ SmiTag(x0); __ Push(x0, x1); __ Mov(x0, x3); ToObjectStub stub(masm->isolate()); __ CallStub(&stub); __ Mov(x3, x0); __ Pop(x1, x0); __ SmiUntag(x0); } __ Ldr(x2, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Bind(&convert_receiver); } __ Poke(x3, Operand(x0, LSL, kXRegSizeLog2)); } __ Bind(&done_convert); // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the function to call (checked to be a JSFunction) // -- x2 : the shared function info. // -- cp : the function context. // ----------------------------------- __ Ldrsw( x2, FieldMemOperand(x2, SharedFunctionInfo::kFormalParameterCountOffset)); __ Ldr(x4, FieldMemOperand(x1, JSFunction::kCodeEntryOffset)); ParameterCount actual(x0); ParameterCount expected(x2); __ InvokeCode(x4, no_reg, expected, actual, JUMP_FUNCTION, NullCallWrapper()); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ Push(x1); __ CallRuntime(Runtime::kThrowConstructorNonCallableError, 1); } } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi; __ JumpIfSmi(x1, &non_callable); __ Bind(&non_smi); __ CompareObjectType(x1, x4, x5, JS_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET, eq); __ Cmp(x5, JS_FUNCTION_PROXY_TYPE); __ B(ne, &non_function); // 1. Call to function proxy. // TODO(neis): This doesn't match the ES6 spec for [[Call]] on proxies. __ Ldr(x1, FieldMemOperand(x1, JSFunctionProxy::kCallTrapOffset)); __ AssertNotSmi(x1); __ B(&non_smi); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ Bind(&non_function); // Check if target has a [[Call]] internal method. __ Ldrb(x4, FieldMemOperand(x4, Map::kBitFieldOffset)); __ TestAndBranchIfAllClear(x4, 1 << Map::kIsCallable, &non_callable); // Overwrite the original receiver with the (original) target. __ Poke(x1, Operand(x0, LSL, kXRegSizeLog2)); // Let the "call_as_function_delegate" take care of the rest. __ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, x1); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(x1); __ CallRuntime(Runtime::kThrowCalledNonCallable, 1); } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the constructor to call (checked to be a JSFunction) // -- x3 : the new target (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(x1); __ AssertFunction(x3); // Calling convention for function specific ConstructStubs require // x2 to contain either an AllocationSite or undefined. __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ Ldr(x4, FieldMemOperand(x1, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(x4, FieldMemOperand(x4, SharedFunctionInfo::kConstructStubOffset)); __ Add(x4, x4, Code::kHeaderSize - kHeapObjectTag); __ Br(x4); } // static void Builtins::Generate_ConstructProxy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the constructor to call (checked to be a JSFunctionProxy) // -- x3 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // TODO(neis): This doesn't match the ES6 spec for [[Construct]] on proxies. __ Ldr(x1, FieldMemOperand(x1, JSFunctionProxy::kConstructTrapOffset)); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x1 : the constructor to call (can be any Object) // -- x3 : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Check if target is a Smi. Label non_constructor; __ JumpIfSmi(x1, &non_constructor); // Dispatch based on instance type. __ CompareObjectType(x1, x4, x5, JS_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->ConstructFunction(), RelocInfo::CODE_TARGET, eq); __ Cmp(x5, JS_FUNCTION_PROXY_TYPE); __ Jump(masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET, eq); // Check if target has a [[Construct]] internal method. __ Ldrb(x2, FieldMemOperand(x4, Map::kBitFieldOffset)); __ TestAndBranchIfAllClear(x2, 1 << Map::kIsConstructor, &non_constructor); // Called Construct on an exotic Object with a [[Construct]] internal method. { // Overwrite the original receiver with the (original) target. __ Poke(x1, Operand(x0, LSL, kXRegSizeLog2)); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, x1); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_InterpreterPushArgsAndCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : the number of arguments (not including the receiver) // -- x2 : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- x1 : the target to call (can be any Object). // ----------------------------------- // Find the address of the last argument. __ add(x3, x0, Operand(1)); // Add one for receiver. __ lsl(x3, x3, kPointerSizeLog2); __ sub(x4, x2, x3); // Push the arguments. Label loop_header, loop_check; __ Mov(x5, jssp); __ Claim(x3, 1); __ B(&loop_check); __ Bind(&loop_header); // TODO(rmcilroy): Push two at a time once we ensure we keep stack aligned. __ Ldr(x3, MemOperand(x2, -kPointerSize, PostIndex)); __ Str(x3, MemOperand(x5, -kPointerSize, PreIndex)); __ Bind(&loop_check); __ Cmp(x2, x4); __ B(gt, &loop_header); // Call the target. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_InterpreterPushArgsAndConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- x0 : argument count (not including receiver) // -- x3 : new target // -- x1 : constructor to call // -- x2 : address of the first argument // ----------------------------------- // Find the address of the last argument. __ add(x5, x0, Operand(1)); // Add one for receiver (to be constructed). __ lsl(x5, x5, kPointerSizeLog2); // Set stack pointer and where to stop. __ Mov(x6, jssp); __ Claim(x5, 1); __ sub(x4, x6, x5); // Push a slot for the receiver. __ Str(xzr, MemOperand(x6, -kPointerSize, PreIndex)); Label loop_header, loop_check; // Push the arguments. __ B(&loop_check); __ Bind(&loop_header); // TODO(rmcilroy): Push two at a time once we ensure we keep stack aligned. __ Ldr(x5, MemOperand(x2, -kPointerSize, PostIndex)); __ Str(x5, MemOperand(x6, -kPointerSize, PreIndex)); __ Bind(&loop_check); __ Cmp(x6, x4); __ B(gt, &loop_header); // Call the constructor with x0, x1, and x3 unmodified. __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CONSTRUCT_CALL); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { ASM_LOCATION("Builtins::Generate_ArgumentsAdaptorTrampoline"); // ----------- S t a t e ------------- // -- x0 : actual number of arguments // -- x1 : function (passed through to callee) // -- x2 : expected number of arguments // -- x3 : new target (passed through to callee) // ----------------------------------- Register argc_actual = x0; // Excluding the receiver. Register argc_expected = x2; // Excluding the receiver. Register function = x1; Register code_entry = x10; Label invoke, dont_adapt_arguments, stack_overflow; Label enough, too_few; __ Cmp(argc_actual, argc_expected); __ B(lt, &too_few); __ Cmp(argc_expected, SharedFunctionInfo::kDontAdaptArgumentsSentinel); __ B(eq, &dont_adapt_arguments); { // Enough parameters: actual >= expected EnterArgumentsAdaptorFrame(masm); ArgumentAdaptorStackCheck(masm, &stack_overflow); Register copy_start = x10; Register copy_end = x11; Register copy_to = x12; Register scratch1 = x13, scratch2 = x14; __ Lsl(scratch2, argc_expected, kPointerSizeLog2); // Adjust for fp, lr, and the receiver. __ Add(copy_start, fp, 3 * kPointerSize); __ Add(copy_start, copy_start, Operand(argc_actual, LSL, kPointerSizeLog2)); __ Sub(copy_end, copy_start, scratch2); __ Sub(copy_end, copy_end, kPointerSize); __ Mov(copy_to, jssp); // Claim space for the arguments, the receiver, and one extra slot. // The extra slot ensures we do not write under jssp. It will be popped // later. __ Add(scratch1, scratch2, 2 * kPointerSize); __ Claim(scratch1, 1); // Copy the arguments (including the receiver) to the new stack frame. Label copy_2_by_2; __ Bind(©_2_by_2); __ Ldp(scratch1, scratch2, MemOperand(copy_start, - 2 * kPointerSize, PreIndex)); __ Stp(scratch1, scratch2, MemOperand(copy_to, - 2 * kPointerSize, PreIndex)); __ Cmp(copy_start, copy_end); __ B(hi, ©_2_by_2); // Correct the space allocated for the extra slot. __ Drop(1); __ B(&invoke); } { // Too few parameters: Actual < expected __ Bind(&too_few); Register copy_from = x10; Register copy_end = x11; Register copy_to = x12; Register scratch1 = x13, scratch2 = x14; // If the function is strong we need to throw an error. Label no_strong_error; __ Ldr(scratch1, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(scratch2.W(), FieldMemOperand(scratch1, SharedFunctionInfo::kCompilerHintsOffset)); __ TestAndBranchIfAllClear(scratch2.W(), (1 << SharedFunctionInfo::kStrongModeFunction), &no_strong_error); // What we really care about is the required number of arguments. DCHECK_EQ(kPointerSize, kInt64Size); __ Ldr(scratch2.W(), FieldMemOperand(scratch1, SharedFunctionInfo::kLengthOffset)); __ Cmp(argc_actual, Operand(scratch2, LSR, 1)); __ B(ge, &no_strong_error); { FrameScope frame(masm, StackFrame::MANUAL); EnterArgumentsAdaptorFrame(masm); __ CallRuntime(Runtime::kThrowStrongModeTooFewArguments, 0); } __ Bind(&no_strong_error); EnterArgumentsAdaptorFrame(masm); ArgumentAdaptorStackCheck(masm, &stack_overflow); __ Lsl(scratch2, argc_expected, kPointerSizeLog2); __ Lsl(argc_actual, argc_actual, kPointerSizeLog2); // Adjust for fp, lr, and the receiver. __ Add(copy_from, fp, 3 * kPointerSize); __ Add(copy_from, copy_from, argc_actual); __ Mov(copy_to, jssp); __ Sub(copy_end, copy_to, 1 * kPointerSize); // Adjust for the receiver. __ Sub(copy_end, copy_end, argc_actual); // Claim space for the arguments, the receiver, and one extra slot. // The extra slot ensures we do not write under jssp. It will be popped // later. __ Add(scratch1, scratch2, 2 * kPointerSize); __ Claim(scratch1, 1); // Copy the arguments (including the receiver) to the new stack frame. Label copy_2_by_2; __ Bind(©_2_by_2); __ Ldp(scratch1, scratch2, MemOperand(copy_from, - 2 * kPointerSize, PreIndex)); __ Stp(scratch1, scratch2, MemOperand(copy_to, - 2 * kPointerSize, PreIndex)); __ Cmp(copy_to, copy_end); __ B(hi, ©_2_by_2); __ Mov(copy_to, copy_end); // Fill the remaining expected arguments with undefined. __ LoadRoot(scratch1, Heap::kUndefinedValueRootIndex); __ Add(copy_end, jssp, kPointerSize); Label fill; __ Bind(&fill); __ Stp(scratch1, scratch1, MemOperand(copy_to, - 2 * kPointerSize, PreIndex)); __ Cmp(copy_to, copy_end); __ B(hi, &fill); // Correct the space allocated for the extra slot. __ Drop(1); } // Arguments have been adapted. Now call the entry point. __ Bind(&invoke); __ Mov(argc_actual, argc_expected); // x0 : expected number of arguments // x1 : function (passed through to callee) // x3 : new target (passed through to callee) __ Ldr(code_entry, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); __ Call(code_entry); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ Ret(); // Call the entry point without adapting the arguments. __ Bind(&dont_adapt_arguments); __ Ldr(code_entry, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); __ Jump(code_entry); __ Bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow, 0); __ Unreachable(); } } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM