// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/v8.h" #if V8_TARGET_ARCH_ARM64 #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/compiler.h" #include "src/debug.h" #include "src/full-codegen.h" #include "src/ic/ic.h" #include "src/isolate-inl.h" #include "src/parser.h" #include "src/scopes.h" #include "src/arm64/code-stubs-arm64.h" #include "src/arm64/macro-assembler-arm64.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) class JumpPatchSite BASE_EMBEDDED { public: explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm), reg_(NoReg) { #ifdef DEBUG info_emitted_ = false; #endif } ~JumpPatchSite() { if (patch_site_.is_bound()) { DCHECK(info_emitted_); } else { DCHECK(reg_.IsNone()); } } void EmitJumpIfNotSmi(Register reg, Label* target) { // This code will be patched by PatchInlinedSmiCode, in ic-arm64.cc. InstructionAccurateScope scope(masm_, 1); DCHECK(!info_emitted_); DCHECK(reg.Is64Bits()); DCHECK(!reg.Is(csp)); reg_ = reg; __ bind(&patch_site_); __ tbz(xzr, 0, target); // Always taken before patched. } void EmitJumpIfSmi(Register reg, Label* target) { // This code will be patched by PatchInlinedSmiCode, in ic-arm64.cc. InstructionAccurateScope scope(masm_, 1); DCHECK(!info_emitted_); DCHECK(reg.Is64Bits()); DCHECK(!reg.Is(csp)); reg_ = reg; __ bind(&patch_site_); __ tbnz(xzr, 0, target); // Never taken before patched. } void EmitJumpIfEitherNotSmi(Register reg1, Register reg2, Label* target) { UseScratchRegisterScope temps(masm_); Register temp = temps.AcquireX(); __ Orr(temp, reg1, reg2); EmitJumpIfNotSmi(temp, target); } void EmitPatchInfo() { Assembler::BlockPoolsScope scope(masm_); InlineSmiCheckInfo::Emit(masm_, reg_, &patch_site_); #ifdef DEBUG info_emitted_ = true; #endif } private: MacroAssembler* masm_; Label patch_site_; Register reg_; #ifdef DEBUG bool info_emitted_; #endif }; // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right. The actual // argument count matches the formal parameter count expected by the // function. // // The live registers are: // - x1: the JS function object being called (i.e. ourselves). // - cp: our context. // - fp: our caller's frame pointer. // - jssp: stack pointer. // - lr: return address. // // The function builds a JS frame. See JavaScriptFrameConstants in // frames-arm.h for its layout. void FullCodeGenerator::Generate() { CompilationInfo* info = info_; handler_table_ = Handle<HandlerTable>::cast(isolate()->factory()->NewFixedArray( HandlerTable::LengthForRange(function()->handler_count()), TENURED)); profiling_counter_ = isolate()->factory()->NewCell( Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate())); SetFunctionPosition(function()); Comment cmnt(masm_, "[ Function compiled by full code generator"); ProfileEntryHookStub::MaybeCallEntryHook(masm_); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info->function()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { __ Debug("stop-at", __LINE__, BREAK); } #endif // Sloppy mode functions and builtins need to replace the receiver with the // global proxy when called as functions (without an explicit receiver // object). if (is_sloppy(info->language_mode()) && !info->is_native()) { Label ok; int receiver_offset = info->scope()->num_parameters() * kXRegSize; __ Peek(x10, receiver_offset); __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok); __ Ldr(x10, GlobalObjectMemOperand()); __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalProxyOffset)); __ Poke(x10, receiver_offset); __ Bind(&ok); } // Open a frame scope to indicate that there is a frame on the stack. // The MANUAL indicates that the scope shouldn't actually generate code // to set up the frame because we do it manually below. FrameScope frame_scope(masm_, StackFrame::MANUAL); // This call emits the following sequence in a way that can be patched for // code ageing support: // Push(lr, fp, cp, x1); // Add(fp, jssp, 2 * kPointerSize); info->set_prologue_offset(masm_->pc_offset()); __ Prologue(info->IsCodePreAgingActive()); info->AddNoFrameRange(0, masm_->pc_offset()); // Reserve space on the stack for locals. { Comment cmnt(masm_, "[ Allocate locals"); int locals_count = info->scope()->num_stack_slots(); // Generators allocate locals, if any, in context slots. DCHECK(!IsGeneratorFunction(info->function()->kind()) || locals_count == 0); if (locals_count > 0) { if (locals_count >= 128) { Label ok; DCHECK(jssp.Is(__ StackPointer())); __ Sub(x10, jssp, locals_count * kPointerSize); __ CompareRoot(x10, Heap::kRealStackLimitRootIndex); __ B(hs, &ok); __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION); __ Bind(&ok); } __ LoadRoot(x10, Heap::kUndefinedValueRootIndex); if (FLAG_optimize_for_size) { __ PushMultipleTimes(x10 , locals_count); } else { const int kMaxPushes = 32; if (locals_count >= kMaxPushes) { int loop_iterations = locals_count / kMaxPushes; __ Mov(x3, loop_iterations); Label loop_header; __ Bind(&loop_header); // Do pushes. __ PushMultipleTimes(x10 , kMaxPushes); __ Subs(x3, x3, 1); __ B(ne, &loop_header); } int remaining = locals_count % kMaxPushes; // Emit the remaining pushes. __ PushMultipleTimes(x10 , remaining); } } } bool function_in_register_x1 = true; int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { // Argument to NewContext is the function, which is still in x1. Comment cmnt(masm_, "[ Allocate context"); bool need_write_barrier = true; if (info->scope()->is_script_scope()) { __ Mov(x10, Operand(info->scope()->GetScopeInfo(info->isolate()))); __ Push(x1, x10); __ CallRuntime(Runtime::kNewScriptContext, 2); } else if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(isolate(), heap_slots); __ CallStub(&stub); // Result of FastNewContextStub is always in new space. need_write_barrier = false; } else { __ Push(x1); __ CallRuntime(Runtime::kNewFunctionContext, 1); } function_in_register_x1 = false; // Context is returned in x0. It replaces the context passed to us. // It's saved in the stack and kept live in cp. __ Mov(cp, x0); __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Copy any necessary parameters into the context. int num_parameters = info->scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Variable* var = scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ Ldr(x10, MemOperand(fp, parameter_offset)); // Store it in the context. MemOperand target = ContextMemOperand(cp, var->index()); __ Str(x10, target); // Update the write barrier. if (need_write_barrier) { __ RecordWriteContextSlot( cp, target.offset(), x10, x11, kLRHasBeenSaved, kDontSaveFPRegs); } else if (FLAG_debug_code) { Label done; __ JumpIfInNewSpace(cp, &done); __ Abort(kExpectedNewSpaceObject); __ bind(&done); } } } } ArgumentsAccessStub::HasNewTarget has_new_target = IsSubclassConstructor(info->function()->kind()) ? ArgumentsAccessStub::HAS_NEW_TARGET : ArgumentsAccessStub::NO_NEW_TARGET; // Possibly allocate RestParameters int rest_index; Variable* rest_param = scope()->rest_parameter(&rest_index); if (rest_param) { Comment cmnt(masm_, "[ Allocate rest parameter array"); int num_parameters = info->scope()->num_parameters(); int offset = num_parameters * kPointerSize; if (has_new_target == ArgumentsAccessStub::HAS_NEW_TARGET) { --num_parameters; ++rest_index; } __ Add(x3, fp, StandardFrameConstants::kCallerSPOffset + offset); __ Mov(x2, Smi::FromInt(num_parameters)); __ Mov(x1, Smi::FromInt(rest_index)); __ Push(x3, x2, x1); RestParamAccessStub stub(isolate()); __ CallStub(&stub); SetVar(rest_param, x0, x1, x2); } Variable* arguments = scope()->arguments(); if (arguments != NULL) { // Function uses arguments object. Comment cmnt(masm_, "[ Allocate arguments object"); if (!function_in_register_x1) { // Load this again, if it's used by the local context below. __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } else { __ Mov(x3, x1); } // Receiver is just before the parameters on the caller's stack. int num_parameters = info->scope()->num_parameters(); int offset = num_parameters * kPointerSize; __ Add(x2, fp, StandardFrameConstants::kCallerSPOffset + offset); __ Mov(x1, Smi::FromInt(num_parameters)); __ Push(x3, x2, x1); // Arguments to ArgumentsAccessStub: // function, receiver address, parameter count. // The stub will rewrite receiver and parameter count if the previous // stack frame was an arguments adapter frame. ArgumentsAccessStub::Type type; if (is_strict(language_mode()) || !is_simple_parameter_list()) { type = ArgumentsAccessStub::NEW_STRICT; } else if (function()->has_duplicate_parameters()) { type = ArgumentsAccessStub::NEW_SLOPPY_SLOW; } else { type = ArgumentsAccessStub::NEW_SLOPPY_FAST; } ArgumentsAccessStub stub(isolate(), type, has_new_target); __ CallStub(&stub); SetVar(arguments, x0, x1, x2); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } // Visit the declarations and body unless there is an illegal // redeclaration. if (scope()->HasIllegalRedeclaration()) { Comment cmnt(masm_, "[ Declarations"); scope()->VisitIllegalRedeclaration(this); } else { PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS); { Comment cmnt(masm_, "[ Declarations"); if (scope()->is_function_scope() && scope()->function() != NULL) { VariableDeclaration* function = scope()->function(); DCHECK(function->proxy()->var()->mode() == CONST || function->proxy()->var()->mode() == CONST_LEGACY); DCHECK(function->proxy()->var()->location() != Variable::UNALLOCATED); VisitVariableDeclaration(function); } VisitDeclarations(scope()->declarations()); } { Comment cmnt(masm_, "[ Stack check"); PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS); Label ok; DCHECK(jssp.Is(__ StackPointer())); __ CompareRoot(jssp, Heap::kStackLimitRootIndex); __ B(hs, &ok); PredictableCodeSizeScope predictable(masm_, Assembler::kCallSizeWithRelocation); __ Call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET); __ Bind(&ok); } { Comment cmnt(masm_, "[ Body"); DCHECK(loop_depth() == 0); VisitStatements(function()->body()); DCHECK(loop_depth() == 0); } } // Always emit a 'return undefined' in case control fell off the end of // the body. { Comment cmnt(masm_, "[ return <undefined>;"); __ LoadRoot(x0, Heap::kUndefinedValueRootIndex); } EmitReturnSequence(); // Force emission of the pools, so they don't get emitted in the middle // of the back edge table. masm()->CheckVeneerPool(true, false); masm()->CheckConstPool(true, false); } void FullCodeGenerator::ClearAccumulator() { __ Mov(x0, Smi::FromInt(0)); } void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) { __ Mov(x2, Operand(profiling_counter_)); __ Ldr(x3, FieldMemOperand(x2, Cell::kValueOffset)); __ Subs(x3, x3, Smi::FromInt(delta)); __ Str(x3, FieldMemOperand(x2, Cell::kValueOffset)); } void FullCodeGenerator::EmitProfilingCounterReset() { int reset_value = FLAG_interrupt_budget; if (info_->is_debug()) { // Detect debug break requests as soon as possible. reset_value = FLAG_interrupt_budget >> 4; } __ Mov(x2, Operand(profiling_counter_)); __ Mov(x3, Smi::FromInt(reset_value)); __ Str(x3, FieldMemOperand(x2, Cell::kValueOffset)); } void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt, Label* back_edge_target) { DCHECK(jssp.Is(__ StackPointer())); Comment cmnt(masm_, "[ Back edge bookkeeping"); // Block literal pools whilst emitting back edge code. Assembler::BlockPoolsScope block_const_pool(masm_); Label ok; DCHECK(back_edge_target->is_bound()); // We want to do a round rather than a floor of distance/kCodeSizeMultiplier // to reduce the absolute error due to the integer division. To do that, // we add kCodeSizeMultiplier/2 to the distance (equivalent to adding 0.5 to // the result). int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target) + kCodeSizeMultiplier / 2; int weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier)); EmitProfilingCounterDecrement(weight); __ B(pl, &ok); __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); // Record a mapping of this PC offset to the OSR id. This is used to find // the AST id from the unoptimized code in order to use it as a key into // the deoptimization input data found in the optimized code. RecordBackEdge(stmt->OsrEntryId()); EmitProfilingCounterReset(); __ Bind(&ok); PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); // Record a mapping of the OSR id to this PC. This is used if the OSR // entry becomes the target of a bailout. We don't expect it to be, but // we want it to work if it is. PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS); } void FullCodeGenerator::EmitReturnSequence() { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ B(&return_label_); } else { __ Bind(&return_label_); if (FLAG_trace) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in x0. __ Push(result_register()); __ CallRuntime(Runtime::kTraceExit, 1); DCHECK(x0.Is(result_register())); } // Pretend that the exit is a backwards jump to the entry. int weight = 1; if (info_->ShouldSelfOptimize()) { weight = FLAG_interrupt_budget / FLAG_self_opt_count; } else { int distance = masm_->pc_offset() + kCodeSizeMultiplier / 2; weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier)); } EmitProfilingCounterDecrement(weight); Label ok; __ B(pl, &ok); __ Push(x0); __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); __ Pop(x0); EmitProfilingCounterReset(); __ Bind(&ok); // Make sure that the constant pool is not emitted inside of the return // sequence. This sequence can get patched when the debugger is used. See // debug-arm64.cc:BreakLocation::SetDebugBreakAtReturn(). { InstructionAccurateScope scope(masm_, Assembler::kJSReturnSequenceInstructions); CodeGenerator::RecordPositions(masm_, function()->end_position() - 1); __ RecordJSReturn(); // This code is generated using Assembler methods rather than Macro // Assembler methods because it will be patched later on, and so the size // of the generated code must be consistent. const Register& current_sp = __ StackPointer(); // Nothing ensures 16 bytes alignment here. DCHECK(!current_sp.Is(csp)); __ mov(current_sp, fp); int no_frame_start = masm_->pc_offset(); __ ldp(fp, lr, MemOperand(current_sp, 2 * kXRegSize, PostIndex)); // Drop the arguments and receiver and return. // TODO(all): This implementation is overkill as it supports 2**31+1 // arguments, consider how to improve it without creating a security // hole. __ ldr_pcrel(ip0, (3 * kInstructionSize) >> kLoadLiteralScaleLog2); __ add(current_sp, current_sp, ip0); __ ret(); int32_t arg_count = info_->scope()->num_parameters() + 1; if (IsSubclassConstructor(info_->function()->kind())) { arg_count++; } __ dc64(kXRegSize * arg_count); info_->AddNoFrameRange(no_frame_start, masm_->pc_offset()); } } } void FullCodeGenerator::EffectContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); } void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); codegen()->GetVar(result_register(), var); } void FullCodeGenerator::StackValueContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); codegen()->GetVar(result_register(), var); __ Push(result_register()); } void FullCodeGenerator::TestContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); // For simplicity we always test the accumulator register. codegen()->GetVar(result_register(), var); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { // Root values have no side effects. } void FullCodeGenerator::AccumulatorValueContext::Plug( Heap::RootListIndex index) const { __ LoadRoot(result_register(), index); } void FullCodeGenerator::StackValueContext::Plug( Heap::RootListIndex index) const { __ LoadRoot(result_register(), index); __ Push(result_register()); } void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (index == Heap::kUndefinedValueRootIndex || index == Heap::kNullValueRootIndex || index == Heap::kFalseValueRootIndex) { if (false_label_ != fall_through_) __ B(false_label_); } else if (index == Heap::kTrueValueRootIndex) { if (true_label_ != fall_through_) __ B(true_label_); } else { __ LoadRoot(result_register(), index); codegen()->DoTest(this); } } void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Handle<Object> lit) const { __ Mov(result_register(), Operand(lit)); } void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const { // Immediates cannot be pushed directly. __ Mov(result_register(), Operand(lit)); __ Push(result_register()); } void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals. if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) { if (false_label_ != fall_through_) __ B(false_label_); } else if (lit->IsTrue() || lit->IsJSObject()) { if (true_label_ != fall_through_) __ B(true_label_); } else if (lit->IsString()) { if (String::cast(*lit)->length() == 0) { if (false_label_ != fall_through_) __ B(false_label_); } else { if (true_label_ != fall_through_) __ B(true_label_); } } else if (lit->IsSmi()) { if (Smi::cast(*lit)->value() == 0) { if (false_label_ != fall_through_) __ B(false_label_); } else { if (true_label_ != fall_through_) __ B(true_label_); } } else { // For simplicity we always test the accumulator register. __ Mov(result_register(), Operand(lit)); codegen()->DoTest(this); } } void FullCodeGenerator::EffectContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); __ Drop(count); } void FullCodeGenerator::AccumulatorValueContext::DropAndPlug( int count, Register reg) const { DCHECK(count > 0); __ Drop(count); __ Move(result_register(), reg); } void FullCodeGenerator::StackValueContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); if (count > 1) __ Drop(count - 1); __ Poke(reg, 0); } void FullCodeGenerator::TestContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); // For simplicity we always test the accumulator register. __ Drop(count); __ Mov(result_register(), reg); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, Label* materialize_false) const { DCHECK(materialize_true == materialize_false); __ Bind(materialize_true); } void FullCodeGenerator::AccumulatorValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ Bind(materialize_true); __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); __ B(&done); __ Bind(materialize_false); __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); __ Bind(&done); } void FullCodeGenerator::StackValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ Bind(materialize_true); __ LoadRoot(x10, Heap::kTrueValueRootIndex); __ B(&done); __ Bind(materialize_false); __ LoadRoot(x10, Heap::kFalseValueRootIndex); __ Bind(&done); __ Push(x10); } void FullCodeGenerator::TestContext::Plug(Label* materialize_true, Label* materialize_false) const { DCHECK(materialize_true == true_label_); DCHECK(materialize_false == false_label_); } void FullCodeGenerator::EffectContext::Plug(bool flag) const { } void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ LoadRoot(result_register(), value_root_index); } void FullCodeGenerator::StackValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ LoadRoot(x10, value_root_index); __ Push(x10); } void FullCodeGenerator::TestContext::Plug(bool flag) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (flag) { if (true_label_ != fall_through_) { __ B(true_label_); } } else { if (false_label_ != fall_through_) { __ B(false_label_); } } } void FullCodeGenerator::DoTest(Expression* condition, Label* if_true, Label* if_false, Label* fall_through) { Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate()); CallIC(ic, condition->test_id()); __ CompareAndSplit(result_register(), 0, ne, if_true, if_false, fall_through); } // If (cond), branch to if_true. // If (!cond), branch to if_false. // fall_through is used as an optimization in cases where only one branch // instruction is necessary. void FullCodeGenerator::Split(Condition cond, Label* if_true, Label* if_false, Label* fall_through) { if (if_false == fall_through) { __ B(cond, if_true); } else if (if_true == fall_through) { DCHECK(if_false != fall_through); __ B(NegateCondition(cond), if_false); } else { __ B(cond, if_true); __ B(if_false); } } MemOperand FullCodeGenerator::StackOperand(Variable* var) { // Offset is negative because higher indexes are at lower addresses. int offset = -var->index() * kXRegSize; // Adjust by a (parameter or local) base offset. if (var->IsParameter()) { offset += (info_->scope()->num_parameters() + 1) * kPointerSize; } else { offset += JavaScriptFrameConstants::kLocal0Offset; } return MemOperand(fp, offset); } MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); if (var->IsContextSlot()) { int context_chain_length = scope()->ContextChainLength(var->scope()); __ LoadContext(scratch, context_chain_length); return ContextMemOperand(scratch, var->index()); } else { return StackOperand(var); } } void FullCodeGenerator::GetVar(Register dest, Variable* var) { // Use destination as scratch. MemOperand location = VarOperand(var, dest); __ Ldr(dest, location); } void FullCodeGenerator::SetVar(Variable* var, Register src, Register scratch0, Register scratch1) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); DCHECK(!AreAliased(src, scratch0, scratch1)); MemOperand location = VarOperand(var, scratch0); __ Str(src, location); // Emit the write barrier code if the location is in the heap. if (var->IsContextSlot()) { // scratch0 contains the correct context. __ RecordWriteContextSlot(scratch0, location.offset(), src, scratch1, kLRHasBeenSaved, kDontSaveFPRegs); } } void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr, bool should_normalize, Label* if_true, Label* if_false) { // Only prepare for bailouts before splits if we're in a test // context. Otherwise, we let the Visit function deal with the // preparation to avoid preparing with the same AST id twice. if (!context()->IsTest() || !info_->IsOptimizable()) return; // TODO(all): Investigate to see if there is something to work on here. Label skip; if (should_normalize) { __ B(&skip); } PrepareForBailout(expr, TOS_REG); if (should_normalize) { __ CompareRoot(x0, Heap::kTrueValueRootIndex); Split(eq, if_true, if_false, NULL); __ Bind(&skip); } } void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) { // The variable in the declaration always resides in the current function // context. DCHECK_EQ(0, scope()->ContextChainLength(variable->scope())); if (generate_debug_code_) { // Check that we're not inside a with or catch context. __ Ldr(x1, FieldMemOperand(cp, HeapObject::kMapOffset)); __ CompareRoot(x1, Heap::kWithContextMapRootIndex); __ Check(ne, kDeclarationInWithContext); __ CompareRoot(x1, Heap::kCatchContextMapRootIndex); __ Check(ne, kDeclarationInCatchContext); } } void FullCodeGenerator::VisitVariableDeclaration( VariableDeclaration* declaration) { // If it was not possible to allocate the variable at compile time, we // need to "declare" it at runtime to make sure it actually exists in the // local context. VariableProxy* proxy = declaration->proxy(); VariableMode mode = declaration->mode(); Variable* variable = proxy->var(); bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY; switch (variable->location()) { case Variable::UNALLOCATED: globals_->Add(variable->name(), zone()); globals_->Add(variable->binding_needs_init() ? isolate()->factory()->the_hole_value() : isolate()->factory()->undefined_value(), zone()); break; case Variable::PARAMETER: case Variable::LOCAL: if (hole_init) { Comment cmnt(masm_, "[ VariableDeclaration"); __ LoadRoot(x10, Heap::kTheHoleValueRootIndex); __ Str(x10, StackOperand(variable)); } break; case Variable::CONTEXT: if (hole_init) { Comment cmnt(masm_, "[ VariableDeclaration"); EmitDebugCheckDeclarationContext(variable); __ LoadRoot(x10, Heap::kTheHoleValueRootIndex); __ Str(x10, ContextMemOperand(cp, variable->index())); // No write barrier since the_hole_value is in old space. PrepareForBailoutForId(proxy->id(), NO_REGISTERS); } break; case Variable::LOOKUP: { Comment cmnt(masm_, "[ VariableDeclaration"); __ Mov(x2, Operand(variable->name())); // Declaration nodes are always introduced in one of four modes. DCHECK(IsDeclaredVariableMode(mode)); PropertyAttributes attr = IsImmutableVariableMode(mode) ? READ_ONLY : NONE; __ Mov(x1, Smi::FromInt(attr)); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (hole_init) { __ LoadRoot(x0, Heap::kTheHoleValueRootIndex); __ Push(cp, x2, x1, x0); } else { // Pushing 0 (xzr) indicates no initial value. __ Push(cp, x2, x1, xzr); } __ CallRuntime(Runtime::kDeclareLookupSlot, 4); break; } } } void FullCodeGenerator::VisitFunctionDeclaration( FunctionDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); Variable* variable = proxy->var(); switch (variable->location()) { case Variable::UNALLOCATED: { globals_->Add(variable->name(), zone()); Handle<SharedFunctionInfo> function = Compiler::BuildFunctionInfo(declaration->fun(), script(), info_); // Check for stack overflow exception. if (function.is_null()) return SetStackOverflow(); globals_->Add(function, zone()); break; } case Variable::PARAMETER: case Variable::LOCAL: { Comment cmnt(masm_, "[ Function Declaration"); VisitForAccumulatorValue(declaration->fun()); __ Str(result_register(), StackOperand(variable)); break; } case Variable::CONTEXT: { Comment cmnt(masm_, "[ Function Declaration"); EmitDebugCheckDeclarationContext(variable); VisitForAccumulatorValue(declaration->fun()); __ Str(result_register(), ContextMemOperand(cp, variable->index())); int offset = Context::SlotOffset(variable->index()); // We know that we have written a function, which is not a smi. __ RecordWriteContextSlot(cp, offset, result_register(), x2, kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); PrepareForBailoutForId(proxy->id(), NO_REGISTERS); break; } case Variable::LOOKUP: { Comment cmnt(masm_, "[ Function Declaration"); __ Mov(x2, Operand(variable->name())); __ Mov(x1, Smi::FromInt(NONE)); __ Push(cp, x2, x1); // Push initial value for function declaration. VisitForStackValue(declaration->fun()); __ CallRuntime(Runtime::kDeclareLookupSlot, 4); break; } } } void FullCodeGenerator::VisitModuleDeclaration(ModuleDeclaration* declaration) { Variable* variable = declaration->proxy()->var(); ModuleDescriptor* descriptor = declaration->module()->descriptor(); DCHECK(variable->location() == Variable::CONTEXT); DCHECK(descriptor->IsFrozen()); Comment cmnt(masm_, "[ ModuleDeclaration"); EmitDebugCheckDeclarationContext(variable); // Load instance object. __ LoadContext(x1, scope_->ContextChainLength(scope_->ScriptScope())); __ Ldr(x1, ContextMemOperand(x1, descriptor->Index())); __ Ldr(x1, ContextMemOperand(x1, Context::EXTENSION_INDEX)); // Assign it. __ Str(x1, ContextMemOperand(cp, variable->index())); // We know that we have written a module, which is not a smi. __ RecordWriteContextSlot(cp, Context::SlotOffset(variable->index()), x1, x3, kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); PrepareForBailoutForId(declaration->proxy()->id(), NO_REGISTERS); // Traverse info body. Visit(declaration->module()); } void FullCodeGenerator::VisitImportDeclaration(ImportDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); Variable* variable = proxy->var(); switch (variable->location()) { case Variable::UNALLOCATED: // TODO(rossberg) break; case Variable::CONTEXT: { Comment cmnt(masm_, "[ ImportDeclaration"); EmitDebugCheckDeclarationContext(variable); // TODO(rossberg) break; } case Variable::PARAMETER: case Variable::LOCAL: case Variable::LOOKUP: UNREACHABLE(); } } void FullCodeGenerator::VisitExportDeclaration(ExportDeclaration* declaration) { // TODO(rossberg) } void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { // Call the runtime to declare the globals. __ Mov(x11, Operand(pairs)); Register flags = xzr; if (Smi::FromInt(DeclareGlobalsFlags())) { flags = x10; __ Mov(flags, Smi::FromInt(DeclareGlobalsFlags())); } __ Push(cp, x11, flags); __ CallRuntime(Runtime::kDeclareGlobals, 3); // Return value is ignored. } void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) { // Call the runtime to declare the modules. __ Push(descriptions); __ CallRuntime(Runtime::kDeclareModules, 1); // Return value is ignored. } void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { ASM_LOCATION("FullCodeGenerator::VisitSwitchStatement"); Comment cmnt(masm_, "[ SwitchStatement"); Breakable nested_statement(this, stmt); SetStatementPosition(stmt); // Keep the switch value on the stack until a case matches. VisitForStackValue(stmt->tag()); PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); ZoneList<CaseClause*>* clauses = stmt->cases(); CaseClause* default_clause = NULL; // Can occur anywhere in the list. Label next_test; // Recycled for each test. // Compile all the tests with branches to their bodies. for (int i = 0; i < clauses->length(); i++) { CaseClause* clause = clauses->at(i); clause->body_target()->Unuse(); // The default is not a test, but remember it as final fall through. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); __ Bind(&next_test); next_test.Unuse(); // Compile the label expression. VisitForAccumulatorValue(clause->label()); // Perform the comparison as if via '==='. __ Peek(x1, 0); // Switch value. JumpPatchSite patch_site(masm_); if (ShouldInlineSmiCase(Token::EQ_STRICT)) { Label slow_case; patch_site.EmitJumpIfEitherNotSmi(x0, x1, &slow_case); __ Cmp(x1, x0); __ B(ne, &next_test); __ Drop(1); // Switch value is no longer needed. __ B(clause->body_target()); __ Bind(&slow_case); } // Record position before stub call for type feedback. SetSourcePosition(clause->position()); Handle<Code> ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code(); CallIC(ic, clause->CompareId()); patch_site.EmitPatchInfo(); Label skip; __ B(&skip); PrepareForBailout(clause, TOS_REG); __ JumpIfNotRoot(x0, Heap::kTrueValueRootIndex, &next_test); __ Drop(1); __ B(clause->body_target()); __ Bind(&skip); __ Cbnz(x0, &next_test); __ Drop(1); // Switch value is no longer needed. __ B(clause->body_target()); } // Discard the test value and jump to the default if present, otherwise to // the end of the statement. __ Bind(&next_test); __ Drop(1); // Switch value is no longer needed. if (default_clause == NULL) { __ B(nested_statement.break_label()); } else { __ B(default_clause->body_target()); } // Compile all the case bodies. for (int i = 0; i < clauses->length(); i++) { Comment cmnt(masm_, "[ Case body"); CaseClause* clause = clauses->at(i); __ Bind(clause->body_target()); PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS); VisitStatements(clause->statements()); } __ Bind(nested_statement.break_label()); PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); } void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { ASM_LOCATION("FullCodeGenerator::VisitForInStatement"); Comment cmnt(masm_, "[ ForInStatement"); FeedbackVectorSlot slot = stmt->ForInFeedbackSlot(); // TODO(all): This visitor probably needs better comments and a revisit. SetStatementPosition(stmt); Label loop, exit; ForIn loop_statement(this, stmt); increment_loop_depth(); // Get the object to enumerate over. If the object is null or undefined, skip // over the loop. See ECMA-262 version 5, section 12.6.4. SetExpressionPosition(stmt->enumerable()); VisitForAccumulatorValue(stmt->enumerable()); __ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex, &exit); Register null_value = x15; __ LoadRoot(null_value, Heap::kNullValueRootIndex); __ Cmp(x0, null_value); __ B(eq, &exit); PrepareForBailoutForId(stmt->PrepareId(), TOS_REG); // Convert the object to a JS object. Label convert, done_convert; __ JumpIfSmi(x0, &convert); __ JumpIfObjectType(x0, x10, x11, FIRST_SPEC_OBJECT_TYPE, &done_convert, ge); __ Bind(&convert); __ Push(x0); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ Bind(&done_convert); PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG); __ Push(x0); // Check for proxies. Label call_runtime; STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); __ JumpIfObjectType(x0, x10, x11, LAST_JS_PROXY_TYPE, &call_runtime, le); // Check cache validity in generated code. This is a fast case for // the JSObject::IsSimpleEnum cache validity checks. If we cannot // guarantee cache validity, call the runtime system to check cache // validity or get the property names in a fixed array. __ CheckEnumCache(x0, null_value, x10, x11, x12, x13, &call_runtime); // The enum cache is valid. Load the map of the object being // iterated over and use the cache for the iteration. Label use_cache; __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset)); __ B(&use_cache); // Get the set of properties to enumerate. __ Bind(&call_runtime); __ Push(x0); // Duplicate the enumerable object on the stack. __ CallRuntime(Runtime::kGetPropertyNamesFast, 1); PrepareForBailoutForId(stmt->EnumId(), TOS_REG); // If we got a map from the runtime call, we can do a fast // modification check. Otherwise, we got a fixed array, and we have // to do a slow check. Label fixed_array, no_descriptors; __ Ldr(x2, FieldMemOperand(x0, HeapObject::kMapOffset)); __ JumpIfNotRoot(x2, Heap::kMetaMapRootIndex, &fixed_array); // We got a map in register x0. Get the enumeration cache from it. __ Bind(&use_cache); __ EnumLengthUntagged(x1, x0); __ Cbz(x1, &no_descriptors); __ LoadInstanceDescriptors(x0, x2); __ Ldr(x2, FieldMemOperand(x2, DescriptorArray::kEnumCacheOffset)); __ Ldr(x2, FieldMemOperand(x2, DescriptorArray::kEnumCacheBridgeCacheOffset)); // Set up the four remaining stack slots. __ SmiTag(x1); // Map, enumeration cache, enum cache length, zero (both last as smis). __ Push(x0, x2, x1, xzr); __ B(&loop); __ Bind(&no_descriptors); __ Drop(1); __ B(&exit); // We got a fixed array in register x0. Iterate through that. __ Bind(&fixed_array); __ LoadObject(x1, FeedbackVector()); __ Mov(x10, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate()))); int vector_index = FeedbackVector()->GetIndex(slot); __ Str(x10, FieldMemOperand(x1, FixedArray::OffsetOfElementAt(vector_index))); __ Mov(x1, Smi::FromInt(1)); // Smi indicates slow check. __ Peek(x10, 0); // Get enumerated object. STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); // TODO(all): similar check was done already. Can we avoid it here? __ CompareObjectType(x10, x11, x12, LAST_JS_PROXY_TYPE); DCHECK(Smi::FromInt(0) == 0); __ CzeroX(x1, le); // Zero indicates proxy. __ Ldr(x2, FieldMemOperand(x0, FixedArray::kLengthOffset)); // Smi and array, fixed array length (as smi) and initial index. __ Push(x1, x0, x2, xzr); // Generate code for doing the condition check. PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS); __ Bind(&loop); SetExpressionPosition(stmt->each()); // Load the current count to x0, load the length to x1. __ PeekPair(x0, x1, 0); __ Cmp(x0, x1); // Compare to the array length. __ B(hs, loop_statement.break_label()); // Get the current entry of the array into register r3. __ Peek(x10, 2 * kXRegSize); __ Add(x10, x10, Operand::UntagSmiAndScale(x0, kPointerSizeLog2)); __ Ldr(x3, MemOperand(x10, FixedArray::kHeaderSize - kHeapObjectTag)); // Get the expected map from the stack or a smi in the // permanent slow case into register x10. __ Peek(x2, 3 * kXRegSize); // Check if the expected map still matches that of the enumerable. // If not, we may have to filter the key. Label update_each; __ Peek(x1, 4 * kXRegSize); __ Ldr(x11, FieldMemOperand(x1, HeapObject::kMapOffset)); __ Cmp(x11, x2); __ B(eq, &update_each); // For proxies, no filtering is done. // TODO(rossberg): What if only a prototype is a proxy? Not specified yet. STATIC_ASSERT(kSmiTag == 0); __ Cbz(x2, &update_each); // Convert the entry to a string or (smi) 0 if it isn't a property // any more. If the property has been removed while iterating, we // just skip it. __ Push(x1, x3); __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION); __ Mov(x3, x0); __ Cbz(x0, loop_statement.continue_label()); // Update the 'each' property or variable from the possibly filtered // entry in register x3. __ Bind(&update_each); __ Mov(result_register(), x3); // Perform the assignment as if via '='. { EffectContext context(this); EmitAssignment(stmt->each()); PrepareForBailoutForId(stmt->AssignmentId(), NO_REGISTERS); } // Generate code for the body of the loop. Visit(stmt->body()); // Generate code for going to the next element by incrementing // the index (smi) stored on top of the stack. __ Bind(loop_statement.continue_label()); // TODO(all): We could use a callee saved register to avoid popping. __ Pop(x0); __ Add(x0, x0, Smi::FromInt(1)); __ Push(x0); EmitBackEdgeBookkeeping(stmt, &loop); __ B(&loop); // Remove the pointers stored on the stack. __ Bind(loop_statement.break_label()); __ Drop(5); // Exit and decrement the loop depth. PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); __ Bind(&exit); decrement_loop_depth(); } void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info, bool pretenure) { // Use the fast case closure allocation code that allocates in new space for // nested functions that don't need literals cloning. If we're running with // the --always-opt or the --prepare-always-opt flag, we need to use the // runtime function so that the new function we are creating here gets a // chance to have its code optimized and doesn't just get a copy of the // existing unoptimized code. if (!FLAG_always_opt && !FLAG_prepare_always_opt && !pretenure && scope()->is_function_scope() && info->num_literals() == 0) { FastNewClosureStub stub(isolate(), info->language_mode(), info->kind()); __ Mov(x2, Operand(info)); __ CallStub(&stub); } else { __ Mov(x11, Operand(info)); __ LoadRoot(x10, pretenure ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex); __ Push(cp, x11, x10); __ CallRuntime(Runtime::kNewClosure, 3); } context()->Plug(x0); } void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) { Comment cmnt(masm_, "[ VariableProxy"); EmitVariableLoad(expr); } void FullCodeGenerator::EmitLoadHomeObject(SuperReference* expr) { Comment cnmt(masm_, "[ SuperReference "); __ ldr(LoadDescriptor::ReceiverRegister(), MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); Handle<Symbol> home_object_symbol(isolate()->heap()->home_object_symbol()); __ Mov(LoadDescriptor::NameRegister(), Operand(home_object_symbol)); if (FLAG_vector_ics) { __ Mov(VectorLoadICDescriptor::SlotRegister(), SmiFromSlot(expr->HomeObjectFeedbackSlot())); CallLoadIC(NOT_CONTEXTUAL); } else { CallLoadIC(NOT_CONTEXTUAL, expr->HomeObjectFeedbackId()); } __ Mov(x10, Operand(isolate()->factory()->undefined_value())); __ cmp(x0, x10); Label done; __ b(&done, ne); __ CallRuntime(Runtime::kThrowNonMethodError, 0); __ bind(&done); } void FullCodeGenerator::EmitSetHomeObjectIfNeeded(Expression* initializer, int offset) { if (NeedsHomeObject(initializer)) { __ Peek(StoreDescriptor::ReceiverRegister(), 0); __ Mov(StoreDescriptor::NameRegister(), Operand(isolate()->factory()->home_object_symbol())); __ Peek(StoreDescriptor::ValueRegister(), offset * kPointerSize); CallStoreIC(); } } void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy, TypeofState typeof_state, Label* slow) { Register current = cp; Register next = x10; Register temp = x11; Scope* s = scope(); while (s != NULL) { if (s->num_heap_slots() > 0) { if (s->calls_sloppy_eval()) { // Check that extension is NULL. __ Ldr(temp, ContextMemOperand(current, Context::EXTENSION_INDEX)); __ Cbnz(temp, slow); } // Load next context in chain. __ Ldr(next, ContextMemOperand(current, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering cp. current = next; } // If no outer scope calls eval, we do not need to check more // context extensions. if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break; s = s->outer_scope(); } if (s->is_eval_scope()) { Label loop, fast; __ Mov(next, current); __ Bind(&loop); // Terminate at native context. __ Ldr(temp, FieldMemOperand(next, HeapObject::kMapOffset)); __ JumpIfRoot(temp, Heap::kNativeContextMapRootIndex, &fast); // Check that extension is NULL. __ Ldr(temp, ContextMemOperand(next, Context::EXTENSION_INDEX)); __ Cbnz(temp, slow); // Load next context in chain. __ Ldr(next, ContextMemOperand(next, Context::PREVIOUS_INDEX)); __ B(&loop); __ Bind(&fast); } __ Ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectMemOperand()); __ Mov(LoadDescriptor::NameRegister(), Operand(proxy->var()->name())); if (FLAG_vector_ics) { __ Mov(VectorLoadICDescriptor::SlotRegister(), SmiFromSlot(proxy->VariableFeedbackSlot())); } ContextualMode mode = (typeof_state == INSIDE_TYPEOF) ? NOT_CONTEXTUAL : CONTEXTUAL; CallLoadIC(mode); } MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var, Label* slow) { DCHECK(var->IsContextSlot()); Register context = cp; Register next = x10; Register temp = x11; for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) { if (s->num_heap_slots() > 0) { if (s->calls_sloppy_eval()) { // Check that extension is NULL. __ Ldr(temp, ContextMemOperand(context, Context::EXTENSION_INDEX)); __ Cbnz(temp, slow); } __ Ldr(next, ContextMemOperand(context, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering cp. context = next; } } // Check that last extension is NULL. __ Ldr(temp, ContextMemOperand(context, Context::EXTENSION_INDEX)); __ Cbnz(temp, slow); // This function is used only for loads, not stores, so it's safe to // return an cp-based operand (the write barrier cannot be allowed to // destroy the cp register). return ContextMemOperand(context, var->index()); } void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy, TypeofState typeof_state, Label* slow, Label* done) { // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. Variable* var = proxy->var(); if (var->mode() == DYNAMIC_GLOBAL) { EmitLoadGlobalCheckExtensions(proxy, typeof_state, slow); __ B(done); } else if (var->mode() == DYNAMIC_LOCAL) { Variable* local = var->local_if_not_shadowed(); __ Ldr(x0, ContextSlotOperandCheckExtensions(local, slow)); if (local->mode() == LET || local->mode() == CONST || local->mode() == CONST_LEGACY) { __ JumpIfNotRoot(x0, Heap::kTheHoleValueRootIndex, done); if (local->mode() == CONST_LEGACY) { __ LoadRoot(x0, Heap::kUndefinedValueRootIndex); } else { // LET || CONST __ Mov(x0, Operand(var->name())); __ Push(x0); __ CallRuntime(Runtime::kThrowReferenceError, 1); } } __ B(done); } } void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { // Record position before possible IC call. SetSourcePosition(proxy->position()); Variable* var = proxy->var(); // Three cases: global variables, lookup variables, and all other types of // variables. switch (var->location()) { case Variable::UNALLOCATED: { Comment cmnt(masm_, "Global variable"); __ Ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectMemOperand()); __ Mov(LoadDescriptor::NameRegister(), Operand(var->name())); if (FLAG_vector_ics) { __ Mov(VectorLoadICDescriptor::SlotRegister(), SmiFromSlot(proxy->VariableFeedbackSlot())); } CallGlobalLoadIC(var->name()); context()->Plug(x0); break; } case Variable::PARAMETER: case Variable::LOCAL: case Variable::CONTEXT: { Comment cmnt(masm_, var->IsContextSlot() ? "Context variable" : "Stack variable"); if (var->binding_needs_init()) { // var->scope() may be NULL when the proxy is located in eval code and // refers to a potential outside binding. Currently those bindings are // always looked up dynamically, i.e. in that case // var->location() == LOOKUP. // always holds. DCHECK(var->scope() != NULL); // Check if the binding really needs an initialization check. The check // can be skipped in the following situation: we have a LET or CONST // binding in harmony mode, both the Variable and the VariableProxy have // the same declaration scope (i.e. they are both in global code, in the // same function or in the same eval code) and the VariableProxy is in // the source physically located after the initializer of the variable. // // We cannot skip any initialization checks for CONST in non-harmony // mode because const variables may be declared but never initialized: // if (false) { const x; }; var y = x; // // The condition on the declaration scopes is a conservative check for // nested functions that access a binding and are called before the // binding is initialized: // function() { f(); let x = 1; function f() { x = 2; } } // bool skip_init_check; if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) { skip_init_check = false; } else if (var->is_this()) { CHECK(info_->function() != nullptr && (info_->function()->kind() & kSubclassConstructor) != 0); // TODO(dslomov): implement 'this' hole check elimination. skip_init_check = false; } else { // Check that we always have valid source position. DCHECK(var->initializer_position() != RelocInfo::kNoPosition); DCHECK(proxy->position() != RelocInfo::kNoPosition); skip_init_check = var->mode() != CONST_LEGACY && var->initializer_position() < proxy->position(); } if (!skip_init_check) { // Let and const need a read barrier. GetVar(x0, var); Label done; __ JumpIfNotRoot(x0, Heap::kTheHoleValueRootIndex, &done); if (var->mode() == LET || var->mode() == CONST) { // Throw a reference error when using an uninitialized let/const // binding in harmony mode. __ Mov(x0, Operand(var->name())); __ Push(x0); __ CallRuntime(Runtime::kThrowReferenceError, 1); __ Bind(&done); } else { // Uninitalized const bindings outside of harmony mode are unholed. DCHECK(var->mode() == CONST_LEGACY); __ LoadRoot(x0, Heap::kUndefinedValueRootIndex); __ Bind(&done); } context()->Plug(x0); break; } } context()->Plug(var); break; } case Variable::LOOKUP: { Label done, slow; // Generate code for loading from variables potentially shadowed by // eval-introduced variables. EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done); __ Bind(&slow); Comment cmnt(masm_, "Lookup variable"); __ Mov(x1, Operand(var->name())); __ Push(cp, x1); // Context and name. __ CallRuntime(Runtime::kLoadLookupSlot, 2); __ Bind(&done); context()->Plug(x0); break; } } } void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { Comment cmnt(masm_, "[ RegExpLiteral"); Label materialized; // Registers will be used as follows: // x5 = materialized value (RegExp literal) // x4 = JS function, literals array // x3 = literal index // x2 = RegExp pattern // x1 = RegExp flags // x0 = RegExp literal clone __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ Ldr(x4, FieldMemOperand(x10, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; __ Ldr(x5, FieldMemOperand(x4, literal_offset)); __ JumpIfNotRoot(x5, Heap::kUndefinedValueRootIndex, &materialized); // Create regexp literal using runtime function. // Result will be in x0. __ Mov(x3, Smi::FromInt(expr->literal_index())); __ Mov(x2, Operand(expr->pattern())); __ Mov(x1, Operand(expr->flags())); __ Push(x4, x3, x2, x1); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); __ Mov(x5, x0); __ Bind(&materialized); int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; Label allocated, runtime_allocate; __ Allocate(size, x0, x2, x3, &runtime_allocate, TAG_OBJECT); __ B(&allocated); __ Bind(&runtime_allocate); __ Mov(x10, Smi::FromInt(size)); __ Push(x5, x10); __ CallRuntime(Runtime::kAllocateInNewSpace, 1); __ Pop(x5); __ Bind(&allocated); // After this, registers are used as follows: // x0: Newly allocated regexp. // x5: Materialized regexp. // x10, x11, x12: temps. __ CopyFields(x0, x5, CPURegList(x10, x11, x12), size / kPointerSize); context()->Plug(x0); } void FullCodeGenerator::EmitAccessor(Expression* expression) { if (expression == NULL) { __ LoadRoot(x10, Heap::kNullValueRootIndex); __ Push(x10); } else { VisitForStackValue(expression); } } void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); expr->BuildConstantProperties(isolate()); Handle<FixedArray> constant_properties = expr->constant_properties(); __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ Ldr(x3, FieldMemOperand(x3, JSFunction::kLiteralsOffset)); __ Mov(x2, Smi::FromInt(expr->literal_index())); __ Mov(x1, Operand(constant_properties)); int flags = expr->ComputeFlags(); __ Mov(x0, Smi::FromInt(flags)); if (MustCreateObjectLiteralWithRuntime(expr)) { __ Push(x3, x2, x1, x0); __ CallRuntime(Runtime::kCreateObjectLiteral, 4); } else { FastCloneShallowObjectStub stub(isolate(), expr->properties_count()); __ CallStub(&stub); } PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG); // If result_saved is true the result is on top of the stack. If // result_saved is false the result is in x0. bool result_saved = false; // Mark all computed expressions that are bound to a key that // is shadowed by a later occurrence of the same key. For the // marked expressions, no store code is emitted. expr->CalculateEmitStore(zone()); AccessorTable accessor_table(zone()); int property_index = 0; for (; property_index < expr->properties()->length(); property_index++) { ObjectLiteral::Property* property = expr->properties()->at(property_index); if (property->is_computed_name()) break; if (property->IsCompileTimeValue()) continue; Literal* key = property->key()->AsLiteral(); Expression* value = property->value(); if (!result_saved) { __ Push(x0); // Save result on stack result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value())); // Fall through. case ObjectLiteral::Property::COMPUTED: // It is safe to use [[Put]] here because the boilerplate already // contains computed properties with an uninitialized value. if (key->value()->IsInternalizedString()) { if (property->emit_store()) { VisitForAccumulatorValue(value); DCHECK(StoreDescriptor::ValueRegister().is(x0)); __ Mov(StoreDescriptor::NameRegister(), Operand(key->value())); __ Peek(StoreDescriptor::ReceiverRegister(), 0); CallStoreIC(key->LiteralFeedbackId()); PrepareForBailoutForId(key->id(), NO_REGISTERS); if (NeedsHomeObject(value)) { __ Mov(StoreDescriptor::ReceiverRegister(), x0); __ Mov(StoreDescriptor::NameRegister(), Operand(isolate()->factory()->home_object_symbol())); __ Peek(StoreDescriptor::ValueRegister(), 0); CallStoreIC(); } } else { VisitForEffect(value); } break; } if (property->emit_store()) { // Duplicate receiver on stack. __ Peek(x0, 0); __ Push(x0); VisitForStackValue(key); VisitForStackValue(value); EmitSetHomeObjectIfNeeded(value, 2); __ Mov(x0, Smi::FromInt(SLOPPY)); // Language mode __ Push(x0); __ CallRuntime(Runtime::kSetProperty, 4); } else { VisitForEffect(key); VisitForEffect(value); } break; case ObjectLiteral::Property::PROTOTYPE: DCHECK(property->emit_store()); // Duplicate receiver on stack. __ Peek(x0, 0); __ Push(x0); VisitForStackValue(value); __ CallRuntime(Runtime::kInternalSetPrototype, 2); break; case ObjectLiteral::Property::GETTER: if (property->emit_store()) { accessor_table.lookup(key)->second->getter = value; } break; case ObjectLiteral::Property::SETTER: if (property->emit_store()) { accessor_table.lookup(key)->second->setter = value; } break; } } // Emit code to define accessors, using only a single call to the runtime for // each pair of corresponding getters and setters. for (AccessorTable::Iterator it = accessor_table.begin(); it != accessor_table.end(); ++it) { __ Peek(x10, 0); // Duplicate receiver. __ Push(x10); VisitForStackValue(it->first); EmitAccessor(it->second->getter); EmitSetHomeObjectIfNeeded(it->second->getter, 2); EmitAccessor(it->second->setter); EmitSetHomeObjectIfNeeded(it->second->setter, 3); __ Mov(x10, Smi::FromInt(NONE)); __ Push(x10); __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5); } // Object literals have two parts. The "static" part on the left contains no // computed property names, and so we can compute its map ahead of time; see // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part // starts with the first computed property name, and continues with all // properties to its right. All the code from above initializes the static // component of the object literal, and arranges for the map of the result to // reflect the static order in which the keys appear. For the dynamic // properties, we compile them into a series of "SetOwnProperty" runtime // calls. This will preserve insertion order. for (; property_index < expr->properties()->length(); property_index++) { ObjectLiteral::Property* property = expr->properties()->at(property_index); Expression* value = property->value(); if (!result_saved) { __ Push(x0); // Save result on stack result_saved = true; } __ Peek(x10, 0); // Duplicate receiver. __ Push(x10); if (property->kind() == ObjectLiteral::Property::PROTOTYPE) { DCHECK(!property->is_computed_name()); VisitForStackValue(value); DCHECK(property->emit_store()); __ CallRuntime(Runtime::kInternalSetPrototype, 2); } else { EmitPropertyKey(property, expr->GetIdForProperty(property_index)); VisitForStackValue(value); EmitSetHomeObjectIfNeeded(value, 2); switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: case ObjectLiteral::Property::MATERIALIZED_LITERAL: case ObjectLiteral::Property::COMPUTED: if (property->emit_store()) { __ Mov(x0, Smi::FromInt(NONE)); __ Push(x0); __ CallRuntime(Runtime::kDefineDataPropertyUnchecked, 4); } else { __ Drop(3); } break; case ObjectLiteral::Property::PROTOTYPE: UNREACHABLE(); break; case ObjectLiteral::Property::GETTER: __ Mov(x0, Smi::FromInt(NONE)); __ Push(x0); __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked, 4); break; case ObjectLiteral::Property::SETTER: __ Mov(x0, Smi::FromInt(NONE)); __ Push(x0); __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked, 4); break; } } } if (expr->has_function()) { DCHECK(result_saved); __ Peek(x0, 0); __ Push(x0); __ CallRuntime(Runtime::kToFastProperties, 1); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(x0); } } void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); expr->BuildConstantElements(isolate()); Handle<FixedArray> constant_elements = expr->constant_elements(); bool has_fast_elements = IsFastObjectElementsKind(expr->constant_elements_kind()); AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE; if (has_fast_elements && !FLAG_allocation_site_pretenuring) { // If the only customer of allocation sites is transitioning, then // we can turn it off if we don't have anywhere else to transition to. allocation_site_mode = DONT_TRACK_ALLOCATION_SITE; } __ Ldr(x3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ Ldr(x3, FieldMemOperand(x3, JSFunction::kLiteralsOffset)); __ Mov(x2, Smi::FromInt(expr->literal_index())); __ Mov(x1, Operand(constant_elements)); if (MustCreateArrayLiteralWithRuntime(expr)) { __ Mov(x0, Smi::FromInt(expr->ComputeFlags())); __ Push(x3, x2, x1, x0); __ CallRuntime(Runtime::kCreateArrayLiteral, 4); } else { FastCloneShallowArrayStub stub(isolate(), allocation_site_mode); __ CallStub(&stub); } PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG); bool result_saved = false; // Is the result saved to the stack? ZoneList<Expression*>* subexprs = expr->values(); int length = subexprs->length(); // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. for (int i = 0; i < length; i++) { Expression* subexpr = subexprs->at(i); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; if (!result_saved) { __ Mov(x1, Smi::FromInt(expr->literal_index())); __ Push(x0, x1); result_saved = true; } VisitForAccumulatorValue(subexpr); if (has_fast_elements) { int offset = FixedArray::kHeaderSize + (i * kPointerSize); __ Peek(x6, kPointerSize); // Copy of array literal. __ Ldr(x1, FieldMemOperand(x6, JSObject::kElementsOffset)); __ Str(result_register(), FieldMemOperand(x1, offset)); // Update the write barrier for the array store. __ RecordWriteField(x1, offset, result_register(), x10, kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, INLINE_SMI_CHECK); } else { __ Mov(x3, Smi::FromInt(i)); StoreArrayLiteralElementStub stub(isolate()); __ CallStub(&stub); } PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS); } if (result_saved) { __ Drop(1); // literal index context()->PlugTOS(); } else { context()->Plug(x0); } } void FullCodeGenerator::VisitAssignment(Assignment* expr) { DCHECK(expr->target()->IsValidReferenceExpression()); Comment cmnt(masm_, "[ Assignment"); Property* property = expr->target()->AsProperty(); LhsKind assign_type = GetAssignType(property); // Evaluate LHS expression. switch (assign_type) { case VARIABLE: // Nothing to do here. break; case NAMED_PROPERTY: if (expr->is_compound()) { // We need the receiver both on the stack and in the register. VisitForStackValue(property->obj()); __ Peek(LoadDescriptor::ReceiverRegister(), 0); } else { VisitForStackValue(property->obj()); } break; case NAMED_SUPER_PROPERTY: VisitForStackValue(property->obj()->AsSuperReference()->this_var()); EmitLoadHomeObject(property->obj()->AsSuperReference()); __ Push(result_register()); if (expr->is_compound()) { const Register scratch = x10; __ Peek(scratch, kPointerSize); __ Push(scratch, result_register()); } break; case KEYED_SUPER_PROPERTY: VisitForStackValue(property->obj()->AsSuperReference()->this_var()); EmitLoadHomeObject(property->obj()->AsSuperReference()); __ Push(result_register()); VisitForAccumulatorValue(property->key()); __ Push(result_register()); if (expr->is_compound()) { const Register scratch1 = x10; const Register scratch2 = x11; __ Peek(scratch1, 2 * kPointerSize); __ Peek(scratch2, kPointerSize); __ Push(scratch1, scratch2, result_register()); } break; case KEYED_PROPERTY: if (expr->is_compound()) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); __ Peek(LoadDescriptor::ReceiverRegister(), 1 * kPointerSize); __ Peek(LoadDescriptor::NameRegister(), 0); } else { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); } break; } // For compound assignments we need another deoptimization point after the // variable/property load. if (expr->is_compound()) { { AccumulatorValueContext context(this); switch (assign_type) { case VARIABLE: EmitVariableLoad(expr->target()->AsVariableProxy()); PrepareForBailout(expr->target(), TOS_REG); break; case NAMED_PROPERTY: EmitNamedPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), TOS_REG); break; case NAMED_SUPER_PROPERTY: EmitNamedSuperPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), TOS_REG); break; case KEYED_SUPER_PROPERTY: EmitKeyedSuperPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), TOS_REG); break; case KEYED_PROPERTY: EmitKeyedPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), TOS_REG); break; } } Token::Value op = expr->binary_op(); __ Push(x0); // Left operand goes on the stack. VisitForAccumulatorValue(expr->value()); SetSourcePosition(expr->position() + 1); AccumulatorValueContext context(this); if (ShouldInlineSmiCase(op)) { EmitInlineSmiBinaryOp(expr->binary_operation(), op, expr->target(), expr->value()); } else { EmitBinaryOp(expr->binary_operation(), op); } // Deoptimization point in case the binary operation may have side effects. PrepareForBailout(expr->binary_operation(), TOS_REG); } else { VisitForAccumulatorValue(expr->value()); } // Record source position before possible IC call. SetSourcePosition(expr->position()); // Store the value. switch (assign_type) { case VARIABLE: EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), expr->op()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(x0); break; case NAMED_PROPERTY: EmitNamedPropertyAssignment(expr); break; case NAMED_SUPER_PROPERTY: EmitNamedSuperPropertyStore(property); context()->Plug(x0); break; case KEYED_SUPER_PROPERTY: EmitKeyedSuperPropertyStore(property); context()->Plug(x0); break; case KEYED_PROPERTY: EmitKeyedPropertyAssignment(expr); break; } } void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Literal* key = prop->key()->AsLiteral(); DCHECK(!prop->IsSuperAccess()); __ Mov(LoadDescriptor::NameRegister(), Operand(key->value())); if (FLAG_vector_ics) { __ Mov(VectorLoadICDescriptor::SlotRegister(), SmiFromSlot(prop->PropertyFeedbackSlot())); CallLoadIC(NOT_CONTEXTUAL); } else { CallLoadIC(NOT_CONTEXTUAL, prop->PropertyFeedbackId()); } } void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) { // Stack: receiver, home_object. SetSourcePosition(prop->position()); Literal* key = prop->key()->AsLiteral(); DCHECK(!key->value()->IsSmi()); DCHECK(prop->IsSuperAccess()); __ Push(key->value()); __ CallRuntime(Runtime::kLoadFromSuper, 3); } void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); // Call keyed load IC. It has arguments key and receiver in x0 and x1. Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code(); if (FLAG_vector_ics) { __ Mov(VectorLoadICDescriptor::SlotRegister(), SmiFromSlot(prop->PropertyFeedbackSlot())); CallIC(ic); } else { CallIC(ic, prop->PropertyFeedbackId()); } } void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) { // Stack: receiver, home_object, key. SetSourcePosition(prop->position()); __ CallRuntime(Runtime::kLoadKeyedFromSuper, 3); } void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr, Token::Value op, Expression* left_expr, Expression* right_expr) { Label done, both_smis, stub_call; // Get the arguments. Register left = x1; Register right = x0; Register result = x0; __ Pop(left); // Perform combined smi check on both operands. __ Orr(x10, left, right); JumpPatchSite patch_site(masm_); patch_site.EmitJumpIfSmi(x10, &both_smis); __ Bind(&stub_call); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op).code(); { Assembler::BlockPoolsScope scope(masm_); CallIC(code, expr->BinaryOperationFeedbackId()); patch_site.EmitPatchInfo(); } __ B(&done); __ Bind(&both_smis); // Smi case. This code works in the same way as the smi-smi case in the type // recording binary operation stub, see // BinaryOpStub::GenerateSmiSmiOperation for comments. // TODO(all): That doesn't exist any more. Where are the comments? // // The set of operations that needs to be supported here is controlled by // FullCodeGenerator::ShouldInlineSmiCase(). switch (op) { case Token::SAR: __ Ubfx(right, right, kSmiShift, 5); __ Asr(result, left, right); __ Bic(result, result, kSmiShiftMask); break; case Token::SHL: __ Ubfx(right, right, kSmiShift, 5); __ Lsl(result, left, right); break; case Token::SHR: // If `left >>> right` >= 0x80000000, the result is not representable in a // signed 32-bit smi. __ Ubfx(right, right, kSmiShift, 5); __ Lsr(x10, left, right); __ Tbnz(x10, kXSignBit, &stub_call); __ Bic(result, x10, kSmiShiftMask); break; case Token::ADD: __ Adds(x10, left, right); __ B(vs, &stub_call); __ Mov(result, x10); break; case Token::SUB: __ Subs(x10, left, right); __ B(vs, &stub_call); __ Mov(result, x10); break; case Token::MUL: { Label not_minus_zero, done; STATIC_ASSERT(static_cast<unsigned>(kSmiShift) == (kXRegSizeInBits / 2)); STATIC_ASSERT(kSmiTag == 0); __ Smulh(x10, left, right); __ Cbnz(x10, ¬_minus_zero); __ Eor(x11, left, right); __ Tbnz(x11, kXSignBit, &stub_call); __ Mov(result, x10); __ B(&done); __ Bind(¬_minus_zero); __ Cls(x11, x10); __ Cmp(x11, kXRegSizeInBits - kSmiShift); __ B(lt, &stub_call); __ SmiTag(result, x10); __ Bind(&done); break; } case Token::BIT_OR: __ Orr(result, left, right); break; case Token::BIT_AND: __ And(result, left, right); break; case Token::BIT_XOR: __ Eor(result, left, right); break; default: UNREACHABLE(); } __ Bind(&done); context()->Plug(x0); } void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) { __ Pop(x1); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op).code(); JumpPatchSite patch_site(masm_); // Unbound, signals no inlined smi code. { Assembler::BlockPoolsScope scope(masm_); CallIC(code, expr->BinaryOperationFeedbackId()); patch_site.EmitPatchInfo(); } context()->Plug(x0); } void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) { // Constructor is in x0. DCHECK(lit != NULL); __ push(x0); // No access check is needed here since the constructor is created by the // class literal. Register scratch = x1; __ Ldr(scratch, FieldMemOperand(x0, JSFunction::kPrototypeOrInitialMapOffset)); __ Push(scratch); for (int i = 0; i < lit->properties()->length(); i++) { ObjectLiteral::Property* property = lit->properties()->at(i); Expression* value = property->value(); if (property->is_static()) { __ Peek(scratch, kPointerSize); // constructor } else { __ Peek(scratch, 0); // prototype } __ Push(scratch); EmitPropertyKey(property, lit->GetIdForProperty(i)); // The static prototype property is read only. We handle the non computed // property name case in the parser. Since this is the only case where we // need to check for an own read only property we special case this so we do // not need to do this for every property. if (property->is_static() && property->is_computed_name()) { __ CallRuntime(Runtime::kThrowIfStaticPrototype, 1); __ Push(x0); } VisitForStackValue(value); EmitSetHomeObjectIfNeeded(value, 2); switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: case ObjectLiteral::Property::MATERIALIZED_LITERAL: case ObjectLiteral::Property::PROTOTYPE: UNREACHABLE(); case ObjectLiteral::Property::COMPUTED: __ CallRuntime(Runtime::kDefineClassMethod, 3); break; case ObjectLiteral::Property::GETTER: __ Mov(x0, Smi::FromInt(DONT_ENUM)); __ Push(x0); __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked, 4); break; case ObjectLiteral::Property::SETTER: __ Mov(x0, Smi::FromInt(DONT_ENUM)); __ Push(x0); __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked, 4); break; default: UNREACHABLE(); } } // prototype __ CallRuntime(Runtime::kToFastProperties, 1); // constructor __ CallRuntime(Runtime::kToFastProperties, 1); } void FullCodeGenerator::EmitAssignment(Expression* expr) { DCHECK(expr->IsValidReferenceExpression()); Property* prop = expr->AsProperty(); LhsKind assign_type = GetAssignType(prop); switch (assign_type) { case VARIABLE: { Variable* var = expr->AsVariableProxy()->var(); EffectContext context(this); EmitVariableAssignment(var, Token::ASSIGN); break; } case NAMED_PROPERTY: { __ Push(x0); // Preserve value. VisitForAccumulatorValue(prop->obj()); // TODO(all): We could introduce a VisitForRegValue(reg, expr) to avoid // this copy. __ Mov(StoreDescriptor::ReceiverRegister(), x0); __ Pop(StoreDescriptor::ValueRegister()); // Restore value. __ Mov(StoreDescriptor::NameRegister(), Operand(prop->key()->AsLiteral()->value())); CallStoreIC(); break; } case NAMED_SUPER_PROPERTY: { __ Push(x0); VisitForStackValue(prop->obj()->AsSuperReference()->this_var()); EmitLoadHomeObject(prop->obj()->AsSuperReference()); // stack: value, this; x0: home_object Register scratch = x10; Register scratch2 = x11; __ mov(scratch, result_register()); // home_object __ Peek(x0, kPointerSize); // value __ Peek(scratch2, 0); // this __ Poke(scratch2, kPointerSize); // this __ Poke(scratch, 0); // home_object // stack: this, home_object; x0: value EmitNamedSuperPropertyStore(prop); break; } case KEYED_SUPER_PROPERTY: { __ Push(x0); VisitForStackValue(prop->obj()->AsSuperReference()->this_var()); EmitLoadHomeObject(prop->obj()->AsSuperReference()); __ Push(result_register()); VisitForAccumulatorValue(prop->key()); Register scratch = x10; Register scratch2 = x11; __ Peek(scratch2, 2 * kPointerSize); // value // stack: value, this, home_object; x0: key, x11: value __ Peek(scratch, kPointerSize); // this __ Poke(scratch, 2 * kPointerSize); __ Peek(scratch, 0); // home_object __ Poke(scratch, kPointerSize); __ Poke(x0, 0); __ Move(x0, scratch2); // stack: this, home_object, key; x0: value. EmitKeyedSuperPropertyStore(prop); break; } case KEYED_PROPERTY: { __ Push(x0); // Preserve value. VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ Mov(StoreDescriptor::NameRegister(), x0); __ Pop(StoreDescriptor::ReceiverRegister(), StoreDescriptor::ValueRegister()); Handle<Code> ic = CodeFactory::KeyedStoreIC(isolate(), language_mode()).code(); CallIC(ic); break; } } context()->Plug(x0); } void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot( Variable* var, MemOperand location) { __ Str(result_register(), location); if (var->IsContextSlot()) { // RecordWrite may destroy all its register arguments. __ Mov(x10, result_register()); int offset = Context::SlotOffset(var->index()); __ RecordWriteContextSlot( x1, offset, x10, x11, kLRHasBeenSaved, kDontSaveFPRegs); } } void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) { ASM_LOCATION("FullCodeGenerator::EmitVariableAssignment"); if (var->IsUnallocated()) { // Global var, const, or let. __ Mov(StoreDescriptor::NameRegister(), Operand(var->name())); __ Ldr(StoreDescriptor::ReceiverRegister(), GlobalObjectMemOperand()); CallStoreIC(); } else if (var->mode() == LET && op != Token::INIT_LET) { // Non-initializing assignment to let variable needs a write barrier. DCHECK(!var->IsLookupSlot()); DCHECK(var->IsStackAllocated() || var->IsContextSlot()); Label assign; MemOperand location = VarOperand(var, x1); __ Ldr(x10, location); __ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &assign); __ Mov(x10, Operand(var->name())); __ Push(x10); __ CallRuntime(Runtime::kThrowReferenceError, 1); // Perform the assignment. __ Bind(&assign); EmitStoreToStackLocalOrContextSlot(var, location); } else if (var->mode() == CONST && op != Token::INIT_CONST) { // Assignment to const variable needs a write barrier. DCHECK(!var->IsLookupSlot()); DCHECK(var->IsStackAllocated() || var->IsContextSlot()); Label const_error; MemOperand location = VarOperand(var, x1); __ Ldr(x10, location); __ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &const_error); __ Mov(x10, Operand(var->name())); __ Push(x10); __ CallRuntime(Runtime::kThrowReferenceError, 1); __ Bind(&const_error); __ CallRuntime(Runtime::kThrowConstAssignError, 0); } else if (!var->is_const_mode() || op == Token::INIT_CONST) { if (var->IsLookupSlot()) { // Assignment to var. __ Mov(x11, Operand(var->name())); __ Mov(x10, Smi::FromInt(language_mode())); // jssp[0] : mode. // jssp[8] : name. // jssp[16] : context. // jssp[24] : value. __ Push(x0, cp, x11, x10); __ CallRuntime(Runtime::kStoreLookupSlot, 4); } else { // Assignment to var or initializing assignment to let/const in harmony // mode. DCHECK(var->IsStackAllocated() || var->IsContextSlot()); MemOperand location = VarOperand(var, x1); if (FLAG_debug_code && op == Token::INIT_LET) { __ Ldr(x10, location); __ CompareRoot(x10, Heap::kTheHoleValueRootIndex); __ Check(eq, kLetBindingReInitialization); } EmitStoreToStackLocalOrContextSlot(var, location); } } else if (op == Token::INIT_CONST_LEGACY) { // Const initializers need a write barrier. DCHECK(var->mode() == CONST_LEGACY); DCHECK(!var->IsParameter()); // No const parameters. if (var->IsLookupSlot()) { __ Mov(x1, Operand(var->name())); __ Push(x0, cp, x1); __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3); } else { DCHECK(var->IsStackLocal() || var->IsContextSlot()); Label skip; MemOperand location = VarOperand(var, x1); __ Ldr(x10, location); __ JumpIfNotRoot(x10, Heap::kTheHoleValueRootIndex, &skip); EmitStoreToStackLocalOrContextSlot(var, location); __ Bind(&skip); } } else { DCHECK(var->mode() == CONST_LEGACY && op != Token::INIT_CONST_LEGACY); if (is_strict(language_mode())) { __ CallRuntime(Runtime::kThrowConstAssignError, 0); } // Silently ignore store in sloppy mode. } } void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { ASM_LOCATION("FullCodeGenerator::EmitNamedPropertyAssignment"); // Assignment to a property, using a named store IC. Property* prop = expr->target()->AsProperty(); DCHECK(prop != NULL); DCHECK(prop->key()->IsLiteral()); // Record source code position before IC call. SetSourcePosition(expr->position()); __ Mov(StoreDescriptor::NameRegister(), Operand(prop->key()->AsLiteral()->value())); __ Pop(StoreDescriptor::ReceiverRegister()); CallStoreIC(expr->AssignmentFeedbackId()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(x0); } void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) { // Assignment to named property of super. // x0 : value // stack : receiver ('this'), home_object DCHECK(prop != NULL); Literal* key = prop->key()->AsLiteral(); DCHECK(key != NULL); __ Push(key->value()); __ Push(x0); __ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict : Runtime::kStoreToSuper_Sloppy), 4); } void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) { // Assignment to named property of super. // x0 : value // stack : receiver ('this'), home_object, key DCHECK(prop != NULL); __ Push(x0); __ CallRuntime( (is_strict(language_mode()) ? Runtime::kStoreKeyedToSuper_Strict : Runtime::kStoreKeyedToSuper_Sloppy), 4); } void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { ASM_LOCATION("FullCodeGenerator::EmitKeyedPropertyAssignment"); // Assignment to a property, using a keyed store IC. // Record source code position before IC call. SetSourcePosition(expr->position()); // TODO(all): Could we pass this in registers rather than on the stack? __ Pop(StoreDescriptor::NameRegister(), StoreDescriptor::ReceiverRegister()); DCHECK(StoreDescriptor::ValueRegister().is(x0)); Handle<Code> ic = CodeFactory::KeyedStoreIC(isolate(), language_mode()).code(); CallIC(ic, expr->AssignmentFeedbackId()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(x0); } void FullCodeGenerator::VisitProperty(Property* expr) { Comment cmnt(masm_, "[ Property"); Expression* key = expr->key(); if (key->IsPropertyName()) { if (!expr->IsSuperAccess()) { VisitForAccumulatorValue(expr->obj()); __ Move(LoadDescriptor::ReceiverRegister(), x0); EmitNamedPropertyLoad(expr); } else { VisitForStackValue(expr->obj()->AsSuperReference()->this_var()); EmitLoadHomeObject(expr->obj()->AsSuperReference()); __ Push(result_register()); EmitNamedSuperPropertyLoad(expr); } } else { if (!expr->IsSuperAccess()) { VisitForStackValue(expr->obj()); VisitForAccumulatorValue(expr->key()); __ Move(LoadDescriptor::NameRegister(), x0); __ Pop(LoadDescriptor::ReceiverRegister()); EmitKeyedPropertyLoad(expr); } else { VisitForStackValue(expr->obj()->AsSuperReference()->this_var()); EmitLoadHomeObject(expr->obj()->AsSuperReference()); __ Push(result_register()); VisitForStackValue(expr->key()); EmitKeyedSuperPropertyLoad(expr); } } PrepareForBailoutForId(expr->LoadId(), TOS_REG); context()->Plug(x0); } void FullCodeGenerator::CallIC(Handle<Code> code, TypeFeedbackId ast_id) { ic_total_count_++; // All calls must have a predictable size in full-codegen code to ensure that // the debugger can patch them correctly. __ Call(code, RelocInfo::CODE_TARGET, ast_id); } // Code common for calls using the IC. void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) { Expression* callee = expr->expression(); CallICState::CallType call_type = callee->IsVariableProxy() ? CallICState::FUNCTION : CallICState::METHOD; // Get the target function. if (call_type == CallICState::FUNCTION) { { StackValueContext context(this); EmitVariableLoad(callee->AsVariableProxy()); PrepareForBailout(callee, NO_REGISTERS); } // Push undefined as receiver. This is patched in the method prologue if it // is a sloppy mode method. { UseScratchRegisterScope temps(masm_); Register temp = temps.AcquireX(); __ LoadRoot(temp, Heap::kUndefinedValueRootIndex); __ Push(temp); } } else { // Load the function from the receiver. DCHECK(callee->IsProperty()); DCHECK(!callee->AsProperty()->IsSuperAccess()); __ Peek(LoadDescriptor::ReceiverRegister(), 0); EmitNamedPropertyLoad(callee->AsProperty()); PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG); // Push the target function under the receiver. __ Pop(x10); __ Push(x0, x10); } EmitCall(expr, call_type); } void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) { Expression* callee = expr->expression(); DCHECK(callee->IsProperty()); Property* prop = callee->AsProperty(); DCHECK(prop->IsSuperAccess()); SetSourcePosition(prop->position()); Literal* key = prop->key()->AsLiteral(); DCHECK(!key->value()->IsSmi()); // Load the function from the receiver. const Register scratch = x10; SuperReference* super_ref = callee->AsProperty()->obj()->AsSuperReference(); EmitLoadHomeObject(super_ref); __ Push(x0); VisitForAccumulatorValue(super_ref->this_var()); __ Push(x0); __ Peek(scratch, kPointerSize); __ Push(x0, scratch); __ Push(key->value()); // Stack here: // - home_object // - this (receiver) // - this (receiver) <-- LoadFromSuper will pop here and below. // - home_object // - key __ CallRuntime(Runtime::kLoadFromSuper, 3); // Replace home_object with target function. __ Poke(x0, kPointerSize); // Stack here: // - target function // - this (receiver) EmitCall(expr, CallICState::METHOD); } // Code common for calls using the IC. void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, Expression* key) { // Load the key. VisitForAccumulatorValue(key); Expression* callee = expr->expression(); // Load the function from the receiver. DCHECK(callee->IsProperty()); __ Peek(LoadDescriptor::ReceiverRegister(), 0); __ Move(LoadDescriptor::NameRegister(), x0); EmitKeyedPropertyLoad(callee->AsProperty()); PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG); // Push the target function under the receiver. __ Pop(x10); __ Push(x0, x10); EmitCall(expr, CallICState::METHOD); } void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) { Expression* callee = expr->expression(); DCHECK(callee->IsProperty()); Property* prop = callee->AsProperty(); DCHECK(prop->IsSuperAccess()); SetSourcePosition(prop->position()); // Load the function from the receiver. const Register scratch = x10; SuperReference* super_ref = callee->AsProperty()->obj()->AsSuperReference(); EmitLoadHomeObject(super_ref); __ Push(x0); VisitForAccumulatorValue(super_ref->this_var()); __ Push(x0); __ Peek(scratch, kPointerSize); __ Push(x0, scratch); VisitForStackValue(prop->key()); // Stack here: // - home_object // - this (receiver) // - this (receiver) <-- LoadKeyedFromSuper will pop here and below. // - home_object // - key __ CallRuntime(Runtime::kLoadKeyedFromSuper, 3); // Replace home_object with target function. __ Poke(x0, kPointerSize); // Stack here: // - target function // - this (receiver) EmitCall(expr, CallICState::METHOD); } void FullCodeGenerator::EmitCall(Call* expr, CallICState::CallType call_type) { // Load the arguments. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); { PreservePositionScope scope(masm()->positions_recorder()); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } } // Record source position of the IC call. SetSourcePosition(expr->position()); Handle<Code> ic = CodeFactory::CallIC(isolate(), arg_count, call_type).code(); __ Mov(x3, SmiFromSlot(expr->CallFeedbackICSlot())); __ Peek(x1, (arg_count + 1) * kXRegSize); // Don't assign a type feedback id to the IC, since type feedback is provided // by the vector above. CallIC(ic); RecordJSReturnSite(expr); // Restore context register. __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, x0); } void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) { ASM_LOCATION("FullCodeGenerator::EmitResolvePossiblyDirectEval"); // Prepare to push a copy of the first argument or undefined if it doesn't // exist. if (arg_count > 0) { __ Peek(x9, arg_count * kXRegSize); } else { __ LoadRoot(x9, Heap::kUndefinedValueRootIndex); } __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); // Prepare to push the receiver of the enclosing function. int receiver_offset = 2 + info_->scope()->num_parameters(); __ Ldr(x11, MemOperand(fp, receiver_offset * kPointerSize)); // Prepare to push the language mode. __ Mov(x12, Smi::FromInt(language_mode())); // Prepare to push the start position of the scope the calls resides in. __ Mov(x13, Smi::FromInt(scope()->start_position())); // Push. __ Push(x9, x10, x11, x12, x13); // Do the runtime call. __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 6); } void FullCodeGenerator::EmitLoadSuperConstructor() { __ ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ Push(x0); __ CallRuntime(Runtime::kGetPrototype, 1); } void FullCodeGenerator::VisitCall(Call* expr) { #ifdef DEBUG // We want to verify that RecordJSReturnSite gets called on all paths // through this function. Avoid early returns. expr->return_is_recorded_ = false; #endif Comment cmnt(masm_, "[ Call"); Expression* callee = expr->expression(); Call::CallType call_type = expr->GetCallType(isolate()); if (call_type == Call::POSSIBLY_EVAL_CALL) { // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval // to resolve the function we need to call and the receiver of the // call. Then we call the resolved function using the given // arguments. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); { PreservePositionScope pos_scope(masm()->positions_recorder()); VisitForStackValue(callee); __ LoadRoot(x10, Heap::kUndefinedValueRootIndex); __ Push(x10); // Reserved receiver slot. // Push the arguments. for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Push a copy of the function (found below the arguments) and // resolve eval. __ Peek(x10, (arg_count + 1) * kPointerSize); __ Push(x10); EmitResolvePossiblyDirectEval(arg_count); // The runtime call returns a pair of values in x0 (function) and // x1 (receiver). Touch up the stack with the right values. __ PokePair(x1, x0, arg_count * kPointerSize); PrepareForBailoutForId(expr->EvalOrLookupId(), NO_REGISTERS); } // Record source position for debugger. SetSourcePosition(expr->position()); // Call the evaluated function. CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS); __ Peek(x1, (arg_count + 1) * kXRegSize); __ CallStub(&stub); RecordJSReturnSite(expr); // Restore context register. __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, x0); } else if (call_type == Call::GLOBAL_CALL) { EmitCallWithLoadIC(expr); } else if (call_type == Call::LOOKUP_SLOT_CALL) { // Call to a lookup slot (dynamically introduced variable). VariableProxy* proxy = callee->AsVariableProxy(); Label slow, done; { PreservePositionScope scope(masm()->positions_recorder()); // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLookupFastCase(proxy, NOT_INSIDE_TYPEOF, &slow, &done); } __ Bind(&slow); // Call the runtime to find the function to call (returned in x0) // and the object holding it (returned in x1). __ Mov(x10, Operand(proxy->name())); __ Push(context_register(), x10); __ CallRuntime(Runtime::kLoadLookupSlot, 2); __ Push(x0, x1); // Receiver, function. PrepareForBailoutForId(expr->EvalOrLookupId(), NO_REGISTERS); // If fast case code has been generated, emit code to push the // function and receiver and have the slow path jump around this // code. if (done.is_linked()) { Label call; __ B(&call); __ Bind(&done); // Push function. // The receiver is implicitly the global receiver. Indicate this // by passing the undefined to the call function stub. __ LoadRoot(x1, Heap::kUndefinedValueRootIndex); __ Push(x0, x1); __ Bind(&call); } // The receiver is either the global receiver or an object found // by LoadContextSlot. EmitCall(expr); } else if (call_type == Call::PROPERTY_CALL) { Property* property = callee->AsProperty(); bool is_named_call = property->key()->IsPropertyName(); if (property->IsSuperAccess()) { if (is_named_call) { EmitSuperCallWithLoadIC(expr); } else { EmitKeyedSuperCallWithLoadIC(expr); } } else { { PreservePositionScope scope(masm()->positions_recorder()); VisitForStackValue(property->obj()); } if (is_named_call) { EmitCallWithLoadIC(expr); } else { EmitKeyedCallWithLoadIC(expr, property->key()); } } } else if (call_type == Call::SUPER_CALL) { EmitSuperConstructorCall(expr); } else { DCHECK(call_type == Call::OTHER_CALL); // Call to an arbitrary expression not handled specially above. { PreservePositionScope scope(masm()->positions_recorder()); VisitForStackValue(callee); } __ LoadRoot(x1, Heap::kUndefinedValueRootIndex); __ Push(x1); // Emit function call. EmitCall(expr); } #ifdef DEBUG // RecordJSReturnSite should have been called. DCHECK(expr->return_is_recorded_); #endif } void FullCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push constructor on the stack. If it's not a function it's used as // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is // ignored. DCHECK(!expr->expression()->IsSuperReference()); VisitForStackValue(expr->expression()); // Push the arguments ("left-to-right") on the stack. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetSourcePosition(expr->position()); // Load function and argument count into x1 and x0. __ Mov(x0, arg_count); __ Peek(x1, arg_count * kXRegSize); // Record call targets in unoptimized code. if (FLAG_pretenuring_call_new) { EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot()); DCHECK(expr->AllocationSiteFeedbackSlot().ToInt() == expr->CallNewFeedbackSlot().ToInt() + 1); } __ LoadObject(x2, FeedbackVector()); __ Mov(x3, SmiFromSlot(expr->CallNewFeedbackSlot())); CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET); __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL); PrepareForBailoutForId(expr->ReturnId(), TOS_REG); context()->Plug(x0); } void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) { Variable* new_target_var = scope()->DeclarationScope()->new_target_var(); GetVar(result_register(), new_target_var); __ Push(result_register()); EmitLoadSuperConstructor(); __ push(result_register()); // Push the arguments ("left-to-right") on the stack. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetSourcePosition(expr->position()); // Load function and argument count into x1 and x0. __ Mov(x0, arg_count); __ Peek(x1, arg_count * kXRegSize); // Record call targets in unoptimized code. if (FLAG_pretenuring_call_new) { UNREACHABLE(); /* TODO(dslomov): support pretenuring. EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot()); DCHECK(expr->AllocationSiteFeedbackSlot().ToInt() == expr->CallNewFeedbackSlot().ToInt() + 1); */ } __ LoadObject(x2, FeedbackVector()); __ Mov(x3, SmiFromSlot(expr->CallFeedbackSlot())); CallConstructStub stub(isolate(), SUPER_CALL_RECORD_TARGET); __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL); __ Drop(1); RecordJSReturnSite(expr); SuperReference* super_ref = expr->expression()->AsSuperReference(); Variable* this_var = super_ref->this_var()->var(); GetVar(x1, this_var); Label uninitialized_this; __ JumpIfRoot(x1, Heap::kTheHoleValueRootIndex, &uninitialized_this); __ Mov(x0, Operand(this_var->name())); __ Push(x0); __ CallRuntime(Runtime::kThrowReferenceError, 1); __ bind(&uninitialized_this); EmitVariableAssignment(this_var, Token::INIT_CONST); context()->Plug(x0); } void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ TestAndSplit(x0, kSmiTagMask, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); uint64_t sign_mask = V8_UINT64_C(1) << (kSmiShift + kSmiValueSize - 1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ TestAndSplit(x0, kSmiTagMask | sign_mask, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsObject(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(x0, if_false); __ JumpIfRoot(x0, Heap::kNullValueRootIndex, if_true); __ Ldr(x10, FieldMemOperand(x0, HeapObject::kMapOffset)); // Undetectable objects behave like undefined when tested with typeof. __ Ldrb(x11, FieldMemOperand(x10, Map::kBitFieldOffset)); __ Tbnz(x11, Map::kIsUndetectable, if_false); __ Ldrb(x12, FieldMemOperand(x10, Map::kInstanceTypeOffset)); __ Cmp(x12, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE); __ B(lt, if_false); __ Cmp(x12, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(le, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(x0, if_false); __ CompareObjectType(x0, x10, x11, FIRST_SPEC_OBJECT_TYPE); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(ge, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) { ASM_LOCATION("FullCodeGenerator::EmitIsUndetectableObject"); ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(x0, if_false); __ Ldr(x10, FieldMemOperand(x0, HeapObject::kMapOffset)); __ Ldrb(x11, FieldMemOperand(x10, Map::kBitFieldOffset)); __ Tst(x11, 1 << Map::kIsUndetectable); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(ne, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf( CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false, skip_lookup; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); Register object = x0; __ AssertNotSmi(object); Register map = x10; Register bitfield2 = x11; __ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); __ Ldrb(bitfield2, FieldMemOperand(map, Map::kBitField2Offset)); __ Tbnz(bitfield2, Map::kStringWrapperSafeForDefaultValueOf, &skip_lookup); // Check for fast case object. Generate false result for slow case object. Register props = x12; Register props_map = x12; Register hash_table_map = x13; __ Ldr(props, FieldMemOperand(object, JSObject::kPropertiesOffset)); __ Ldr(props_map, FieldMemOperand(props, HeapObject::kMapOffset)); __ LoadRoot(hash_table_map, Heap::kHashTableMapRootIndex); __ Cmp(props_map, hash_table_map); __ B(eq, if_false); // Look for valueOf name in the descriptor array, and indicate false if found. // Since we omit an enumeration index check, if it is added via a transition // that shares its descriptor array, this is a false positive. Label loop, done; // Skip loop if no descriptors are valid. Register descriptors = x12; Register descriptors_length = x13; __ NumberOfOwnDescriptors(descriptors_length, map); __ Cbz(descriptors_length, &done); __ LoadInstanceDescriptors(map, descriptors); // Calculate the end of the descriptor array. Register descriptors_end = x14; __ Mov(x15, DescriptorArray::kDescriptorSize); __ Mul(descriptors_length, descriptors_length, x15); // Calculate location of the first key name. __ Add(descriptors, descriptors, DescriptorArray::kFirstOffset - kHeapObjectTag); // Calculate the end of the descriptor array. __ Add(descriptors_end, descriptors, Operand(descriptors_length, LSL, kPointerSizeLog2)); // Loop through all the keys in the descriptor array. If one of these is the // string "valueOf" the result is false. Register valueof_string = x1; int descriptor_size = DescriptorArray::kDescriptorSize * kPointerSize; __ Mov(valueof_string, Operand(isolate()->factory()->value_of_string())); __ Bind(&loop); __ Ldr(x15, MemOperand(descriptors, descriptor_size, PostIndex)); __ Cmp(x15, valueof_string); __ B(eq, if_false); __ Cmp(descriptors, descriptors_end); __ B(ne, &loop); __ Bind(&done); // Set the bit in the map to indicate that there is no local valueOf field. __ Ldrb(x2, FieldMemOperand(map, Map::kBitField2Offset)); __ Orr(x2, x2, 1 << Map::kStringWrapperSafeForDefaultValueOf); __ Strb(x2, FieldMemOperand(map, Map::kBitField2Offset)); __ Bind(&skip_lookup); // If a valueOf property is not found on the object check that its prototype // is the unmodified String prototype. If not result is false. Register prototype = x1; Register global_idx = x2; Register native_context = x2; Register string_proto = x3; Register proto_map = x4; __ Ldr(prototype, FieldMemOperand(map, Map::kPrototypeOffset)); __ JumpIfSmi(prototype, if_false); __ Ldr(proto_map, FieldMemOperand(prototype, HeapObject::kMapOffset)); __ Ldr(global_idx, GlobalObjectMemOperand()); __ Ldr(native_context, FieldMemOperand(global_idx, GlobalObject::kNativeContextOffset)); __ Ldr(string_proto, ContextMemOperand(native_context, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); __ Cmp(proto_map, string_proto); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(x0, if_false); __ CompareObjectType(x0, x10, x11, JS_FUNCTION_TYPE); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); // Only a HeapNumber can be -0.0, so return false if we have something else. __ JumpIfNotHeapNumber(x0, if_false, DO_SMI_CHECK); // Test the bit pattern. __ Ldr(x10, FieldMemOperand(x0, HeapNumber::kValueOffset)); __ Cmp(x10, 1); // Set V on 0x8000000000000000. PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(vs, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsArray(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(x0, if_false); __ CompareObjectType(x0, x10, x11, JS_ARRAY_TYPE); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(x0, if_false); __ CompareObjectType(x0, x10, x11, JS_REGEXP_TYPE); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(x0, if_false); Register map = x10; Register type_reg = x11; __ Ldr(map, FieldMemOperand(x0, HeapObject::kMapOffset)); __ Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ Sub(type_reg, type_reg, Operand(FIRST_JS_PROXY_TYPE)); __ Cmp(type_reg, Operand(LAST_JS_PROXY_TYPE - FIRST_JS_PROXY_TYPE)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(ls, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) { DCHECK(expr->arguments()->length() == 0); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); // Get the frame pointer for the calling frame. __ Ldr(x2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ Ldr(x1, MemOperand(x2, StandardFrameConstants::kContextOffset)); __ Cmp(x1, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ B(ne, &check_frame_marker); __ Ldr(x2, MemOperand(x2, StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ Bind(&check_frame_marker); __ Ldr(x1, MemOperand(x2, StandardFrameConstants::kMarkerOffset)); __ Cmp(x1, Smi::FromInt(StackFrame::CONSTRUCT)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 2); // Load the two objects into registers and perform the comparison. VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ Pop(x1); __ Cmp(x0, x1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitArguments(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); // ArgumentsAccessStub expects the key in x1. VisitForAccumulatorValue(args->at(0)); __ Mov(x1, x0); __ Mov(x0, Smi::FromInt(info_->scope()->num_parameters())); ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT); __ CallStub(&stub); context()->Plug(x0); } void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) { DCHECK(expr->arguments()->length() == 0); Label exit; // Get the number of formal parameters. __ Mov(x0, Smi::FromInt(info_->scope()->num_parameters())); // Check if the calling frame is an arguments adaptor frame. __ Ldr(x12, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ Ldr(x13, MemOperand(x12, StandardFrameConstants::kContextOffset)); __ Cmp(x13, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ B(ne, &exit); // Arguments adaptor case: Read the arguments length from the // adaptor frame. __ Ldr(x0, MemOperand(x12, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ Bind(&exit); context()->Plug(x0); } void FullCodeGenerator::EmitClassOf(CallRuntime* expr) { ASM_LOCATION("FullCodeGenerator::EmitClassOf"); ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); Label done, null, function, non_function_constructor; VisitForAccumulatorValue(args->at(0)); // If the object is a smi, we return null. __ JumpIfSmi(x0, &null); // Check that the object is a JS object but take special care of JS // functions to make sure they have 'Function' as their class. // Assume that there are only two callable types, and one of them is at // either end of the type range for JS object types. Saves extra comparisons. STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); __ CompareObjectType(x0, x10, x11, FIRST_SPEC_OBJECT_TYPE); // x10: object's map. // x11: object's type. __ B(lt, &null); STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == FIRST_SPEC_OBJECT_TYPE + 1); __ B(eq, &function); __ Cmp(x11, LAST_SPEC_OBJECT_TYPE); STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_SPEC_OBJECT_TYPE - 1); __ B(eq, &function); // Assume that there is no larger type. STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1); // Check if the constructor in the map is a JS function. Register instance_type = x14; __ GetMapConstructor(x12, x10, x13, instance_type); __ Cmp(instance_type, JS_FUNCTION_TYPE); __ B(ne, &non_function_constructor); // x12 now contains the constructor function. Grab the // instance class name from there. __ Ldr(x13, FieldMemOperand(x12, JSFunction::kSharedFunctionInfoOffset)); __ Ldr(x0, FieldMemOperand(x13, SharedFunctionInfo::kInstanceClassNameOffset)); __ B(&done); // Functions have class 'Function'. __ Bind(&function); __ LoadRoot(x0, Heap::kFunction_stringRootIndex); __ B(&done); // Objects with a non-function constructor have class 'Object'. __ Bind(&non_function_constructor); __ LoadRoot(x0, Heap::kObject_stringRootIndex); __ B(&done); // Non-JS objects have class null. __ Bind(&null); __ LoadRoot(x0, Heap::kNullValueRootIndex); // All done. __ Bind(&done); context()->Plug(x0); } void FullCodeGenerator::EmitSubString(CallRuntime* expr) { // Load the arguments on the stack and call the stub. SubStringStub stub(isolate()); ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallStub(&stub); context()->Plug(x0); } void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) { // Load the arguments on the stack and call the stub. RegExpExecStub stub(isolate()); ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 4); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); VisitForStackValue(args->at(3)); __ CallStub(&stub); context()->Plug(x0); } void FullCodeGenerator::EmitValueOf(CallRuntime* expr) { ASM_LOCATION("FullCodeGenerator::EmitValueOf"); ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); // Load the object. Label done; // If the object is a smi return the object. __ JumpIfSmi(x0, &done); // If the object is not a value type, return the object. __ JumpIfNotObjectType(x0, x10, x11, JS_VALUE_TYPE, &done); __ Ldr(x0, FieldMemOperand(x0, JSValue::kValueOffset)); __ Bind(&done); context()->Plug(x0); } void FullCodeGenerator::EmitDateField(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 2); DCHECK_NOT_NULL(args->at(1)->AsLiteral()); Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value())); VisitForAccumulatorValue(args->at(0)); // Load the object. Label runtime, done, not_date_object; Register object = x0; Register result = x0; Register stamp_addr = x10; Register stamp_cache = x11; __ JumpIfSmi(object, ¬_date_object); __ JumpIfNotObjectType(object, x10, x10, JS_DATE_TYPE, ¬_date_object); if (index->value() == 0) { __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset)); __ B(&done); } else { if (index->value() < JSDate::kFirstUncachedField) { ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); __ Mov(x10, stamp); __ Ldr(stamp_addr, MemOperand(x10)); __ Ldr(stamp_cache, FieldMemOperand(object, JSDate::kCacheStampOffset)); __ Cmp(stamp_addr, stamp_cache); __ B(ne, &runtime); __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset + kPointerSize * index->value())); __ B(&done); } __ Bind(&runtime); __ Mov(x1, index); __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); __ B(&done); } __ Bind(¬_date_object); __ CallRuntime(Runtime::kThrowNotDateError, 0); __ Bind(&done); context()->Plug(x0); } void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK_EQ(3, args->length()); Register string = x0; Register index = x1; Register value = x2; Register scratch = x10; VisitForStackValue(args->at(0)); // index VisitForStackValue(args->at(1)); // value VisitForAccumulatorValue(args->at(2)); // string __ Pop(value, index); if (FLAG_debug_code) { __ AssertSmi(value, kNonSmiValue); __ AssertSmi(index, kNonSmiIndex); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; __ EmitSeqStringSetCharCheck(string, index, kIndexIsSmi, scratch, one_byte_seq_type); } __ Add(scratch, string, SeqOneByteString::kHeaderSize - kHeapObjectTag); __ SmiUntag(value); __ SmiUntag(index); __ Strb(value, MemOperand(scratch, index)); context()->Plug(string); } void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK_EQ(3, args->length()); Register string = x0; Register index = x1; Register value = x2; Register scratch = x10; VisitForStackValue(args->at(0)); // index VisitForStackValue(args->at(1)); // value VisitForAccumulatorValue(args->at(2)); // string __ Pop(value, index); if (FLAG_debug_code) { __ AssertSmi(value, kNonSmiValue); __ AssertSmi(index, kNonSmiIndex); static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; __ EmitSeqStringSetCharCheck(string, index, kIndexIsSmi, scratch, two_byte_seq_type); } __ Add(scratch, string, SeqTwoByteString::kHeaderSize - kHeapObjectTag); __ SmiUntag(value); __ SmiUntag(index); __ Strh(value, MemOperand(scratch, index, LSL, 1)); context()->Plug(string); } void FullCodeGenerator::EmitMathPow(CallRuntime* expr) { // Load the arguments on the stack and call the MathPow stub. ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); MathPowStub stub(isolate(), MathPowStub::ON_STACK); __ CallStub(&stub); context()->Plug(x0); } void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); // Load the object. VisitForAccumulatorValue(args->at(1)); // Load the value. __ Pop(x1); // x0 = value. // x1 = object. Label done; // If the object is a smi, return the value. __ JumpIfSmi(x1, &done); // If the object is not a value type, return the value. __ JumpIfNotObjectType(x1, x10, x11, JS_VALUE_TYPE, &done); // Store the value. __ Str(x0, FieldMemOperand(x1, JSValue::kValueOffset)); // Update the write barrier. Save the value as it will be // overwritten by the write barrier code and is needed afterward. __ Mov(x10, x0); __ RecordWriteField( x1, JSValue::kValueOffset, x10, x11, kLRHasBeenSaved, kDontSaveFPRegs); __ Bind(&done); context()->Plug(x0); } void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK_EQ(args->length(), 1); // Load the argument into x0 and call the stub. VisitForAccumulatorValue(args->at(0)); NumberToStringStub stub(isolate()); __ CallStub(&stub); context()->Plug(x0); } void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label done; Register code = x0; Register result = x1; StringCharFromCodeGenerator generator(code, result); generator.GenerateFast(masm_); __ B(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ Bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Register object = x1; Register index = x0; Register result = x3; __ Pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharCodeAtGenerator generator(object, index, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ B(&done); __ Bind(&index_out_of_range); // When the index is out of range, the spec requires us to return NaN. __ LoadRoot(result, Heap::kNanValueRootIndex); __ B(&done); __ Bind(&need_conversion); // Load the undefined value into the result register, which will // trigger conversion. __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ B(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper); __ Bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Register object = x1; Register index = x0; Register result = x0; __ Pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharAtGenerator generator(object, index, x3, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ B(&done); __ Bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // the empty string. __ LoadRoot(result, Heap::kempty_stringRootIndex); __ B(&done); __ Bind(&need_conversion); // Move smi zero into the result register, which will trigger conversion. __ Mov(result, Smi::FromInt(0)); __ B(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper); __ Bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) { ASM_LOCATION("FullCodeGenerator::EmitStringAdd"); ZoneList<Expression*>* args = expr->arguments(); DCHECK_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); __ Pop(x1); StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED); __ CallStub(&stub); context()->Plug(x0); } void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); StringCompareStub stub(isolate()); __ CallStub(&stub); context()->Plug(x0); } void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) { ASM_LOCATION("FullCodeGenerator::EmitCallFunction"); ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() >= 2); int arg_count = args->length() - 2; // 2 ~ receiver and function. for (int i = 0; i < arg_count + 1; i++) { VisitForStackValue(args->at(i)); } VisitForAccumulatorValue(args->last()); // Function. Label runtime, done; // Check for non-function argument (including proxy). __ JumpIfSmi(x0, &runtime); __ JumpIfNotObjectType(x0, x1, x1, JS_FUNCTION_TYPE, &runtime); // InvokeFunction requires the function in x1. Move it in there. __ Mov(x1, x0); ParameterCount count(arg_count); __ InvokeFunction(x1, count, CALL_FUNCTION, NullCallWrapper()); __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ B(&done); __ Bind(&runtime); __ Push(x0); __ CallRuntime(Runtime::kCall, args->length()); __ Bind(&done); context()->Plug(x0); } void FullCodeGenerator::EmitDefaultConstructorCallSuper(CallRuntime* expr) { Variable* new_target_var = scope()->DeclarationScope()->new_target_var(); GetVar(result_register(), new_target_var); __ Push(result_register()); EmitLoadSuperConstructor(); __ Push(result_register()); // Check if the calling frame is an arguments adaptor frame. Label adaptor_frame, args_set_up, runtime; __ Ldr(x11, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ Ldr(x12, MemOperand(x11, StandardFrameConstants::kContextOffset)); __ Cmp(x12, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ B(eq, &adaptor_frame); // default constructor has no arguments, so no adaptor frame means no args. __ Mov(x0, Operand(0)); __ B(&args_set_up); // Copy arguments from adaptor frame. { __ bind(&adaptor_frame); __ Ldr(x1, MemOperand(x11, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(x1, x1); // Subtract 1 from arguments count, for new.target. __ Sub(x1, x1, Operand(1)); __ Mov(x0, x1); // Get arguments pointer in x11. __ Add(x11, x11, Operand(x1, LSL, kPointerSizeLog2)); __ Add(x11, x11, StandardFrameConstants::kCallerSPOffset); Label loop; __ bind(&loop); // Pre-decrement x11 with kPointerSize on each iteration. // Pre-decrement in order to skip receiver. __ Ldr(x10, MemOperand(x11, -kPointerSize, PreIndex)); __ Push(x10); __ Sub(x1, x1, Operand(1)); __ Cbnz(x1, &loop); } __ bind(&args_set_up); __ Peek(x1, Operand(x0, LSL, kPointerSizeLog2)); __ LoadRoot(x2, Heap::kUndefinedValueRootIndex); CallConstructStub stub(isolate(), SUPER_CONSTRUCTOR_CALL); __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL); __ Drop(1); context()->Plug(result_register()); } void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) { RegExpConstructResultStub stub(isolate()); ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForAccumulatorValue(args->at(2)); __ Pop(x1, x2); __ CallStub(&stub); context()->Plug(x0); } void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK_EQ(2, args->length()); DCHECK_NOT_NULL(args->at(0)->AsLiteral()); int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->value()))->value(); Handle<FixedArray> jsfunction_result_caches( isolate()->native_context()->jsfunction_result_caches()); if (jsfunction_result_caches->length() <= cache_id) { __ Abort(kAttemptToUseUndefinedCache); __ LoadRoot(x0, Heap::kUndefinedValueRootIndex); context()->Plug(x0); return; } VisitForAccumulatorValue(args->at(1)); Register key = x0; Register cache = x1; __ Ldr(cache, GlobalObjectMemOperand()); __ Ldr(cache, FieldMemOperand(cache, GlobalObject::kNativeContextOffset)); __ Ldr(cache, ContextMemOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX)); __ Ldr(cache, FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id))); Label done; __ Ldrsw(x2, UntagSmiFieldMemOperand(cache, JSFunctionResultCache::kFingerOffset)); __ Add(x3, cache, FixedArray::kHeaderSize - kHeapObjectTag); __ Add(x3, x3, Operand(x2, LSL, kPointerSizeLog2)); // Load the key and data from the cache. __ Ldp(x2, x3, MemOperand(x3)); __ Cmp(key, x2); __ CmovX(x0, x3, eq); __ B(eq, &done); // Call runtime to perform the lookup. __ Push(cache, key); __ CallRuntime(Runtime::kGetFromCacheRT, 2); __ Bind(&done); context()->Plug(x0); } void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ Ldr(x10, FieldMemOperand(x0, String::kHashFieldOffset)); __ Tst(x10, String::kContainsCachedArrayIndexMask); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); __ AssertString(x0); __ Ldr(x10, FieldMemOperand(x0, String::kHashFieldOffset)); __ IndexFromHash(x10, x0); context()->Plug(x0); } void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) { ASM_LOCATION("FullCodeGenerator::EmitFastOneByteArrayJoin"); ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(1)); VisitForAccumulatorValue(args->at(0)); Register array = x0; Register result = x0; Register elements = x1; Register element = x2; Register separator = x3; Register array_length = x4; Register result_pos = x5; Register map = x6; Register string_length = x10; Register elements_end = x11; Register string = x12; Register scratch1 = x13; Register scratch2 = x14; Register scratch3 = x7; Register separator_length = x15; Label bailout, done, one_char_separator, long_separator, non_trivial_array, not_size_one_array, loop, empty_separator_loop, one_char_separator_loop, one_char_separator_loop_entry, long_separator_loop; // The separator operand is on the stack. __ Pop(separator); // Check that the array is a JSArray. __ JumpIfSmi(array, &bailout); __ JumpIfNotObjectType(array, map, scratch1, JS_ARRAY_TYPE, &bailout); // Check that the array has fast elements. __ CheckFastElements(map, scratch1, &bailout); // If the array has length zero, return the empty string. // Load and untag the length of the array. // It is an unsigned value, so we can skip sign extension. // We assume little endianness. __ Ldrsw(array_length, UntagSmiFieldMemOperand(array, JSArray::kLengthOffset)); __ Cbnz(array_length, &non_trivial_array); __ LoadRoot(result, Heap::kempty_stringRootIndex); __ B(&done); __ Bind(&non_trivial_array); // Get the FixedArray containing array's elements. __ Ldr(elements, FieldMemOperand(array, JSArray::kElementsOffset)); // Check that all array elements are sequential one-byte strings, and // accumulate the sum of their lengths. __ Mov(string_length, 0); __ Add(element, elements, FixedArray::kHeaderSize - kHeapObjectTag); __ Add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2)); // Loop condition: while (element < elements_end). // Live values in registers: // elements: Fixed array of strings. // array_length: Length of the fixed array of strings (not smi) // separator: Separator string // string_length: Accumulated sum of string lengths (not smi). // element: Current array element. // elements_end: Array end. if (FLAG_debug_code) { __ Cmp(array_length, 0); __ Assert(gt, kNoEmptyArraysHereInEmitFastOneByteArrayJoin); } __ Bind(&loop); __ Ldr(string, MemOperand(element, kPointerSize, PostIndex)); __ JumpIfSmi(string, &bailout); __ Ldr(scratch1, FieldMemOperand(string, HeapObject::kMapOffset)); __ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout); __ Ldrsw(scratch1, UntagSmiFieldMemOperand(string, SeqOneByteString::kLengthOffset)); __ Adds(string_length, string_length, scratch1); __ B(vs, &bailout); __ Cmp(element, elements_end); __ B(lt, &loop); // If array_length is 1, return elements[0], a string. __ Cmp(array_length, 1); __ B(ne, ¬_size_one_array); __ Ldr(result, FieldMemOperand(elements, FixedArray::kHeaderSize)); __ B(&done); __ Bind(¬_size_one_array); // Live values in registers: // separator: Separator string // array_length: Length of the array (not smi). // string_length: Sum of string lengths (not smi). // elements: FixedArray of strings. // Check that the separator is a flat one-byte string. __ JumpIfSmi(separator, &bailout); __ Ldr(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset)); __ Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout); // Add (separator length times array_length) - separator length to the // string_length to get the length of the result string. // Load the separator length as untagged. // We assume little endianness, and that the length is positive. __ Ldrsw(separator_length, UntagSmiFieldMemOperand(separator, SeqOneByteString::kLengthOffset)); __ Sub(string_length, string_length, separator_length); __ Umaddl(string_length, array_length.W(), separator_length.W(), string_length); // Get first element in the array. __ Add(element, elements, FixedArray::kHeaderSize - kHeapObjectTag); // Live values in registers: // element: First array element // separator: Separator string // string_length: Length of result string (not smi) // array_length: Length of the array (not smi). __ AllocateOneByteString(result, string_length, scratch1, scratch2, scratch3, &bailout); // Prepare for looping. Set up elements_end to end of the array. Set // result_pos to the position of the result where to write the first // character. // TODO(all): useless unless AllocateOneByteString trashes the register. __ Add(elements_end, element, Operand(array_length, LSL, kPointerSizeLog2)); __ Add(result_pos, result, SeqOneByteString::kHeaderSize - kHeapObjectTag); // Check the length of the separator. __ Cmp(separator_length, 1); __ B(eq, &one_char_separator); __ B(gt, &long_separator); // Empty separator case __ Bind(&empty_separator_loop); // Live values in registers: // result_pos: the position to which we are currently copying characters. // element: Current array element. // elements_end: Array end. // Copy next array element to the result. __ Ldr(string, MemOperand(element, kPointerSize, PostIndex)); __ Ldrsw(string_length, UntagSmiFieldMemOperand(string, String::kLengthOffset)); __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag); __ CopyBytes(result_pos, string, string_length, scratch1); __ Cmp(element, elements_end); __ B(lt, &empty_separator_loop); // End while (element < elements_end). __ B(&done); // One-character separator case __ Bind(&one_char_separator); // Replace separator with its one-byte character value. __ Ldrb(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize)); // Jump into the loop after the code that copies the separator, so the first // element is not preceded by a separator __ B(&one_char_separator_loop_entry); __ Bind(&one_char_separator_loop); // Live values in registers: // result_pos: the position to which we are currently copying characters. // element: Current array element. // elements_end: Array end. // separator: Single separator one-byte char (in lower byte). // Copy the separator character to the result. __ Strb(separator, MemOperand(result_pos, 1, PostIndex)); // Copy next array element to the result. __ Bind(&one_char_separator_loop_entry); __ Ldr(string, MemOperand(element, kPointerSize, PostIndex)); __ Ldrsw(string_length, UntagSmiFieldMemOperand(string, String::kLengthOffset)); __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag); __ CopyBytes(result_pos, string, string_length, scratch1); __ Cmp(element, elements_end); __ B(lt, &one_char_separator_loop); // End while (element < elements_end). __ B(&done); // Long separator case (separator is more than one character). Entry is at the // label long_separator below. __ Bind(&long_separator_loop); // Live values in registers: // result_pos: the position to which we are currently copying characters. // element: Current array element. // elements_end: Array end. // separator: Separator string. // Copy the separator to the result. // TODO(all): hoist next two instructions. __ Ldrsw(string_length, UntagSmiFieldMemOperand(separator, String::kLengthOffset)); __ Add(string, separator, SeqOneByteString::kHeaderSize - kHeapObjectTag); __ CopyBytes(result_pos, string, string_length, scratch1); __ Bind(&long_separator); __ Ldr(string, MemOperand(element, kPointerSize, PostIndex)); __ Ldrsw(string_length, UntagSmiFieldMemOperand(string, String::kLengthOffset)); __ Add(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag); __ CopyBytes(result_pos, string, string_length, scratch1); __ Cmp(element, elements_end); __ B(lt, &long_separator_loop); // End while (element < elements_end). __ B(&done); __ Bind(&bailout); // Returning undefined will force slower code to handle it. __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ Bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) { DCHECK(expr->arguments()->length() == 0); ExternalReference debug_is_active = ExternalReference::debug_is_active_address(isolate()); __ Mov(x10, debug_is_active); __ Ldrb(x0, MemOperand(x10)); __ SmiTag(x0); context()->Plug(x0); } void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); if (expr->is_jsruntime()) { Comment cmnt(masm_, "[ CallRunTime"); // Push the builtins object as the receiver. __ Ldr(x10, GlobalObjectMemOperand()); __ Ldr(LoadDescriptor::ReceiverRegister(), FieldMemOperand(x10, GlobalObject::kBuiltinsOffset)); __ Push(LoadDescriptor::ReceiverRegister()); // Load the function from the receiver. Handle<String> name = expr->name(); __ Mov(LoadDescriptor::NameRegister(), Operand(name)); if (FLAG_vector_ics) { __ Mov(VectorLoadICDescriptor::SlotRegister(), SmiFromSlot(expr->CallRuntimeFeedbackSlot())); CallLoadIC(NOT_CONTEXTUAL); } else { CallLoadIC(NOT_CONTEXTUAL, expr->CallRuntimeFeedbackId()); } // Push the target function under the receiver. __ Pop(x10); __ Push(x0, x10); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Record source position of the IC call. SetSourcePosition(expr->position()); CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS); __ Peek(x1, (arg_count + 1) * kPointerSize); __ CallStub(&stub); // Restore context register. __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, x0); } else { const Runtime::Function* function = expr->function(); switch (function->function_id) { #define CALL_INTRINSIC_GENERATOR(Name) \ case Runtime::kInline##Name: { \ Comment cmnt(masm_, "[ Inline" #Name); \ return Emit##Name(expr); \ } FOR_EACH_FULL_CODE_INTRINSIC(CALL_INTRINSIC_GENERATOR) #undef CALL_INTRINSIC_GENERATOR default: { Comment cmnt(masm_, "[ CallRuntime for unhandled intrinsic"); // Push the arguments ("left-to-right"). for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the C runtime function. __ CallRuntime(expr->function(), arg_count); context()->Plug(x0); } } } } void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::DELETE: { Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); Property* property = expr->expression()->AsProperty(); VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (property != NULL) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); __ Mov(x10, Smi::FromInt(language_mode())); __ Push(x10); __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); context()->Plug(x0); } else if (proxy != NULL) { Variable* var = proxy->var(); // Delete of an unqualified identifier is disallowed in strict mode // but "delete this" is allowed. DCHECK(is_sloppy(language_mode()) || var->is_this()); if (var->IsUnallocated()) { __ Ldr(x12, GlobalObjectMemOperand()); __ Mov(x11, Operand(var->name())); __ Mov(x10, Smi::FromInt(SLOPPY)); __ Push(x12, x11, x10); __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); context()->Plug(x0); } else if (var->IsStackAllocated() || var->IsContextSlot()) { // Result of deleting non-global, non-dynamic variables is false. // The subexpression does not have side effects. context()->Plug(var->is_this()); } else { // Non-global variable. Call the runtime to try to delete from the // context where the variable was introduced. __ Mov(x2, Operand(var->name())); __ Push(context_register(), x2); __ CallRuntime(Runtime::kDeleteLookupSlot, 2); context()->Plug(x0); } } else { // Result of deleting non-property, non-variable reference is true. // The subexpression may have side effects. VisitForEffect(expr->expression()); context()->Plug(true); } break; break; } case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); VisitForEffect(expr->expression()); context()->Plug(Heap::kUndefinedValueRootIndex); break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); if (context()->IsEffect()) { // Unary NOT has no side effects so it's only necessary to visit the // subexpression. Match the optimizing compiler by not branching. VisitForEffect(expr->expression()); } else if (context()->IsTest()) { const TestContext* test = TestContext::cast(context()); // The labels are swapped for the recursive call. VisitForControl(expr->expression(), test->false_label(), test->true_label(), test->fall_through()); context()->Plug(test->true_label(), test->false_label()); } else { DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue()); // TODO(jbramley): This could be much more efficient using (for // example) the CSEL instruction. Label materialize_true, materialize_false, done; VisitForControl(expr->expression(), &materialize_false, &materialize_true, &materialize_true); __ Bind(&materialize_true); PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS); __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); __ B(&done); __ Bind(&materialize_false); PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS); __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); __ B(&done); __ Bind(&done); if (context()->IsStackValue()) { __ Push(result_register()); } } break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); { StackValueContext context(this); VisitForTypeofValue(expr->expression()); } __ CallRuntime(Runtime::kTypeof, 1); context()->Plug(x0); break; } default: UNREACHABLE(); } } void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { DCHECK(expr->expression()->IsValidReferenceExpression()); Comment cmnt(masm_, "[ CountOperation"); SetSourcePosition(expr->position()); Property* prop = expr->expression()->AsProperty(); LhsKind assign_type = GetAssignType(prop); // Evaluate expression and get value. if (assign_type == VARIABLE) { DCHECK(expr->expression()->AsVariableProxy()->var() != NULL); AccumulatorValueContext context(this); EmitVariableLoad(expr->expression()->AsVariableProxy()); } else { // Reserve space for result of postfix operation. if (expr->is_postfix() && !context()->IsEffect()) { __ Push(xzr); } switch (assign_type) { case NAMED_PROPERTY: { // Put the object both on the stack and in the register. VisitForStackValue(prop->obj()); __ Peek(LoadDescriptor::ReceiverRegister(), 0); EmitNamedPropertyLoad(prop); break; } case NAMED_SUPER_PROPERTY: { VisitForStackValue(prop->obj()->AsSuperReference()->this_var()); EmitLoadHomeObject(prop->obj()->AsSuperReference()); __ Push(result_register()); const Register scratch = x10; __ Peek(scratch, kPointerSize); __ Push(scratch, result_register()); EmitNamedSuperPropertyLoad(prop); break; } case KEYED_SUPER_PROPERTY: { VisitForStackValue(prop->obj()->AsSuperReference()->this_var()); EmitLoadHomeObject(prop->obj()->AsSuperReference()); __ Push(result_register()); VisitForAccumulatorValue(prop->key()); __ Push(result_register()); const Register scratch1 = x10; const Register scratch2 = x11; __ Peek(scratch1, 2 * kPointerSize); __ Peek(scratch2, kPointerSize); __ Push(scratch1, scratch2, result_register()); EmitKeyedSuperPropertyLoad(prop); break; } case KEYED_PROPERTY: { VisitForStackValue(prop->obj()); VisitForStackValue(prop->key()); __ Peek(LoadDescriptor::ReceiverRegister(), 1 * kPointerSize); __ Peek(LoadDescriptor::NameRegister(), 0); EmitKeyedPropertyLoad(prop); break; } case VARIABLE: UNREACHABLE(); } } // We need a second deoptimization point after loading the value // in case evaluating the property load my have a side effect. if (assign_type == VARIABLE) { PrepareForBailout(expr->expression(), TOS_REG); } else { PrepareForBailoutForId(prop->LoadId(), TOS_REG); } // Inline smi case if we are in a loop. Label stub_call, done; JumpPatchSite patch_site(masm_); int count_value = expr->op() == Token::INC ? 1 : -1; if (ShouldInlineSmiCase(expr->op())) { Label slow; patch_site.EmitJumpIfNotSmi(x0, &slow); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property we // store the result under the receiver that is currently on top of the // stack. switch (assign_type) { case VARIABLE: __ Push(x0); break; case NAMED_PROPERTY: __ Poke(x0, kPointerSize); break; case NAMED_SUPER_PROPERTY: __ Poke(x0, kPointerSize * 2); break; case KEYED_PROPERTY: __ Poke(x0, kPointerSize * 2); break; case KEYED_SUPER_PROPERTY: __ Poke(x0, kPointerSize * 3); break; } } } __ Adds(x0, x0, Smi::FromInt(count_value)); __ B(vc, &done); // Call stub. Undo operation first. __ Sub(x0, x0, Smi::FromInt(count_value)); __ B(&stub_call); __ Bind(&slow); } ToNumberStub convert_stub(isolate()); __ CallStub(&convert_stub); PrepareForBailoutForId(expr->ToNumberId(), TOS_REG); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ Push(x0); break; case NAMED_PROPERTY: __ Poke(x0, kXRegSize); break; case NAMED_SUPER_PROPERTY: __ Poke(x0, 2 * kXRegSize); break; case KEYED_PROPERTY: __ Poke(x0, 2 * kXRegSize); break; case KEYED_SUPER_PROPERTY: __ Poke(x0, 3 * kXRegSize); break; } } } __ Bind(&stub_call); __ Mov(x1, x0); __ Mov(x0, Smi::FromInt(count_value)); // Record position before stub call. SetSourcePosition(expr->position()); { Assembler::BlockPoolsScope scope(masm_); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), Token::ADD).code(); CallIC(code, expr->CountBinOpFeedbackId()); patch_site.EmitPatchInfo(); } __ Bind(&done); // Store the value returned in x0. switch (assign_type) { case VARIABLE: if (expr->is_postfix()) { { EffectContext context(this); EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context.Plug(x0); } // For all contexts except EffectConstant We have the result on // top of the stack. if (!context()->IsEffect()) { context()->PlugTOS(); } } else { EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(x0); } break; case NAMED_PROPERTY: { __ Mov(StoreDescriptor::NameRegister(), Operand(prop->key()->AsLiteral()->value())); __ Pop(StoreDescriptor::ReceiverRegister()); CallStoreIC(expr->CountStoreFeedbackId()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(x0); } break; } case NAMED_SUPER_PROPERTY: { EmitNamedSuperPropertyStore(prop); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(x0); } break; } case KEYED_SUPER_PROPERTY: { EmitKeyedSuperPropertyStore(prop); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(x0); } break; } case KEYED_PROPERTY: { __ Pop(StoreDescriptor::NameRegister()); __ Pop(StoreDescriptor::ReceiverRegister()); Handle<Code> ic = CodeFactory::KeyedStoreIC(isolate(), language_mode()).code(); CallIC(ic, expr->CountStoreFeedbackId()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(x0); } break; } } } void FullCodeGenerator::VisitForTypeofValue(Expression* expr) { DCHECK(!context()->IsEffect()); DCHECK(!context()->IsTest()); VariableProxy* proxy = expr->AsVariableProxy(); if (proxy != NULL && proxy->var()->IsUnallocated()) { Comment cmnt(masm_, "Global variable"); __ Ldr(LoadDescriptor::ReceiverRegister(), GlobalObjectMemOperand()); __ Mov(LoadDescriptor::NameRegister(), Operand(proxy->name())); if (FLAG_vector_ics) { __ Mov(VectorLoadICDescriptor::SlotRegister(), SmiFromSlot(proxy->VariableFeedbackSlot())); } // Use a regular load, not a contextual load, to avoid a reference // error. CallLoadIC(NOT_CONTEXTUAL); PrepareForBailout(expr, TOS_REG); context()->Plug(x0); } else if (proxy != NULL && proxy->var()->IsLookupSlot()) { Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLookupFastCase(proxy, INSIDE_TYPEOF, &slow, &done); __ Bind(&slow); __ Mov(x0, Operand(proxy->name())); __ Push(cp, x0); __ CallRuntime(Runtime::kLoadLookupSlotNoReferenceError, 2); PrepareForBailout(expr, TOS_REG); __ Bind(&done); context()->Plug(x0); } else { // This expression cannot throw a reference error at the top level. VisitInDuplicateContext(expr); } } void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr, Expression* sub_expr, Handle<String> check) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof"); Comment cmnt(masm_, "[ EmitLiteralCompareTypeof"); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); { AccumulatorValueContext context(this); VisitForTypeofValue(sub_expr); } PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Factory* factory = isolate()->factory(); if (String::Equals(check, factory->number_string())) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof number_string"); __ JumpIfSmi(x0, if_true); __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset)); __ CompareRoot(x0, Heap::kHeapNumberMapRootIndex); Split(eq, if_true, if_false, fall_through); } else if (String::Equals(check, factory->string_string())) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof string_string"); __ JumpIfSmi(x0, if_false); // Check for undetectable objects => false. __ JumpIfObjectType(x0, x0, x1, FIRST_NONSTRING_TYPE, if_false, ge); __ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset)); __ TestAndSplit(x1, 1 << Map::kIsUndetectable, if_true, if_false, fall_through); } else if (String::Equals(check, factory->symbol_string())) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof symbol_string"); __ JumpIfSmi(x0, if_false); __ CompareObjectType(x0, x0, x1, SYMBOL_TYPE); Split(eq, if_true, if_false, fall_through); } else if (String::Equals(check, factory->boolean_string())) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof boolean_string"); __ JumpIfRoot(x0, Heap::kTrueValueRootIndex, if_true); __ CompareRoot(x0, Heap::kFalseValueRootIndex); Split(eq, if_true, if_false, fall_through); } else if (String::Equals(check, factory->undefined_string())) { ASM_LOCATION( "FullCodeGenerator::EmitLiteralCompareTypeof undefined_string"); __ JumpIfRoot(x0, Heap::kUndefinedValueRootIndex, if_true); __ JumpIfSmi(x0, if_false); // Check for undetectable objects => true. __ Ldr(x0, FieldMemOperand(x0, HeapObject::kMapOffset)); __ Ldrb(x1, FieldMemOperand(x0, Map::kBitFieldOffset)); __ TestAndSplit(x1, 1 << Map::kIsUndetectable, if_false, if_true, fall_through); } else if (String::Equals(check, factory->function_string())) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof function_string"); __ JumpIfSmi(x0, if_false); STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); __ JumpIfObjectType(x0, x10, x11, JS_FUNCTION_TYPE, if_true); __ CompareAndSplit(x11, JS_FUNCTION_PROXY_TYPE, eq, if_true, if_false, fall_through); } else if (String::Equals(check, factory->object_string())) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof object_string"); __ JumpIfSmi(x0, if_false); __ JumpIfRoot(x0, Heap::kNullValueRootIndex, if_true); // Check for JS objects => true. Register map = x10; __ JumpIfObjectType(x0, map, x11, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, if_false, lt); __ CompareInstanceType(map, x11, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); __ B(gt, if_false); // Check for undetectable objects => false. __ Ldrb(x10, FieldMemOperand(map, Map::kBitFieldOffset)); __ TestAndSplit(x10, 1 << Map::kIsUndetectable, if_true, if_false, fall_through); } else { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareTypeof other"); if (if_false != fall_through) __ B(if_false); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); SetSourcePosition(expr->position()); // Try to generate an optimized comparison with a literal value. // TODO(jbramley): This only checks common values like NaN or undefined. // Should it also handle ARM64 immediate operands? if (TryLiteralCompare(expr)) { return; } // Assign labels according to context()->PrepareTest. Label materialize_true; Label materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); Token::Value op = expr->op(); VisitForStackValue(expr->left()); switch (op) { case Token::IN: VisitForStackValue(expr->right()); __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION); PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); __ CompareRoot(x0, Heap::kTrueValueRootIndex); Split(eq, if_true, if_false, fall_through); break; case Token::INSTANCEOF: { VisitForStackValue(expr->right()); InstanceofStub stub(isolate(), InstanceofStub::kNoFlags); __ CallStub(&stub); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); // The stub returns 0 for true. __ CompareAndSplit(x0, 0, eq, if_true, if_false, fall_through); break; } default: { VisitForAccumulatorValue(expr->right()); Condition cond = CompareIC::ComputeCondition(op); // Pop the stack value. __ Pop(x1); JumpPatchSite patch_site(masm_); if (ShouldInlineSmiCase(op)) { Label slow_case; patch_site.EmitJumpIfEitherNotSmi(x0, x1, &slow_case); __ Cmp(x1, x0); Split(cond, if_true, if_false, NULL); __ Bind(&slow_case); } // Record position and call the compare IC. SetSourcePosition(expr->position()); Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); CallIC(ic, expr->CompareOperationFeedbackId()); patch_site.EmitPatchInfo(); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ CompareAndSplit(x0, 0, cond, if_true, if_false, fall_through); } } // Convert the result of the comparison into one expected for this // expression's context. context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr, Expression* sub_expr, NilValue nil) { ASM_LOCATION("FullCodeGenerator::EmitLiteralCompareNil"); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); VisitForAccumulatorValue(sub_expr); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); if (expr->op() == Token::EQ_STRICT) { Heap::RootListIndex nil_value = nil == kNullValue ? Heap::kNullValueRootIndex : Heap::kUndefinedValueRootIndex; __ CompareRoot(x0, nil_value); Split(eq, if_true, if_false, fall_through); } else { Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil); CallIC(ic, expr->CompareOperationFeedbackId()); __ CompareAndSplit(x0, 0, ne, if_true, if_false, fall_through); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { __ Ldr(x0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); context()->Plug(x0); } void FullCodeGenerator::VisitYield(Yield* expr) { Comment cmnt(masm_, "[ Yield"); // Evaluate yielded value first; the initial iterator definition depends on // this. It stays on the stack while we update the iterator. VisitForStackValue(expr->expression()); // TODO(jbramley): Tidy this up once the merge is done, using named registers // and suchlike. The implementation changes a little by bleeding_edge so I // don't want to spend too much time on it now. switch (expr->yield_kind()) { case Yield::kSuspend: // Pop value from top-of-stack slot; box result into result register. EmitCreateIteratorResult(false); __ Push(result_register()); // Fall through. case Yield::kInitial: { Label suspend, continuation, post_runtime, resume; __ B(&suspend); // TODO(jbramley): This label is bound here because the following code // looks at its pos(). Is it possible to do something more efficient here, // perhaps using Adr? __ Bind(&continuation); __ B(&resume); __ Bind(&suspend); VisitForAccumulatorValue(expr->generator_object()); DCHECK((continuation.pos() > 0) && Smi::IsValid(continuation.pos())); __ Mov(x1, Smi::FromInt(continuation.pos())); __ Str(x1, FieldMemOperand(x0, JSGeneratorObject::kContinuationOffset)); __ Str(cp, FieldMemOperand(x0, JSGeneratorObject::kContextOffset)); __ Mov(x1, cp); __ RecordWriteField(x0, JSGeneratorObject::kContextOffset, x1, x2, kLRHasBeenSaved, kDontSaveFPRegs); __ Add(x1, fp, StandardFrameConstants::kExpressionsOffset); __ Cmp(__ StackPointer(), x1); __ B(eq, &post_runtime); __ Push(x0); // generator object __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1); __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ Bind(&post_runtime); __ Pop(result_register()); EmitReturnSequence(); __ Bind(&resume); context()->Plug(result_register()); break; } case Yield::kFinal: { VisitForAccumulatorValue(expr->generator_object()); __ Mov(x1, Smi::FromInt(JSGeneratorObject::kGeneratorClosed)); __ Str(x1, FieldMemOperand(result_register(), JSGeneratorObject::kContinuationOffset)); // Pop value from top-of-stack slot, box result into result register. EmitCreateIteratorResult(true); EmitUnwindBeforeReturn(); EmitReturnSequence(); break; } case Yield::kDelegating: { VisitForStackValue(expr->generator_object()); // Initial stack layout is as follows: // [sp + 1 * kPointerSize] iter // [sp + 0 * kPointerSize] g Label l_catch, l_try, l_suspend, l_continuation, l_resume; Label l_next, l_call, l_loop; Register load_receiver = LoadDescriptor::ReceiverRegister(); Register load_name = LoadDescriptor::NameRegister(); // Initial send value is undefined. __ LoadRoot(x0, Heap::kUndefinedValueRootIndex); __ B(&l_next); // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; } __ Bind(&l_catch); __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw" __ Peek(x3, 1 * kPointerSize); // iter __ Push(load_name, x3, x0); // "throw", iter, except __ B(&l_call); // try { received = %yield result } // Shuffle the received result above a try handler and yield it without // re-boxing. __ Bind(&l_try); __ Pop(x0); // result EnterTryBlock(expr->index(), &l_catch); const int try_block_size = TryCatch::kElementCount * kPointerSize; __ Push(x0); // result __ B(&l_suspend); // TODO(jbramley): This label is bound here because the following code // looks at its pos(). Is it possible to do something more efficient here, // perhaps using Adr? __ Bind(&l_continuation); __ B(&l_resume); __ Bind(&l_suspend); const int generator_object_depth = kPointerSize + try_block_size; __ Peek(x0, generator_object_depth); __ Push(x0); // g __ Push(Smi::FromInt(expr->index())); // handler-index DCHECK((l_continuation.pos() > 0) && Smi::IsValid(l_continuation.pos())); __ Mov(x1, Smi::FromInt(l_continuation.pos())); __ Str(x1, FieldMemOperand(x0, JSGeneratorObject::kContinuationOffset)); __ Str(cp, FieldMemOperand(x0, JSGeneratorObject::kContextOffset)); __ Mov(x1, cp); __ RecordWriteField(x0, JSGeneratorObject::kContextOffset, x1, x2, kLRHasBeenSaved, kDontSaveFPRegs); __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 2); __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ Pop(x0); // result EmitReturnSequence(); __ Bind(&l_resume); // received in x0 ExitTryBlock(expr->index()); // receiver = iter; f = 'next'; arg = received; __ Bind(&l_next); __ LoadRoot(load_name, Heap::knext_stringRootIndex); // "next" __ Peek(x3, 1 * kPointerSize); // iter __ Push(load_name, x3, x0); // "next", iter, received // result = receiver[f](arg); __ Bind(&l_call); __ Peek(load_receiver, 1 * kPointerSize); __ Peek(load_name, 2 * kPointerSize); if (FLAG_vector_ics) { __ Mov(VectorLoadICDescriptor::SlotRegister(), SmiFromSlot(expr->KeyedLoadFeedbackSlot())); } Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate()).code(); CallIC(ic, TypeFeedbackId::None()); __ Mov(x1, x0); __ Poke(x1, 2 * kPointerSize); CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD); __ CallStub(&stub); __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ Drop(1); // The function is still on the stack; drop it. // if (!result.done) goto l_try; __ Bind(&l_loop); __ Move(load_receiver, x0); __ Push(load_receiver); // save result __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done" if (FLAG_vector_ics) { __ Mov(VectorLoadICDescriptor::SlotRegister(), SmiFromSlot(expr->DoneFeedbackSlot())); } CallLoadIC(NOT_CONTEXTUAL); // x0=result.done // The ToBooleanStub argument (result.done) is in x0. Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate()); CallIC(bool_ic); __ Cbz(x0, &l_try); // result.value __ Pop(load_receiver); // result __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value" if (FLAG_vector_ics) { __ Mov(VectorLoadICDescriptor::SlotRegister(), SmiFromSlot(expr->ValueFeedbackSlot())); } CallLoadIC(NOT_CONTEXTUAL); // x0=result.value context()->DropAndPlug(2, x0); // drop iter and g break; } } } void FullCodeGenerator::EmitGeneratorResume(Expression *generator, Expression *value, JSGeneratorObject::ResumeMode resume_mode) { ASM_LOCATION("FullCodeGenerator::EmitGeneratorResume"); Register generator_object = x1; Register the_hole = x2; Register operand_stack_size = w3; Register function = x4; // The value stays in x0, and is ultimately read by the resumed generator, as // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it // is read to throw the value when the resumed generator is already closed. x1 // will hold the generator object until the activation has been resumed. VisitForStackValue(generator); VisitForAccumulatorValue(value); __ Pop(generator_object); // Load suspended function and context. __ Ldr(cp, FieldMemOperand(generator_object, JSGeneratorObject::kContextOffset)); __ Ldr(function, FieldMemOperand(generator_object, JSGeneratorObject::kFunctionOffset)); // Load receiver and store as the first argument. __ Ldr(x10, FieldMemOperand(generator_object, JSGeneratorObject::kReceiverOffset)); __ Push(x10); // Push holes for the rest of the arguments to the generator function. __ Ldr(x10, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); // The number of arguments is stored as an int32_t, and -1 is a marker // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign // extension to correctly handle it. However, in this case, we operate on // 32-bit W registers, so extension isn't required. __ Ldr(w10, FieldMemOperand(x10, SharedFunctionInfo::kFormalParameterCountOffset)); __ LoadRoot(the_hole, Heap::kTheHoleValueRootIndex); __ PushMultipleTimes(the_hole, w10); // Enter a new JavaScript frame, and initialize its slots as they were when // the generator was suspended. Label resume_frame, done; __ Bl(&resume_frame); __ B(&done); __ Bind(&resume_frame); __ Push(lr, // Return address. fp, // Caller's frame pointer. cp, // Callee's context. function); // Callee's JS Function. __ Add(fp, __ StackPointer(), kPointerSize * 2); // Load and untag the operand stack size. __ Ldr(x10, FieldMemOperand(generator_object, JSGeneratorObject::kOperandStackOffset)); __ Ldr(operand_stack_size, UntagSmiFieldMemOperand(x10, FixedArray::kLengthOffset)); // If we are sending a value and there is no operand stack, we can jump back // in directly. if (resume_mode == JSGeneratorObject::NEXT) { Label slow_resume; __ Cbnz(operand_stack_size, &slow_resume); __ Ldr(x10, FieldMemOperand(function, JSFunction::kCodeEntryOffset)); __ Ldrsw(x11, UntagSmiFieldMemOperand(generator_object, JSGeneratorObject::kContinuationOffset)); __ Add(x10, x10, x11); __ Mov(x12, Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)); __ Str(x12, FieldMemOperand(generator_object, JSGeneratorObject::kContinuationOffset)); __ Br(x10); __ Bind(&slow_resume); } // Otherwise, we push holes for the operand stack and call the runtime to fix // up the stack and the handlers. __ PushMultipleTimes(the_hole, operand_stack_size); __ Mov(x10, Smi::FromInt(resume_mode)); __ Push(generator_object, result_register(), x10); __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3); // Not reached: the runtime call returns elsewhere. __ Unreachable(); __ Bind(&done); context()->Plug(result_register()); } void FullCodeGenerator::EmitCreateIteratorResult(bool done) { Label gc_required; Label allocated; const int instance_size = 5 * kPointerSize; DCHECK_EQ(isolate()->native_context()->iterator_result_map()->instance_size(), instance_size); // Allocate and populate an object with this form: { value: VAL, done: DONE } Register result = x0; __ Allocate(instance_size, result, x10, x11, &gc_required, TAG_OBJECT); __ B(&allocated); __ Bind(&gc_required); __ Push(Smi::FromInt(instance_size)); __ CallRuntime(Runtime::kAllocateInNewSpace, 1); __ Ldr(context_register(), MemOperand(fp, StandardFrameConstants::kContextOffset)); __ Bind(&allocated); Register map_reg = x1; Register result_value = x2; Register boolean_done = x3; Register empty_fixed_array = x4; Register untagged_result = x5; __ Ldr(map_reg, GlobalObjectMemOperand()); __ Ldr(map_reg, FieldMemOperand(map_reg, GlobalObject::kNativeContextOffset)); __ Ldr(map_reg, ContextMemOperand(map_reg, Context::ITERATOR_RESULT_MAP_INDEX)); __ Pop(result_value); __ Mov(boolean_done, Operand(isolate()->factory()->ToBoolean(done))); __ Mov(empty_fixed_array, Operand(isolate()->factory()->empty_fixed_array())); STATIC_ASSERT(JSObject::kPropertiesOffset + kPointerSize == JSObject::kElementsOffset); STATIC_ASSERT(JSGeneratorObject::kResultValuePropertyOffset + kPointerSize == JSGeneratorObject::kResultDonePropertyOffset); __ ObjectUntag(untagged_result, result); __ Str(map_reg, MemOperand(untagged_result, HeapObject::kMapOffset)); __ Stp(empty_fixed_array, empty_fixed_array, MemOperand(untagged_result, JSObject::kPropertiesOffset)); __ Stp(result_value, boolean_done, MemOperand(untagged_result, JSGeneratorObject::kResultValuePropertyOffset)); // Only the value field needs a write barrier, as the other values are in the // root set. __ RecordWriteField(result, JSGeneratorObject::kResultValuePropertyOffset, x10, x11, kLRHasBeenSaved, kDontSaveFPRegs); } // TODO(all): I don't like this method. // It seems to me that in too many places x0 is used in place of this. // Also, this function is not suitable for all places where x0 should be // abstracted (eg. when used as an argument). But some places assume that the // first argument register is x0, and use this function instead. // Considering that most of the register allocation is hard-coded in the // FullCodeGen, that it is unlikely we will need to change it extensively, and // that abstracting the allocation through functions would not yield any // performance benefit, I think the existence of this function is debatable. Register FullCodeGenerator::result_register() { return x0; } Register FullCodeGenerator::context_register() { return cp; } void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { DCHECK(POINTER_SIZE_ALIGN(frame_offset) == frame_offset); __ Str(value, MemOperand(fp, frame_offset)); } void FullCodeGenerator::LoadContextField(Register dst, int context_index) { __ Ldr(dst, ContextMemOperand(cp, context_index)); } void FullCodeGenerator::PushFunctionArgumentForContextAllocation() { Scope* declaration_scope = scope()->DeclarationScope(); if (declaration_scope->is_script_scope() || declaration_scope->is_module_scope()) { // Contexts nested in the native context have a canonical empty function // as their closure, not the anonymous closure containing the global // code. Pass a smi sentinel and let the runtime look up the empty // function. DCHECK(kSmiTag == 0); __ Push(xzr); } else if (declaration_scope->is_eval_scope()) { // Contexts created by a call to eval have the same closure as the // context calling eval, not the anonymous closure containing the eval // code. Fetch it from the context. __ Ldr(x10, ContextMemOperand(cp, Context::CLOSURE_INDEX)); __ Push(x10); } else { DCHECK(declaration_scope->is_function_scope()); __ Ldr(x10, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ Push(x10); } } void FullCodeGenerator::EnterFinallyBlock() { ASM_LOCATION("FullCodeGenerator::EnterFinallyBlock"); DCHECK(!result_register().is(x10)); // Preserve the result register while executing finally block. // Also cook the return address in lr to the stack (smi encoded Code* delta). __ Sub(x10, lr, Operand(masm_->CodeObject())); __ SmiTag(x10); __ Push(result_register(), x10); // Store pending message while executing finally block. ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ Mov(x10, pending_message_obj); __ Ldr(x10, MemOperand(x10)); __ Push(x10); } void FullCodeGenerator::ExitFinallyBlock() { ASM_LOCATION("FullCodeGenerator::ExitFinallyBlock"); DCHECK(!result_register().is(x10)); // Restore pending message from stack. __ Pop(x10); ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ Mov(x13, pending_message_obj); __ Str(x10, MemOperand(x13)); // Restore result register and cooked return address from the stack. __ Pop(x10, result_register()); // Uncook the return address (see EnterFinallyBlock). __ SmiUntag(x10); __ Add(x11, x10, Operand(masm_->CodeObject())); __ Br(x11); } #undef __ void BackEdgeTable::PatchAt(Code* unoptimized_code, Address pc, BackEdgeState target_state, Code* replacement_code) { // Turn the jump into a nop. Address branch_address = pc - 3 * kInstructionSize; PatchingAssembler patcher(branch_address, 1); DCHECK(Instruction::Cast(branch_address) ->IsNop(Assembler::INTERRUPT_CODE_NOP) || (Instruction::Cast(branch_address)->IsCondBranchImm() && Instruction::Cast(branch_address)->ImmPCOffset() == 6 * kInstructionSize)); switch (target_state) { case INTERRUPT: // <decrement profiling counter> // .. .. .. .. b.pl ok // .. .. .. .. ldr x16, pc+<interrupt stub address> // .. .. .. .. blr x16 // ... more instructions. // ok-label // Jump offset is 6 instructions. patcher.b(6, pl); break; case ON_STACK_REPLACEMENT: case OSR_AFTER_STACK_CHECK: // <decrement profiling counter> // .. .. .. .. mov x0, x0 (NOP) // .. .. .. .. ldr x16, pc+<on-stack replacement address> // .. .. .. .. blr x16 patcher.nop(Assembler::INTERRUPT_CODE_NOP); break; } // Replace the call address. Instruction* load = Instruction::Cast(pc)->preceding(2); Address interrupt_address_pointer = reinterpret_cast<Address>(load) + load->ImmPCOffset(); DCHECK((Memory::uint64_at(interrupt_address_pointer) == reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate() ->builtins() ->OnStackReplacement() ->entry())) || (Memory::uint64_at(interrupt_address_pointer) == reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate() ->builtins() ->InterruptCheck() ->entry())) || (Memory::uint64_at(interrupt_address_pointer) == reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate() ->builtins() ->OsrAfterStackCheck() ->entry())) || (Memory::uint64_at(interrupt_address_pointer) == reinterpret_cast<uint64_t>(unoptimized_code->GetIsolate() ->builtins() ->OnStackReplacement() ->entry()))); Memory::uint64_at(interrupt_address_pointer) = reinterpret_cast<uint64_t>(replacement_code->entry()); unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, reinterpret_cast<Address>(load), replacement_code); } BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState( Isolate* isolate, Code* unoptimized_code, Address pc) { // TODO(jbramley): There should be some extra assertions here (as in the ARM // back-end), but this function is gone in bleeding_edge so it might not // matter anyway. Instruction* jump_or_nop = Instruction::Cast(pc)->preceding(3); if (jump_or_nop->IsNop(Assembler::INTERRUPT_CODE_NOP)) { Instruction* load = Instruction::Cast(pc)->preceding(2); uint64_t entry = Memory::uint64_at(reinterpret_cast<Address>(load) + load->ImmPCOffset()); if (entry == reinterpret_cast<uint64_t>( isolate->builtins()->OnStackReplacement()->entry())) { return ON_STACK_REPLACEMENT; } else if (entry == reinterpret_cast<uint64_t>( isolate->builtins()->OsrAfterStackCheck()->entry())) { return OSR_AFTER_STACK_CHECK; } else { UNREACHABLE(); } } return INTERRUPT; } } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM64