// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/api/api.h" #include <algorithm> // For min #include <cmath> // For isnan. #include <limits> #include <string> #include <utility> // For move #include <vector> #include "include/v8-cppgc.h" #include "include/v8-fast-api-calls.h" #include "include/v8-profiler.h" #include "include/v8-util.h" #include "src/api/api-inl.h" #include "src/api/api-natives.h" #include "src/base/functional.h" #include "src/base/logging.h" #include "src/base/platform/platform.h" #include "src/base/platform/time.h" #include "src/base/safe_conversions.h" #include "src/base/utils/random-number-generator.h" #include "src/builtins/accessors.h" #include "src/builtins/builtins-utils.h" #include "src/codegen/compiler.h" #include "src/codegen/cpu-features.h" #include "src/common/assert-scope.h" #include "src/common/external-pointer.h" #include "src/common/globals.h" #include "src/compiler-dispatcher/compiler-dispatcher.h" #include "src/date/date.h" #include "src/debug/debug-coverage.h" #include "src/debug/debug-evaluate.h" #include "src/debug/debug-type-profile.h" #include "src/debug/debug.h" #include "src/debug/liveedit.h" #include "src/deoptimizer/deoptimizer.h" #include "src/diagnostics/gdb-jit.h" #include "src/execution/execution.h" #include "src/execution/frames-inl.h" #include "src/execution/isolate-inl.h" #include "src/execution/messages.h" #include "src/execution/microtask-queue.h" #include "src/execution/runtime-profiler.h" #include "src/execution/simulator.h" #include "src/execution/v8threads.h" #include "src/execution/vm-state-inl.h" #include "src/handles/global-handles.h" #include "src/handles/persistent-handles.h" #include "src/heap/embedder-tracing.h" #include "src/heap/heap-inl.h" #include "src/init/bootstrapper.h" #include "src/init/icu_util.h" #include "src/init/startup-data-util.h" #include "src/init/v8.h" #include "src/json/json-parser.h" #include "src/json/json-stringifier.h" #include "src/logging/counters.h" #include "src/logging/metrics.h" #include "src/logging/tracing-flags.h" #include "src/numbers/conversions-inl.h" #include "src/objects/api-callbacks.h" #include "src/objects/contexts.h" #include "src/objects/embedder-data-array-inl.h" #include "src/objects/embedder-data-slot-inl.h" #include "src/objects/frame-array-inl.h" #include "src/objects/hash-table-inl.h" #include "src/objects/heap-object.h" #include "src/objects/js-array-inl.h" #include "src/objects/js-collection-inl.h" #include "src/objects/js-generator-inl.h" #include "src/objects/js-promise-inl.h" #include "src/objects/js-regexp-inl.h" #include "src/objects/js-weak-refs-inl.h" #include "src/objects/module-inl.h" #include "src/objects/objects-inl.h" #include "src/objects/oddball.h" #include "src/objects/ordered-hash-table-inl.h" #include "src/objects/property-descriptor.h" #include "src/objects/property-details.h" #include "src/objects/property.h" #include "src/objects/prototype.h" #include "src/objects/slots.h" #include "src/objects/smi.h" #include "src/objects/stack-frame-info-inl.h" #include "src/objects/templates.h" #include "src/objects/value-serializer.h" #include "src/parsing/parse-info.h" #include "src/parsing/parser.h" #include "src/parsing/pending-compilation-error-handler.h" #include "src/parsing/scanner-character-streams.h" #include "src/profiler/cpu-profiler.h" #include "src/profiler/heap-profiler.h" #include "src/profiler/heap-snapshot-generator-inl.h" #include "src/profiler/profile-generator-inl.h" #include "src/profiler/tick-sample.h" #include "src/regexp/regexp-utils.h" #include "src/runtime/runtime.h" #include "src/snapshot/code-serializer.h" #include "src/snapshot/snapshot.h" #include "src/snapshot/startup-serializer.h" // For SerializedHandleChecker. #include "src/strings/char-predicates-inl.h" #include "src/strings/string-hasher.h" #include "src/strings/unicode-inl.h" #include "src/tracing/trace-event.h" #include "src/trap-handler/trap-handler.h" #include "src/utils/detachable-vector.h" #include "src/utils/version.h" #include "src/wasm/streaming-decoder.h" #include "src/wasm/value-type.h" #include "src/wasm/wasm-engine.h" #include "src/wasm/wasm-objects-inl.h" #include "src/wasm/wasm-result.h" #include "src/wasm/wasm-serialization.h" #if V8_OS_LINUX || V8_OS_MACOSX || V8_OS_FREEBSD #include <signal.h> #include "include/v8-wasm-trap-handler-posix.h" #include "src/trap-handler/handler-inside-posix.h" #endif #if V8_OS_WIN #include <versionhelpers.h> #include <windows.h> #include "include/v8-wasm-trap-handler-win.h" #include "src/trap-handler/handler-inside-win.h" #if defined(V8_OS_WIN64) #include "src/diagnostics/unwinding-info-win64.h" #endif // V8_OS_WIN64 #endif // V8_OS_WIN #define TRACE_BS(...) \ do { \ if (i::FLAG_trace_backing_store) PrintF(__VA_ARGS__); \ } while (false) namespace v8 { /* * Most API methods should use one of the three macros: * * ENTER_V8, ENTER_V8_NO_SCRIPT, ENTER_V8_NO_SCRIPT_NO_EXCEPTION. * * The latter two assume that no script is executed, and no exceptions are * scheduled in addition (respectively). Creating a pending exception and * removing it before returning is ok. * * Exceptions should be handled either by invoking one of the * RETURN_ON_FAILED_EXECUTION* macros. * * Don't use macros with DO_NOT_USE in their name. * * TODO(jochen): Document debugger specific macros. * TODO(jochen): Document LOG_API and other RuntimeCallStats macros. * TODO(jochen): All API methods should invoke one of the ENTER_V8* macros. * TODO(jochen): Remove calls form API methods to DO_NOT_USE macros. */ #define LOG_API(isolate, class_name, function_name) \ i::RuntimeCallTimerScope _runtime_timer( \ isolate, i::RuntimeCallCounterId::kAPI_##class_name##_##function_name); \ LOG(isolate, ApiEntryCall("v8::" #class_name "::" #function_name)) #define ENTER_V8_DO_NOT_USE(isolate) i::VMState<v8::OTHER> __state__((isolate)) #define ENTER_V8_HELPER_DO_NOT_USE(isolate, context, class_name, \ function_name, bailout_value, \ HandleScopeClass, do_callback) \ if (IsExecutionTerminatingCheck(isolate)) { \ return bailout_value; \ } \ HandleScopeClass handle_scope(isolate); \ CallDepthScope<do_callback> call_depth_scope(isolate, context); \ LOG_API(isolate, class_name, function_name); \ i::VMState<v8::OTHER> __state__((isolate)); \ bool has_pending_exception = false #define PREPARE_FOR_DEBUG_INTERFACE_EXECUTION_WITH_ISOLATE(isolate, T) \ if (IsExecutionTerminatingCheck(isolate)) { \ return MaybeLocal<T>(); \ } \ InternalEscapableScope handle_scope(isolate); \ CallDepthScope<false> call_depth_scope(isolate, v8::Local<v8::Context>()); \ i::VMState<v8::OTHER> __state__((isolate)); \ bool has_pending_exception = false #define PREPARE_FOR_EXECUTION_WITH_CONTEXT(context, class_name, function_name, \ bailout_value, HandleScopeClass, \ do_callback) \ auto isolate = context.IsEmpty() \ ? i::Isolate::Current() \ : reinterpret_cast<i::Isolate*>(context->GetIsolate()); \ ENTER_V8_HELPER_DO_NOT_USE(isolate, context, class_name, function_name, \ bailout_value, HandleScopeClass, do_callback); #define PREPARE_FOR_EXECUTION(context, class_name, function_name, T) \ PREPARE_FOR_EXECUTION_WITH_CONTEXT(context, class_name, function_name, \ MaybeLocal<T>(), InternalEscapableScope, \ false) #define ENTER_V8(isolate, context, class_name, function_name, bailout_value, \ HandleScopeClass) \ ENTER_V8_HELPER_DO_NOT_USE(isolate, context, class_name, function_name, \ bailout_value, HandleScopeClass, true) #ifdef DEBUG #define ENTER_V8_NO_SCRIPT(isolate, context, class_name, function_name, \ bailout_value, HandleScopeClass) \ ENTER_V8_HELPER_DO_NOT_USE(isolate, context, class_name, function_name, \ bailout_value, HandleScopeClass, false); \ i::DisallowJavascriptExecutionDebugOnly __no_script__((isolate)) #define ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate) \ i::VMState<v8::OTHER> __state__((isolate)); \ i::DisallowJavascriptExecutionDebugOnly __no_script__((isolate)); \ i::DisallowExceptions __no_exceptions__((isolate)) #define ENTER_V8_FOR_NEW_CONTEXT(isolate) \ i::VMState<v8::OTHER> __state__((isolate)); \ i::DisallowExceptions __no_exceptions__((isolate)) #else #define ENTER_V8_NO_SCRIPT(isolate, context, class_name, function_name, \ bailout_value, HandleScopeClass) \ ENTER_V8_HELPER_DO_NOT_USE(isolate, context, class_name, function_name, \ bailout_value, HandleScopeClass, false) #define ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate) \ i::VMState<v8::OTHER> __state__((isolate)); #define ENTER_V8_FOR_NEW_CONTEXT(isolate) \ i::VMState<v8::OTHER> __state__((isolate)); #endif // DEBUG #define EXCEPTION_BAILOUT_CHECK_SCOPED_DO_NOT_USE(isolate, value) \ do { \ if (has_pending_exception) { \ call_depth_scope.Escape(); \ return value; \ } \ } while (false) #define RETURN_ON_FAILED_EXECUTION(T) \ EXCEPTION_BAILOUT_CHECK_SCOPED_DO_NOT_USE(isolate, MaybeLocal<T>()) #define RETURN_ON_FAILED_EXECUTION_PRIMITIVE(T) \ EXCEPTION_BAILOUT_CHECK_SCOPED_DO_NOT_USE(isolate, Nothing<T>()) #define RETURN_ESCAPED(value) return handle_scope.Escape(value); namespace { class InternalEscapableScope : public v8::EscapableHandleScope { public: explicit inline InternalEscapableScope(i::Isolate* isolate) : v8::EscapableHandleScope(reinterpret_cast<v8::Isolate*>(isolate)) {} }; // TODO(jochen): This should be #ifdef DEBUG #ifdef V8_CHECK_MICROTASKS_SCOPES_CONSISTENCY void CheckMicrotasksScopesConsistency(i::MicrotaskQueue* microtask_queue) { if (microtask_queue && microtask_queue->microtasks_policy() == v8::MicrotasksPolicy::kScoped) { DCHECK(microtask_queue->GetMicrotasksScopeDepth() || !microtask_queue->DebugMicrotasksScopeDepthIsZero()); } } #endif template <bool do_callback> class CallDepthScope { public: CallDepthScope(i::Isolate* isolate, Local<Context> context) : isolate_(isolate), context_(context), escaped_(false), safe_for_termination_(isolate->next_v8_call_is_safe_for_termination()), interrupts_scope_(isolate_, i::StackGuard::TERMINATE_EXECUTION, isolate_->only_terminate_in_safe_scope() ? (safe_for_termination_ ? i::InterruptsScope::kRunInterrupts : i::InterruptsScope::kPostponeInterrupts) : i::InterruptsScope::kNoop) { isolate_->thread_local_top()->IncrementCallDepth(this); isolate_->set_next_v8_call_is_safe_for_termination(false); if (!context.IsEmpty()) { i::Handle<i::Context> env = Utils::OpenHandle(*context); i::HandleScopeImplementer* impl = isolate->handle_scope_implementer(); if (!isolate->context().is_null() && isolate->context().native_context() == env->native_context()) { context_ = Local<Context>(); } else { impl->SaveContext(isolate->context()); isolate->set_context(*env); } } if (do_callback) isolate_->FireBeforeCallEnteredCallback(); } ~CallDepthScope() { i::MicrotaskQueue* microtask_queue = isolate_->default_microtask_queue(); if (!context_.IsEmpty()) { i::HandleScopeImplementer* impl = isolate_->handle_scope_implementer(); isolate_->set_context(impl->RestoreContext()); i::Handle<i::Context> env = Utils::OpenHandle(*context_); microtask_queue = env->native_context().microtask_queue(); } if (!escaped_) isolate_->thread_local_top()->DecrementCallDepth(this); if (do_callback) isolate_->FireCallCompletedCallback(microtask_queue); // TODO(jochen): This should be #ifdef DEBUG #ifdef V8_CHECK_MICROTASKS_SCOPES_CONSISTENCY if (do_callback) CheckMicrotasksScopesConsistency(microtask_queue); #endif DCHECK(CheckKeptObjectsClearedAfterMicrotaskCheckpoint(microtask_queue)); isolate_->set_next_v8_call_is_safe_for_termination(safe_for_termination_); } void Escape() { DCHECK(!escaped_); escaped_ = true; auto thread_local_top = isolate_->thread_local_top(); thread_local_top->DecrementCallDepth(this); bool clear_exception = thread_local_top->CallDepthIsZero() && thread_local_top->try_catch_handler_ == nullptr; isolate_->OptionalRescheduleException(clear_exception); } private: bool CheckKeptObjectsClearedAfterMicrotaskCheckpoint( i::MicrotaskQueue* microtask_queue) { bool did_perform_microtask_checkpoint = isolate_->thread_local_top()->CallDepthIsZero() && do_callback && microtask_queue && microtask_queue->microtasks_policy() == MicrotasksPolicy::kAuto; return !did_perform_microtask_checkpoint || isolate_->heap()->weak_refs_keep_during_job().IsUndefined(isolate_); } i::Isolate* const isolate_; Local<Context> context_; bool escaped_; bool do_callback_; bool safe_for_termination_; i::InterruptsScope interrupts_scope_; i::Address previous_stack_height_; friend class i::ThreadLocalTop; DISALLOW_NEW_AND_DELETE() DISALLOW_COPY_AND_ASSIGN(CallDepthScope); }; } // namespace static ScriptOrigin GetScriptOriginForScript(i::Isolate* isolate, i::Handle<i::Script> script) { i::Handle<i::Object> scriptName(script->GetNameOrSourceURL(), isolate); i::Handle<i::Object> source_map_url(script->source_mapping_url(), isolate); i::Handle<i::FixedArray> host_defined_options(script->host_defined_options(), isolate); v8::Isolate* v8_isolate = reinterpret_cast<v8::Isolate*>(isolate); ScriptOriginOptions options(script->origin_options()); v8::ScriptOrigin origin( Utils::ToLocal(scriptName), v8::Integer::New(v8_isolate, script->line_offset()), v8::Integer::New(v8_isolate, script->column_offset()), v8::Boolean::New(v8_isolate, options.IsSharedCrossOrigin()), v8::Integer::New(v8_isolate, script->id()), Utils::ToLocal(source_map_url), v8::Boolean::New(v8_isolate, options.IsOpaque()), v8::Boolean::New(v8_isolate, script->type() == i::Script::TYPE_WASM), v8::Boolean::New(v8_isolate, options.IsModule()), Utils::ToLocal(host_defined_options)); return origin; } // --- E x c e p t i o n B e h a v i o r --- void i::FatalProcessOutOfMemory(i::Isolate* isolate, const char* location) { i::V8::FatalProcessOutOfMemory(isolate, location, false); } // When V8 cannot allocate memory FatalProcessOutOfMemory is called. The default // OOM error handler is called and execution is stopped. void i::V8::FatalProcessOutOfMemory(i::Isolate* isolate, const char* location, bool is_heap_oom) { char last_few_messages[Heap::kTraceRingBufferSize + 1]; char js_stacktrace[Heap::kStacktraceBufferSize + 1]; i::HeapStats heap_stats; if (isolate == nullptr) { isolate = Isolate::TryGetCurrent(); } if (isolate == nullptr) { // If the Isolate is not available for the current thread we cannot retrieve // memory information from the Isolate. Write easy-to-recognize values on // the stack. memset(last_few_messages, 0x0BADC0DE, Heap::kTraceRingBufferSize + 1); memset(js_stacktrace, 0x0BADC0DE, Heap::kStacktraceBufferSize + 1); memset(&heap_stats, 0xBADC0DE, sizeof(heap_stats)); // Note that the embedder's oom handler is also not available and therefore // won't be called in this case. We just crash. FATAL("Fatal process out of memory: %s", location); UNREACHABLE(); } memset(last_few_messages, 0, Heap::kTraceRingBufferSize + 1); memset(js_stacktrace, 0, Heap::kStacktraceBufferSize + 1); intptr_t start_marker; heap_stats.start_marker = &start_marker; size_t ro_space_size; heap_stats.ro_space_size = &ro_space_size; size_t ro_space_capacity; heap_stats.ro_space_capacity = &ro_space_capacity; size_t new_space_size; heap_stats.new_space_size = &new_space_size; size_t new_space_capacity; heap_stats.new_space_capacity = &new_space_capacity; size_t old_space_size; heap_stats.old_space_size = &old_space_size; size_t old_space_capacity; heap_stats.old_space_capacity = &old_space_capacity; size_t code_space_size; heap_stats.code_space_size = &code_space_size; size_t code_space_capacity; heap_stats.code_space_capacity = &code_space_capacity; size_t map_space_size; heap_stats.map_space_size = &map_space_size; size_t map_space_capacity; heap_stats.map_space_capacity = &map_space_capacity; size_t lo_space_size; heap_stats.lo_space_size = &lo_space_size; size_t code_lo_space_size; heap_stats.code_lo_space_size = &code_lo_space_size; size_t global_handle_count; heap_stats.global_handle_count = &global_handle_count; size_t weak_global_handle_count; heap_stats.weak_global_handle_count = &weak_global_handle_count; size_t pending_global_handle_count; heap_stats.pending_global_handle_count = &pending_global_handle_count; size_t near_death_global_handle_count; heap_stats.near_death_global_handle_count = &near_death_global_handle_count; size_t free_global_handle_count; heap_stats.free_global_handle_count = &free_global_handle_count; size_t memory_allocator_size; heap_stats.memory_allocator_size = &memory_allocator_size; size_t memory_allocator_capacity; heap_stats.memory_allocator_capacity = &memory_allocator_capacity; size_t malloced_memory; heap_stats.malloced_memory = &malloced_memory; size_t malloced_peak_memory; heap_stats.malloced_peak_memory = &malloced_peak_memory; size_t objects_per_type[LAST_TYPE + 1] = {0}; heap_stats.objects_per_type = objects_per_type; size_t size_per_type[LAST_TYPE + 1] = {0}; heap_stats.size_per_type = size_per_type; int os_error; heap_stats.os_error = &os_error; heap_stats.last_few_messages = last_few_messages; heap_stats.js_stacktrace = js_stacktrace; intptr_t end_marker; heap_stats.end_marker = &end_marker; if (isolate->heap()->HasBeenSetUp()) { // BUG(1718): Don't use the take_snapshot since we don't support // HeapObjectIterator here without doing a special GC. isolate->heap()->RecordStats(&heap_stats, false); if (!FLAG_correctness_fuzzer_suppressions) { char* first_newline = strchr(last_few_messages, '\n'); if (first_newline == nullptr || first_newline[1] == '\0') first_newline = last_few_messages; base::OS::PrintError("\n<--- Last few GCs --->\n%s\n", first_newline); base::OS::PrintError("\n<--- JS stacktrace --->\n%s\n", js_stacktrace); } } Utils::ReportOOMFailure(isolate, location, is_heap_oom); // If the fatal error handler returns, we stop execution. FATAL("API fatal error handler returned after process out of memory"); } void Utils::ReportApiFailure(const char* location, const char* message) { i::Isolate* isolate = i::Isolate::TryGetCurrent(); FatalErrorCallback callback = nullptr; if (isolate != nullptr) { callback = isolate->exception_behavior(); } if (callback == nullptr) { base::OS::PrintError("\n#\n# Fatal error in %s\n# %s\n#\n\n", location, message); base::OS::Abort(); } else { callback(location, message); } isolate->SignalFatalError(); } void Utils::ReportOOMFailure(i::Isolate* isolate, const char* location, bool is_heap_oom) { OOMErrorCallback oom_callback = isolate->oom_behavior(); if (oom_callback == nullptr) { // TODO(wfh): Remove this fallback once Blink is setting OOM handler. See // crbug.com/614440. FatalErrorCallback fatal_callback = isolate->exception_behavior(); if (fatal_callback == nullptr) { base::OS::PrintError("\n#\n# Fatal %s OOM in %s\n#\n\n", is_heap_oom ? "javascript" : "process", location); #ifdef V8_FUZZILLI exit(0); #else base::OS::Abort(); #endif // V8_FUZZILLI } else { fatal_callback(location, is_heap_oom ? "Allocation failed - JavaScript heap out of memory" : "Allocation failed - process out of memory"); } } else { oom_callback(location, is_heap_oom); } isolate->SignalFatalError(); } static inline bool IsExecutionTerminatingCheck(i::Isolate* isolate) { if (isolate->has_scheduled_exception()) { return isolate->scheduled_exception() == i::ReadOnlyRoots(isolate).termination_exception(); } return false; } void V8::SetSnapshotDataBlob(StartupData* snapshot_blob) { i::V8::SetSnapshotBlob(snapshot_blob); } namespace { class ArrayBufferAllocator : public v8::ArrayBuffer::Allocator { public: void* Allocate(size_t length) override { #if V8_OS_AIX && _LINUX_SOURCE_COMPAT // Work around for GCC bug on AIX // See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79839 void* data = __linux_calloc(length, 1); #else void* data = calloc(length, 1); #endif return data; } void* AllocateUninitialized(size_t length) override { #if V8_OS_AIX && _LINUX_SOURCE_COMPAT // Work around for GCC bug on AIX // See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79839 void* data = __linux_malloc(length); #else void* data = malloc(length); #endif return data; } void Free(void* data, size_t) override { free(data); } void* Reallocate(void* data, size_t old_length, size_t new_length) override { #if V8_OS_AIX && _LINUX_SOURCE_COMPAT // Work around for GCC bug on AIX // See: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79839 void* new_data = __linux_realloc(data, new_length); #else void* new_data = realloc(data, new_length); #endif if (new_length > old_length) { memset(reinterpret_cast<uint8_t*>(new_data) + old_length, 0, new_length - old_length); } return new_data; } }; struct SnapshotCreatorData { explicit SnapshotCreatorData(Isolate* isolate) : isolate_(isolate), default_context_(), contexts_(isolate), created_(false) {} static SnapshotCreatorData* cast(void* data) { return reinterpret_cast<SnapshotCreatorData*>(data); } ArrayBufferAllocator allocator_; Isolate* isolate_; Persistent<Context> default_context_; SerializeInternalFieldsCallback default_embedder_fields_serializer_; PersistentValueVector<Context> contexts_; std::vector<SerializeInternalFieldsCallback> embedder_fields_serializers_; bool created_; }; } // namespace SnapshotCreator::SnapshotCreator(Isolate* isolate, const intptr_t* external_references, StartupData* existing_snapshot) { SnapshotCreatorData* data = new SnapshotCreatorData(isolate); i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); internal_isolate->set_array_buffer_allocator(&data->allocator_); internal_isolate->set_api_external_references(external_references); internal_isolate->enable_serializer(); isolate->Enter(); const StartupData* blob = existing_snapshot ? existing_snapshot : i::Snapshot::DefaultSnapshotBlob(); if (blob && blob->raw_size > 0) { internal_isolate->set_snapshot_blob(blob); i::Snapshot::Initialize(internal_isolate); } else { internal_isolate->InitWithoutSnapshot(); } data_ = data; } SnapshotCreator::SnapshotCreator(const intptr_t* external_references, StartupData* existing_snapshot) : SnapshotCreator(Isolate::Allocate(), external_references, existing_snapshot) {} SnapshotCreator::~SnapshotCreator() { SnapshotCreatorData* data = SnapshotCreatorData::cast(data_); DCHECK(data->created_); Isolate* isolate = data->isolate_; isolate->Exit(); isolate->Dispose(); delete data; } Isolate* SnapshotCreator::GetIsolate() { return SnapshotCreatorData::cast(data_)->isolate_; } void SnapshotCreator::SetDefaultContext( Local<Context> context, SerializeInternalFieldsCallback callback) { DCHECK(!context.IsEmpty()); SnapshotCreatorData* data = SnapshotCreatorData::cast(data_); DCHECK(!data->created_); DCHECK(data->default_context_.IsEmpty()); Isolate* isolate = data->isolate_; CHECK_EQ(isolate, context->GetIsolate()); data->default_context_.Reset(isolate, context); data->default_embedder_fields_serializer_ = callback; } size_t SnapshotCreator::AddContext(Local<Context> context, SerializeInternalFieldsCallback callback) { DCHECK(!context.IsEmpty()); SnapshotCreatorData* data = SnapshotCreatorData::cast(data_); DCHECK(!data->created_); Isolate* isolate = data->isolate_; CHECK_EQ(isolate, context->GetIsolate()); size_t index = data->contexts_.Size(); data->contexts_.Append(context); data->embedder_fields_serializers_.push_back(callback); return index; } size_t SnapshotCreator::AddData(i::Address object) { DCHECK_NE(object, i::kNullAddress); SnapshotCreatorData* data = SnapshotCreatorData::cast(data_); DCHECK(!data->created_); i::Isolate* isolate = reinterpret_cast<i::Isolate*>(data->isolate_); i::HandleScope scope(isolate); i::Handle<i::Object> obj(i::Object(object), isolate); i::Handle<i::ArrayList> list; if (!isolate->heap()->serialized_objects().IsArrayList()) { list = i::ArrayList::New(isolate, 1); } else { list = i::Handle<i::ArrayList>( i::ArrayList::cast(isolate->heap()->serialized_objects()), isolate); } size_t index = static_cast<size_t>(list->Length()); list = i::ArrayList::Add(isolate, list, obj); isolate->heap()->SetSerializedObjects(*list); return index; } size_t SnapshotCreator::AddData(Local<Context> context, i::Address object) { DCHECK_NE(object, i::kNullAddress); DCHECK(!SnapshotCreatorData::cast(data_)->created_); i::Handle<i::Context> ctx = Utils::OpenHandle(*context); i::Isolate* isolate = ctx->GetIsolate(); i::HandleScope scope(isolate); i::Handle<i::Object> obj(i::Object(object), isolate); i::Handle<i::ArrayList> list; if (!ctx->serialized_objects().IsArrayList()) { list = i::ArrayList::New(isolate, 1); } else { list = i::Handle<i::ArrayList>( i::ArrayList::cast(ctx->serialized_objects()), isolate); } size_t index = static_cast<size_t>(list->Length()); list = i::ArrayList::Add(isolate, list, obj); ctx->set_serialized_objects(*list); return index; } namespace { void ConvertSerializedObjectsToFixedArray(Local<Context> context) { i::Handle<i::Context> ctx = Utils::OpenHandle(*context); i::Isolate* isolate = ctx->GetIsolate(); if (!ctx->serialized_objects().IsArrayList()) { ctx->set_serialized_objects(i::ReadOnlyRoots(isolate).empty_fixed_array()); } else { i::Handle<i::ArrayList> list(i::ArrayList::cast(ctx->serialized_objects()), isolate); i::Handle<i::FixedArray> elements = i::ArrayList::Elements(isolate, list); ctx->set_serialized_objects(*elements); } } void ConvertSerializedObjectsToFixedArray(i::Isolate* isolate) { if (!isolate->heap()->serialized_objects().IsArrayList()) { isolate->heap()->SetSerializedObjects( i::ReadOnlyRoots(isolate).empty_fixed_array()); } else { i::Handle<i::ArrayList> list( i::ArrayList::cast(isolate->heap()->serialized_objects()), isolate); i::Handle<i::FixedArray> elements = i::ArrayList::Elements(isolate, list); isolate->heap()->SetSerializedObjects(*elements); } } } // anonymous namespace StartupData SnapshotCreator::CreateBlob( SnapshotCreator::FunctionCodeHandling function_code_handling) { SnapshotCreatorData* data = SnapshotCreatorData::cast(data_); i::Isolate* isolate = reinterpret_cast<i::Isolate*>(data->isolate_); DCHECK(!data->created_); DCHECK(!data->default_context_.IsEmpty()); const int num_additional_contexts = static_cast<int>(data->contexts_.Size()); const int num_contexts = num_additional_contexts + 1; // The default context. // Create and store lists of embedder-provided data needed during // serialization. { i::HandleScope scope(isolate); // Convert list of context-independent data to FixedArray. ConvertSerializedObjectsToFixedArray(isolate); // Convert lists of context-dependent data to FixedArray. ConvertSerializedObjectsToFixedArray( data->default_context_.Get(data->isolate_)); for (int i = 0; i < num_additional_contexts; i++) { ConvertSerializedObjectsToFixedArray(data->contexts_.Get(i)); } // We need to store the global proxy size upfront in case we need the // bootstrapper to create a global proxy before we deserialize the context. i::Handle<i::FixedArray> global_proxy_sizes = isolate->factory()->NewFixedArray(num_additional_contexts, i::AllocationType::kOld); for (int i = 0; i < num_additional_contexts; i++) { i::Handle<i::Context> context = v8::Utils::OpenHandle(*data->contexts_.Get(i)); global_proxy_sizes->set(i, i::Smi::FromInt(context->global_proxy().Size())); } isolate->heap()->SetSerializedGlobalProxySizes(*global_proxy_sizes); } // We might rehash strings and re-sort descriptors. Clear the lookup cache. isolate->descriptor_lookup_cache()->Clear(); // If we don't do this then we end up with a stray root pointing at the // context even after we have disposed of the context. isolate->heap()->CollectAllAvailableGarbage( i::GarbageCollectionReason::kSnapshotCreator); { i::HandleScope scope(isolate); isolate->heap()->CompactWeakArrayLists(internal::AllocationType::kOld); } i::Snapshot::ClearReconstructableDataForSerialization( isolate, function_code_handling == FunctionCodeHandling::kClear); i::DisallowHeapAllocation no_gc_from_here_on; // Create a vector with all contexts and clear associated Persistent fields. // Note these contexts may be dead after calling Clear(), but will not be // collected until serialization completes and the DisallowHeapAllocation // scope above goes out of scope. std::vector<i::Context> contexts; contexts.reserve(num_contexts); { i::HandleScope scope(isolate); contexts.push_back( *v8::Utils::OpenHandle(*data->default_context_.Get(data->isolate_))); data->default_context_.Reset(); for (int i = 0; i < num_additional_contexts; i++) { i::Handle<i::Context> context = v8::Utils::OpenHandle(*data->contexts_.Get(i)); contexts.push_back(*context); } data->contexts_.Clear(); } // Check that values referenced by global/eternal handles are accounted for. i::SerializedHandleChecker handle_checker(isolate, &contexts); CHECK(handle_checker.CheckGlobalAndEternalHandles()); // Create a vector with all embedder fields serializers. std::vector<SerializeInternalFieldsCallback> embedder_fields_serializers; embedder_fields_serializers.reserve(num_contexts); embedder_fields_serializers.push_back( data->default_embedder_fields_serializer_); for (int i = 0; i < num_additional_contexts; i++) { embedder_fields_serializers.push_back( data->embedder_fields_serializers_[i]); } data->created_ = true; return i::Snapshot::Create(isolate, &contexts, embedder_fields_serializers, no_gc_from_here_on); } bool StartupData::CanBeRehashed() const { DCHECK(i::Snapshot::VerifyChecksum(this)); return i::Snapshot::ExtractRehashability(this); } bool StartupData::IsValid() const { return i::Snapshot::VersionIsValid(this); } void V8::SetDcheckErrorHandler(DcheckErrorCallback that) { v8::base::SetDcheckFunction(that); } void V8::SetFlagsFromString(const char* str) { SetFlagsFromString(str, strlen(str)); } void V8::SetFlagsFromString(const char* str, size_t length) { i::FlagList::SetFlagsFromString(str, length); i::FlagList::EnforceFlagImplications(); } void V8::SetFlagsFromCommandLine(int* argc, char** argv, bool remove_flags) { using HelpOptions = i::FlagList::HelpOptions; i::FlagList::SetFlagsFromCommandLine(argc, argv, remove_flags, HelpOptions(HelpOptions::kDontExit)); } RegisteredExtension* RegisteredExtension::first_extension_ = nullptr; RegisteredExtension::RegisteredExtension(std::unique_ptr<Extension> extension) : extension_(std::move(extension)) {} // static void RegisteredExtension::Register(std::unique_ptr<Extension> extension) { RegisteredExtension* new_extension = new RegisteredExtension(std::move(extension)); new_extension->next_ = first_extension_; first_extension_ = new_extension; } // static void RegisteredExtension::UnregisterAll() { RegisteredExtension* re = first_extension_; while (re != nullptr) { RegisteredExtension* next = re->next(); delete re; re = next; } first_extension_ = nullptr; } namespace { class ExtensionResource : public String::ExternalOneByteStringResource { public: ExtensionResource() : data_(nullptr), length_(0) {} ExtensionResource(const char* data, size_t length) : data_(data), length_(length) {} const char* data() const override { return data_; } size_t length() const override { return length_; } void Dispose() override {} private: const char* data_; size_t length_; }; } // anonymous namespace void RegisterExtension(std::unique_ptr<Extension> extension) { RegisteredExtension::Register(std::move(extension)); } Extension::Extension(const char* name, const char* source, int dep_count, const char** deps, int source_length) : name_(name), source_length_(source_length >= 0 ? source_length : (source ? static_cast<int>(strlen(source)) : 0)), dep_count_(dep_count), deps_(deps), auto_enable_(false) { source_ = new ExtensionResource(source, source_length_); CHECK(source != nullptr || source_length_ == 0); } void ResourceConstraints::ConfigureDefaultsFromHeapSize( size_t initial_heap_size_in_bytes, size_t maximum_heap_size_in_bytes) { CHECK_LE(initial_heap_size_in_bytes, maximum_heap_size_in_bytes); if (maximum_heap_size_in_bytes == 0) { return; } size_t young_generation, old_generation; i::Heap::GenerationSizesFromHeapSize(maximum_heap_size_in_bytes, &young_generation, &old_generation); set_max_young_generation_size_in_bytes( i::Max(young_generation, i::Heap::MinYoungGenerationSize())); set_max_old_generation_size_in_bytes( i::Max(old_generation, i::Heap::MinOldGenerationSize())); if (initial_heap_size_in_bytes > 0) { i::Heap::GenerationSizesFromHeapSize(initial_heap_size_in_bytes, &young_generation, &old_generation); // We do not set lower bounds for the initial sizes. set_initial_young_generation_size_in_bytes(young_generation); set_initial_old_generation_size_in_bytes(old_generation); } if (i::kPlatformRequiresCodeRange) { set_code_range_size_in_bytes( i::Min(i::kMaximalCodeRangeSize, maximum_heap_size_in_bytes)); } } void ResourceConstraints::ConfigureDefaults(uint64_t physical_memory, uint64_t virtual_memory_limit) { size_t heap_size = i::Heap::HeapSizeFromPhysicalMemory(physical_memory); size_t young_generation, old_generation; i::Heap::GenerationSizesFromHeapSize(heap_size, &young_generation, &old_generation); set_max_young_generation_size_in_bytes(young_generation); set_max_old_generation_size_in_bytes(old_generation); if (virtual_memory_limit > 0 && i::kPlatformRequiresCodeRange) { set_code_range_size_in_bytes( i::Min(i::kMaximalCodeRangeSize, static_cast<size_t>(virtual_memory_limit / 8))); } } size_t ResourceConstraints::max_semi_space_size_in_kb() const { return i::Heap::SemiSpaceSizeFromYoungGenerationSize( max_young_generation_size_) / i::KB; } void ResourceConstraints::set_max_semi_space_size_in_kb(size_t limit_in_kb) { set_max_young_generation_size_in_bytes( i::Heap::YoungGenerationSizeFromSemiSpaceSize(limit_in_kb * i::KB)); } i::Address* V8::GlobalizeReference(i::Isolate* isolate, i::Address* obj) { LOG_API(isolate, Persistent, New); i::Handle<i::Object> result = isolate->global_handles()->Create(*obj); #ifdef VERIFY_HEAP if (i::FLAG_verify_heap) { i::Object(*obj).ObjectVerify(isolate); } #endif // VERIFY_HEAP return result.location(); } i::Address* V8::GlobalizeTracedReference(i::Isolate* isolate, i::Address* obj, internal::Address* slot, bool has_destructor) { LOG_API(isolate, TracedGlobal, New); #ifdef DEBUG Utils::ApiCheck((slot != nullptr), "v8::GlobalizeTracedReference", "the address slot must be not null"); #endif i::Handle<i::Object> result = isolate->global_handles()->CreateTraced(*obj, slot, has_destructor); #ifdef VERIFY_HEAP if (i::FLAG_verify_heap) { i::Object(*obj).ObjectVerify(isolate); } #endif // VERIFY_HEAP return result.location(); } // static i::Address* i::JSMemberBase::New(v8::Isolate* isolate, i::Address* object_slot, i::Address** this_slot) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, JSMemberBase, New); #ifdef DEBUG Utils::ApiCheck((object_slot != nullptr), "i::JSMemberBase::New", "the object must be not null"); #endif i::Handle<i::Object> result = i_isolate->global_handles()->CreateTraced( *object_slot, reinterpret_cast<i::Address*>(this_slot), false /* no destructor */); #ifdef VERIFY_HEAP if (i::FLAG_verify_heap) { i::Object(*object_slot).ObjectVerify(i_isolate); } #endif // VERIFY_HEAP return result.location(); } // static void i::JSMemberBase::Delete(i::Address* object) { i::GlobalHandles::DestroyTraced(object); } // static void i::JSMemberBase::Copy(const i::Address* const* from_slot, i::Address** to_slot) { i::GlobalHandles::CopyTracedGlobal(from_slot, to_slot); } // static void i::JSMemberBase::Move(i::Address** from_slot, i::Address** to_slot) { i::GlobalHandles::MoveTracedGlobal(from_slot, to_slot); } i::Address* V8::CopyGlobalReference(i::Address* from) { i::Handle<i::Object> result = i::GlobalHandles::CopyGlobal(from); return result.location(); } void V8::MoveGlobalReference(internal::Address** from, internal::Address** to) { i::GlobalHandles::MoveGlobal(from, to); } void V8::MoveTracedGlobalReference(internal::Address** from, internal::Address** to) { i::GlobalHandles::MoveTracedGlobal(from, to); } void V8::CopyTracedGlobalReference(const internal::Address* const* from, internal::Address** to) { i::GlobalHandles::CopyTracedGlobal(from, to); } void V8::MakeWeak(i::Address* location, void* parameter, WeakCallbackInfo<void>::Callback weak_callback, WeakCallbackType type) { i::GlobalHandles::MakeWeak(location, parameter, weak_callback, type); } void V8::MakeWeak(i::Address** location_addr) { i::GlobalHandles::MakeWeak(location_addr); } void* V8::ClearWeak(i::Address* location) { return i::GlobalHandles::ClearWeakness(location); } void V8::AnnotateStrongRetainer(i::Address* location, const char* label) { i::GlobalHandles::AnnotateStrongRetainer(location, label); } void V8::DisposeGlobal(i::Address* location) { i::GlobalHandles::Destroy(location); } void V8::DisposeTracedGlobal(internal::Address* location) { i::GlobalHandles::DestroyTraced(location); } void V8::SetFinalizationCallbackTraced( internal::Address* location, void* parameter, WeakCallbackInfo<void>::Callback callback) { i::GlobalHandles::SetFinalizationCallbackForTraced(location, parameter, callback); } Value* V8::Eternalize(Isolate* v8_isolate, Value* value) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); i::Object object = *Utils::OpenHandle(value); int index = -1; isolate->eternal_handles()->Create(isolate, object, &index); return reinterpret_cast<Value*>( isolate->eternal_handles()->Get(index).location()); } void V8::FromJustIsNothing() { Utils::ApiCheck(false, "v8::FromJust", "Maybe value is Nothing."); } void V8::ToLocalEmpty() { Utils::ApiCheck(false, "v8::ToLocalChecked", "Empty MaybeLocal."); } void V8::InternalFieldOutOfBounds(int index) { Utils::ApiCheck(0 <= index && index < kInternalFieldsInWeakCallback, "WeakCallbackInfo::GetInternalField", "Internal field out of bounds."); } // --- H a n d l e s --- HandleScope::HandleScope(Isolate* isolate) { Initialize(isolate); } void HandleScope::Initialize(Isolate* isolate) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); // We do not want to check the correct usage of the Locker class all over the // place, so we do it only here: Without a HandleScope, an embedder can do // almost nothing, so it is enough to check in this central place. // We make an exception if the serializer is enabled, which means that the // Isolate is exclusively used to create a snapshot. Utils::ApiCheck( !v8::Locker::IsActive() || internal_isolate->thread_manager()->IsLockedByCurrentThread() || internal_isolate->serializer_enabled(), "HandleScope::HandleScope", "Entering the V8 API without proper locking in place"); i::HandleScopeData* current = internal_isolate->handle_scope_data(); isolate_ = internal_isolate; prev_next_ = current->next; prev_limit_ = current->limit; current->level++; } HandleScope::~HandleScope() { i::HandleScope::CloseScope(isolate_, prev_next_, prev_limit_); } void* HandleScope::operator new(size_t) { base::OS::Abort(); } void* HandleScope::operator new[](size_t) { base::OS::Abort(); } void HandleScope::operator delete(void*, size_t) { base::OS::Abort(); } void HandleScope::operator delete[](void*, size_t) { base::OS::Abort(); } int HandleScope::NumberOfHandles(Isolate* isolate) { return i::HandleScope::NumberOfHandles( reinterpret_cast<i::Isolate*>(isolate)); } i::Address* HandleScope::CreateHandle(i::Isolate* isolate, i::Address value) { return i::HandleScope::CreateHandle(isolate, value); } EscapableHandleScope::EscapableHandleScope(Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); escape_slot_ = CreateHandle(isolate, i::ReadOnlyRoots(isolate).the_hole_value().ptr()); Initialize(v8_isolate); } i::Address* EscapableHandleScope::Escape(i::Address* escape_value) { i::Heap* heap = reinterpret_cast<i::Isolate*>(GetIsolate())->heap(); Utils::ApiCheck(i::Object(*escape_slot_).IsTheHole(heap->isolate()), "EscapableHandleScope::Escape", "Escape value set twice"); if (escape_value == nullptr) { *escape_slot_ = i::ReadOnlyRoots(heap).undefined_value().ptr(); return nullptr; } *escape_slot_ = *escape_value; return escape_slot_; } void* EscapableHandleScope::operator new(size_t) { base::OS::Abort(); } void* EscapableHandleScope::operator new[](size_t) { base::OS::Abort(); } void EscapableHandleScope::operator delete(void*, size_t) { base::OS::Abort(); } void EscapableHandleScope::operator delete[](void*, size_t) { base::OS::Abort(); } SealHandleScope::SealHandleScope(Isolate* isolate) : isolate_(reinterpret_cast<i::Isolate*>(isolate)) { i::HandleScopeData* current = isolate_->handle_scope_data(); prev_limit_ = current->limit; current->limit = current->next; prev_sealed_level_ = current->sealed_level; current->sealed_level = current->level; } SealHandleScope::~SealHandleScope() { i::HandleScopeData* current = isolate_->handle_scope_data(); DCHECK_EQ(current->next, current->limit); current->limit = prev_limit_; DCHECK_EQ(current->level, current->sealed_level); current->sealed_level = prev_sealed_level_; } void* SealHandleScope::operator new(size_t) { base::OS::Abort(); } void* SealHandleScope::operator new[](size_t) { base::OS::Abort(); } void SealHandleScope::operator delete(void*, size_t) { base::OS::Abort(); } void SealHandleScope::operator delete[](void*, size_t) { base::OS::Abort(); } void Context::Enter() { i::Handle<i::Context> env = Utils::OpenHandle(this); i::Isolate* isolate = env->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScopeImplementer* impl = isolate->handle_scope_implementer(); impl->EnterContext(*env); impl->SaveContext(isolate->context()); isolate->set_context(*env); } void Context::Exit() { i::Handle<i::Context> env = Utils::OpenHandle(this); i::Isolate* isolate = env->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScopeImplementer* impl = isolate->handle_scope_implementer(); if (!Utils::ApiCheck(impl->LastEnteredContextWas(*env), "v8::Context::Exit()", "Cannot exit non-entered context")) { return; } impl->LeaveContext(); isolate->set_context(impl->RestoreContext()); } Context::BackupIncumbentScope::BackupIncumbentScope( Local<Context> backup_incumbent_context) : backup_incumbent_context_(backup_incumbent_context) { DCHECK(!backup_incumbent_context_.IsEmpty()); i::Handle<i::Context> env = Utils::OpenHandle(*backup_incumbent_context_); i::Isolate* isolate = env->GetIsolate(); js_stack_comparable_address_ = i::SimulatorStack::RegisterJSStackComparableAddress(isolate); prev_ = isolate->top_backup_incumbent_scope(); isolate->set_top_backup_incumbent_scope(this); } Context::BackupIncumbentScope::~BackupIncumbentScope() { i::Handle<i::Context> env = Utils::OpenHandle(*backup_incumbent_context_); i::Isolate* isolate = env->GetIsolate(); i::SimulatorStack::UnregisterJSStackComparableAddress(isolate); isolate->set_top_backup_incumbent_scope(prev_); } STATIC_ASSERT(i::Internals::kEmbedderDataSlotSize == i::kEmbedderDataSlotSize); static i::Handle<i::EmbedderDataArray> EmbedderDataFor(Context* context, int index, bool can_grow, const char* location) { i::Handle<i::Context> env = Utils::OpenHandle(context); i::Isolate* isolate = env->GetIsolate(); bool ok = Utils::ApiCheck(env->IsNativeContext(), location, "Not a native context") && Utils::ApiCheck(index >= 0, location, "Negative index"); if (!ok) return i::Handle<i::EmbedderDataArray>(); // TODO(ishell): remove cast once embedder_data slot has a proper type. i::Handle<i::EmbedderDataArray> data( i::EmbedderDataArray::cast(env->embedder_data()), isolate); if (index < data->length()) return data; if (!Utils::ApiCheck(can_grow && index < i::EmbedderDataArray::kMaxLength, location, "Index too large")) { return i::Handle<i::EmbedderDataArray>(); } data = i::EmbedderDataArray::EnsureCapacity(isolate, data, index); env->set_embedder_data(*data); return data; } uint32_t Context::GetNumberOfEmbedderDataFields() { i::Handle<i::Context> context = Utils::OpenHandle(this); CHECK(context->IsNativeContext()); // TODO(ishell): remove cast once embedder_data slot has a proper type. return static_cast<uint32_t>( i::EmbedderDataArray::cast(context->embedder_data()).length()); } v8::Local<v8::Value> Context::SlowGetEmbedderData(int index) { const char* location = "v8::Context::GetEmbedderData()"; i::Handle<i::EmbedderDataArray> data = EmbedderDataFor(this, index, false, location); if (data.is_null()) return Local<Value>(); i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); i::Handle<i::Object> result(i::EmbedderDataSlot(*data, index).load_tagged(), isolate); return Utils::ToLocal(result); } void Context::SetEmbedderData(int index, v8::Local<Value> value) { const char* location = "v8::Context::SetEmbedderData()"; i::Handle<i::EmbedderDataArray> data = EmbedderDataFor(this, index, true, location); if (data.is_null()) return; i::Handle<i::Object> val = Utils::OpenHandle(*value); i::EmbedderDataSlot::store_tagged(*data, index, *val); DCHECK_EQ(*Utils::OpenHandle(*value), *Utils::OpenHandle(*GetEmbedderData(index))); } void* Context::SlowGetAlignedPointerFromEmbedderData(int index) { const char* location = "v8::Context::GetAlignedPointerFromEmbedderData()"; i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); i::HandleScope handle_scope(isolate); i::Handle<i::EmbedderDataArray> data = EmbedderDataFor(this, index, false, location); if (data.is_null()) return nullptr; void* result; Utils::ApiCheck( i::EmbedderDataSlot(*data, index).ToAlignedPointer(isolate, &result), location, "Pointer is not aligned"); return result; } void Context::SetAlignedPointerInEmbedderData(int index, void* value) { const char* location = "v8::Context::SetAlignedPointerInEmbedderData()"; i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); i::Handle<i::EmbedderDataArray> data = EmbedderDataFor(this, index, true, location); bool ok = i::EmbedderDataSlot(*data, index).store_aligned_pointer(isolate, value); Utils::ApiCheck(ok, location, "Pointer is not aligned"); DCHECK_EQ(value, GetAlignedPointerFromEmbedderData(index)); } // --- T e m p l a t e --- static void InitializeTemplate(i::Handle<i::TemplateInfo> that, int type) { that->set_number_of_properties(0); that->set_tag(type); } void Template::Set(v8::Local<Name> name, v8::Local<Data> value, v8::PropertyAttribute attribute) { auto templ = Utils::OpenHandle(this); i::Isolate* isolate = templ->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScope scope(isolate); auto value_obj = Utils::OpenHandle(*value); CHECK(!value_obj->IsJSReceiver() || value_obj->IsTemplateInfo()); if (value_obj->IsObjectTemplateInfo()) { templ->set_serial_number(0); if (templ->IsFunctionTemplateInfo()) { i::Handle<i::FunctionTemplateInfo>::cast(templ)->set_do_not_cache(true); } } i::ApiNatives::AddDataProperty(isolate, templ, Utils::OpenHandle(*name), value_obj, static_cast<i::PropertyAttributes>(attribute)); } void Template::SetPrivate(v8::Local<Private> name, v8::Local<Data> value, v8::PropertyAttribute attribute) { Set(Utils::ToLocal(Utils::OpenHandle(reinterpret_cast<Name*>(*name))), value, attribute); } void Template::SetAccessorProperty(v8::Local<v8::Name> name, v8::Local<FunctionTemplate> getter, v8::Local<FunctionTemplate> setter, v8::PropertyAttribute attribute, v8::AccessControl access_control) { // TODO(verwaest): Remove |access_control|. DCHECK_EQ(v8::DEFAULT, access_control); auto templ = Utils::OpenHandle(this); auto isolate = templ->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); DCHECK(!name.IsEmpty()); DCHECK(!getter.IsEmpty() || !setter.IsEmpty()); i::HandleScope scope(isolate); i::ApiNatives::AddAccessorProperty( isolate, templ, Utils::OpenHandle(*name), Utils::OpenHandle(*getter, true), Utils::OpenHandle(*setter, true), static_cast<i::PropertyAttributes>(attribute)); } // --- F u n c t i o n T e m p l a t e --- static void InitializeFunctionTemplate( i::Handle<i::FunctionTemplateInfo> info) { InitializeTemplate(info, Consts::FUNCTION_TEMPLATE); info->set_flag(0); } static Local<ObjectTemplate> ObjectTemplateNew( i::Isolate* isolate, v8::Local<FunctionTemplate> constructor, bool do_not_cache); Local<ObjectTemplate> FunctionTemplate::PrototypeTemplate() { auto self = Utils::OpenHandle(this); i::Isolate* i_isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::Handle<i::HeapObject> result(self->GetPrototypeTemplate(), i_isolate); if (result->IsUndefined(i_isolate)) { // Do not cache prototype objects. result = Utils::OpenHandle( *ObjectTemplateNew(i_isolate, Local<FunctionTemplate>(), true)); i::FunctionTemplateInfo::SetPrototypeTemplate(i_isolate, self, result); } return ToApiHandle<ObjectTemplate>(result); } void FunctionTemplate::SetPrototypeProviderTemplate( Local<FunctionTemplate> prototype_provider) { auto self = Utils::OpenHandle(this); i::Isolate* i_isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::Handle<i::FunctionTemplateInfo> result = Utils::OpenHandle(*prototype_provider); CHECK(self->GetPrototypeTemplate().IsUndefined(i_isolate)); CHECK(self->GetParentTemplate().IsUndefined(i_isolate)); i::FunctionTemplateInfo::SetPrototypeProviderTemplate(i_isolate, self, result); } static void EnsureNotInstantiated(i::Handle<i::FunctionTemplateInfo> info, const char* func) { Utils::ApiCheck(!info->instantiated(), func, "FunctionTemplate already instantiated"); } void FunctionTemplate::Inherit(v8::Local<FunctionTemplate> value) { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::Inherit"); i::Isolate* i_isolate = info->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); CHECK(info->GetPrototypeProviderTemplate().IsUndefined(i_isolate)); i::FunctionTemplateInfo::SetParentTemplate(i_isolate, info, Utils::OpenHandle(*value)); } static Local<FunctionTemplate> FunctionTemplateNew( i::Isolate* isolate, FunctionCallback callback, v8::Local<Value> data, v8::Local<Signature> signature, int length, bool do_not_cache, v8::Local<Private> cached_property_name = v8::Local<Private>(), SideEffectType side_effect_type = SideEffectType::kHasSideEffect, const CFunction* c_function = nullptr) { i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct( i::FUNCTION_TEMPLATE_INFO_TYPE, i::AllocationType::kOld); i::Handle<i::FunctionTemplateInfo> obj = i::Handle<i::FunctionTemplateInfo>::cast(struct_obj); { // Disallow GC until all fields of obj have acceptable types. i::DisallowHeapAllocation no_gc; InitializeFunctionTemplate(obj); obj->set_length(length); obj->set_do_not_cache(do_not_cache); int next_serial_number = i::FunctionTemplateInfo::kInvalidSerialNumber; if (!do_not_cache) { next_serial_number = isolate->heap()->GetNextTemplateSerialNumber(); } obj->set_serial_number(next_serial_number); } if (callback != nullptr) { Utils::ToLocal(obj)->SetCallHandler(callback, data, side_effect_type, c_function); } obj->set_undetectable(false); obj->set_needs_access_check(false); obj->set_accept_any_receiver(true); if (!signature.IsEmpty()) { obj->set_signature(*Utils::OpenHandle(*signature)); } obj->set_cached_property_name( cached_property_name.IsEmpty() ? i::ReadOnlyRoots(isolate).the_hole_value() : *Utils::OpenHandle(*cached_property_name)); return Utils::ToLocal(obj); } Local<FunctionTemplate> FunctionTemplate::New( Isolate* isolate, FunctionCallback callback, v8::Local<Value> data, v8::Local<Signature> signature, int length, ConstructorBehavior behavior, SideEffectType side_effect_type, const CFunction* c_function) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); // Changes to the environment cannot be captured in the snapshot. Expect no // function templates when the isolate is created for serialization. LOG_API(i_isolate, FunctionTemplate, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); auto templ = FunctionTemplateNew(i_isolate, callback, data, signature, length, false, Local<Private>(), side_effect_type, c_function); if (behavior == ConstructorBehavior::kThrow) templ->RemovePrototype(); return templ; } Local<FunctionTemplate> FunctionTemplate::NewWithCache( Isolate* isolate, FunctionCallback callback, Local<Private> cache_property, Local<Value> data, Local<Signature> signature, int length, SideEffectType side_effect_type) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, FunctionTemplate, NewWithCache); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); return FunctionTemplateNew(i_isolate, callback, data, signature, length, false, cache_property, side_effect_type); } Local<Signature> Signature::New(Isolate* isolate, Local<FunctionTemplate> receiver) { return Utils::SignatureToLocal(Utils::OpenHandle(*receiver)); } Local<AccessorSignature> AccessorSignature::New( Isolate* isolate, Local<FunctionTemplate> receiver) { return Utils::AccessorSignatureToLocal(Utils::OpenHandle(*receiver)); } #define SET_FIELD_WRAPPED(isolate, obj, setter, cdata) \ do { \ i::Handle<i::Object> foreign = FromCData(isolate, cdata); \ (obj)->setter(*foreign); \ } while (false) void FunctionTemplate::SetCallHandler(FunctionCallback callback, v8::Local<Value> data, SideEffectType side_effect_type, const CFunction* c_function) { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::SetCallHandler"); i::Isolate* isolate = info->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScope scope(isolate); i::Handle<i::CallHandlerInfo> obj = isolate->factory()->NewCallHandlerInfo( side_effect_type == SideEffectType::kHasNoSideEffect); SET_FIELD_WRAPPED(isolate, obj, set_callback, callback); SET_FIELD_WRAPPED(isolate, obj, set_js_callback, obj->redirected_callback()); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } obj->set_data(*Utils::OpenHandle(*data)); // Blink passes CFunction's constructed with the default constructor // for non-fast calls, so we should check the address too. if (c_function != nullptr && c_function->GetAddress()) { i::FunctionTemplateInfo::SetCFunction( isolate, info, i::handle(*FromCData(isolate, c_function->GetAddress()), isolate)); i::FunctionTemplateInfo::SetCSignature( isolate, info, i::handle(*FromCData(isolate, c_function->GetTypeInfo()), isolate)); } info->set_call_code(*obj); } namespace { template <typename Getter, typename Setter> i::Handle<i::AccessorInfo> MakeAccessorInfo( i::Isolate* isolate, v8::Local<Name> name, Getter getter, Setter setter, v8::Local<Value> data, v8::AccessControl settings, v8::Local<AccessorSignature> signature, bool is_special_data_property, bool replace_on_access) { i::Handle<i::AccessorInfo> obj = isolate->factory()->NewAccessorInfo(); SET_FIELD_WRAPPED(isolate, obj, set_getter, getter); DCHECK_IMPLIES(replace_on_access, is_special_data_property && setter == nullptr); if (is_special_data_property && setter == nullptr) { setter = reinterpret_cast<Setter>(&i::Accessors::ReconfigureToDataProperty); } SET_FIELD_WRAPPED(isolate, obj, set_setter, setter); i::Address redirected = obj->redirected_getter(); if (redirected != i::kNullAddress) { SET_FIELD_WRAPPED(isolate, obj, set_js_getter, redirected); } if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } obj->set_data(*Utils::OpenHandle(*data)); obj->set_is_special_data_property(is_special_data_property); obj->set_replace_on_access(replace_on_access); i::Handle<i::Name> accessor_name = Utils::OpenHandle(*name); if (!accessor_name->IsUniqueName()) { accessor_name = isolate->factory()->InternalizeString( i::Handle<i::String>::cast(accessor_name)); } obj->set_name(*accessor_name); if (settings & ALL_CAN_READ) obj->set_all_can_read(true); if (settings & ALL_CAN_WRITE) obj->set_all_can_write(true); obj->set_initial_property_attributes(i::NONE); if (!signature.IsEmpty()) { obj->set_expected_receiver_type(*Utils::OpenHandle(*signature)); } return obj; } } // namespace Local<ObjectTemplate> FunctionTemplate::InstanceTemplate() { i::Handle<i::FunctionTemplateInfo> handle = Utils::OpenHandle(this, true); if (!Utils::ApiCheck(!handle.is_null(), "v8::FunctionTemplate::InstanceTemplate()", "Reading from empty handle")) { return Local<ObjectTemplate>(); } i::Isolate* isolate = handle->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); if (handle->GetInstanceTemplate().IsUndefined(isolate)) { Local<ObjectTemplate> templ = ObjectTemplate::New(isolate, ToApiHandle<FunctionTemplate>(handle)); i::FunctionTemplateInfo::SetInstanceTemplate(isolate, handle, Utils::OpenHandle(*templ)); } i::Handle<i::ObjectTemplateInfo> result( i::ObjectTemplateInfo::cast(handle->GetInstanceTemplate()), isolate); return Utils::ToLocal(result); } void FunctionTemplate::SetLength(int length) { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::SetLength"); auto isolate = info->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); info->set_length(length); } void FunctionTemplate::SetClassName(Local<String> name) { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::SetClassName"); auto isolate = info->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); info->set_class_name(*Utils::OpenHandle(*name)); } void FunctionTemplate::SetAcceptAnyReceiver(bool value) { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::SetAcceptAnyReceiver"); auto isolate = info->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); info->set_accept_any_receiver(value); } void FunctionTemplate::ReadOnlyPrototype() { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::ReadOnlyPrototype"); auto isolate = info->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); info->set_read_only_prototype(true); } void FunctionTemplate::RemovePrototype() { auto info = Utils::OpenHandle(this); EnsureNotInstantiated(info, "v8::FunctionTemplate::RemovePrototype"); auto isolate = info->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); info->set_remove_prototype(true); } // --- O b j e c t T e m p l a t e --- Local<ObjectTemplate> ObjectTemplate::New( Isolate* isolate, v8::Local<FunctionTemplate> constructor) { return New(reinterpret_cast<i::Isolate*>(isolate), constructor); } static Local<ObjectTemplate> ObjectTemplateNew( i::Isolate* isolate, v8::Local<FunctionTemplate> constructor, bool do_not_cache) { LOG_API(isolate, ObjectTemplate, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::Handle<i::Struct> struct_obj = isolate->factory()->NewStruct( i::OBJECT_TEMPLATE_INFO_TYPE, i::AllocationType::kOld); i::Handle<i::ObjectTemplateInfo> obj = i::Handle<i::ObjectTemplateInfo>::cast(struct_obj); { // Disallow GC until all fields of obj have acceptable types. i::DisallowHeapAllocation no_gc; InitializeTemplate(obj, Consts::OBJECT_TEMPLATE); int next_serial_number = 0; if (!do_not_cache) { next_serial_number = isolate->heap()->GetNextTemplateSerialNumber(); } obj->set_serial_number(next_serial_number); obj->set_data(0); } if (!constructor.IsEmpty()) obj->set_constructor(*Utils::OpenHandle(*constructor)); return Utils::ToLocal(obj); } Local<ObjectTemplate> ObjectTemplate::New( i::Isolate* isolate, v8::Local<FunctionTemplate> constructor) { return ObjectTemplateNew(isolate, constructor, false); } // Ensure that the object template has a constructor. If no // constructor is available we create one. static i::Handle<i::FunctionTemplateInfo> EnsureConstructor( i::Isolate* isolate, ObjectTemplate* object_template) { i::Object obj = Utils::OpenHandle(object_template)->constructor(); if (!obj.IsUndefined(isolate)) { i::FunctionTemplateInfo info = i::FunctionTemplateInfo::cast(obj); return i::Handle<i::FunctionTemplateInfo>(info, isolate); } Local<FunctionTemplate> templ = FunctionTemplate::New(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::FunctionTemplateInfo> constructor = Utils::OpenHandle(*templ); i::FunctionTemplateInfo::SetInstanceTemplate( isolate, constructor, Utils::OpenHandle(object_template)); Utils::OpenHandle(object_template)->set_constructor(*constructor); return constructor; } template <typename Getter, typename Setter, typename Data, typename Template> static void TemplateSetAccessor( Template* template_obj, v8::Local<Name> name, Getter getter, Setter setter, Data data, AccessControl settings, PropertyAttribute attribute, v8::Local<AccessorSignature> signature, bool is_special_data_property, bool replace_on_access, SideEffectType getter_side_effect_type, SideEffectType setter_side_effect_type) { auto info = Utils::OpenHandle(template_obj); auto isolate = info->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScope scope(isolate); i::Handle<i::AccessorInfo> accessor_info = MakeAccessorInfo(isolate, name, getter, setter, data, settings, signature, is_special_data_property, replace_on_access); accessor_info->set_initial_property_attributes( static_cast<i::PropertyAttributes>(attribute)); accessor_info->set_getter_side_effect_type(getter_side_effect_type); accessor_info->set_setter_side_effect_type(setter_side_effect_type); i::ApiNatives::AddNativeDataProperty(isolate, info, accessor_info); } void Template::SetNativeDataProperty( v8::Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter, v8::Local<Value> data, PropertyAttribute attribute, v8::Local<AccessorSignature> signature, AccessControl settings, SideEffectType getter_side_effect_type, SideEffectType setter_side_effect_type) { TemplateSetAccessor(this, name, getter, setter, data, settings, attribute, signature, true, false, getter_side_effect_type, setter_side_effect_type); } void Template::SetNativeDataProperty( v8::Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter, v8::Local<Value> data, PropertyAttribute attribute, v8::Local<AccessorSignature> signature, AccessControl settings, SideEffectType getter_side_effect_type, SideEffectType setter_side_effect_type) { TemplateSetAccessor(this, name, getter, setter, data, settings, attribute, signature, true, false, getter_side_effect_type, setter_side_effect_type); } void Template::SetLazyDataProperty(v8::Local<Name> name, AccessorNameGetterCallback getter, v8::Local<Value> data, PropertyAttribute attribute, SideEffectType getter_side_effect_type, SideEffectType setter_side_effect_type) { TemplateSetAccessor(this, name, getter, static_cast<AccessorNameSetterCallback>(nullptr), data, DEFAULT, attribute, Local<AccessorSignature>(), true, true, getter_side_effect_type, setter_side_effect_type); } void Template::SetIntrinsicDataProperty(Local<Name> name, Intrinsic intrinsic, PropertyAttribute attribute) { auto templ = Utils::OpenHandle(this); i::Isolate* isolate = templ->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScope scope(isolate); i::ApiNatives::AddDataProperty(isolate, templ, Utils::OpenHandle(*name), intrinsic, static_cast<i::PropertyAttributes>(attribute)); } void ObjectTemplate::SetAccessor(v8::Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter, v8::Local<Value> data, AccessControl settings, PropertyAttribute attribute, v8::Local<AccessorSignature> signature, SideEffectType getter_side_effect_type, SideEffectType setter_side_effect_type) { TemplateSetAccessor(this, name, getter, setter, data, settings, attribute, signature, i::FLAG_disable_old_api_accessors, false, getter_side_effect_type, setter_side_effect_type); } void ObjectTemplate::SetAccessor(v8::Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter, v8::Local<Value> data, AccessControl settings, PropertyAttribute attribute, v8::Local<AccessorSignature> signature, SideEffectType getter_side_effect_type, SideEffectType setter_side_effect_type) { TemplateSetAccessor(this, name, getter, setter, data, settings, attribute, signature, i::FLAG_disable_old_api_accessors, false, getter_side_effect_type, setter_side_effect_type); } template <typename Getter, typename Setter, typename Query, typename Descriptor, typename Deleter, typename Enumerator, typename Definer> static i::Handle<i::InterceptorInfo> CreateInterceptorInfo( i::Isolate* isolate, Getter getter, Setter setter, Query query, Descriptor descriptor, Deleter remover, Enumerator enumerator, Definer definer, Local<Value> data, PropertyHandlerFlags flags) { auto obj = i::Handle<i::InterceptorInfo>::cast(isolate->factory()->NewStruct( i::INTERCEPTOR_INFO_TYPE, i::AllocationType::kOld)); obj->set_flags(0); if (getter != nullptr) SET_FIELD_WRAPPED(isolate, obj, set_getter, getter); if (setter != nullptr) SET_FIELD_WRAPPED(isolate, obj, set_setter, setter); if (query != nullptr) SET_FIELD_WRAPPED(isolate, obj, set_query, query); if (descriptor != nullptr) SET_FIELD_WRAPPED(isolate, obj, set_descriptor, descriptor); if (remover != nullptr) SET_FIELD_WRAPPED(isolate, obj, set_deleter, remover); if (enumerator != nullptr) SET_FIELD_WRAPPED(isolate, obj, set_enumerator, enumerator); if (definer != nullptr) SET_FIELD_WRAPPED(isolate, obj, set_definer, definer); obj->set_can_intercept_symbols( !(static_cast<int>(flags) & static_cast<int>(PropertyHandlerFlags::kOnlyInterceptStrings))); obj->set_all_can_read(static_cast<int>(flags) & static_cast<int>(PropertyHandlerFlags::kAllCanRead)); obj->set_non_masking(static_cast<int>(flags) & static_cast<int>(PropertyHandlerFlags::kNonMasking)); obj->set_has_no_side_effect( static_cast<int>(flags) & static_cast<int>(PropertyHandlerFlags::kHasNoSideEffect)); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } obj->set_data(*Utils::OpenHandle(*data)); return obj; } template <typename Getter, typename Setter, typename Query, typename Descriptor, typename Deleter, typename Enumerator, typename Definer> static i::Handle<i::InterceptorInfo> CreateNamedInterceptorInfo( i::Isolate* isolate, Getter getter, Setter setter, Query query, Descriptor descriptor, Deleter remover, Enumerator enumerator, Definer definer, Local<Value> data, PropertyHandlerFlags flags) { auto interceptor = CreateInterceptorInfo(isolate, getter, setter, query, descriptor, remover, enumerator, definer, data, flags); interceptor->set_is_named(true); return interceptor; } template <typename Getter, typename Setter, typename Query, typename Descriptor, typename Deleter, typename Enumerator, typename Definer> static i::Handle<i::InterceptorInfo> CreateIndexedInterceptorInfo( i::Isolate* isolate, Getter getter, Setter setter, Query query, Descriptor descriptor, Deleter remover, Enumerator enumerator, Definer definer, Local<Value> data, PropertyHandlerFlags flags) { auto interceptor = CreateInterceptorInfo(isolate, getter, setter, query, descriptor, remover, enumerator, definer, data, flags); interceptor->set_is_named(false); return interceptor; } template <typename Getter, typename Setter, typename Query, typename Descriptor, typename Deleter, typename Enumerator, typename Definer> static void ObjectTemplateSetNamedPropertyHandler( ObjectTemplate* templ, Getter getter, Setter setter, Query query, Descriptor descriptor, Deleter remover, Enumerator enumerator, Definer definer, Local<Value> data, PropertyHandlerFlags flags) { i::Isolate* isolate = Utils::OpenHandle(templ)->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScope scope(isolate); auto cons = EnsureConstructor(isolate, templ); EnsureNotInstantiated(cons, "ObjectTemplateSetNamedPropertyHandler"); auto obj = CreateNamedInterceptorInfo(isolate, getter, setter, query, descriptor, remover, enumerator, definer, data, flags); i::FunctionTemplateInfo::SetNamedPropertyHandler(isolate, cons, obj); } void ObjectTemplate::SetHandler( const NamedPropertyHandlerConfiguration& config) { ObjectTemplateSetNamedPropertyHandler( this, config.getter, config.setter, config.query, config.descriptor, config.deleter, config.enumerator, config.definer, config.data, config.flags); } void ObjectTemplate::MarkAsUndetectable() { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScope scope(isolate); auto cons = EnsureConstructor(isolate, this); EnsureNotInstantiated(cons, "v8::ObjectTemplate::MarkAsUndetectable"); cons->set_undetectable(true); } void ObjectTemplate::SetAccessCheckCallback(AccessCheckCallback callback, Local<Value> data) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScope scope(isolate); auto cons = EnsureConstructor(isolate, this); EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetAccessCheckCallback"); i::Handle<i::Struct> struct_info = isolate->factory()->NewStruct( i::ACCESS_CHECK_INFO_TYPE, i::AllocationType::kOld); i::Handle<i::AccessCheckInfo> info = i::Handle<i::AccessCheckInfo>::cast(struct_info); SET_FIELD_WRAPPED(isolate, info, set_callback, callback); info->set_named_interceptor(i::Object()); info->set_indexed_interceptor(i::Object()); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } info->set_data(*Utils::OpenHandle(*data)); i::FunctionTemplateInfo::SetAccessCheckInfo(isolate, cons, info); cons->set_needs_access_check(true); } void ObjectTemplate::SetAccessCheckCallbackAndHandler( AccessCheckCallback callback, const NamedPropertyHandlerConfiguration& named_handler, const IndexedPropertyHandlerConfiguration& indexed_handler, Local<Value> data) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScope scope(isolate); auto cons = EnsureConstructor(isolate, this); EnsureNotInstantiated( cons, "v8::ObjectTemplate::SetAccessCheckCallbackWithHandler"); i::Handle<i::Struct> struct_info = isolate->factory()->NewStruct( i::ACCESS_CHECK_INFO_TYPE, i::AllocationType::kOld); i::Handle<i::AccessCheckInfo> info = i::Handle<i::AccessCheckInfo>::cast(struct_info); SET_FIELD_WRAPPED(isolate, info, set_callback, callback); auto named_interceptor = CreateNamedInterceptorInfo( isolate, named_handler.getter, named_handler.setter, named_handler.query, named_handler.descriptor, named_handler.deleter, named_handler.enumerator, named_handler.definer, named_handler.data, named_handler.flags); info->set_named_interceptor(*named_interceptor); auto indexed_interceptor = CreateIndexedInterceptorInfo( isolate, indexed_handler.getter, indexed_handler.setter, indexed_handler.query, indexed_handler.descriptor, indexed_handler.deleter, indexed_handler.enumerator, indexed_handler.definer, indexed_handler.data, indexed_handler.flags); info->set_indexed_interceptor(*indexed_interceptor); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } info->set_data(*Utils::OpenHandle(*data)); i::FunctionTemplateInfo::SetAccessCheckInfo(isolate, cons, info); cons->set_needs_access_check(true); } void ObjectTemplate::SetHandler( const IndexedPropertyHandlerConfiguration& config) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScope scope(isolate); auto cons = EnsureConstructor(isolate, this); EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetHandler"); auto obj = CreateIndexedInterceptorInfo( isolate, config.getter, config.setter, config.query, config.descriptor, config.deleter, config.enumerator, config.definer, config.data, config.flags); i::FunctionTemplateInfo::SetIndexedPropertyHandler(isolate, cons, obj); } void ObjectTemplate::SetCallAsFunctionHandler(FunctionCallback callback, Local<Value> data) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScope scope(isolate); auto cons = EnsureConstructor(isolate, this); EnsureNotInstantiated(cons, "v8::ObjectTemplate::SetCallAsFunctionHandler"); i::Handle<i::CallHandlerInfo> obj = isolate->factory()->NewCallHandlerInfo(); SET_FIELD_WRAPPED(isolate, obj, set_callback, callback); SET_FIELD_WRAPPED(isolate, obj, set_js_callback, obj->redirected_callback()); if (data.IsEmpty()) { data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } obj->set_data(*Utils::OpenHandle(*data)); i::FunctionTemplateInfo::SetInstanceCallHandler(isolate, cons, obj); } int ObjectTemplate::InternalFieldCount() { return Utils::OpenHandle(this)->embedder_field_count(); } void ObjectTemplate::SetInternalFieldCount(int value) { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); if (!Utils::ApiCheck(i::Smi::IsValid(value), "v8::ObjectTemplate::SetInternalFieldCount()", "Invalid embedder field count")) { return; } ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); if (value > 0) { // The embedder field count is set by the constructor function's // construct code, so we ensure that there is a constructor // function to do the setting. EnsureConstructor(isolate, this); } Utils::OpenHandle(this)->set_embedder_field_count(value); } bool ObjectTemplate::IsImmutableProto() { return Utils::OpenHandle(this)->immutable_proto(); } void ObjectTemplate::SetImmutableProto() { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); self->set_immutable_proto(true); } // --- S c r i p t s --- // Internally, UnboundScript is a SharedFunctionInfo, and Script is a // JSFunction. ScriptCompiler::CachedData::CachedData(const uint8_t* data_, int length_, BufferPolicy buffer_policy_) : data(data_), length(length_), rejected(false), buffer_policy(buffer_policy_) {} ScriptCompiler::CachedData::~CachedData() { if (buffer_policy == BufferOwned) { delete[] data; } } bool ScriptCompiler::ExternalSourceStream::SetBookmark() { return false; } void ScriptCompiler::ExternalSourceStream::ResetToBookmark() { UNREACHABLE(); } ScriptCompiler::StreamedSource::StreamedSource(ExternalSourceStream* stream, Encoding encoding) : StreamedSource(std::unique_ptr<ExternalSourceStream>(stream), encoding) {} ScriptCompiler::StreamedSource::StreamedSource( std::unique_ptr<ExternalSourceStream> stream, Encoding encoding) : impl_(new i::ScriptStreamingData(std::move(stream), encoding)) {} ScriptCompiler::StreamedSource::~StreamedSource() = default; Local<Script> UnboundScript::BindToCurrentContext() { auto function_info = i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = function_info->GetIsolate(); i::Handle<i::JSFunction> function = isolate->factory()->NewFunctionFromSharedFunctionInfo( function_info, isolate->native_context()); return ToApiHandle<Script>(function); } int UnboundScript::GetId() { auto function_info = i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = function_info->GetIsolate(); LOG_API(isolate, UnboundScript, GetId); i::HandleScope scope(isolate); i::Handle<i::Script> script(i::Script::cast(function_info->script()), isolate); return script->id(); } int UnboundScript::GetLineNumber(int code_pos) { i::Handle<i::SharedFunctionInfo> obj = i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = obj->GetIsolate(); LOG_API(isolate, UnboundScript, GetLineNumber); if (obj->script().IsScript()) { i::Handle<i::Script> script(i::Script::cast(obj->script()), isolate); return i::Script::GetLineNumber(script, code_pos); } else { return -1; } } Local<Value> UnboundScript::GetScriptName() { i::Handle<i::SharedFunctionInfo> obj = i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = obj->GetIsolate(); LOG_API(isolate, UnboundScript, GetName); if (obj->script().IsScript()) { i::Object name = i::Script::cast(obj->script()).name(); return Utils::ToLocal(i::Handle<i::Object>(name, isolate)); } else { return Local<String>(); } } Local<Value> UnboundScript::GetSourceURL() { i::Handle<i::SharedFunctionInfo> obj = i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = obj->GetIsolate(); LOG_API(isolate, UnboundScript, GetSourceURL); if (obj->script().IsScript()) { i::Object url = i::Script::cast(obj->script()).source_url(); return Utils::ToLocal(i::Handle<i::Object>(url, isolate)); } else { return Local<String>(); } } Local<Value> UnboundScript::GetSourceMappingURL() { i::Handle<i::SharedFunctionInfo> obj = i::Handle<i::SharedFunctionInfo>::cast(Utils::OpenHandle(this)); i::Isolate* isolate = obj->GetIsolate(); LOG_API(isolate, UnboundScript, GetSourceMappingURL); if (obj->script().IsScript()) { i::Object url = i::Script::cast(obj->script()).source_mapping_url(); return Utils::ToLocal(i::Handle<i::Object>(url, isolate)); } else { return Local<String>(); } } MaybeLocal<Value> Script::Run(Local<Context> context) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.Execute"); ENTER_V8(isolate, context, Script, Run, MaybeLocal<Value>(), InternalEscapableScope); i::HistogramTimerScope execute_timer(isolate->counters()->execute(), true); i::AggregatingHistogramTimerScope timer(isolate->counters()->compile_lazy()); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); auto fun = i::Handle<i::JSFunction>::cast(Utils::OpenHandle(this)); i::Handle<i::Object> receiver = isolate->global_proxy(); Local<Value> result; has_pending_exception = !ToLocal<Value>( i::Execution::Call(isolate, fun, receiver, 0, nullptr), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } Local<Value> ScriptOrModule::GetResourceName() { i::Handle<i::Script> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::Handle<i::Object> val(obj->name(), isolate); return ToApiHandle<Value>(val); } Local<PrimitiveArray> ScriptOrModule::GetHostDefinedOptions() { i::Handle<i::Script> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::Handle<i::FixedArray> val(obj->host_defined_options(), isolate); return ToApiHandle<PrimitiveArray>(val); } Local<UnboundScript> Script::GetUnboundScript() { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::SharedFunctionInfo sfi = i::JSFunction::cast(*obj).shared(); i::Isolate* isolate = sfi.GetIsolate(); return ToApiHandle<UnboundScript>(i::handle(sfi, isolate)); } // static Local<PrimitiveArray> PrimitiveArray::New(Isolate* v8_isolate, int length) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); Utils::ApiCheck(length >= 0, "v8::PrimitiveArray::New", "length must be equal or greater than zero"); i::Handle<i::FixedArray> array = isolate->factory()->NewFixedArray(length); return ToApiHandle<PrimitiveArray>(array); } int PrimitiveArray::Length() const { i::Handle<i::FixedArray> array = Utils::OpenHandle(this); return array->length(); } void PrimitiveArray::Set(Isolate* v8_isolate, int index, Local<Primitive> item) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); i::Handle<i::FixedArray> array = Utils::OpenHandle(this); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); Utils::ApiCheck(index >= 0 && index < array->length(), "v8::PrimitiveArray::Set", "index must be greater than or equal to 0 and less than the " "array length"); i::Handle<i::Object> i_item = Utils::OpenHandle(*item); array->set(index, *i_item); } Local<Primitive> PrimitiveArray::Get(Isolate* v8_isolate, int index) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); i::Handle<i::FixedArray> array = Utils::OpenHandle(this); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); Utils::ApiCheck(index >= 0 && index < array->length(), "v8::PrimitiveArray::Get", "index must be greater than or equal to 0 and less than the " "array length"); i::Handle<i::Object> i_item(array->get(index), isolate); return ToApiHandle<Primitive>(i_item); } Module::Status Module::GetStatus() const { i::Handle<i::Module> self = Utils::OpenHandle(this); switch (self->status()) { case i::Module::kUninstantiated: case i::Module::kPreInstantiating: return kUninstantiated; case i::Module::kInstantiating: return kInstantiating; case i::Module::kInstantiated: return kInstantiated; case i::Module::kEvaluating: return kEvaluating; case i::Module::kEvaluated: return kEvaluated; case i::Module::kErrored: return kErrored; } UNREACHABLE(); } Local<Value> Module::GetException() const { Utils::ApiCheck(GetStatus() == kErrored, "v8::Module::GetException", "Module status must be kErrored"); i::Handle<i::Module> self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); return ToApiHandle<Value>(i::handle(self->GetException(), isolate)); } int Module::GetModuleRequestsLength() const { i::Handle<i::Module> self = Utils::OpenHandle(this); if (self->IsSyntheticModule()) return 0; return i::Handle<i::SourceTextModule>::cast(self) ->info() .module_requests() .length(); } Local<String> Module::GetModuleRequest(int i) const { CHECK_GE(i, 0); i::Handle<i::Module> self = Utils::OpenHandle(this); CHECK(self->IsSourceTextModule()); i::Isolate* isolate = self->GetIsolate(); i::Handle<i::FixedArray> module_requests( i::Handle<i::SourceTextModule>::cast(self)->info().module_requests(), isolate); CHECK_LT(i, module_requests->length()); return ToApiHandle<String>(i::handle(module_requests->get(i), isolate)); } Location Module::GetModuleRequestLocation(int i) const { CHECK_GE(i, 0); i::Handle<i::Module> self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); i::HandleScope scope(isolate); CHECK(self->IsSourceTextModule()); i::Handle<i::FixedArray> module_request_positions( i::Handle<i::SourceTextModule>::cast(self) ->info() .module_request_positions(), isolate); CHECK_LT(i, module_request_positions->length()); int position = i::Smi::ToInt(module_request_positions->get(i)); i::Handle<i::Script> script( i::Handle<i::SourceTextModule>::cast(self)->script(), isolate); i::Script::PositionInfo info; i::Script::GetPositionInfo(script, position, &info, i::Script::WITH_OFFSET); return v8::Location(info.line, info.column); } Local<Value> Module::GetModuleNamespace() { Utils::ApiCheck( GetStatus() >= kInstantiated, "v8::Module::GetModuleNamespace", "v8::Module::GetModuleNamespace must be used on an instantiated module"); i::Handle<i::Module> self = Utils::OpenHandle(this); i::Handle<i::JSModuleNamespace> module_namespace = i::Module::GetModuleNamespace(self->GetIsolate(), self); return ToApiHandle<Value>(module_namespace); } Local<UnboundModuleScript> Module::GetUnboundModuleScript() { Utils::ApiCheck( GetStatus() < kEvaluating, "v8::Module::GetUnboundScript", "v8::Module::GetUnboundScript must be used on an unevaluated module"); i::Handle<i::Module> self = Utils::OpenHandle(this); CHECK(self->IsSourceTextModule()); return ToApiHandle<UnboundModuleScript>(i::Handle<i::SharedFunctionInfo>( i::Handle<i::SourceTextModule>::cast(self)->GetSharedFunctionInfo(), self->GetIsolate())); } int Module::ScriptId() { i::Handle<i::Module> self = Utils::OpenHandle(this); Utils::ApiCheck(self->IsSourceTextModule(), "v8::Module::ScriptId", "v8::Module::ScriptId must be used on an SourceTextModule"); // The SharedFunctionInfo is not available for errored modules. Utils::ApiCheck(GetStatus() != kErrored, "v8::Module::ScriptId", "v8::Module::ScriptId must not be used on an errored module"); i::Handle<i::SharedFunctionInfo> sfi( i::Handle<i::SourceTextModule>::cast(self)->GetSharedFunctionInfo(), self->GetIsolate()); return ToApiHandle<UnboundScript>(sfi)->GetId(); } bool Module::IsSourceTextModule() const { return Utils::OpenHandle(this)->IsSourceTextModule(); } bool Module::IsSyntheticModule() const { return Utils::OpenHandle(this)->IsSyntheticModule(); } int Module::GetIdentityHash() const { return Utils::OpenHandle(this)->hash(); } Maybe<bool> Module::InstantiateModule(Local<Context> context, Module::ResolveCallback callback) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Module, InstantiateModule, Nothing<bool>(), i::HandleScope); has_pending_exception = !i::Module::Instantiate( isolate, Utils::OpenHandle(this), context, callback); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } MaybeLocal<Value> Module::Evaluate(Local<Context> context) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.Execute"); ENTER_V8(isolate, context, Module, Evaluate, MaybeLocal<Value>(), InternalEscapableScope); i::HistogramTimerScope execute_timer(isolate->counters()->execute(), true); i::AggregatingHistogramTimerScope timer(isolate->counters()->compile_lazy()); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); i::Handle<i::Module> self = Utils::OpenHandle(this); // It's an API error to call Evaluate before Instantiate. CHECK_GE(self->status(), i::Module::kInstantiated); Local<Value> result; has_pending_exception = !ToLocal(i::Module::Evaluate(isolate, self), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } Local<Module> Module::CreateSyntheticModule( Isolate* isolate, Local<String> module_name, const std::vector<Local<v8::String>>& export_names, v8::Module::SyntheticModuleEvaluationSteps evaluation_steps) { auto i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::String> i_module_name = Utils::OpenHandle(*module_name); i::Handle<i::FixedArray> i_export_names = i_isolate->factory()->NewFixedArray( static_cast<int>(export_names.size())); for (int i = 0; i < i_export_names->length(); ++i) { i::Handle<i::String> str = i_isolate->factory()->InternalizeString( Utils::OpenHandle(*export_names[i])); i_export_names->set(i, *str); } return v8::Utils::ToLocal( i::Handle<i::Module>(i_isolate->factory()->NewSyntheticModule( i_module_name, i_export_names, evaluation_steps))); } Maybe<bool> Module::SetSyntheticModuleExport(Isolate* isolate, Local<String> export_name, Local<v8::Value> export_value) { auto i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::String> i_export_name = Utils::OpenHandle(*export_name); i::Handle<i::Object> i_export_value = Utils::OpenHandle(*export_value); i::Handle<i::Module> self = Utils::OpenHandle(this); Utils::ApiCheck(self->IsSyntheticModule(), "v8::Module::SyntheticModuleSetExport", "v8::Module::SyntheticModuleSetExport must only be called on " "a SyntheticModule"); ENTER_V8_NO_SCRIPT(i_isolate, isolate->GetCurrentContext(), Module, SetSyntheticModuleExport, Nothing<bool>(), i::HandleScope); has_pending_exception = i::SyntheticModule::SetExport(i_isolate, i::Handle<i::SyntheticModule>::cast(self), i_export_name, i_export_value) .IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } void Module::SetSyntheticModuleExport(Local<String> export_name, Local<v8::Value> export_value) { i::Handle<i::String> i_export_name = Utils::OpenHandle(*export_name); i::Handle<i::Object> i_export_value = Utils::OpenHandle(*export_value); i::Handle<i::Module> self = Utils::OpenHandle(this); Utils::ApiCheck(self->IsSyntheticModule(), "v8::Module::SetSyntheticModuleExport", "v8::Module::SetSyntheticModuleExport must only be called on " "a SyntheticModule"); i::SyntheticModule::SetExportStrict(self->GetIsolate(), i::Handle<i::SyntheticModule>::cast(self), i_export_name, i_export_value); } namespace { i::Compiler::ScriptDetails GetScriptDetails( i::Isolate* isolate, Local<Value> resource_name, Local<Integer> resource_line_offset, Local<Integer> resource_column_offset, Local<Value> source_map_url, Local<PrimitiveArray> host_defined_options) { i::Compiler::ScriptDetails script_details; if (!resource_name.IsEmpty()) { script_details.name_obj = Utils::OpenHandle(*(resource_name)); } if (!resource_line_offset.IsEmpty()) { script_details.line_offset = static_cast<int>(resource_line_offset->Value()); } if (!resource_column_offset.IsEmpty()) { script_details.column_offset = static_cast<int>(resource_column_offset->Value()); } script_details.host_defined_options = isolate->factory()->empty_fixed_array(); if (!host_defined_options.IsEmpty()) { script_details.host_defined_options = Utils::OpenHandle(*(host_defined_options)); } if (!source_map_url.IsEmpty()) { script_details.source_map_url = Utils::OpenHandle(*(source_map_url)); } return script_details; } } // namespace MaybeLocal<UnboundScript> ScriptCompiler::CompileUnboundInternal( Isolate* v8_isolate, Source* source, CompileOptions options, NoCacheReason no_cache_reason) { auto isolate = reinterpret_cast<i::Isolate*>(v8_isolate); TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.ScriptCompiler"); ENTER_V8_NO_SCRIPT(isolate, v8_isolate->GetCurrentContext(), ScriptCompiler, CompileUnbound, MaybeLocal<UnboundScript>(), InternalEscapableScope); i::ScriptData* script_data = nullptr; if (options == kConsumeCodeCache) { DCHECK(source->cached_data); // ScriptData takes care of pointer-aligning the data. script_data = new i::ScriptData(source->cached_data->data, source->cached_data->length); } i::Handle<i::String> str = Utils::OpenHandle(*(source->source_string)); i::Handle<i::SharedFunctionInfo> result; TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.CompileScript"); i::Compiler::ScriptDetails script_details = GetScriptDetails( isolate, source->resource_name, source->resource_line_offset, source->resource_column_offset, source->source_map_url, source->host_defined_options); i::MaybeHandle<i::SharedFunctionInfo> maybe_function_info = i::Compiler::GetSharedFunctionInfoForScript( isolate, str, script_details, source->resource_options, nullptr, script_data, options, no_cache_reason, i::NOT_NATIVES_CODE); if (options == kConsumeCodeCache) { source->cached_data->rejected = script_data->rejected(); } delete script_data; has_pending_exception = !maybe_function_info.ToHandle(&result); RETURN_ON_FAILED_EXECUTION(UnboundScript); RETURN_ESCAPED(ToApiHandle<UnboundScript>(result)); } MaybeLocal<UnboundScript> ScriptCompiler::CompileUnboundScript( Isolate* v8_isolate, Source* source, CompileOptions options, NoCacheReason no_cache_reason) { Utils::ApiCheck( !source->GetResourceOptions().IsModule(), "v8::ScriptCompiler::CompileUnboundScript", "v8::ScriptCompiler::CompileModule must be used to compile modules"); return CompileUnboundInternal(v8_isolate, source, options, no_cache_reason); } MaybeLocal<Script> ScriptCompiler::Compile(Local<Context> context, Source* source, CompileOptions options, NoCacheReason no_cache_reason) { Utils::ApiCheck( !source->GetResourceOptions().IsModule(), "v8::ScriptCompiler::Compile", "v8::ScriptCompiler::CompileModule must be used to compile modules"); auto isolate = context->GetIsolate(); auto maybe = CompileUnboundInternal(isolate, source, options, no_cache_reason); Local<UnboundScript> result; if (!maybe.ToLocal(&result)) return MaybeLocal<Script>(); v8::Context::Scope scope(context); return result->BindToCurrentContext(); } MaybeLocal<Module> ScriptCompiler::CompileModule( Isolate* isolate, Source* source, CompileOptions options, NoCacheReason no_cache_reason) { CHECK(options == kNoCompileOptions || options == kConsumeCodeCache); i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); Utils::ApiCheck(source->GetResourceOptions().IsModule(), "v8::ScriptCompiler::CompileModule", "Invalid ScriptOrigin: is_module must be true"); auto maybe = CompileUnboundInternal(isolate, source, options, no_cache_reason); Local<UnboundScript> unbound; if (!maybe.ToLocal(&unbound)) return MaybeLocal<Module>(); i::Handle<i::SharedFunctionInfo> shared = Utils::OpenHandle(*unbound); return ToApiHandle<Module>(i_isolate->factory()->NewSourceTextModule(shared)); } namespace { bool IsIdentifier(i::Isolate* isolate, i::Handle<i::String> string) { string = i::String::Flatten(isolate, string); const int length = string->length(); if (length == 0) return false; if (!i::IsIdentifierStart(string->Get(0))) return false; i::DisallowHeapAllocation no_gc; i::String::FlatContent flat = string->GetFlatContent(no_gc); if (flat.IsOneByte()) { auto vector = flat.ToOneByteVector(); for (int i = 1; i < length; i++) { if (!i::IsIdentifierPart(vector[i])) return false; } } else { auto vector = flat.ToUC16Vector(); for (int i = 1; i < length; i++) { if (!i::IsIdentifierPart(vector[i])) return false; } } return true; } } // anonymous namespace MaybeLocal<Function> ScriptCompiler::CompileFunctionInContext( Local<Context> v8_context, Source* source, size_t arguments_count, Local<String> arguments[], size_t context_extension_count, Local<Object> context_extensions[], CompileOptions options, NoCacheReason no_cache_reason, Local<ScriptOrModule>* script_or_module_out) { Local<Function> result; { PREPARE_FOR_EXECUTION(v8_context, ScriptCompiler, CompileFunctionInContext, Function); TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.ScriptCompiler"); DCHECK(options == CompileOptions::kConsumeCodeCache || options == CompileOptions::kEagerCompile || options == CompileOptions::kNoCompileOptions); i::Handle<i::Context> context = Utils::OpenHandle(*v8_context); DCHECK(context->IsNativeContext()); i::Handle<i::FixedArray> arguments_list = isolate->factory()->NewFixedArray(static_cast<int>(arguments_count)); for (int i = 0; i < static_cast<int>(arguments_count); i++) { i::Handle<i::String> argument = Utils::OpenHandle(*arguments[i]); if (!IsIdentifier(isolate, argument)) return Local<Function>(); arguments_list->set(i, *argument); } for (size_t i = 0; i < context_extension_count; ++i) { i::Handle<i::JSReceiver> extension = Utils::OpenHandle(*context_extensions[i]); if (!extension->IsJSObject()) return Local<Function>(); context = isolate->factory()->NewWithContext( context, i::ScopeInfo::CreateForWithScope( isolate, context->IsNativeContext() ? i::Handle<i::ScopeInfo>::null() : i::Handle<i::ScopeInfo>(context->scope_info(), isolate)), extension); } i::Compiler::ScriptDetails script_details = GetScriptDetails( isolate, source->resource_name, source->resource_line_offset, source->resource_column_offset, source->source_map_url, source->host_defined_options); i::ScriptData* script_data = nullptr; if (options == kConsumeCodeCache) { DCHECK(source->cached_data); // ScriptData takes care of pointer-aligning the data. script_data = new i::ScriptData(source->cached_data->data, source->cached_data->length); } i::Handle<i::JSFunction> scoped_result; has_pending_exception = !i::Compiler::GetWrappedFunction( Utils::OpenHandle(*source->source_string), arguments_list, context, script_details, source->resource_options, script_data, options, no_cache_reason) .ToHandle(&scoped_result); if (options == kConsumeCodeCache) { source->cached_data->rejected = script_data->rejected(); } delete script_data; RETURN_ON_FAILED_EXECUTION(Function); result = handle_scope.Escape(Utils::CallableToLocal(scoped_result)); } if (script_or_module_out != nullptr) { i::Handle<i::JSFunction> function = i::Handle<i::JSFunction>::cast(Utils::OpenHandle(*result)); i::Isolate* isolate = function->GetIsolate(); i::Handle<i::SharedFunctionInfo> shared(function->shared(), isolate); i::Handle<i::Script> script(i::Script::cast(shared->script()), isolate); *script_or_module_out = v8::Utils::ScriptOrModuleToLocal(script); } return result; } void ScriptCompiler::ScriptStreamingTask::Run() { data_->task->Run(); } ScriptCompiler::ScriptStreamingTask* ScriptCompiler::StartStreamingScript( Isolate* v8_isolate, StreamedSource* source, CompileOptions options) { if (!i::FLAG_script_streaming) { return nullptr; } // We don't support other compile options on streaming background compiles. // TODO(rmcilroy): remove CompileOptions from the API. CHECK(options == ScriptCompiler::kNoCompileOptions); i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); i::ScriptStreamingData* data = source->impl(); std::unique_ptr<i::BackgroundCompileTask> task = std::make_unique<i::BackgroundCompileTask>(data, isolate); data->task = std::move(task); return new ScriptCompiler::ScriptStreamingTask(data); } MaybeLocal<Script> ScriptCompiler::Compile(Local<Context> context, StreamedSource* v8_source, Local<String> full_source_string, const ScriptOrigin& origin) { PREPARE_FOR_EXECUTION(context, ScriptCompiler, Compile, Script); TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.ScriptCompiler"); TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.CompileStreamedScript"); i::Handle<i::String> str = Utils::OpenHandle(*(full_source_string)); i::Compiler::ScriptDetails script_details = GetScriptDetails( isolate, origin.ResourceName(), origin.ResourceLineOffset(), origin.ResourceColumnOffset(), origin.SourceMapUrl(), origin.HostDefinedOptions()); i::ScriptStreamingData* data = v8_source->impl(); i::MaybeHandle<i::SharedFunctionInfo> maybe_function_info = i::Compiler::GetSharedFunctionInfoForStreamedScript( isolate, str, script_details, origin.Options(), data); i::Handle<i::SharedFunctionInfo> result; has_pending_exception = !maybe_function_info.ToHandle(&result); if (has_pending_exception) isolate->ReportPendingMessages(); RETURN_ON_FAILED_EXECUTION(Script); Local<UnboundScript> generic = ToApiHandle<UnboundScript>(result); if (generic.IsEmpty()) return Local<Script>(); Local<Script> bound = generic->BindToCurrentContext(); if (bound.IsEmpty()) return Local<Script>(); RETURN_ESCAPED(bound); } uint32_t ScriptCompiler::CachedDataVersionTag() { return static_cast<uint32_t>(base::hash_combine( internal::Version::Hash(), internal::FlagList::Hash(), static_cast<uint32_t>(internal::CpuFeatures::SupportedFeatures()))); } ScriptCompiler::CachedData* ScriptCompiler::CreateCodeCache( Local<UnboundScript> unbound_script) { i::Handle<i::SharedFunctionInfo> shared = i::Handle<i::SharedFunctionInfo>::cast( Utils::OpenHandle(*unbound_script)); DCHECK(shared->is_toplevel()); return i::CodeSerializer::Serialize(shared); } // static ScriptCompiler::CachedData* ScriptCompiler::CreateCodeCache( Local<UnboundModuleScript> unbound_module_script) { i::Handle<i::SharedFunctionInfo> shared = i::Handle<i::SharedFunctionInfo>::cast( Utils::OpenHandle(*unbound_module_script)); DCHECK(shared->is_toplevel()); return i::CodeSerializer::Serialize(shared); } ScriptCompiler::CachedData* ScriptCompiler::CreateCodeCacheForFunction( Local<Function> function) { auto js_function = i::Handle<i::JSFunction>::cast(Utils::OpenHandle(*function)); i::Handle<i::SharedFunctionInfo> shared(js_function->shared(), js_function->GetIsolate()); CHECK(shared->is_wrapped()); return i::CodeSerializer::Serialize(shared); } MaybeLocal<Script> Script::Compile(Local<Context> context, Local<String> source, ScriptOrigin* origin) { if (origin) { ScriptCompiler::Source script_source(source, *origin); return ScriptCompiler::Compile(context, &script_source); } ScriptCompiler::Source script_source(source); return ScriptCompiler::Compile(context, &script_source); } // --- E x c e p t i o n s --- v8::TryCatch::TryCatch(v8::Isolate* isolate) : isolate_(reinterpret_cast<i::Isolate*>(isolate)), next_(isolate_->try_catch_handler()), is_verbose_(false), can_continue_(true), capture_message_(true), rethrow_(false), has_terminated_(false) { ResetInternal(); // Special handling for simulators which have a separate JS stack. js_stack_comparable_address_ = reinterpret_cast<void*>( i::SimulatorStack::RegisterJSStackComparableAddress(isolate_)); isolate_->RegisterTryCatchHandler(this); } v8::TryCatch::~TryCatch() { if (rethrow_) { v8::Isolate* isolate = reinterpret_cast<Isolate*>(isolate_); v8::HandleScope scope(isolate); v8::Local<v8::Value> exc = v8::Local<v8::Value>::New(isolate, Exception()); if (HasCaught() && capture_message_) { // If an exception was caught and rethrow_ is indicated, the saved // message, script, and location need to be restored to Isolate TLS // for reuse. capture_message_ needs to be disabled so that Throw() // does not create a new message. isolate_->thread_local_top()->rethrowing_message_ = true; isolate_->RestorePendingMessageFromTryCatch(this); } isolate_->UnregisterTryCatchHandler(this); i::SimulatorStack::UnregisterJSStackComparableAddress(isolate_); reinterpret_cast<Isolate*>(isolate_)->ThrowException(exc); DCHECK(!isolate_->thread_local_top()->rethrowing_message_); } else { if (HasCaught() && isolate_->has_scheduled_exception()) { // If an exception was caught but is still scheduled because no API call // promoted it, then it is canceled to prevent it from being propagated. // Note that this will not cancel termination exceptions. isolate_->CancelScheduledExceptionFromTryCatch(this); } isolate_->UnregisterTryCatchHandler(this); i::SimulatorStack::UnregisterJSStackComparableAddress(isolate_); } } void* v8::TryCatch::operator new(size_t) { base::OS::Abort(); } void* v8::TryCatch::operator new[](size_t) { base::OS::Abort(); } void v8::TryCatch::operator delete(void*, size_t) { base::OS::Abort(); } void v8::TryCatch::operator delete[](void*, size_t) { base::OS::Abort(); } bool v8::TryCatch::HasCaught() const { return !i::Object(reinterpret_cast<i::Address>(exception_)) .IsTheHole(isolate_); } bool v8::TryCatch::CanContinue() const { return can_continue_; } bool v8::TryCatch::HasTerminated() const { return has_terminated_; } v8::Local<v8::Value> v8::TryCatch::ReThrow() { if (!HasCaught()) return v8::Local<v8::Value>(); rethrow_ = true; return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate_)); } v8::Local<Value> v8::TryCatch::Exception() const { if (HasCaught()) { // Check for out of memory exception. i::Object exception(reinterpret_cast<i::Address>(exception_)); return v8::Utils::ToLocal(i::Handle<i::Object>(exception, isolate_)); } else { return v8::Local<Value>(); } } MaybeLocal<Value> v8::TryCatch::StackTrace(Local<Context> context, Local<Value> exception) { i::Handle<i::Object> i_exception = Utils::OpenHandle(*exception); if (!i_exception->IsJSObject()) return v8::Local<Value>(); PREPARE_FOR_EXECUTION(context, TryCatch, StackTrace, Value); auto obj = i::Handle<i::JSObject>::cast(i_exception); i::Handle<i::String> name = isolate->factory()->stack_string(); Maybe<bool> maybe = i::JSReceiver::HasProperty(obj, name); has_pending_exception = maybe.IsNothing(); RETURN_ON_FAILED_EXECUTION(Value); if (!maybe.FromJust()) return v8::Local<Value>(); Local<Value> result; has_pending_exception = !ToLocal<Value>(i::JSReceiver::GetProperty(isolate, obj, name), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } MaybeLocal<Value> v8::TryCatch::StackTrace(Local<Context> context) const { if (!HasCaught()) return v8::Local<Value>(); return StackTrace(context, Exception()); } v8::Local<v8::Message> v8::TryCatch::Message() const { i::Object message(reinterpret_cast<i::Address>(message_obj_)); DCHECK(message.IsJSMessageObject() || message.IsTheHole(isolate_)); if (HasCaught() && !message.IsTheHole(isolate_)) { return v8::Utils::MessageToLocal(i::Handle<i::Object>(message, isolate_)); } else { return v8::Local<v8::Message>(); } } void v8::TryCatch::Reset() { if (!rethrow_ && HasCaught() && isolate_->has_scheduled_exception()) { // If an exception was caught but is still scheduled because no API call // promoted it, then it is canceled to prevent it from being propagated. // Note that this will not cancel termination exceptions. isolate_->CancelScheduledExceptionFromTryCatch(this); } ResetInternal(); } void v8::TryCatch::ResetInternal() { i::Object the_hole = i::ReadOnlyRoots(isolate_).the_hole_value(); exception_ = reinterpret_cast<void*>(the_hole.ptr()); message_obj_ = reinterpret_cast<void*>(the_hole.ptr()); } void v8::TryCatch::SetVerbose(bool value) { is_verbose_ = value; } bool v8::TryCatch::IsVerbose() const { return is_verbose_; } void v8::TryCatch::SetCaptureMessage(bool value) { capture_message_ = value; } // --- M e s s a g e --- Local<String> Message::Get() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::String> raw_result = i::MessageHandler::GetMessage(isolate, self); Local<String> result = Utils::ToLocal(raw_result); return scope.Escape(result); } v8::Isolate* Message::GetIsolate() const { i::Isolate* isolate = Utils::OpenHandle(this)->GetIsolate(); return reinterpret_cast<Isolate*>(isolate); } ScriptOrigin Message::GetScriptOrigin() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::Handle<i::Script> script(self->script(), isolate); return GetScriptOriginForScript(isolate, script); } v8::Local<Value> Message::GetScriptResourceName() const { return GetScriptOrigin().ResourceName(); } v8::Local<v8::StackTrace> Message::GetStackTrace() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::Object> stackFramesObj(self->stack_frames(), isolate); if (!stackFramesObj->IsFixedArray()) return v8::Local<v8::StackTrace>(); auto stackTrace = i::Handle<i::FixedArray>::cast(stackFramesObj); return scope.Escape(Utils::StackTraceToLocal(stackTrace)); } Maybe<int> Message::GetLineNumber(Local<Context> context) const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(isolate)); i::JSMessageObject::EnsureSourcePositionsAvailable(isolate, self); return Just(self->GetLineNumber()); } int Message::GetStartPosition() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(isolate)); i::JSMessageObject::EnsureSourcePositionsAvailable(isolate, self); return self->GetStartPosition(); } int Message::GetEndPosition() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(isolate)); i::JSMessageObject::EnsureSourcePositionsAvailable(isolate, self); return self->GetEndPosition(); } int Message::ErrorLevel() const { auto self = Utils::OpenHandle(this); return self->error_level(); } int Message::GetStartColumn() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(isolate)); i::JSMessageObject::EnsureSourcePositionsAvailable(isolate, self); return self->GetColumnNumber(); } int Message::GetWasmFunctionIndex() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(isolate)); i::JSMessageObject::EnsureSourcePositionsAvailable(isolate, self); int start_position = self->GetColumnNumber(); if (start_position == -1) return Message::kNoWasmFunctionIndexInfo; i::Handle<i::Script> script(self->script(), isolate); if (script->type() != i::Script::TYPE_WASM) { return Message::kNoWasmFunctionIndexInfo; } auto debug_script = ToApiHandle<debug::Script>(script); return Local<debug::WasmScript>::Cast(debug_script) ->GetContainingFunction(start_position); } Maybe<int> Message::GetStartColumn(Local<Context> context) const { return Just(GetStartColumn()); } int Message::GetEndColumn() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(isolate)); i::JSMessageObject::EnsureSourcePositionsAvailable(isolate, self); const int column_number = self->GetColumnNumber(); if (column_number == -1) return -1; const int start = self->GetStartPosition(); const int end = self->GetEndPosition(); return column_number + (end - start); } Maybe<int> Message::GetEndColumn(Local<Context> context) const { return Just(GetEndColumn()); } bool Message::IsSharedCrossOrigin() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); return self->script().origin_options().IsSharedCrossOrigin(); } bool Message::IsOpaque() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); return self->script().origin_options().IsOpaque(); } MaybeLocal<String> Message::GetSourceLine(Local<Context> context) const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); EscapableHandleScope handle_scope(reinterpret_cast<Isolate*>(isolate)); i::JSMessageObject::EnsureSourcePositionsAvailable(isolate, self); RETURN_ESCAPED(Utils::ToLocal(self->GetSourceLine())); } void Message::PrintCurrentStackTrace(Isolate* isolate, FILE* out) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i_isolate->PrintCurrentStackTrace(out); } // --- S t a c k T r a c e --- Local<StackFrame> StackTrace::GetFrame(Isolate* v8_isolate, uint32_t index) const { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); EscapableHandleScope scope(v8_isolate); auto obj = handle(Utils::OpenHandle(this)->get(index), isolate); auto frame = i::Handle<i::StackTraceFrame>::cast(obj); return scope.Escape(Utils::StackFrameToLocal(frame)); } int StackTrace::GetFrameCount() const { return Utils::OpenHandle(this)->length(); } Local<StackTrace> StackTrace::CurrentStackTrace(Isolate* isolate, int frame_limit, StackTraceOptions options) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::Handle<i::FixedArray> stackTrace = i_isolate->CaptureCurrentStackTrace(frame_limit, options); return Utils::StackTraceToLocal(stackTrace); } // --- S t a c k F r a m e --- int StackFrame::GetLineNumber() const { return i::StackTraceFrame::GetOneBasedLineNumber(Utils::OpenHandle(this)); } int StackFrame::GetColumn() const { return i::StackTraceFrame::GetOneBasedColumnNumber(Utils::OpenHandle(this)); } int StackFrame::GetScriptId() const { return i::StackTraceFrame::GetScriptId(Utils::OpenHandle(this)); } Local<String> StackFrame::GetScriptName() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::Object> name = i::StackTraceFrame::GetFileName(self); return name->IsString() ? scope.Escape(Local<String>::Cast(Utils::ToLocal(name))) : Local<String>(); } Local<String> StackFrame::GetScriptNameOrSourceURL() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::Object> name = i::StackTraceFrame::GetScriptNameOrSourceUrl(self); return name->IsString() ? scope.Escape(Local<String>::Cast(Utils::ToLocal(name))) : Local<String>(); } Local<String> StackFrame::GetFunctionName() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); EscapableHandleScope scope(reinterpret_cast<Isolate*>(isolate)); i::Handle<i::Object> name = i::StackTraceFrame::GetFunctionName(self); return name->IsString() ? scope.Escape(Local<String>::Cast(Utils::ToLocal(name))) : Local<String>(); } bool StackFrame::IsEval() const { return i::StackTraceFrame::IsEval(Utils::OpenHandle(this)); } bool StackFrame::IsConstructor() const { return i::StackTraceFrame::IsConstructor(Utils::OpenHandle(this)); } bool StackFrame::IsWasm() const { return i::StackTraceFrame::IsWasm(Utils::OpenHandle(this)); } bool StackFrame::IsUserJavaScript() const { return i::StackTraceFrame::IsUserJavaScript(Utils::OpenHandle(this)); } // --- J S O N --- MaybeLocal<Value> JSON::Parse(Local<Context> context, Local<String> json_string) { PREPARE_FOR_EXECUTION(context, JSON, Parse, Value); i::Handle<i::String> string = Utils::OpenHandle(*json_string); i::Handle<i::String> source = i::String::Flatten(isolate, string); i::Handle<i::Object> undefined = isolate->factory()->undefined_value(); auto maybe = source->IsOneByteRepresentation() ? i::JsonParser<uint8_t>::Parse(isolate, source, undefined) : i::JsonParser<uint16_t>::Parse(isolate, source, undefined); Local<Value> result; has_pending_exception = !ToLocal<Value>(maybe, &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } MaybeLocal<String> JSON::Stringify(Local<Context> context, Local<Value> json_object, Local<String> gap) { PREPARE_FOR_EXECUTION(context, JSON, Stringify, String); i::Handle<i::Object> object = Utils::OpenHandle(*json_object); i::Handle<i::Object> replacer = isolate->factory()->undefined_value(); i::Handle<i::String> gap_string = gap.IsEmpty() ? isolate->factory()->empty_string() : Utils::OpenHandle(*gap); i::Handle<i::Object> maybe; has_pending_exception = !i::JsonStringify(isolate, object, replacer, gap_string).ToHandle(&maybe); RETURN_ON_FAILED_EXECUTION(String); Local<String> result; has_pending_exception = !ToLocal<String>(i::Object::ToString(isolate, maybe), &result); RETURN_ON_FAILED_EXECUTION(String); RETURN_ESCAPED(result); } // --- V a l u e S e r i a l i z a t i o n --- Maybe<bool> ValueSerializer::Delegate::WriteHostObject(Isolate* v8_isolate, Local<Object> object) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); isolate->ScheduleThrow(*isolate->factory()->NewError( isolate->error_function(), i::MessageTemplate::kDataCloneError, Utils::OpenHandle(*object))); return Nothing<bool>(); } Maybe<uint32_t> ValueSerializer::Delegate::GetSharedArrayBufferId( Isolate* v8_isolate, Local<SharedArrayBuffer> shared_array_buffer) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); isolate->ScheduleThrow(*isolate->factory()->NewError( isolate->error_function(), i::MessageTemplate::kDataCloneError, Utils::OpenHandle(*shared_array_buffer))); return Nothing<uint32_t>(); } Maybe<uint32_t> ValueSerializer::Delegate::GetWasmModuleTransferId( Isolate* v8_isolate, Local<WasmModuleObject> module) { return Nothing<uint32_t>(); } void* ValueSerializer::Delegate::ReallocateBufferMemory(void* old_buffer, size_t size, size_t* actual_size) { *actual_size = size; return realloc(old_buffer, size); } void ValueSerializer::Delegate::FreeBufferMemory(void* buffer) { return free(buffer); } struct ValueSerializer::PrivateData { explicit PrivateData(i::Isolate* i, ValueSerializer::Delegate* delegate) : isolate(i), serializer(i, delegate) {} i::Isolate* isolate; i::ValueSerializer serializer; }; ValueSerializer::ValueSerializer(Isolate* isolate) : ValueSerializer(isolate, nullptr) {} ValueSerializer::ValueSerializer(Isolate* isolate, Delegate* delegate) : private_( new PrivateData(reinterpret_cast<i::Isolate*>(isolate), delegate)) {} ValueSerializer::~ValueSerializer() { delete private_; } void ValueSerializer::WriteHeader() { private_->serializer.WriteHeader(); } void ValueSerializer::SetTreatArrayBufferViewsAsHostObjects(bool mode) { private_->serializer.SetTreatArrayBufferViewsAsHostObjects(mode); } Maybe<bool> ValueSerializer::WriteValue(Local<Context> context, Local<Value> value) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, ValueSerializer, WriteValue, Nothing<bool>(), i::HandleScope); i::Handle<i::Object> object = Utils::OpenHandle(*value); Maybe<bool> result = private_->serializer.WriteObject(object); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } std::pair<uint8_t*, size_t> ValueSerializer::Release() { return private_->serializer.Release(); } void ValueSerializer::TransferArrayBuffer(uint32_t transfer_id, Local<ArrayBuffer> array_buffer) { private_->serializer.TransferArrayBuffer(transfer_id, Utils::OpenHandle(*array_buffer)); } void ValueSerializer::WriteUint32(uint32_t value) { private_->serializer.WriteUint32(value); } void ValueSerializer::WriteUint64(uint64_t value) { private_->serializer.WriteUint64(value); } void ValueSerializer::WriteDouble(double value) { private_->serializer.WriteDouble(value); } void ValueSerializer::WriteRawBytes(const void* source, size_t length) { private_->serializer.WriteRawBytes(source, length); } MaybeLocal<Object> ValueDeserializer::Delegate::ReadHostObject( Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); isolate->ScheduleThrow(*isolate->factory()->NewError( isolate->error_function(), i::MessageTemplate::kDataCloneDeserializationError)); return MaybeLocal<Object>(); } MaybeLocal<WasmModuleObject> ValueDeserializer::Delegate::GetWasmModuleFromId( Isolate* v8_isolate, uint32_t id) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); isolate->ScheduleThrow(*isolate->factory()->NewError( isolate->error_function(), i::MessageTemplate::kDataCloneDeserializationError)); return MaybeLocal<WasmModuleObject>(); } MaybeLocal<SharedArrayBuffer> ValueDeserializer::Delegate::GetSharedArrayBufferFromId(Isolate* v8_isolate, uint32_t id) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); isolate->ScheduleThrow(*isolate->factory()->NewError( isolate->error_function(), i::MessageTemplate::kDataCloneDeserializationError)); return MaybeLocal<SharedArrayBuffer>(); } struct ValueDeserializer::PrivateData { PrivateData(i::Isolate* i, i::Vector<const uint8_t> data, Delegate* delegate) : isolate(i), deserializer(i, data, delegate) {} i::Isolate* isolate; i::ValueDeserializer deserializer; bool has_aborted = false; bool supports_legacy_wire_format = false; }; ValueDeserializer::ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size) : ValueDeserializer(isolate, data, size, nullptr) {} ValueDeserializer::ValueDeserializer(Isolate* isolate, const uint8_t* data, size_t size, Delegate* delegate) { if (base::IsValueInRangeForNumericType<int>(size)) { private_ = new PrivateData( reinterpret_cast<i::Isolate*>(isolate), i::Vector<const uint8_t>(data, static_cast<int>(size)), delegate); } else { private_ = new PrivateData(reinterpret_cast<i::Isolate*>(isolate), i::Vector<const uint8_t>(nullptr, 0), nullptr); private_->has_aborted = true; } } ValueDeserializer::~ValueDeserializer() { delete private_; } Maybe<bool> ValueDeserializer::ReadHeader(Local<Context> context) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8_NO_SCRIPT(isolate, context, ValueDeserializer, ReadHeader, Nothing<bool>(), i::HandleScope); // We could have aborted during the constructor. // If so, ReadHeader is where we report it. if (private_->has_aborted) { isolate->Throw(*isolate->factory()->NewError( i::MessageTemplate::kDataCloneDeserializationError)); has_pending_exception = true; RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); } bool read_header = false; has_pending_exception = !private_->deserializer.ReadHeader().To(&read_header); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); DCHECK(read_header); static const uint32_t kMinimumNonLegacyVersion = 13; if (GetWireFormatVersion() < kMinimumNonLegacyVersion && !private_->supports_legacy_wire_format) { isolate->Throw(*isolate->factory()->NewError( i::MessageTemplate::kDataCloneDeserializationVersionError)); has_pending_exception = true; RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); } return Just(true); } void ValueDeserializer::SetSupportsLegacyWireFormat( bool supports_legacy_wire_format) { private_->supports_legacy_wire_format = supports_legacy_wire_format; } uint32_t ValueDeserializer::GetWireFormatVersion() const { CHECK(!private_->has_aborted); return private_->deserializer.GetWireFormatVersion(); } MaybeLocal<Value> ValueDeserializer::ReadValue(Local<Context> context) { CHECK(!private_->has_aborted); PREPARE_FOR_EXECUTION(context, ValueDeserializer, ReadValue, Value); i::MaybeHandle<i::Object> result; if (GetWireFormatVersion() > 0) { result = private_->deserializer.ReadObject(); } else { result = private_->deserializer.ReadObjectUsingEntireBufferForLegacyFormat(); } Local<Value> value; has_pending_exception = !ToLocal(result, &value); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(value); } void ValueDeserializer::TransferArrayBuffer(uint32_t transfer_id, Local<ArrayBuffer> array_buffer) { CHECK(!private_->has_aborted); private_->deserializer.TransferArrayBuffer(transfer_id, Utils::OpenHandle(*array_buffer)); } void ValueDeserializer::TransferSharedArrayBuffer( uint32_t transfer_id, Local<SharedArrayBuffer> shared_array_buffer) { CHECK(!private_->has_aborted); private_->deserializer.TransferArrayBuffer( transfer_id, Utils::OpenHandle(*shared_array_buffer)); } bool ValueDeserializer::ReadUint32(uint32_t* value) { return private_->deserializer.ReadUint32(value); } bool ValueDeserializer::ReadUint64(uint64_t* value) { return private_->deserializer.ReadUint64(value); } bool ValueDeserializer::ReadDouble(double* value) { return private_->deserializer.ReadDouble(value); } bool ValueDeserializer::ReadRawBytes(size_t length, const void** data) { return private_->deserializer.ReadRawBytes(length, data); } // --- D a t a --- bool Value::FullIsUndefined() const { i::Handle<i::Object> object = Utils::OpenHandle(this); bool result = object->IsUndefined(); DCHECK_EQ(result, QuickIsUndefined()); return result; } bool Value::FullIsNull() const { i::Handle<i::Object> object = Utils::OpenHandle(this); bool result = object->IsNull(); DCHECK_EQ(result, QuickIsNull()); return result; } bool Value::IsTrue() const { i::Handle<i::Object> object = Utils::OpenHandle(this); if (object->IsSmi()) return false; return object->IsTrue(); } bool Value::IsFalse() const { i::Handle<i::Object> object = Utils::OpenHandle(this); if (object->IsSmi()) return false; return object->IsFalse(); } bool Value::IsFunction() const { return Utils::OpenHandle(this)->IsCallable(); } bool Value::IsName() const { return Utils::OpenHandle(this)->IsName(); } bool Value::FullIsString() const { bool result = Utils::OpenHandle(this)->IsString(); DCHECK_EQ(result, QuickIsString()); return result; } bool Value::IsSymbol() const { return Utils::OpenHandle(this)->IsSymbol(); } bool Value::IsArray() const { return Utils::OpenHandle(this)->IsJSArray(); } bool Value::IsArrayBuffer() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); return obj->IsJSArrayBuffer() && !i::JSArrayBuffer::cast(*obj).is_shared(); } bool Value::IsArrayBufferView() const { return Utils::OpenHandle(this)->IsJSArrayBufferView(); } bool Value::IsTypedArray() const { return Utils::OpenHandle(this)->IsJSTypedArray(); } #define VALUE_IS_TYPED_ARRAY(Type, typeName, TYPE, ctype) \ bool Value::Is##Type##Array() const { \ i::Handle<i::Object> obj = Utils::OpenHandle(this); \ return obj->IsJSTypedArray() && \ i::JSTypedArray::cast(*obj).type() == i::kExternal##Type##Array; \ } TYPED_ARRAYS(VALUE_IS_TYPED_ARRAY) #undef VALUE_IS_TYPED_ARRAY bool Value::IsDataView() const { return Utils::OpenHandle(this)->IsJSDataView(); } bool Value::IsSharedArrayBuffer() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); return obj->IsJSArrayBuffer() && i::JSArrayBuffer::cast(*obj).is_shared(); } bool Value::IsObject() const { return Utils::OpenHandle(this)->IsJSReceiver(); } bool Value::IsNumber() const { return Utils::OpenHandle(this)->IsNumber(); } bool Value::IsBigInt() const { return Utils::OpenHandle(this)->IsBigInt(); } bool Value::IsProxy() const { return Utils::OpenHandle(this)->IsJSProxy(); } #define VALUE_IS_SPECIFIC_TYPE(Type, Check) \ bool Value::Is##Type() const { \ i::Handle<i::Object> obj = Utils::OpenHandle(this); \ return obj->Is##Check(); \ } VALUE_IS_SPECIFIC_TYPE(ArgumentsObject, JSArgumentsObject) VALUE_IS_SPECIFIC_TYPE(BigIntObject, BigIntWrapper) VALUE_IS_SPECIFIC_TYPE(BooleanObject, BooleanWrapper) VALUE_IS_SPECIFIC_TYPE(NumberObject, NumberWrapper) VALUE_IS_SPECIFIC_TYPE(StringObject, StringWrapper) VALUE_IS_SPECIFIC_TYPE(SymbolObject, SymbolWrapper) VALUE_IS_SPECIFIC_TYPE(Date, JSDate) VALUE_IS_SPECIFIC_TYPE(Map, JSMap) VALUE_IS_SPECIFIC_TYPE(Set, JSSet) VALUE_IS_SPECIFIC_TYPE(WasmModuleObject, WasmModuleObject) VALUE_IS_SPECIFIC_TYPE(WeakMap, JSWeakMap) VALUE_IS_SPECIFIC_TYPE(WeakSet, JSWeakSet) #undef VALUE_IS_SPECIFIC_TYPE bool Value::IsBoolean() const { return Utils::OpenHandle(this)->IsBoolean(); } bool Value::IsExternal() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (!obj->IsHeapObject()) return false; i::Handle<i::HeapObject> heap_obj = i::Handle<i::HeapObject>::cast(obj); // Check the instance type is JS_OBJECT (instance type of Externals) before // attempting to get the Isolate since that guarantees the object is writable // and GetIsolate will work. if (heap_obj->map().instance_type() != i::JS_OBJECT_TYPE) return false; i::Isolate* isolate = i::JSObject::cast(*heap_obj).GetIsolate(); return heap_obj->IsExternal(isolate); } bool Value::IsInt32() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) return true; if (obj->IsNumber()) { return i::IsInt32Double(obj->Number()); } return false; } bool Value::IsUint32() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) return i::Smi::ToInt(*obj) >= 0; if (obj->IsNumber()) { double value = obj->Number(); return !i::IsMinusZero(value) && value >= 0 && value <= i::kMaxUInt32 && value == i::FastUI2D(i::FastD2UI(value)); } return false; } bool Value::IsNativeError() const { return Utils::OpenHandle(this)->IsJSError(); } bool Value::IsRegExp() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); return obj->IsJSRegExp(); } bool Value::IsAsyncFunction() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (!obj->IsJSFunction()) return false; i::Handle<i::JSFunction> func = i::Handle<i::JSFunction>::cast(obj); return i::IsAsyncFunction(func->shared().kind()); } bool Value::IsGeneratorFunction() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (!obj->IsJSFunction()) return false; i::Handle<i::JSFunction> func = i::Handle<i::JSFunction>::cast(obj); return i::IsGeneratorFunction(func->shared().kind()); } bool Value::IsGeneratorObject() const { return Utils::OpenHandle(this)->IsJSGeneratorObject(); } bool Value::IsMapIterator() const { return Utils::OpenHandle(this)->IsJSMapIterator(); } bool Value::IsSetIterator() const { return Utils::OpenHandle(this)->IsJSSetIterator(); } bool Value::IsPromise() const { return Utils::OpenHandle(this)->IsJSPromise(); } bool Value::IsModuleNamespaceObject() const { return Utils::OpenHandle(this)->IsJSModuleNamespace(); } MaybeLocal<String> Value::ToString(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsString()) return ToApiHandle<String>(obj); PREPARE_FOR_EXECUTION(context, Object, ToString, String); Local<String> result; has_pending_exception = !ToLocal<String>(i::Object::ToString(isolate, obj), &result); RETURN_ON_FAILED_EXECUTION(String); RETURN_ESCAPED(result); } MaybeLocal<String> Value::ToDetailString(Local<Context> context) const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsString()) return ToApiHandle<String>(obj); PREPARE_FOR_EXECUTION(context, Object, ToDetailString, String); Local<String> result = Utils::ToLocal(i::Object::NoSideEffectsToString(isolate, obj)); RETURN_ON_FAILED_EXECUTION(String); RETURN_ESCAPED(result); } MaybeLocal<Object> Value::ToObject(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsJSReceiver()) return ToApiHandle<Object>(obj); PREPARE_FOR_EXECUTION(context, Object, ToObject, Object); Local<Object> result; has_pending_exception = !ToLocal<Object>(i::Object::ToObject(isolate, obj), &result); RETURN_ON_FAILED_EXECUTION(Object); RETURN_ESCAPED(result); } MaybeLocal<BigInt> Value::ToBigInt(Local<Context> context) const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsBigInt()) return ToApiHandle<BigInt>(obj); PREPARE_FOR_EXECUTION(context, Object, ToBigInt, BigInt); Local<BigInt> result; has_pending_exception = !ToLocal<BigInt>(i::BigInt::FromObject(isolate, obj), &result); RETURN_ON_FAILED_EXECUTION(BigInt); RETURN_ESCAPED(result); } bool Value::BooleanValue(Isolate* v8_isolate) const { return Utils::OpenHandle(this)->BooleanValue( reinterpret_cast<i::Isolate*>(v8_isolate)); } Local<Boolean> Value::ToBoolean(Isolate* v8_isolate) const { auto isolate = reinterpret_cast<i::Isolate*>(v8_isolate); return ToApiHandle<Boolean>( isolate->factory()->ToBoolean(BooleanValue(v8_isolate))); } MaybeLocal<Number> Value::ToNumber(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsNumber()) return ToApiHandle<Number>(obj); PREPARE_FOR_EXECUTION(context, Object, ToNumber, Number); Local<Number> result; has_pending_exception = !ToLocal<Number>(i::Object::ToNumber(isolate, obj), &result); RETURN_ON_FAILED_EXECUTION(Number); RETURN_ESCAPED(result); } MaybeLocal<Integer> Value::ToInteger(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsSmi()) return ToApiHandle<Integer>(obj); PREPARE_FOR_EXECUTION(context, Object, ToInteger, Integer); Local<Integer> result; has_pending_exception = !ToLocal<Integer>(i::Object::ToInteger(isolate, obj), &result); RETURN_ON_FAILED_EXECUTION(Integer); RETURN_ESCAPED(result); } MaybeLocal<Int32> Value::ToInt32(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsSmi()) return ToApiHandle<Int32>(obj); Local<Int32> result; PREPARE_FOR_EXECUTION(context, Object, ToInt32, Int32); has_pending_exception = !ToLocal<Int32>(i::Object::ToInt32(isolate, obj), &result); RETURN_ON_FAILED_EXECUTION(Int32); RETURN_ESCAPED(result); } MaybeLocal<Uint32> Value::ToUint32(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsSmi()) return ToApiHandle<Uint32>(obj); Local<Uint32> result; PREPARE_FOR_EXECUTION(context, Object, ToUint32, Uint32); has_pending_exception = !ToLocal<Uint32>(i::Object::ToUint32(isolate, obj), &result); RETURN_ON_FAILED_EXECUTION(Uint32); RETURN_ESCAPED(result); } i::Isolate* i::IsolateFromNeverReadOnlySpaceObject(i::Address obj) { return i::GetIsolateFromWritableObject(i::HeapObject::cast(i::Object(obj))); } bool i::ShouldThrowOnError(i::Isolate* isolate) { return i::GetShouldThrow(isolate, Nothing<i::ShouldThrow>()) == i::ShouldThrow::kThrowOnError; } void i::Internals::CheckInitializedImpl(v8::Isolate* external_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate); Utils::ApiCheck(isolate != nullptr && !isolate->IsDead(), "v8::internal::Internals::CheckInitialized", "Isolate is not initialized or V8 has died"); } void External::CheckCast(v8::Value* that) { Utils::ApiCheck(that->IsExternal(), "v8::External::Cast", "Value is not an External"); } void v8::Object::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSReceiver(), "v8::Object::Cast", "Value is not an Object"); } void v8::Function::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsCallable(), "v8::Function::Cast", "Value is not a Function"); } void v8::Boolean::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsBoolean(), "v8::Boolean::Cast", "Value is not a Boolean"); } void v8::Name::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsName(), "v8::Name::Cast", "Value is not a Name"); } void v8::String::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsString(), "v8::String::Cast", "Value is not a String"); } void v8::Symbol::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsSymbol(), "v8::Symbol::Cast", "Value is not a Symbol"); } void v8::Private::CheckCast(v8::Data* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck( obj->IsSymbol() && i::Handle<i::Symbol>::cast(obj)->is_private(), "v8::Private::Cast", "Value is not a Private"); } void v8::Number::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsNumber(), "v8::Number::Cast()", "Value is not a Number"); } void v8::Integer::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsNumber(), "v8::Integer::Cast", "Value is not an Integer"); } void v8::Int32::CheckCast(v8::Value* that) { Utils::ApiCheck(that->IsInt32(), "v8::Int32::Cast", "Value is not a 32-bit signed integer"); } void v8::Uint32::CheckCast(v8::Value* that) { Utils::ApiCheck(that->IsUint32(), "v8::Uint32::Cast", "Value is not a 32-bit unsigned integer"); } void v8::BigInt::CheckCast(v8::Value* that) { Utils::ApiCheck(that->IsBigInt(), "v8::BigInt::Cast", "Value is not a BigInt"); } void v8::Array::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSArray(), "v8::Array::Cast", "Value is not an Array"); } void v8::Map::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSMap(), "v8::Map::Cast", "Value is not a Map"); } void v8::Set::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSSet(), "v8_Set_Cast", "Value is not a Set"); } void v8::Promise::CheckCast(Value* that) { Utils::ApiCheck(that->IsPromise(), "v8::Promise::Cast", "Value is not a Promise"); } void v8::Promise::Resolver::CheckCast(Value* that) { Utils::ApiCheck(that->IsPromise(), "v8::Promise::Resolver::Cast", "Value is not a Promise::Resolver"); } void v8::Proxy::CheckCast(Value* that) { Utils::ApiCheck(that->IsProxy(), "v8::Proxy::Cast", "Value is not a Proxy"); } void v8::WasmModuleObject::CheckCast(Value* that) { Utils::ApiCheck(that->IsWasmModuleObject(), "v8::WasmModuleObject::Cast", "Value is not a WasmModuleObject"); } void v8::debug::AccessorPair::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsAccessorPair(), "v8::AccessorPair::Cast", "Value is not a debug::AccessorPair"); } void v8::debug::WasmValue::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsWasmValue(), "v8::WasmValue::Cast", "Value is not a debug::WasmValue"); } v8::BackingStore::~BackingStore() { auto i_this = reinterpret_cast<const i::BackingStore*>(this); i_this->~BackingStore(); // manually call internal destructor } void* v8::BackingStore::Data() const { return reinterpret_cast<const i::BackingStore*>(this)->buffer_start(); } size_t v8::BackingStore::ByteLength() const { return reinterpret_cast<const i::BackingStore*>(this)->byte_length(); } bool v8::BackingStore::IsShared() const { return reinterpret_cast<const i::BackingStore*>(this)->is_shared(); } // static std::unique_ptr<v8::BackingStore> v8::BackingStore::Reallocate( v8::Isolate* isolate, std::unique_ptr<v8::BackingStore> backing_store, size_t byte_length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, ArrayBuffer, BackingStore_Reallocate); CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::BackingStore* i_backing_store = reinterpret_cast<i::BackingStore*>(backing_store.get()); if (!i_backing_store->Reallocate(i_isolate, byte_length)) { i::FatalProcessOutOfMemory(i_isolate, "v8::BackingStore::Reallocate"); } return backing_store; } // static void v8::BackingStore::EmptyDeleter(void* data, size_t length, void* deleter_data) { DCHECK_NULL(deleter_data); } std::shared_ptr<v8::BackingStore> v8::ArrayBuffer::GetBackingStore() { i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this); std::shared_ptr<i::BackingStore> backing_store = self->GetBackingStore(); if (!backing_store) { backing_store = i::BackingStore::EmptyBackingStore(i::SharedFlag::kNotShared); } i::GlobalBackingStoreRegistry::Register(backing_store); std::shared_ptr<i::BackingStoreBase> bs_base = backing_store; return std::static_pointer_cast<v8::BackingStore>(bs_base); } std::shared_ptr<v8::BackingStore> v8::SharedArrayBuffer::GetBackingStore() { i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this); std::shared_ptr<i::BackingStore> backing_store = self->GetBackingStore(); if (!backing_store) { backing_store = i::BackingStore::EmptyBackingStore(i::SharedFlag::kShared); } i::GlobalBackingStoreRegistry::Register(backing_store); std::shared_ptr<i::BackingStoreBase> bs_base = backing_store; return std::static_pointer_cast<v8::BackingStore>(bs_base); } void v8::ArrayBuffer::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck( obj->IsJSArrayBuffer() && !i::JSArrayBuffer::cast(*obj).is_shared(), "v8::ArrayBuffer::Cast()", "Value is not an ArrayBuffer"); } void v8::ArrayBufferView::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSArrayBufferView(), "v8::ArrayBufferView::Cast()", "Value is not an ArrayBufferView"); } constexpr size_t v8::TypedArray::kMaxLength; void v8::TypedArray::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSTypedArray(), "v8::TypedArray::Cast()", "Value is not a TypedArray"); } #define CHECK_TYPED_ARRAY_CAST(Type, typeName, TYPE, ctype) \ void v8::Type##Array::CheckCast(Value* that) { \ i::Handle<i::Object> obj = Utils::OpenHandle(that); \ Utils::ApiCheck( \ obj->IsJSTypedArray() && \ i::JSTypedArray::cast(*obj).type() == i::kExternal##Type##Array, \ "v8::" #Type "Array::Cast()", "Value is not a " #Type "Array"); \ } TYPED_ARRAYS(CHECK_TYPED_ARRAY_CAST) #undef CHECK_TYPED_ARRAY_CAST void v8::DataView::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSDataView(), "v8::DataView::Cast()", "Value is not a DataView"); } void v8::SharedArrayBuffer::CheckCast(Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck( obj->IsJSArrayBuffer() && i::JSArrayBuffer::cast(*obj).is_shared(), "v8::SharedArrayBuffer::Cast()", "Value is not a SharedArrayBuffer"); } void v8::Date::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSDate(), "v8::Date::Cast()", "Value is not a Date"); } void v8::StringObject::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsStringWrapper(), "v8::StringObject::Cast()", "Value is not a StringObject"); } void v8::SymbolObject::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsSymbolWrapper(), "v8::SymbolObject::Cast()", "Value is not a SymbolObject"); } void v8::NumberObject::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsNumberWrapper(), "v8::NumberObject::Cast()", "Value is not a NumberObject"); } void v8::BigIntObject::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsBigIntWrapper(), "v8::BigIntObject::Cast()", "Value is not a BigIntObject"); } void v8::BooleanObject::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsBooleanWrapper(), "v8::BooleanObject::Cast()", "Value is not a BooleanObject"); } void v8::RegExp::CheckCast(v8::Value* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsJSRegExp(), "v8::RegExp::Cast()", "Value is not a RegExp"); } Maybe<double> Value::NumberValue(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsNumber()) return Just(obj->Number()); auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Value, NumberValue, Nothing<double>(), i::HandleScope); i::Handle<i::Object> num; has_pending_exception = !i::Object::ToNumber(isolate, obj).ToHandle(&num); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(double); return Just(num->Number()); } Maybe<int64_t> Value::IntegerValue(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsNumber()) { return Just(NumberToInt64(*obj)); } auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Value, IntegerValue, Nothing<int64_t>(), i::HandleScope); i::Handle<i::Object> num; has_pending_exception = !i::Object::ToInteger(isolate, obj).ToHandle(&num); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int64_t); return Just(NumberToInt64(*num)); } Maybe<int32_t> Value::Int32Value(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsNumber()) return Just(NumberToInt32(*obj)); auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Value, Int32Value, Nothing<int32_t>(), i::HandleScope); i::Handle<i::Object> num; has_pending_exception = !i::Object::ToInt32(isolate, obj).ToHandle(&num); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(int32_t); return Just(num->IsSmi() ? i::Smi::ToInt(*num) : static_cast<int32_t>(num->Number())); } Maybe<uint32_t> Value::Uint32Value(Local<Context> context) const { auto obj = Utils::OpenHandle(this); if (obj->IsNumber()) return Just(NumberToUint32(*obj)); auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Value, Uint32Value, Nothing<uint32_t>(), i::HandleScope); i::Handle<i::Object> num; has_pending_exception = !i::Object::ToUint32(isolate, obj).ToHandle(&num); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(uint32_t); return Just(num->IsSmi() ? static_cast<uint32_t>(i::Smi::ToInt(*num)) : static_cast<uint32_t>(num->Number())); } MaybeLocal<Uint32> Value::ToArrayIndex(Local<Context> context) const { auto self = Utils::OpenHandle(this); if (self->IsSmi()) { if (i::Smi::ToInt(*self) >= 0) return Utils::Uint32ToLocal(self); return Local<Uint32>(); } PREPARE_FOR_EXECUTION(context, Object, ToArrayIndex, Uint32); i::Handle<i::Object> string_obj; has_pending_exception = !i::Object::ToString(isolate, self).ToHandle(&string_obj); RETURN_ON_FAILED_EXECUTION(Uint32); i::Handle<i::String> str = i::Handle<i::String>::cast(string_obj); uint32_t index; if (str->AsArrayIndex(&index)) { i::Handle<i::Object> value; if (index <= static_cast<uint32_t>(i::Smi::kMaxValue)) { value = i::Handle<i::Object>(i::Smi::FromInt(index), isolate); } else { value = isolate->factory()->NewNumber(index); } RETURN_ESCAPED(Utils::Uint32ToLocal(value)); } return Local<Uint32>(); } Maybe<bool> Value::Equals(Local<Context> context, Local<Value> that) const { i::Isolate* isolate = Utils::OpenHandle(*context)->GetIsolate(); auto self = Utils::OpenHandle(this); auto other = Utils::OpenHandle(*that); return i::Object::Equals(isolate, self, other); } bool Value::StrictEquals(Local<Value> that) const { auto self = Utils::OpenHandle(this); auto other = Utils::OpenHandle(*that); return self->StrictEquals(*other); } bool Value::SameValue(Local<Value> that) const { auto self = Utils::OpenHandle(this); auto other = Utils::OpenHandle(*that); return self->SameValue(*other); } Local<String> Value::TypeOf(v8::Isolate* external_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); LOG_API(isolate, Value, TypeOf); return Utils::ToLocal(i::Object::TypeOf(isolate, Utils::OpenHandle(this))); } Maybe<bool> Value::InstanceOf(v8::Local<v8::Context> context, v8::Local<v8::Object> object) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Value, InstanceOf, Nothing<bool>(), i::HandleScope); auto left = Utils::OpenHandle(this); auto right = Utils::OpenHandle(*object); i::Handle<i::Object> result; has_pending_exception = !i::Object::InstanceOf(isolate, left, right).ToHandle(&result); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(result->IsTrue(isolate)); } Maybe<bool> v8::Object::Set(v8::Local<v8::Context> context, v8::Local<Value> key, v8::Local<Value> value) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Object, Set, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(*key); auto value_obj = Utils::OpenHandle(*value); has_pending_exception = i::Runtime::SetObjectProperty(isolate, self, key_obj, value_obj, i::StoreOrigin::kMaybeKeyed, Just(i::ShouldThrow::kDontThrow)) .is_null(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } Maybe<bool> v8::Object::Set(v8::Local<v8::Context> context, uint32_t index, v8::Local<Value> value) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Object, Set, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); auto value_obj = Utils::OpenHandle(*value); has_pending_exception = i::Object::SetElement(isolate, self, index, value_obj, i::ShouldThrow::kDontThrow) .is_null(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } Maybe<bool> v8::Object::CreateDataProperty(v8::Local<v8::Context> context, v8::Local<Name> key, v8::Local<Value> value) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Object, CreateDataProperty, Nothing<bool>(), i::HandleScope); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); i::Handle<i::Name> key_obj = Utils::OpenHandle(*key); i::Handle<i::Object> value_obj = Utils::OpenHandle(*value); Maybe<bool> result = i::JSReceiver::CreateDataProperty( isolate, self, key_obj, value_obj, Just(i::kDontThrow)); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } Maybe<bool> v8::Object::CreateDataProperty(v8::Local<v8::Context> context, uint32_t index, v8::Local<Value> value) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Object, CreateDataProperty, Nothing<bool>(), i::HandleScope); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); i::Handle<i::Object> value_obj = Utils::OpenHandle(*value); i::LookupIterator it(isolate, self, index, self, i::LookupIterator::OWN); Maybe<bool> result = i::JSReceiver::CreateDataProperty(&it, value_obj, Just(i::kDontThrow)); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } struct v8::PropertyDescriptor::PrivateData { PrivateData() : desc() {} i::PropertyDescriptor desc; }; v8::PropertyDescriptor::PropertyDescriptor() : private_(new PrivateData()) {} // DataDescriptor v8::PropertyDescriptor::PropertyDescriptor(v8::Local<v8::Value> value) : private_(new PrivateData()) { private_->desc.set_value(Utils::OpenHandle(*value, true)); } // DataDescriptor with writable field v8::PropertyDescriptor::PropertyDescriptor(v8::Local<v8::Value> value, bool writable) : private_(new PrivateData()) { private_->desc.set_value(Utils::OpenHandle(*value, true)); private_->desc.set_writable(writable); } // AccessorDescriptor v8::PropertyDescriptor::PropertyDescriptor(v8::Local<v8::Value> get, v8::Local<v8::Value> set) : private_(new PrivateData()) { DCHECK(get.IsEmpty() || get->IsUndefined() || get->IsFunction()); DCHECK(set.IsEmpty() || set->IsUndefined() || set->IsFunction()); private_->desc.set_get(Utils::OpenHandle(*get, true)); private_->desc.set_set(Utils::OpenHandle(*set, true)); } v8::PropertyDescriptor::~PropertyDescriptor() { delete private_; } v8::Local<Value> v8::PropertyDescriptor::value() const { DCHECK(private_->desc.has_value()); return Utils::ToLocal(private_->desc.value()); } v8::Local<Value> v8::PropertyDescriptor::get() const { DCHECK(private_->desc.has_get()); return Utils::ToLocal(private_->desc.get()); } v8::Local<Value> v8::PropertyDescriptor::set() const { DCHECK(private_->desc.has_set()); return Utils::ToLocal(private_->desc.set()); } bool v8::PropertyDescriptor::has_value() const { return private_->desc.has_value(); } bool v8::PropertyDescriptor::has_get() const { return private_->desc.has_get(); } bool v8::PropertyDescriptor::has_set() const { return private_->desc.has_set(); } bool v8::PropertyDescriptor::writable() const { DCHECK(private_->desc.has_writable()); return private_->desc.writable(); } bool v8::PropertyDescriptor::has_writable() const { return private_->desc.has_writable(); } void v8::PropertyDescriptor::set_enumerable(bool enumerable) { private_->desc.set_enumerable(enumerable); } bool v8::PropertyDescriptor::enumerable() const { DCHECK(private_->desc.has_enumerable()); return private_->desc.enumerable(); } bool v8::PropertyDescriptor::has_enumerable() const { return private_->desc.has_enumerable(); } void v8::PropertyDescriptor::set_configurable(bool configurable) { private_->desc.set_configurable(configurable); } bool v8::PropertyDescriptor::configurable() const { DCHECK(private_->desc.has_configurable()); return private_->desc.configurable(); } bool v8::PropertyDescriptor::has_configurable() const { return private_->desc.has_configurable(); } Maybe<bool> v8::Object::DefineOwnProperty(v8::Local<v8::Context> context, v8::Local<Name> key, v8::Local<Value> value, v8::PropertyAttribute attributes) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); i::Handle<i::Name> key_obj = Utils::OpenHandle(*key); i::Handle<i::Object> value_obj = Utils::OpenHandle(*value); i::PropertyDescriptor desc; desc.set_writable(!(attributes & v8::ReadOnly)); desc.set_enumerable(!(attributes & v8::DontEnum)); desc.set_configurable(!(attributes & v8::DontDelete)); desc.set_value(value_obj); if (self->IsJSProxy()) { ENTER_V8(isolate, context, Object, DefineOwnProperty, Nothing<bool>(), i::HandleScope); Maybe<bool> success = i::JSReceiver::DefineOwnProperty( isolate, self, key_obj, &desc, Just(i::kDontThrow)); // Even though we said kDontThrow, there might be accessors that do throw. RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return success; } else { // If it's not a JSProxy, i::JSReceiver::DefineOwnProperty should never run // a script. ENTER_V8_NO_SCRIPT(isolate, context, Object, DefineOwnProperty, Nothing<bool>(), i::HandleScope); Maybe<bool> success = i::JSReceiver::DefineOwnProperty( isolate, self, key_obj, &desc, Just(i::kDontThrow)); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return success; } } Maybe<bool> v8::Object::DefineProperty(v8::Local<v8::Context> context, v8::Local<Name> key, PropertyDescriptor& descriptor) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Object, DefineOwnProperty, Nothing<bool>(), i::HandleScope); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); i::Handle<i::Name> key_obj = Utils::OpenHandle(*key); Maybe<bool> success = i::JSReceiver::DefineOwnProperty( isolate, self, key_obj, &descriptor.get_private()->desc, Just(i::kDontThrow)); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return success; } Maybe<bool> v8::Object::SetPrivate(Local<Context> context, Local<Private> key, Local<Value> value) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8_NO_SCRIPT(isolate, context, Object, SetPrivate, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(reinterpret_cast<Name*>(*key)); auto value_obj = Utils::OpenHandle(*value); if (self->IsJSProxy()) { i::PropertyDescriptor desc; desc.set_writable(true); desc.set_enumerable(false); desc.set_configurable(true); desc.set_value(value_obj); return i::JSProxy::SetPrivateSymbol( isolate, i::Handle<i::JSProxy>::cast(self), i::Handle<i::Symbol>::cast(key_obj), &desc, Just(i::kDontThrow)); } auto js_object = i::Handle<i::JSObject>::cast(self); i::LookupIterator it(isolate, js_object, key_obj, js_object); has_pending_exception = i::JSObject::DefineOwnPropertyIgnoreAttributes( &it, value_obj, i::DONT_ENUM) .is_null(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } MaybeLocal<Value> v8::Object::Get(Local<v8::Context> context, Local<Value> key) { PREPARE_FOR_EXECUTION(context, Object, Get, Value); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(*key); i::Handle<i::Object> result; has_pending_exception = !i::Runtime::GetObjectProperty(isolate, self, key_obj).ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(Utils::ToLocal(result)); } MaybeLocal<Value> v8::Object::Get(Local<Context> context, uint32_t index) { PREPARE_FOR_EXECUTION(context, Object, Get, Value); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; has_pending_exception = !i::JSReceiver::GetElement(isolate, self, index).ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(Utils::ToLocal(result)); } MaybeLocal<Value> v8::Object::GetPrivate(Local<Context> context, Local<Private> key) { return Get(context, Local<Value>(reinterpret_cast<Value*>(*key))); } Maybe<PropertyAttribute> v8::Object::GetPropertyAttributes( Local<Context> context, Local<Value> key) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Object, GetPropertyAttributes, Nothing<PropertyAttribute>(), i::HandleScope); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(*key); if (!key_obj->IsName()) { has_pending_exception = !i::Object::ToString(isolate, key_obj).ToHandle(&key_obj); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute); } auto key_name = i::Handle<i::Name>::cast(key_obj); auto result = i::JSReceiver::GetPropertyAttributes(self, key_name); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute); if (result.FromJust() == i::ABSENT) { return Just(static_cast<PropertyAttribute>(i::NONE)); } return Just(static_cast<PropertyAttribute>(result.FromJust())); } MaybeLocal<Value> v8::Object::GetOwnPropertyDescriptor(Local<Context> context, Local<Name> key) { PREPARE_FOR_EXECUTION(context, Object, GetOwnPropertyDescriptor, Value); i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this); i::Handle<i::Name> key_name = Utils::OpenHandle(*key); i::PropertyDescriptor desc; Maybe<bool> found = i::JSReceiver::GetOwnPropertyDescriptor(isolate, obj, key_name, &desc); has_pending_exception = found.IsNothing(); RETURN_ON_FAILED_EXECUTION(Value); if (!found.FromJust()) { return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } RETURN_ESCAPED(Utils::ToLocal(desc.ToObject(isolate))); } Local<Value> v8::Object::GetPrototype() { auto self = Utils::OpenHandle(this); auto isolate = self->GetIsolate(); i::PrototypeIterator iter(isolate, self); return Utils::ToLocal(i::PrototypeIterator::GetCurrent(iter)); } Maybe<bool> v8::Object::SetPrototype(Local<Context> context, Local<Value> value) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Object, SetPrototype, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); auto value_obj = Utils::OpenHandle(*value); // We do not allow exceptions thrown while setting the prototype // to propagate outside. TryCatch try_catch(reinterpret_cast<v8::Isolate*>(isolate)); auto result = i::JSReceiver::SetPrototype(self, value_obj, false, i::kThrowOnError); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } Local<Object> v8::Object::FindInstanceInPrototypeChain( v8::Local<FunctionTemplate> tmpl) { auto self = Utils::OpenHandle(this); auto isolate = self->GetIsolate(); i::PrototypeIterator iter(isolate, *self, i::kStartAtReceiver); auto tmpl_info = *Utils::OpenHandle(*tmpl); while (!tmpl_info.IsTemplateFor(iter.GetCurrent<i::JSObject>())) { iter.Advance(); if (iter.IsAtEnd()) return Local<Object>(); if (!iter.GetCurrent().IsJSObject()) return Local<Object>(); } // IsTemplateFor() ensures that iter.GetCurrent() can't be a Proxy here. return Utils::ToLocal(i::handle(iter.GetCurrent<i::JSObject>(), isolate)); } MaybeLocal<Array> v8::Object::GetPropertyNames(Local<Context> context) { return GetPropertyNames( context, v8::KeyCollectionMode::kIncludePrototypes, static_cast<v8::PropertyFilter>(ONLY_ENUMERABLE | SKIP_SYMBOLS), v8::IndexFilter::kIncludeIndices); } MaybeLocal<Array> v8::Object::GetPropertyNames( Local<Context> context, KeyCollectionMode mode, PropertyFilter property_filter, IndexFilter index_filter, KeyConversionMode key_conversion) { PREPARE_FOR_EXECUTION(context, Object, GetPropertyNames, Array); auto self = Utils::OpenHandle(this); i::Handle<i::FixedArray> value; i::KeyAccumulator accumulator( isolate, static_cast<i::KeyCollectionMode>(mode), static_cast<i::PropertyFilter>(property_filter)); accumulator.set_skip_indices(index_filter == IndexFilter::kSkipIndices); has_pending_exception = accumulator.CollectKeys(self, self).IsNothing(); RETURN_ON_FAILED_EXECUTION(Array); value = accumulator.GetKeys(static_cast<i::GetKeysConversion>(key_conversion)); DCHECK(self->map().EnumLength() == i::kInvalidEnumCacheSentinel || self->map().EnumLength() == 0 || self->map().instance_descriptors().enum_cache().keys() != *value); auto result = isolate->factory()->NewJSArrayWithElements(value); RETURN_ESCAPED(Utils::ToLocal(result)); } MaybeLocal<Array> v8::Object::GetOwnPropertyNames(Local<Context> context) { return GetOwnPropertyNames( context, static_cast<v8::PropertyFilter>(ONLY_ENUMERABLE | SKIP_SYMBOLS)); } MaybeLocal<Array> v8::Object::GetOwnPropertyNames( Local<Context> context, PropertyFilter filter, KeyConversionMode key_conversion) { return GetPropertyNames(context, KeyCollectionMode::kOwnOnly, filter, v8::IndexFilter::kIncludeIndices, key_conversion); } MaybeLocal<String> v8::Object::ObjectProtoToString(Local<Context> context) { PREPARE_FOR_EXECUTION(context, Object, ObjectProtoToString, String); auto self = Utils::OpenHandle(this); Local<Value> result; has_pending_exception = !ToLocal<Value>( i::Execution::CallBuiltin(isolate, isolate->object_to_string(), self, 0, nullptr), &result); RETURN_ON_FAILED_EXECUTION(String); RETURN_ESCAPED(Local<String>::Cast(result)); } Local<String> v8::Object::GetConstructorName() { auto self = Utils::OpenHandle(this); i::Handle<i::String> name = i::JSReceiver::GetConstructorName(self); return Utils::ToLocal(name); } Maybe<bool> v8::Object::SetIntegrityLevel(Local<Context> context, IntegrityLevel level) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Object, SetIntegrityLevel, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); i::JSReceiver::IntegrityLevel i_level = level == IntegrityLevel::kFrozen ? i::FROZEN : i::SEALED; Maybe<bool> result = i::JSReceiver::SetIntegrityLevel(self, i_level, i::kThrowOnError); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } Maybe<bool> v8::Object::Delete(Local<Context> context, Local<Value> key) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(*key); if (self->IsJSProxy()) { ENTER_V8(isolate, context, Object, Delete, Nothing<bool>(), i::HandleScope); Maybe<bool> result = i::Runtime::DeleteObjectProperty( isolate, self, key_obj, i::LanguageMode::kSloppy); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } else { // If it's not a JSProxy, i::Runtime::DeleteObjectProperty should never run // a script. ENTER_V8_NO_SCRIPT(isolate, context, Object, Delete, Nothing<bool>(), i::HandleScope); Maybe<bool> result = i::Runtime::DeleteObjectProperty( isolate, self, key_obj, i::LanguageMode::kSloppy); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } } Maybe<bool> v8::Object::DeletePrivate(Local<Context> context, Local<Private> key) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); // In case of private symbols, i::Runtime::DeleteObjectProperty does not run // any author script. ENTER_V8_NO_SCRIPT(isolate, context, Object, Delete, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(*key); Maybe<bool> result = i::Runtime::DeleteObjectProperty( isolate, self, key_obj, i::LanguageMode::kSloppy); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } Maybe<bool> v8::Object::Has(Local<Context> context, Local<Value> key) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Object, Has, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); auto key_obj = Utils::OpenHandle(*key); Maybe<bool> maybe = Nothing<bool>(); // Check if the given key is an array index. uint32_t index = 0; if (key_obj->ToArrayIndex(&index)) { maybe = i::JSReceiver::HasElement(self, index); } else { // Convert the key to a name - possibly by calling back into JavaScript. i::Handle<i::Name> name; if (i::Object::ToName(isolate, key_obj).ToHandle(&name)) { maybe = i::JSReceiver::HasProperty(self, name); } } has_pending_exception = maybe.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return maybe; } Maybe<bool> v8::Object::HasPrivate(Local<Context> context, Local<Private> key) { return HasOwnProperty(context, Local<Name>(reinterpret_cast<Name*>(*key))); } Maybe<bool> v8::Object::Delete(Local<Context> context, uint32_t index) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Object, Delete, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); Maybe<bool> result = i::JSReceiver::DeleteElement(self, index); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } Maybe<bool> v8::Object::Has(Local<Context> context, uint32_t index) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Object, Has, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); auto maybe = i::JSReceiver::HasElement(self, index); has_pending_exception = maybe.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return maybe; } template <typename Getter, typename Setter, typename Data> static Maybe<bool> ObjectSetAccessor( Local<Context> context, Object* self, Local<Name> name, Getter getter, Setter setter, Data data, AccessControl settings, PropertyAttribute attributes, bool is_special_data_property, bool replace_on_access, SideEffectType getter_side_effect_type, SideEffectType setter_side_effect_type) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8_NO_SCRIPT(isolate, context, Object, SetAccessor, Nothing<bool>(), i::HandleScope); if (!Utils::OpenHandle(self)->IsJSObject()) return Just(false); i::Handle<i::JSObject> obj = i::Handle<i::JSObject>::cast(Utils::OpenHandle(self)); v8::Local<AccessorSignature> signature; i::Handle<i::AccessorInfo> info = MakeAccessorInfo(isolate, name, getter, setter, data, settings, signature, is_special_data_property, replace_on_access); info->set_getter_side_effect_type(getter_side_effect_type); info->set_setter_side_effect_type(setter_side_effect_type); if (info.is_null()) return Nothing<bool>(); bool fast = obj->HasFastProperties(); i::Handle<i::Object> result; i::Handle<i::Name> accessor_name(info->name(), isolate); i::PropertyAttributes attrs = static_cast<i::PropertyAttributes>(attributes); has_pending_exception = !i::JSObject::SetAccessor(obj, accessor_name, info, attrs) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); if (result->IsUndefined(isolate)) return Just(false); if (fast) { i::JSObject::MigrateSlowToFast(obj, 0, "APISetAccessor"); } return Just(true); } Maybe<bool> Object::SetAccessor(Local<Context> context, Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter, MaybeLocal<Value> data, AccessControl settings, PropertyAttribute attribute, SideEffectType getter_side_effect_type, SideEffectType setter_side_effect_type) { return ObjectSetAccessor(context, this, name, getter, setter, data.FromMaybe(Local<Value>()), settings, attribute, i::FLAG_disable_old_api_accessors, false, getter_side_effect_type, setter_side_effect_type); } void Object::SetAccessorProperty(Local<Name> name, Local<Function> getter, Local<Function> setter, PropertyAttribute attribute, AccessControl settings) { // TODO(verwaest): Remove |settings|. DCHECK_EQ(v8::DEFAULT, settings); auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScope scope(isolate); if (!self->IsJSObject()) return; i::Handle<i::Object> getter_i = v8::Utils::OpenHandle(*getter); i::Handle<i::Object> setter_i = v8::Utils::OpenHandle(*setter, true); if (setter_i.is_null()) setter_i = isolate->factory()->null_value(); i::JSObject::DefineAccessor(i::Handle<i::JSObject>::cast(self), v8::Utils::OpenHandle(*name), getter_i, setter_i, static_cast<i::PropertyAttributes>(attribute)); } Maybe<bool> Object::SetNativeDataProperty( v8::Local<v8::Context> context, v8::Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter, v8::Local<Value> data, PropertyAttribute attributes, SideEffectType getter_side_effect_type, SideEffectType setter_side_effect_type) { return ObjectSetAccessor(context, this, name, getter, setter, data, DEFAULT, attributes, true, false, getter_side_effect_type, setter_side_effect_type); } Maybe<bool> Object::SetLazyDataProperty( v8::Local<v8::Context> context, v8::Local<Name> name, AccessorNameGetterCallback getter, v8::Local<Value> data, PropertyAttribute attributes, SideEffectType getter_side_effect_type, SideEffectType setter_side_effect_type) { return ObjectSetAccessor(context, this, name, getter, static_cast<AccessorNameSetterCallback>(nullptr), data, DEFAULT, attributes, true, true, getter_side_effect_type, setter_side_effect_type); } Maybe<bool> v8::Object::HasOwnProperty(Local<Context> context, Local<Name> key) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Object, HasOwnProperty, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); auto key_val = Utils::OpenHandle(*key); auto result = i::JSReceiver::HasOwnProperty(self, key_val); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } Maybe<bool> v8::Object::HasOwnProperty(Local<Context> context, uint32_t index) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Object, HasOwnProperty, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); auto result = i::JSReceiver::HasOwnProperty(self, index); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } Maybe<bool> v8::Object::HasRealNamedProperty(Local<Context> context, Local<Name> key) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8_NO_SCRIPT(isolate, context, Object, HasRealNamedProperty, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); if (!self->IsJSObject()) return Just(false); auto key_val = Utils::OpenHandle(*key); auto result = i::JSObject::HasRealNamedProperty( i::Handle<i::JSObject>::cast(self), key_val); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } Maybe<bool> v8::Object::HasRealIndexedProperty(Local<Context> context, uint32_t index) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8_NO_SCRIPT(isolate, context, Object, HasRealIndexedProperty, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); if (!self->IsJSObject()) return Just(false); auto result = i::JSObject::HasRealElementProperty( i::Handle<i::JSObject>::cast(self), index); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } Maybe<bool> v8::Object::HasRealNamedCallbackProperty(Local<Context> context, Local<Name> key) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8_NO_SCRIPT(isolate, context, Object, HasRealNamedCallbackProperty, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); if (!self->IsJSObject()) return Just(false); auto key_val = Utils::OpenHandle(*key); auto result = i::JSObject::HasRealNamedCallbackProperty( i::Handle<i::JSObject>::cast(self), key_val); has_pending_exception = result.IsNothing(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return result; } bool v8::Object::HasNamedLookupInterceptor() { auto self = Utils::OpenHandle(this); return self->IsJSObject() && i::Handle<i::JSObject>::cast(self)->HasNamedInterceptor(); } bool v8::Object::HasIndexedLookupInterceptor() { auto self = Utils::OpenHandle(this); return self->IsJSObject() && i::Handle<i::JSObject>::cast(self)->HasIndexedInterceptor(); } MaybeLocal<Value> v8::Object::GetRealNamedPropertyInPrototypeChain( Local<Context> context, Local<Name> key) { PREPARE_FOR_EXECUTION(context, Object, GetRealNamedPropertyInPrototypeChain, Value); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); if (!self->IsJSObject()) return MaybeLocal<Value>(); i::Handle<i::Name> key_obj = Utils::OpenHandle(*key); i::PrototypeIterator iter(isolate, self); if (iter.IsAtEnd()) return MaybeLocal<Value>(); i::Handle<i::JSReceiver> proto = i::PrototypeIterator::GetCurrent<i::JSReceiver>(iter); i::LookupIterator::Key lookup_key(isolate, key_obj); i::LookupIterator it(isolate, self, lookup_key, proto, i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); Local<Value> result; has_pending_exception = !ToLocal<Value>(i::Object::GetProperty(&it), &result); RETURN_ON_FAILED_EXECUTION(Value); if (!it.IsFound()) return MaybeLocal<Value>(); RETURN_ESCAPED(result); } Maybe<PropertyAttribute> v8::Object::GetRealNamedPropertyAttributesInPrototypeChain( Local<Context> context, Local<Name> key) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8_NO_SCRIPT(isolate, context, Object, GetRealNamedPropertyAttributesInPrototypeChain, Nothing<PropertyAttribute>(), i::HandleScope); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); if (!self->IsJSObject()) return Nothing<PropertyAttribute>(); i::Handle<i::Name> key_obj = Utils::OpenHandle(*key); i::PrototypeIterator iter(isolate, self); if (iter.IsAtEnd()) return Nothing<PropertyAttribute>(); i::Handle<i::JSReceiver> proto = i::PrototypeIterator::GetCurrent<i::JSReceiver>(iter); i::LookupIterator::Key lookup_key(isolate, key_obj); i::LookupIterator it(isolate, self, lookup_key, proto, i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); Maybe<i::PropertyAttributes> result = i::JSReceiver::GetPropertyAttributes(&it); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute); if (!it.IsFound()) return Nothing<PropertyAttribute>(); if (result.FromJust() == i::ABSENT) return Just(None); return Just(static_cast<PropertyAttribute>(result.FromJust())); } MaybeLocal<Value> v8::Object::GetRealNamedProperty(Local<Context> context, Local<Name> key) { PREPARE_FOR_EXECUTION(context, Object, GetRealNamedProperty, Value); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); i::Handle<i::Name> key_obj = Utils::OpenHandle(*key); i::LookupIterator::Key lookup_key(isolate, key_obj); i::LookupIterator it(isolate, self, lookup_key, self, i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); Local<Value> result; has_pending_exception = !ToLocal<Value>(i::Object::GetProperty(&it), &result); RETURN_ON_FAILED_EXECUTION(Value); if (!it.IsFound()) return MaybeLocal<Value>(); RETURN_ESCAPED(result); } Maybe<PropertyAttribute> v8::Object::GetRealNamedPropertyAttributes( Local<Context> context, Local<Name> key) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8_NO_SCRIPT(isolate, context, Object, GetRealNamedPropertyAttributes, Nothing<PropertyAttribute>(), i::HandleScope); i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); i::Handle<i::Name> key_obj = Utils::OpenHandle(*key); i::LookupIterator::Key lookup_key(isolate, key_obj); i::LookupIterator it(isolate, self, lookup_key, self, i::LookupIterator::PROTOTYPE_CHAIN_SKIP_INTERCEPTOR); auto result = i::JSReceiver::GetPropertyAttributes(&it); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(PropertyAttribute); if (!it.IsFound()) return Nothing<PropertyAttribute>(); if (result.FromJust() == i::ABSENT) { return Just(static_cast<PropertyAttribute>(i::NONE)); } return Just<PropertyAttribute>( static_cast<PropertyAttribute>(result.FromJust())); } Local<v8::Object> v8::Object::Clone() { auto self = i::Handle<i::JSObject>::cast(Utils::OpenHandle(this)); auto isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); auto result = isolate->factory()->CopyJSObject(self); CHECK(!result.is_null()); return Utils::ToLocal(result); } Local<v8::Context> v8::Object::CreationContext() { auto self = Utils::OpenHandle(this); i::Handle<i::Context> context = self->GetCreationContext(); return Utils::ToLocal(context); } int v8::Object::GetIdentityHash() { i::DisallowHeapAllocation no_gc; auto self = Utils::OpenHandle(this); auto isolate = self->GetIsolate(); i::HandleScope scope(isolate); return self->GetOrCreateIdentityHash(isolate).value(); } bool v8::Object::IsCallable() { auto self = Utils::OpenHandle(this); return self->IsCallable(); } bool v8::Object::IsConstructor() { auto self = Utils::OpenHandle(this); return self->IsConstructor(); } bool v8::Object::IsApiWrapper() { auto self = i::Handle<i::JSObject>::cast(Utils::OpenHandle(this)); return self->IsApiWrapper(); } bool v8::Object::IsUndetectable() { auto self = i::Handle<i::JSObject>::cast(Utils::OpenHandle(this)); return self->IsUndetectable(); } MaybeLocal<Value> Object::CallAsFunction(Local<Context> context, Local<Value> recv, int argc, Local<Value> argv[]) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.Execute"); ENTER_V8(isolate, context, Object, CallAsFunction, MaybeLocal<Value>(), InternalEscapableScope); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); auto self = Utils::OpenHandle(this); auto recv_obj = Utils::OpenHandle(*recv); STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Handle<i::Object>)); i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv); Local<Value> result; has_pending_exception = !ToLocal<Value>( i::Execution::Call(isolate, self, recv_obj, argc, args), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } MaybeLocal<Value> Object::CallAsConstructor(Local<Context> context, int argc, Local<Value> argv[]) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.Execute"); ENTER_V8(isolate, context, Object, CallAsConstructor, MaybeLocal<Value>(), InternalEscapableScope); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); auto self = Utils::OpenHandle(this); STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Handle<i::Object>)); i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv); Local<Value> result; has_pending_exception = !ToLocal<Value>( i::Execution::New(isolate, self, self, argc, args), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } MaybeLocal<Function> Function::New(Local<Context> context, FunctionCallback callback, Local<Value> data, int length, ConstructorBehavior behavior, SideEffectType side_effect_type) { i::Isolate* isolate = Utils::OpenHandle(*context)->GetIsolate(); LOG_API(isolate, Function, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); auto templ = FunctionTemplateNew(isolate, callback, data, Local<Signature>(), length, true, Local<Private>(), side_effect_type); if (behavior == ConstructorBehavior::kThrow) templ->RemovePrototype(); return templ->GetFunction(context); } MaybeLocal<Object> Function::NewInstance(Local<Context> context, int argc, v8::Local<v8::Value> argv[]) const { return NewInstanceWithSideEffectType(context, argc, argv, SideEffectType::kHasSideEffect); } MaybeLocal<Object> Function::NewInstanceWithSideEffectType( Local<Context> context, int argc, v8::Local<v8::Value> argv[], SideEffectType side_effect_type) const { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.Execute"); ENTER_V8(isolate, context, Function, NewInstance, MaybeLocal<Object>(), InternalEscapableScope); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); auto self = Utils::OpenHandle(this); STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Handle<i::Object>)); bool should_set_has_no_side_effect = side_effect_type == SideEffectType::kHasNoSideEffect && isolate->debug_execution_mode() == i::DebugInfo::kSideEffects; if (should_set_has_no_side_effect) { CHECK(self->IsJSFunction() && i::JSFunction::cast(*self).shared().IsApiFunction()); i::Object obj = i::JSFunction::cast(*self).shared().get_api_func_data().call_code(); if (obj.IsCallHandlerInfo()) { i::CallHandlerInfo handler_info = i::CallHandlerInfo::cast(obj); if (!handler_info.IsSideEffectFreeCallHandlerInfo()) { handler_info.SetNextCallHasNoSideEffect(); } } } i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv); Local<Object> result; has_pending_exception = !ToLocal<Object>( i::Execution::New(isolate, self, self, argc, args), &result); if (should_set_has_no_side_effect) { i::Object obj = i::JSFunction::cast(*self).shared().get_api_func_data().call_code(); if (obj.IsCallHandlerInfo()) { i::CallHandlerInfo handler_info = i::CallHandlerInfo::cast(obj); if (has_pending_exception) { // Restore the map if an exception prevented restoration. handler_info.NextCallHasNoSideEffect(); } else { DCHECK(handler_info.IsSideEffectCallHandlerInfo() || handler_info.IsSideEffectFreeCallHandlerInfo()); } } } RETURN_ON_FAILED_EXECUTION(Object); RETURN_ESCAPED(result); } MaybeLocal<v8::Value> Function::Call(Local<Context> context, v8::Local<v8::Value> recv, int argc, v8::Local<v8::Value> argv[]) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.Execute"); ENTER_V8(isolate, context, Function, Call, MaybeLocal<Value>(), InternalEscapableScope); i::TimerEventScope<i::TimerEventExecute> timer_scope(isolate); auto self = Utils::OpenHandle(this); Utils::ApiCheck(!self.is_null(), "v8::Function::Call", "Function to be called is a null pointer"); i::Handle<i::Object> recv_obj = Utils::OpenHandle(*recv); STATIC_ASSERT(sizeof(v8::Local<v8::Value>) == sizeof(i::Handle<i::Object>)); i::Handle<i::Object>* args = reinterpret_cast<i::Handle<i::Object>*>(argv); Local<Value> result; has_pending_exception = !ToLocal<Value>( i::Execution::Call(isolate, self, recv_obj, argc, args), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } void Function::SetName(v8::Local<v8::String> name) { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) return; auto func = i::Handle<i::JSFunction>::cast(self); func->shared().SetName(*Utils::OpenHandle(*name)); } Local<Value> Function::GetName() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); if (self->IsJSBoundFunction()) { auto func = i::Handle<i::JSBoundFunction>::cast(self); i::Handle<i::Object> name; ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, name, i::JSBoundFunction::GetName(isolate, func), Local<Value>()); return Utils::ToLocal(name); } if (self->IsJSFunction()) { auto func = i::Handle<i::JSFunction>::cast(self); return Utils::ToLocal(handle(func->shared().Name(), isolate)); } return ToApiHandle<Primitive>(isolate->factory()->undefined_value()); } Local<Value> Function::GetInferredName() const { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) { return ToApiHandle<Primitive>( self->GetIsolate()->factory()->undefined_value()); } auto func = i::Handle<i::JSFunction>::cast(self); return Utils::ToLocal( i::Handle<i::Object>(func->shared().inferred_name(), func->GetIsolate())); } Local<Value> Function::GetDebugName() const { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) { return ToApiHandle<Primitive>( self->GetIsolate()->factory()->undefined_value()); } auto func = i::Handle<i::JSFunction>::cast(self); i::Handle<i::String> name = i::JSFunction::GetDebugName(func); return Utils::ToLocal(i::Handle<i::Object>(*name, self->GetIsolate())); } Local<Value> Function::GetDisplayName() const { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); if (!self->IsJSFunction()) { return ToApiHandle<Primitive>(isolate->factory()->undefined_value()); } auto func = i::Handle<i::JSFunction>::cast(self); i::Handle<i::String> property_name = isolate->factory()->display_name_string(); i::Handle<i::Object> value = i::JSReceiver::GetDataProperty(func, property_name); if (value->IsString()) { i::Handle<i::String> name = i::Handle<i::String>::cast(value); if (name->length() > 0) return Utils::ToLocal(name); } return ToApiHandle<Primitive>(isolate->factory()->undefined_value()); } ScriptOrigin Function::GetScriptOrigin() const { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) { return v8::ScriptOrigin(Local<Value>()); } auto func = i::Handle<i::JSFunction>::cast(self); if (func->shared().script().IsScript()) { i::Handle<i::Script> script(i::Script::cast(func->shared().script()), func->GetIsolate()); return GetScriptOriginForScript(func->GetIsolate(), script); } return v8::ScriptOrigin(Local<Value>()); } const int Function::kLineOffsetNotFound = -1; int Function::GetScriptLineNumber() const { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) { return kLineOffsetNotFound; } auto func = i::Handle<i::JSFunction>::cast(self); if (func->shared().script().IsScript()) { i::Handle<i::Script> script(i::Script::cast(func->shared().script()), func->GetIsolate()); return i::Script::GetLineNumber(script, func->shared().StartPosition()); } return kLineOffsetNotFound; } int Function::GetScriptColumnNumber() const { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) { return kLineOffsetNotFound; } auto func = i::Handle<i::JSFunction>::cast(self); if (func->shared().script().IsScript()) { i::Handle<i::Script> script(i::Script::cast(func->shared().script()), func->GetIsolate()); return i::Script::GetColumnNumber(script, func->shared().StartPosition()); } return kLineOffsetNotFound; } int Function::ScriptId() const { auto self = Utils::OpenHandle(this); if (!self->IsJSFunction()) { return v8::UnboundScript::kNoScriptId; } auto func = i::Handle<i::JSFunction>::cast(self); if (!func->shared().script().IsScript()) { return v8::UnboundScript::kNoScriptId; } i::Handle<i::Script> script(i::Script::cast(func->shared().script()), func->GetIsolate()); return script->id(); } Local<v8::Value> Function::GetBoundFunction() const { auto self = Utils::OpenHandle(this); if (self->IsJSBoundFunction()) { auto bound_function = i::Handle<i::JSBoundFunction>::cast(self); auto bound_target_function = i::handle( bound_function->bound_target_function(), bound_function->GetIsolate()); return Utils::CallableToLocal(bound_target_function); } return v8::Undefined(reinterpret_cast<v8::Isolate*>(self->GetIsolate())); } int Name::GetIdentityHash() { auto self = Utils::OpenHandle(this); return static_cast<int>(self->Hash()); } int String::Length() const { i::Handle<i::String> str = Utils::OpenHandle(this); return str->length(); } bool String::IsOneByte() const { i::Handle<i::String> str = Utils::OpenHandle(this); return str->IsOneByteRepresentation(); } // Helpers for ContainsOnlyOneByteHelper template <size_t size> struct OneByteMask; template <> struct OneByteMask<4> { static const uint32_t value = 0xFF00FF00; }; template <> struct OneByteMask<8> { static const uint64_t value = 0xFF00'FF00'FF00'FF00; }; static const uintptr_t kOneByteMask = OneByteMask<sizeof(uintptr_t)>::value; static const uintptr_t kAlignmentMask = sizeof(uintptr_t) - 1; static inline bool Unaligned(const uint16_t* chars) { return reinterpret_cast<const uintptr_t>(chars) & kAlignmentMask; } static inline const uint16_t* Align(const uint16_t* chars) { return reinterpret_cast<uint16_t*>(reinterpret_cast<uintptr_t>(chars) & ~kAlignmentMask); } class ContainsOnlyOneByteHelper { public: ContainsOnlyOneByteHelper() : is_one_byte_(true) {} bool Check(i::String string) { i::ConsString cons_string = i::String::VisitFlat(this, string, 0); if (cons_string.is_null()) return is_one_byte_; return CheckCons(cons_string); } void VisitOneByteString(const uint8_t* chars, int length) { // Nothing to do. } void VisitTwoByteString(const uint16_t* chars, int length) { // Accumulated bits. uintptr_t acc = 0; // Align to uintptr_t. const uint16_t* end = chars + length; while (Unaligned(chars) && chars != end) { acc |= *chars++; } // Read word aligned in blocks, // checking the return value at the end of each block. const uint16_t* aligned_end = Align(end); const int increment = sizeof(uintptr_t) / sizeof(uint16_t); const int inner_loops = 16; while (chars + inner_loops * increment < aligned_end) { for (int i = 0; i < inner_loops; i++) { acc |= *reinterpret_cast<const uintptr_t*>(chars); chars += increment; } // Check for early return. if ((acc & kOneByteMask) != 0) { is_one_byte_ = false; return; } } // Read the rest. while (chars != end) { acc |= *chars++; } // Check result. if ((acc & kOneByteMask) != 0) is_one_byte_ = false; } private: bool CheckCons(i::ConsString cons_string) { while (true) { // Check left side if flat. i::String left = cons_string.first(); i::ConsString left_as_cons = i::String::VisitFlat(this, left, 0); if (!is_one_byte_) return false; // Check right side if flat. i::String right = cons_string.second(); i::ConsString right_as_cons = i::String::VisitFlat(this, right, 0); if (!is_one_byte_) return false; // Standard recurse/iterate trick. if (!left_as_cons.is_null() && !right_as_cons.is_null()) { if (left.length() < right.length()) { CheckCons(left_as_cons); cons_string = right_as_cons; } else { CheckCons(right_as_cons); cons_string = left_as_cons; } // Check fast return. if (!is_one_byte_) return false; continue; } // Descend left in place. if (!left_as_cons.is_null()) { cons_string = left_as_cons; continue; } // Descend right in place. if (!right_as_cons.is_null()) { cons_string = right_as_cons; continue; } // Terminate. break; } return is_one_byte_; } bool is_one_byte_; DISALLOW_COPY_AND_ASSIGN(ContainsOnlyOneByteHelper); }; bool String::ContainsOnlyOneByte() const { i::Handle<i::String> str = Utils::OpenHandle(this); if (str->IsOneByteRepresentation()) return true; ContainsOnlyOneByteHelper helper; return helper.Check(*str); } int String::Utf8Length(Isolate* isolate) const { i::Handle<i::String> str = Utils::OpenHandle(this); str = i::String::Flatten(reinterpret_cast<i::Isolate*>(isolate), str); int length = str->length(); if (length == 0) return 0; i::DisallowHeapAllocation no_gc; i::String::FlatContent flat = str->GetFlatContent(no_gc); DCHECK(flat.IsFlat()); int utf8_length = 0; if (flat.IsOneByte()) { for (uint8_t c : flat.ToOneByteVector()) { utf8_length += c >> 7; } utf8_length += length; } else { int last_character = unibrow::Utf16::kNoPreviousCharacter; for (uint16_t c : flat.ToUC16Vector()) { utf8_length += unibrow::Utf8::Length(c, last_character); last_character = c; } } return utf8_length; } namespace { // Writes the flat content of a string to a buffer. This is done in two phases. // The first phase calculates a pessimistic estimate (writable_length) on how // many code units can be safely written without exceeding the buffer capacity // and without leaving at a lone surrogate. The estimated number of code units // is then written out in one go, and the reported byte usage is used to // correct the estimate. This is repeated until the estimate becomes <= 0 or // all code units have been written out. The second phase writes out code // units until the buffer capacity is reached, would be exceeded by the next // unit, or all code units have been written out. template <typename Char> static int WriteUtf8Impl(i::Vector<const Char> string, char* write_start, int write_capacity, int options, int* utf16_chars_read_out) { bool write_null = !(options & v8::String::NO_NULL_TERMINATION); bool replace_invalid_utf8 = (options & v8::String::REPLACE_INVALID_UTF8); char* current_write = write_start; const Char* read_start = string.begin(); int read_index = 0; int read_length = string.length(); int prev_char = unibrow::Utf16::kNoPreviousCharacter; // Do a fast loop where there is no exit capacity check. // Need enough space to write everything but one character. STATIC_ASSERT(unibrow::Utf16::kMaxExtraUtf8BytesForOneUtf16CodeUnit == 3); static const int kMaxSizePerChar = sizeof(Char) == 1 ? 2 : 3; while (read_index < read_length) { int up_to = read_length; if (write_capacity != -1) { int remaining_capacity = write_capacity - static_cast<int>(current_write - write_start); int writable_length = (remaining_capacity - kMaxSizePerChar) / kMaxSizePerChar; // Need to drop into slow loop. if (writable_length <= 0) break; up_to = std::min(up_to, read_index + writable_length); } // Write the characters to the stream. if (sizeof(Char) == 1) { // Simply memcpy if we only have ASCII characters. uint8_t char_mask = 0; for (int i = read_index; i < up_to; i++) char_mask |= read_start[i]; if ((char_mask & 0x80) == 0) { int copy_length = up_to - read_index; memcpy(current_write, read_start + read_index, copy_length); current_write += copy_length; read_index = up_to; } else { for (; read_index < up_to; read_index++) { current_write += unibrow::Utf8::EncodeOneByte( current_write, static_cast<uint8_t>(read_start[read_index])); DCHECK(write_capacity == -1 || (current_write - write_start) <= write_capacity); } } } else { for (; read_index < up_to; read_index++) { uint16_t character = read_start[read_index]; current_write += unibrow::Utf8::Encode(current_write, character, prev_char, replace_invalid_utf8); prev_char = character; DCHECK(write_capacity == -1 || (current_write - write_start) <= write_capacity); } } } if (read_index < read_length) { DCHECK_NE(-1, write_capacity); // Aborted due to limited capacity. Check capacity on each iteration. int remaining_capacity = write_capacity - static_cast<int>(current_write - write_start); DCHECK_GE(remaining_capacity, 0); for (; read_index < read_length && remaining_capacity > 0; read_index++) { uint32_t character = read_start[read_index]; int written = 0; // We can't use a local buffer here because Encode needs to modify // previous characters in the stream. We know, however, that // exactly one character will be advanced. if (unibrow::Utf16::IsSurrogatePair(prev_char, character)) { written = unibrow::Utf8::Encode(current_write, character, prev_char, replace_invalid_utf8); DCHECK_EQ(written, 1); } else { // Use a scratch buffer to check the required characters. char temp_buffer[unibrow::Utf8::kMaxEncodedSize]; // Encoding a surrogate pair to Utf8 always takes 4 bytes. static const int kSurrogatePairEncodedSize = static_cast<int>(unibrow::Utf8::kMaxEncodedSize); // For REPLACE_INVALID_UTF8, catch the case where we cut off in the // middle of a surrogate pair. Abort before encoding the pair instead. if (replace_invalid_utf8 && remaining_capacity < kSurrogatePairEncodedSize && unibrow::Utf16::IsLeadSurrogate(character) && read_index + 1 < read_length && unibrow::Utf16::IsTrailSurrogate(read_start[read_index + 1])) { write_null = false; break; } // Can't encode using prev_char as gcc has array bounds issues. written = unibrow::Utf8::Encode(temp_buffer, character, unibrow::Utf16::kNoPreviousCharacter, replace_invalid_utf8); if (written > remaining_capacity) { // Won't fit. Abort and do not null-terminate the result. write_null = false; break; } // Copy over the character from temp_buffer. for (int i = 0; i < written; i++) current_write[i] = temp_buffer[i]; } current_write += written; remaining_capacity -= written; prev_char = character; } } // Write out number of utf16 characters written to the stream. if (utf16_chars_read_out != nullptr) *utf16_chars_read_out = read_index; // Only null-terminate if there's space. if (write_null && (write_capacity == -1 || (current_write - write_start) < write_capacity)) { *current_write++ = '\0'; } return static_cast<int>(current_write - write_start); } } // anonymous namespace int String::WriteUtf8(Isolate* v8_isolate, char* buffer, int capacity, int* nchars_ref, int options) const { i::Handle<i::String> str = Utils::OpenHandle(this); i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); LOG_API(isolate, String, WriteUtf8); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); str = i::String::Flatten(isolate, str); i::DisallowHeapAllocation no_gc; i::String::FlatContent content = str->GetFlatContent(no_gc); if (content.IsOneByte()) { return WriteUtf8Impl<uint8_t>(content.ToOneByteVector(), buffer, capacity, options, nchars_ref); } else { return WriteUtf8Impl<uint16_t>(content.ToUC16Vector(), buffer, capacity, options, nchars_ref); } } template <typename CharType> static inline int WriteHelper(i::Isolate* isolate, const String* string, CharType* buffer, int start, int length, int options) { LOG_API(isolate, String, Write); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); DCHECK(start >= 0 && length >= -1); i::Handle<i::String> str = Utils::OpenHandle(string); str = i::String::Flatten(isolate, str); int end = start + length; if ((length == -1) || (length > str->length() - start)) end = str->length(); if (end < 0) return 0; if (start < end) i::String::WriteToFlat(*str, buffer, start, end); if (!(options & String::NO_NULL_TERMINATION) && (length == -1 || end - start < length)) { buffer[end - start] = '\0'; } return end - start; } int String::WriteOneByte(Isolate* isolate, uint8_t* buffer, int start, int length, int options) const { return WriteHelper(reinterpret_cast<i::Isolate*>(isolate), this, buffer, start, length, options); } int String::Write(Isolate* isolate, uint16_t* buffer, int start, int length, int options) const { return WriteHelper(reinterpret_cast<i::Isolate*>(isolate), this, buffer, start, length, options); } bool v8::String::IsExternal() const { i::Handle<i::String> str = Utils::OpenHandle(this); return i::StringShape(*str).IsExternalTwoByte(); } bool v8::String::IsExternalOneByte() const { i::Handle<i::String> str = Utils::OpenHandle(this); return i::StringShape(*str).IsExternalOneByte(); } void v8::String::VerifyExternalStringResource( v8::String::ExternalStringResource* value) const { i::DisallowHeapAllocation no_allocation; i::String str = *Utils::OpenHandle(this); const v8::String::ExternalStringResource* expected; if (str.IsThinString()) { str = i::ThinString::cast(str).actual(); } if (i::StringShape(str).IsExternalTwoByte()) { const void* resource = i::ExternalTwoByteString::cast(str).resource(); expected = reinterpret_cast<const ExternalStringResource*>(resource); } else { expected = nullptr; } CHECK_EQ(expected, value); } void v8::String::VerifyExternalStringResourceBase( v8::String::ExternalStringResourceBase* value, Encoding encoding) const { i::DisallowHeapAllocation no_allocation; i::String str = *Utils::OpenHandle(this); const v8::String::ExternalStringResourceBase* expected; Encoding expectedEncoding; if (str.IsThinString()) { str = i::ThinString::cast(str).actual(); } if (i::StringShape(str).IsExternalOneByte()) { const void* resource = i::ExternalOneByteString::cast(str).resource(); expected = reinterpret_cast<const ExternalStringResourceBase*>(resource); expectedEncoding = ONE_BYTE_ENCODING; } else if (i::StringShape(str).IsExternalTwoByte()) { const void* resource = i::ExternalTwoByteString::cast(str).resource(); expected = reinterpret_cast<const ExternalStringResourceBase*>(resource); expectedEncoding = TWO_BYTE_ENCODING; } else { expected = nullptr; expectedEncoding = str.IsOneByteRepresentation() ? ONE_BYTE_ENCODING : TWO_BYTE_ENCODING; } CHECK_EQ(expected, value); CHECK_EQ(expectedEncoding, encoding); } String::ExternalStringResource* String::GetExternalStringResourceSlow() const { i::DisallowHeapAllocation no_allocation; using I = internal::Internals; i::String str = *Utils::OpenHandle(this); if (str.IsThinString()) { str = i::ThinString::cast(str).actual(); } if (i::StringShape(str).IsExternalTwoByte()) { internal::Isolate* isolate = I::GetIsolateForHeapSandbox(str.ptr()); internal::Address value = I::ReadExternalPointerField( isolate, str.ptr(), I::kStringResourceOffset); return reinterpret_cast<String::ExternalStringResource*>(value); } return nullptr; } String::ExternalStringResourceBase* String::GetExternalStringResourceBaseSlow( String::Encoding* encoding_out) const { i::DisallowHeapAllocation no_allocation; using I = internal::Internals; ExternalStringResourceBase* resource = nullptr; i::String str = *Utils::OpenHandle(this); if (str.IsThinString()) { str = i::ThinString::cast(str).actual(); } internal::Address string = str.ptr(); int type = I::GetInstanceType(string) & I::kFullStringRepresentationMask; *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask); if (i::StringShape(str).IsExternalOneByte() || i::StringShape(str).IsExternalTwoByte()) { internal::Isolate* isolate = I::GetIsolateForHeapSandbox(string); internal::Address value = I::ReadExternalPointerField(isolate, string, I::kStringResourceOffset); resource = reinterpret_cast<ExternalStringResourceBase*>(value); } return resource; } const v8::String::ExternalOneByteStringResource* v8::String::GetExternalOneByteStringResource() const { i::DisallowHeapAllocation no_allocation; i::String str = *Utils::OpenHandle(this); if (i::StringShape(str).IsExternalOneByte()) { return i::ExternalOneByteString::cast(str).resource(); } else if (str.IsThinString()) { str = i::ThinString::cast(str).actual(); if (i::StringShape(str).IsExternalOneByte()) { return i::ExternalOneByteString::cast(str).resource(); } } return nullptr; } Local<Value> Symbol::Description() const { i::Handle<i::Symbol> sym = Utils::OpenHandle(this); i::Isolate* isolate; if (!i::GetIsolateFromHeapObject(*sym, &isolate)) { // Symbol is in RO_SPACE, which means that its description is also in // RO_SPACE. Since RO_SPACE objects are immovable we can use the // Handle(Address*) constructor with the address of the description // field in the Symbol object without needing an isolate. DCHECK(!COMPRESS_POINTERS_BOOL); i::Handle<i::HeapObject> ro_description(reinterpret_cast<i::Address*>( sym->GetFieldAddress(i::Symbol::kDescriptionOffset))); return Utils::ToLocal(ro_description); } i::Handle<i::Object> description(sym->description(), isolate); return Utils::ToLocal(description); } Local<Value> Private::Name() const { return reinterpret_cast<const Symbol*>(this)->Description(); } double Number::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); return obj->Number(); } bool Boolean::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); return obj->IsTrue(); } int64_t Integer::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) { return i::Smi::ToInt(*obj); } else { return static_cast<int64_t>(obj->Number()); } } int32_t Int32::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) { return i::Smi::ToInt(*obj); } else { return static_cast<int32_t>(obj->Number()); } } uint32_t Uint32::Value() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); if (obj->IsSmi()) { return i::Smi::ToInt(*obj); } else { return static_cast<uint32_t>(obj->Number()); } } int v8::Object::InternalFieldCount() { i::Handle<i::JSReceiver> self = Utils::OpenHandle(this); if (!self->IsJSObject()) return 0; return i::Handle<i::JSObject>::cast(self)->GetEmbedderFieldCount(); } static bool InternalFieldOK(i::Handle<i::JSReceiver> obj, int index, const char* location) { return Utils::ApiCheck( obj->IsJSObject() && (index < i::Handle<i::JSObject>::cast(obj)->GetEmbedderFieldCount()), location, "Internal field out of bounds"); } Local<Value> v8::Object::SlowGetInternalField(int index) { i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this); const char* location = "v8::Object::GetInternalField()"; if (!InternalFieldOK(obj, index, location)) return Local<Value>(); i::Handle<i::Object> value(i::JSObject::cast(*obj).GetEmbedderField(index), obj->GetIsolate()); return Utils::ToLocal(value); } void v8::Object::SetInternalField(int index, v8::Local<Value> value) { i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this); const char* location = "v8::Object::SetInternalField()"; if (!InternalFieldOK(obj, index, location)) return; i::Handle<i::Object> val = Utils::OpenHandle(*value); i::Handle<i::JSObject>::cast(obj)->SetEmbedderField(index, *val); } void* v8::Object::SlowGetAlignedPointerFromInternalField(int index) { i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this); const char* location = "v8::Object::GetAlignedPointerFromInternalField()"; if (!InternalFieldOK(obj, index, location)) return nullptr; void* result; Utils::ApiCheck(i::EmbedderDataSlot(i::JSObject::cast(*obj), index) .ToAlignedPointer(obj->GetIsolate(), &result), location, "Unaligned pointer"); return result; } void v8::Object::SetAlignedPointerInInternalField(int index, void* value) { i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this); const char* location = "v8::Object::SetAlignedPointerInInternalField()"; if (!InternalFieldOK(obj, index, location)) return; Utils::ApiCheck(i::EmbedderDataSlot(i::JSObject::cast(*obj), index) .store_aligned_pointer(obj->GetIsolate(), value), location, "Unaligned pointer"); DCHECK_EQ(value, GetAlignedPointerFromInternalField(index)); } void v8::Object::SetAlignedPointerInInternalFields(int argc, int indices[], void* values[]) { i::Handle<i::JSReceiver> obj = Utils::OpenHandle(this); const char* location = "v8::Object::SetAlignedPointerInInternalFields()"; i::DisallowHeapAllocation no_gc; i::JSObject js_obj = i::JSObject::cast(*obj); int nof_embedder_fields = js_obj.GetEmbedderFieldCount(); for (int i = 0; i < argc; i++) { int index = indices[i]; if (!Utils::ApiCheck(index < nof_embedder_fields, location, "Internal field out of bounds")) { return; } void* value = values[i]; Utils::ApiCheck(i::EmbedderDataSlot(js_obj, index) .store_aligned_pointer(obj->GetIsolate(), value), location, "Unaligned pointer"); DCHECK_EQ(value, GetAlignedPointerFromInternalField(index)); } } static void* ExternalValue(i::Object obj) { // Obscure semantics for undefined, but somehow checked in our unit tests... if (obj.IsUndefined()) { return nullptr; } i::Object foreign = i::JSObject::cast(obj).GetEmbedderField(0); return reinterpret_cast<void*>(i::Foreign::cast(foreign).foreign_address()); } // --- E n v i r o n m e n t --- void v8::V8::InitializePlatform(Platform* platform) { i::V8::InitializePlatform(platform); } void v8::V8::ShutdownPlatform() { i::V8::ShutdownPlatform(); } bool v8::V8::Initialize(const int build_config) { const bool kEmbedderPointerCompression = (build_config & kPointerCompression) != 0; if (kEmbedderPointerCompression != COMPRESS_POINTERS_BOOL) { FATAL( "Embedder-vs-V8 build configuration mismatch. On embedder side " "pointer compression is %s while on V8 side it's %s.", kEmbedderPointerCompression ? "ENABLED" : "DISABLED", COMPRESS_POINTERS_BOOL ? "ENABLED" : "DISABLED"); } const int kEmbedderSmiValueSize = (build_config & k31BitSmis) ? 31 : 32; if (kEmbedderSmiValueSize != internal::kSmiValueSize) { FATAL( "Embedder-vs-V8 build configuration mismatch. On embedder side " "Smi value size is %d while on V8 side it's %d.", kEmbedderSmiValueSize, internal::kSmiValueSize); } const bool kEmbedderHeapSandbox = (build_config & kHeapSandbox) != 0; if (kEmbedderHeapSandbox != V8_HEAP_SANDBOX_BOOL) { FATAL( "Embedder-vs-V8 build configuration mismatch. On embedder side " "heap sandbox is %s while on V8 side it's %s.", kEmbedderHeapSandbox ? "ENABLED" : "DISABLED", V8_HEAP_SANDBOX_BOOL ? "ENABLED" : "DISABLED"); } i::V8::Initialize(); return true; } #if V8_OS_LINUX || V8_OS_MACOSX bool TryHandleWebAssemblyTrapPosix(int sig_code, siginfo_t* info, void* context) { #if V8_TARGET_ARCH_X64 && !V8_OS_ANDROID return i::trap_handler::TryHandleSignal(sig_code, info, context); #else return false; #endif } bool V8::TryHandleSignal(int signum, void* info, void* context) { return TryHandleWebAssemblyTrapPosix( signum, reinterpret_cast<siginfo_t*>(info), context); } #endif #if V8_OS_WIN bool TryHandleWebAssemblyTrapWindows(EXCEPTION_POINTERS* exception) { #if V8_TARGET_ARCH_X64 return i::trap_handler::TryHandleWasmTrap(exception); #endif return false; } #endif bool V8::EnableWebAssemblyTrapHandler(bool use_v8_signal_handler) { return v8::internal::trap_handler::EnableTrapHandler(use_v8_signal_handler); } #if defined(V8_OS_WIN) void V8::SetUnhandledExceptionCallback( UnhandledExceptionCallback unhandled_exception_callback) { #if defined(V8_OS_WIN64) v8::internal::win64_unwindinfo::SetUnhandledExceptionCallback( unhandled_exception_callback); #else // Not implemented, port needed. #endif // V8_OS_WIN64 } #endif // V8_OS_WIN void v8::V8::SetEntropySource(EntropySource entropy_source) { base::RandomNumberGenerator::SetEntropySource(entropy_source); } void v8::V8::SetReturnAddressLocationResolver( ReturnAddressLocationResolver return_address_resolver) { i::StackFrame::SetReturnAddressLocationResolver(return_address_resolver); } bool v8::V8::Dispose() { i::V8::TearDown(); return true; } SharedMemoryStatistics::SharedMemoryStatistics() : read_only_space_size_(0), read_only_space_used_size_(0), read_only_space_physical_size_(0) {} HeapStatistics::HeapStatistics() : total_heap_size_(0), total_heap_size_executable_(0), total_physical_size_(0), total_available_size_(0), used_heap_size_(0), heap_size_limit_(0), malloced_memory_(0), external_memory_(0), peak_malloced_memory_(0), does_zap_garbage_(false), number_of_native_contexts_(0), number_of_detached_contexts_(0) {} HeapSpaceStatistics::HeapSpaceStatistics() : space_name_(nullptr), space_size_(0), space_used_size_(0), space_available_size_(0), physical_space_size_(0) {} HeapObjectStatistics::HeapObjectStatistics() : object_type_(nullptr), object_sub_type_(nullptr), object_count_(0), object_size_(0) {} HeapCodeStatistics::HeapCodeStatistics() : code_and_metadata_size_(0), bytecode_and_metadata_size_(0), external_script_source_size_(0) {} bool v8::V8::InitializeICU(const char* icu_data_file) { return i::InitializeICU(icu_data_file); } bool v8::V8::InitializeICUDefaultLocation(const char* exec_path, const char* icu_data_file) { return i::InitializeICUDefaultLocation(exec_path, icu_data_file); } void v8::V8::InitializeExternalStartupData(const char* directory_path) { i::InitializeExternalStartupData(directory_path); } // static void v8::V8::InitializeExternalStartupDataFromFile(const char* snapshot_blob) { i::InitializeExternalStartupDataFromFile(snapshot_blob); } const char* v8::V8::GetVersion() { return i::Version::GetVersion(); } void V8::GetSharedMemoryStatistics(SharedMemoryStatistics* statistics) { i::ReadOnlyHeap::PopulateReadOnlySpaceStatistics(statistics); } template <typename ObjectType> struct InvokeBootstrapper; template <> struct InvokeBootstrapper<i::Context> { i::Handle<i::Context> Invoke( i::Isolate* isolate, i::MaybeHandle<i::JSGlobalProxy> maybe_global_proxy, v8::Local<v8::ObjectTemplate> global_proxy_template, v8::ExtensionConfiguration* extensions, size_t context_snapshot_index, v8::DeserializeInternalFieldsCallback embedder_fields_deserializer, v8::MicrotaskQueue* microtask_queue) { return isolate->bootstrapper()->CreateEnvironment( maybe_global_proxy, global_proxy_template, extensions, context_snapshot_index, embedder_fields_deserializer, microtask_queue); } }; template <> struct InvokeBootstrapper<i::JSGlobalProxy> { i::Handle<i::JSGlobalProxy> Invoke( i::Isolate* isolate, i::MaybeHandle<i::JSGlobalProxy> maybe_global_proxy, v8::Local<v8::ObjectTemplate> global_proxy_template, v8::ExtensionConfiguration* extensions, size_t context_snapshot_index, v8::DeserializeInternalFieldsCallback embedder_fields_deserializer, v8::MicrotaskQueue* microtask_queue) { USE(extensions); USE(context_snapshot_index); return isolate->bootstrapper()->NewRemoteContext(maybe_global_proxy, global_proxy_template); } }; template <typename ObjectType> static i::Handle<ObjectType> CreateEnvironment( i::Isolate* isolate, v8::ExtensionConfiguration* extensions, v8::MaybeLocal<ObjectTemplate> maybe_global_template, v8::MaybeLocal<Value> maybe_global_proxy, size_t context_snapshot_index, v8::DeserializeInternalFieldsCallback embedder_fields_deserializer, v8::MicrotaskQueue* microtask_queue) { i::Handle<ObjectType> result; { ENTER_V8_FOR_NEW_CONTEXT(isolate); v8::Local<ObjectTemplate> proxy_template; i::Handle<i::FunctionTemplateInfo> proxy_constructor; i::Handle<i::FunctionTemplateInfo> global_constructor; i::Handle<i::HeapObject> named_interceptor( isolate->factory()->undefined_value()); i::Handle<i::HeapObject> indexed_interceptor( isolate->factory()->undefined_value()); if (!maybe_global_template.IsEmpty()) { v8::Local<v8::ObjectTemplate> global_template = maybe_global_template.ToLocalChecked(); // Make sure that the global_template has a constructor. global_constructor = EnsureConstructor(isolate, *global_template); // Create a fresh template for the global proxy object. proxy_template = ObjectTemplate::New(reinterpret_cast<v8::Isolate*>(isolate)); proxy_constructor = EnsureConstructor(isolate, *proxy_template); // Set the global template to be the prototype template of // global proxy template. i::FunctionTemplateInfo::SetPrototypeTemplate( isolate, proxy_constructor, Utils::OpenHandle(*global_template)); proxy_template->SetInternalFieldCount( global_template->InternalFieldCount()); // Migrate security handlers from global_template to // proxy_template. Temporarily removing access check // information from the global template. if (!global_constructor->GetAccessCheckInfo().IsUndefined(isolate)) { i::FunctionTemplateInfo::SetAccessCheckInfo( isolate, proxy_constructor, i::handle(global_constructor->GetAccessCheckInfo(), isolate)); proxy_constructor->set_needs_access_check( global_constructor->needs_access_check()); global_constructor->set_needs_access_check(false); i::FunctionTemplateInfo::SetAccessCheckInfo( isolate, global_constructor, i::ReadOnlyRoots(isolate).undefined_value_handle()); } // Same for other interceptors. If the global constructor has // interceptors, we need to replace them temporarily with noop // interceptors, so the map is correctly marked as having interceptors, // but we don't invoke any. if (!global_constructor->GetNamedPropertyHandler().IsUndefined(isolate)) { named_interceptor = handle(global_constructor->GetNamedPropertyHandler(), isolate); i::FunctionTemplateInfo::SetNamedPropertyHandler( isolate, global_constructor, i::ReadOnlyRoots(isolate).noop_interceptor_info_handle()); } if (!global_constructor->GetIndexedPropertyHandler().IsUndefined( isolate)) { indexed_interceptor = handle(global_constructor->GetIndexedPropertyHandler(), isolate); i::FunctionTemplateInfo::SetIndexedPropertyHandler( isolate, global_constructor, i::ReadOnlyRoots(isolate).noop_interceptor_info_handle()); } } i::MaybeHandle<i::JSGlobalProxy> maybe_proxy; if (!maybe_global_proxy.IsEmpty()) { maybe_proxy = i::Handle<i::JSGlobalProxy>::cast( Utils::OpenHandle(*maybe_global_proxy.ToLocalChecked())); } // Create the environment. InvokeBootstrapper<ObjectType> invoke; result = invoke.Invoke(isolate, maybe_proxy, proxy_template, extensions, context_snapshot_index, embedder_fields_deserializer, microtask_queue); // Restore the access check info and interceptors on the global template. if (!maybe_global_template.IsEmpty()) { DCHECK(!global_constructor.is_null()); DCHECK(!proxy_constructor.is_null()); i::FunctionTemplateInfo::SetAccessCheckInfo( isolate, global_constructor, i::handle(proxy_constructor->GetAccessCheckInfo(), isolate)); global_constructor->set_needs_access_check( proxy_constructor->needs_access_check()); i::FunctionTemplateInfo::SetNamedPropertyHandler( isolate, global_constructor, named_interceptor); i::FunctionTemplateInfo::SetIndexedPropertyHandler( isolate, global_constructor, indexed_interceptor); } } // Leave V8. return result; } Local<Context> NewContext( v8::Isolate* external_isolate, v8::ExtensionConfiguration* extensions, v8::MaybeLocal<ObjectTemplate> global_template, v8::MaybeLocal<Value> global_object, size_t context_snapshot_index, v8::DeserializeInternalFieldsCallback embedder_fields_deserializer, v8::MicrotaskQueue* microtask_queue) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate); // TODO(jkummerow): This is for crbug.com/713699. Remove it if it doesn't // fail. // Sanity-check that the isolate is initialized and usable. CHECK(isolate->builtins()->builtin(i::Builtins::kIllegal).IsCode()); TRACE_EVENT_CALL_STATS_SCOPED(isolate, "v8", "V8.NewContext"); LOG_API(isolate, Context, New); i::HandleScope scope(isolate); ExtensionConfiguration no_extensions; if (extensions == nullptr) extensions = &no_extensions; i::Handle<i::Context> env = CreateEnvironment<i::Context>( isolate, extensions, global_template, global_object, context_snapshot_index, embedder_fields_deserializer, microtask_queue); if (env.is_null()) { if (isolate->has_pending_exception()) isolate->clear_pending_exception(); return Local<Context>(); } return Utils::ToLocal(scope.CloseAndEscape(env)); } Local<Context> v8::Context::New( v8::Isolate* external_isolate, v8::ExtensionConfiguration* extensions, v8::MaybeLocal<ObjectTemplate> global_template, v8::MaybeLocal<Value> global_object, DeserializeInternalFieldsCallback internal_fields_deserializer, v8::MicrotaskQueue* microtask_queue) { return NewContext(external_isolate, extensions, global_template, global_object, 0, internal_fields_deserializer, microtask_queue); } MaybeLocal<Context> v8::Context::FromSnapshot( v8::Isolate* external_isolate, size_t context_snapshot_index, v8::DeserializeInternalFieldsCallback embedder_fields_deserializer, v8::ExtensionConfiguration* extensions, MaybeLocal<Value> global_object, v8::MicrotaskQueue* microtask_queue) { size_t index_including_default_context = context_snapshot_index + 1; if (!i::Snapshot::HasContextSnapshot( reinterpret_cast<i::Isolate*>(external_isolate), index_including_default_context)) { return MaybeLocal<Context>(); } return NewContext(external_isolate, extensions, MaybeLocal<ObjectTemplate>(), global_object, index_including_default_context, embedder_fields_deserializer, microtask_queue); } MaybeLocal<Object> v8::Context::NewRemoteContext( v8::Isolate* external_isolate, v8::Local<ObjectTemplate> global_template, v8::MaybeLocal<v8::Value> global_object) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(external_isolate); LOG_API(isolate, Context, NewRemoteContext); i::HandleScope scope(isolate); i::Handle<i::FunctionTemplateInfo> global_constructor = EnsureConstructor(isolate, *global_template); Utils::ApiCheck(global_constructor->needs_access_check(), "v8::Context::NewRemoteContext", "Global template needs to have access checks enabled."); i::Handle<i::AccessCheckInfo> access_check_info = i::handle( i::AccessCheckInfo::cast(global_constructor->GetAccessCheckInfo()), isolate); Utils::ApiCheck(access_check_info->named_interceptor() != i::Object(), "v8::Context::NewRemoteContext", "Global template needs to have access check handlers."); i::Handle<i::JSObject> global_proxy = CreateEnvironment<i::JSGlobalProxy>( isolate, nullptr, global_template, global_object, 0, DeserializeInternalFieldsCallback(), nullptr); if (global_proxy.is_null()) { if (isolate->has_pending_exception()) isolate->clear_pending_exception(); return MaybeLocal<Object>(); } return Utils::ToLocal(scope.CloseAndEscape(global_proxy)); } void v8::Context::SetSecurityToken(Local<Value> token) { i::Handle<i::Context> env = Utils::OpenHandle(this); i::Handle<i::Object> token_handle = Utils::OpenHandle(*token); env->set_security_token(*token_handle); } void v8::Context::UseDefaultSecurityToken() { i::Handle<i::Context> env = Utils::OpenHandle(this); env->set_security_token(env->global_object()); } Local<Value> v8::Context::GetSecurityToken() { i::Handle<i::Context> env = Utils::OpenHandle(this); i::Isolate* isolate = env->GetIsolate(); i::Object security_token = env->security_token(); i::Handle<i::Object> token_handle(security_token, isolate); return Utils::ToLocal(token_handle); } v8::Isolate* Context::GetIsolate() { i::Handle<i::Context> env = Utils::OpenHandle(this); return reinterpret_cast<Isolate*>(env->GetIsolate()); } v8::Local<v8::Object> Context::Global() { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); i::Handle<i::Object> global(context->global_proxy(), isolate); // TODO(dcarney): This should always return the global proxy // but can't presently as calls to GetProtoype will return the wrong result. if (i::Handle<i::JSGlobalProxy>::cast(global)->IsDetachedFrom( context->global_object())) { global = i::Handle<i::Object>(context->global_object(), isolate); } return Utils::ToLocal(i::Handle<i::JSObject>::cast(global)); } void Context::DetachGlobal() { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); isolate->bootstrapper()->DetachGlobal(context); } Local<v8::Object> Context::GetExtrasBindingObject() { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); i::Handle<i::JSObject> binding(context->extras_binding_object(), isolate); return Utils::ToLocal(binding); } void Context::AllowCodeGenerationFromStrings(bool allow) { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); context->set_allow_code_gen_from_strings( allow ? i::ReadOnlyRoots(isolate).true_value() : i::ReadOnlyRoots(isolate).false_value()); } bool Context::IsCodeGenerationFromStringsAllowed() { i::Handle<i::Context> context = Utils::OpenHandle(this); return !context->allow_code_gen_from_strings().IsFalse(context->GetIsolate()); } void Context::SetErrorMessageForCodeGenerationFromStrings(Local<String> error) { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Handle<i::String> error_handle = Utils::OpenHandle(*error); context->set_error_message_for_code_gen_from_strings(*error_handle); } void Context::SetAbortScriptExecution( Context::AbortScriptExecutionCallback callback) { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); if (callback == nullptr) { context->set_script_execution_callback( i::ReadOnlyRoots(isolate).undefined_value()); } else { SET_FIELD_WRAPPED(isolate, context, set_script_execution_callback, callback); } } Local<Value> Context::GetContinuationPreservedEmbedderData() const { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); i::Handle<i::Object> data( context->native_context().continuation_preserved_embedder_data(), isolate); return ToApiHandle<Object>(data); } void Context::SetContinuationPreservedEmbedderData(Local<Value> data) { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); if (data.IsEmpty()) data = v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); context->native_context().set_continuation_preserved_embedder_data( *i::Handle<i::HeapObject>::cast(Utils::OpenHandle(*data))); } MaybeLocal<Context> Context::GetByToken(Isolate* isolate, Context::Token token) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); return i_isolate->GetContextFromToken(token); } v8::Context::Token Context::GetToken() { i::Handle<i::Context> context = Utils::OpenHandle(this); i::Isolate* isolate = context->GetIsolate(); return isolate->GetOrRegisterContextToken( handle(context->native_context(), isolate)); } namespace { i::Address* GetSerializedDataFromFixedArray(i::Isolate* isolate, i::FixedArray list, size_t index) { if (index < static_cast<size_t>(list.length())) { int int_index = static_cast<int>(index); i::Object object = list.get(int_index); if (!object.IsTheHole(isolate)) { list.set_the_hole(isolate, int_index); // Shrink the list so that the last element is not the hole (unless it's // the first element, because we don't want to end up with a non-canonical // empty FixedArray). int last = list.length() - 1; while (last >= 0 && list.is_the_hole(isolate, last)) last--; if (last != -1) list.Shrink(isolate, last + 1); return i::Handle<i::Object>(object, isolate).location(); } } return nullptr; } } // anonymous namespace i::Address* Context::GetDataFromSnapshotOnce(size_t index) { auto context = Utils::OpenHandle(this); i::Isolate* i_isolate = context->GetIsolate(); i::FixedArray list = context->serialized_objects(); return GetSerializedDataFromFixedArray(i_isolate, list, index); } MaybeLocal<v8::Object> ObjectTemplate::NewInstance(Local<Context> context) { PREPARE_FOR_EXECUTION(context, ObjectTemplate, NewInstance, Object); auto self = Utils::OpenHandle(this); Local<Object> result; has_pending_exception = !ToLocal<Object>( i::ApiNatives::InstantiateObject(isolate, self), &result); RETURN_ON_FAILED_EXECUTION(Object); RETURN_ESCAPED(result); } void v8::ObjectTemplate::CheckCast(Data* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsObjectTemplateInfo(), "v8::ObjectTemplate::Cast", "Value is not an ObjectTemplate"); } void v8::FunctionTemplate::CheckCast(Data* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsFunctionTemplateInfo(), "v8::FunctionTemplate::Cast", "Value is not a FunctionTemplate"); } void v8::Signature::CheckCast(Data* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsFunctionTemplateInfo(), "v8::Signature::Cast", "Value is not a Signature"); } void v8::AccessorSignature::CheckCast(Data* that) { i::Handle<i::Object> obj = Utils::OpenHandle(that); Utils::ApiCheck(obj->IsFunctionTemplateInfo(), "v8::AccessorSignature::Cast", "Value is not an AccessorSignature"); } MaybeLocal<v8::Function> FunctionTemplate::GetFunction(Local<Context> context) { PREPARE_FOR_EXECUTION(context, FunctionTemplate, GetFunction, Function); auto self = Utils::OpenHandle(this); Local<Function> result; has_pending_exception = !ToLocal<Function>(i::ApiNatives::InstantiateFunction(self), &result); RETURN_ON_FAILED_EXECUTION(Function); RETURN_ESCAPED(result); } MaybeLocal<v8::Object> FunctionTemplate::NewRemoteInstance() { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); LOG_API(isolate, FunctionTemplate, NewRemoteInstance); i::HandleScope scope(isolate); i::Handle<i::FunctionTemplateInfo> constructor = EnsureConstructor(isolate, *InstanceTemplate()); Utils::ApiCheck(constructor->needs_access_check(), "v8::FunctionTemplate::NewRemoteInstance", "InstanceTemplate needs to have access checks enabled."); i::Handle<i::AccessCheckInfo> access_check_info = i::handle( i::AccessCheckInfo::cast(constructor->GetAccessCheckInfo()), isolate); Utils::ApiCheck(access_check_info->named_interceptor() != i::Object(), "v8::FunctionTemplate::NewRemoteInstance", "InstanceTemplate needs to have access check handlers."); i::Handle<i::JSObject> object; if (!i::ApiNatives::InstantiateRemoteObject( Utils::OpenHandle(*InstanceTemplate())) .ToHandle(&object)) { if (isolate->has_pending_exception()) { isolate->OptionalRescheduleException(true); } return MaybeLocal<Object>(); } return Utils::ToLocal(scope.CloseAndEscape(object)); } bool FunctionTemplate::HasInstance(v8::Local<v8::Value> value) { auto self = Utils::OpenHandle(this); auto obj = Utils::OpenHandle(*value); if (obj->IsJSObject() && self->IsTemplateFor(i::JSObject::cast(*obj))) { return true; } if (obj->IsJSGlobalProxy()) { // If it's a global proxy, then test with the global object. Note that the // inner global object may not necessarily be a JSGlobalObject. i::PrototypeIterator iter(self->GetIsolate(), i::JSObject::cast(*obj).map()); // The global proxy should always have a prototype, as it is a bug to call // this on a detached JSGlobalProxy. DCHECK(!iter.IsAtEnd()); return self->IsTemplateFor(iter.GetCurrent<i::JSObject>()); } return false; } Local<External> v8::External::New(Isolate* isolate, void* value) { STATIC_ASSERT(sizeof(value) == sizeof(i::Address)); i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, External, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::Handle<i::JSObject> external = i_isolate->factory()->NewExternal(value); return Utils::ExternalToLocal(external); } void* External::Value() const { return ExternalValue(*Utils::OpenHandle(this)); } // anonymous namespace for string creation helper functions namespace { inline int StringLength(const char* string) { size_t len = strlen(string); CHECK_GE(i::kMaxInt, len); return static_cast<int>(len); } inline int StringLength(const uint8_t* string) { return StringLength(reinterpret_cast<const char*>(string)); } inline int StringLength(const uint16_t* string) { size_t length = 0; while (string[length] != '\0') length++; CHECK_GE(i::kMaxInt, length); return static_cast<int>(length); } V8_WARN_UNUSED_RESULT inline i::MaybeHandle<i::String> NewString(i::Factory* factory, NewStringType type, i::Vector<const char> string) { if (type == NewStringType::kInternalized) { return factory->InternalizeUtf8String(string); } return factory->NewStringFromUtf8(string); } V8_WARN_UNUSED_RESULT inline i::MaybeHandle<i::String> NewString(i::Factory* factory, NewStringType type, i::Vector<const uint8_t> string) { if (type == NewStringType::kInternalized) { return factory->InternalizeString(string); } return factory->NewStringFromOneByte(string); } V8_WARN_UNUSED_RESULT inline i::MaybeHandle<i::String> NewString(i::Factory* factory, NewStringType type, i::Vector<const uint16_t> string) { if (type == NewStringType::kInternalized) { return factory->InternalizeString(string); } return factory->NewStringFromTwoByte(string); } STATIC_ASSERT(v8::String::kMaxLength == i::String::kMaxLength); } // anonymous namespace // TODO(dcarney): throw a context free exception. #define NEW_STRING(isolate, class_name, function_name, Char, data, type, \ length) \ MaybeLocal<String> result; \ if (length == 0) { \ result = String::Empty(isolate); \ } else if (length > i::String::kMaxLength) { \ result = MaybeLocal<String>(); \ } else { \ i::Isolate* i_isolate = reinterpret_cast<internal::Isolate*>(isolate); \ ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); \ LOG_API(i_isolate, class_name, function_name); \ if (length < 0) length = StringLength(data); \ i::Handle<i::String> handle_result = \ NewString(i_isolate->factory(), type, \ i::Vector<const Char>(data, length)) \ .ToHandleChecked(); \ result = Utils::ToLocal(handle_result); \ } Local<String> String::NewFromUtf8Literal(Isolate* isolate, const char* literal, NewStringType type, int length) { DCHECK_LE(length, i::String::kMaxLength); i::Isolate* i_isolate = reinterpret_cast<internal::Isolate*>(isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); LOG_API(i_isolate, String, NewFromUtf8Literal); i::Handle<i::String> handle_result = NewString(i_isolate->factory(), type, i::Vector<const char>(literal, length)) .ToHandleChecked(); return Utils::ToLocal(handle_result); } MaybeLocal<String> String::NewFromUtf8(Isolate* isolate, const char* data, NewStringType type, int length) { NEW_STRING(isolate, String, NewFromUtf8, char, data, type, length); return result; } MaybeLocal<String> String::NewFromOneByte(Isolate* isolate, const uint8_t* data, NewStringType type, int length) { NEW_STRING(isolate, String, NewFromOneByte, uint8_t, data, type, length); return result; } MaybeLocal<String> String::NewFromTwoByte(Isolate* isolate, const uint16_t* data, NewStringType type, int length) { NEW_STRING(isolate, String, NewFromTwoByte, uint16_t, data, type, length); return result; } Local<String> v8::String::Concat(Isolate* v8_isolate, Local<String> left, Local<String> right) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); i::Handle<i::String> left_string = Utils::OpenHandle(*left); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); LOG_API(isolate, String, Concat); i::Handle<i::String> right_string = Utils::OpenHandle(*right); // If we are steering towards a range error, do not wait for the error to be // thrown, and return the null handle instead. if (left_string->length() + right_string->length() > i::String::kMaxLength) { return Local<String>(); } i::Handle<i::String> result = isolate->factory() ->NewConsString(left_string, right_string) .ToHandleChecked(); return Utils::ToLocal(result); } MaybeLocal<String> v8::String::NewExternalTwoByte( Isolate* isolate, v8::String::ExternalStringResource* resource) { CHECK(resource && resource->data()); // TODO(dcarney): throw a context free exception. if (resource->length() > static_cast<size_t>(i::String::kMaxLength)) { return MaybeLocal<String>(); } i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); LOG_API(i_isolate, String, NewExternalTwoByte); if (resource->length() > 0) { i::Handle<i::String> string = i_isolate->factory() ->NewExternalStringFromTwoByte(resource) .ToHandleChecked(); return Utils::ToLocal(string); } else { // The resource isn't going to be used, free it immediately. resource->Dispose(); return Utils::ToLocal(i_isolate->factory()->empty_string()); } } MaybeLocal<String> v8::String::NewExternalOneByte( Isolate* isolate, v8::String::ExternalOneByteStringResource* resource) { CHECK_NOT_NULL(resource); // TODO(dcarney): throw a context free exception. if (resource->length() > static_cast<size_t>(i::String::kMaxLength)) { return MaybeLocal<String>(); } i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); LOG_API(i_isolate, String, NewExternalOneByte); if (resource->length() == 0) { // The resource isn't going to be used, free it immediately. resource->Dispose(); return Utils::ToLocal(i_isolate->factory()->empty_string()); } CHECK_NOT_NULL(resource->data()); i::Handle<i::String> string = i_isolate->factory() ->NewExternalStringFromOneByte(resource) .ToHandleChecked(); return Utils::ToLocal(string); } bool v8::String::MakeExternal(v8::String::ExternalStringResource* resource) { i::DisallowHeapAllocation no_allocation; i::String obj = *Utils::OpenHandle(this); if (obj.IsThinString()) { obj = i::ThinString::cast(obj).actual(); } if (!obj.SupportsExternalization()) { return false; } // It is safe to call GetIsolateFromWritableHeapObject because // SupportsExternalization already checked that the object is writable. i::Isolate* isolate = i::GetIsolateFromWritableObject(obj); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); CHECK(resource && resource->data()); bool result = obj.MakeExternal(resource); DCHECK(result); DCHECK(obj.IsExternalString()); return result; } bool v8::String::MakeExternal( v8::String::ExternalOneByteStringResource* resource) { i::DisallowHeapAllocation no_allocation; i::String obj = *Utils::OpenHandle(this); if (obj.IsThinString()) { obj = i::ThinString::cast(obj).actual(); } if (!obj.SupportsExternalization()) { return false; } // It is safe to call GetIsolateFromWritableHeapObject because // SupportsExternalization already checked that the object is writable. i::Isolate* isolate = i::GetIsolateFromWritableObject(obj); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); CHECK(resource && resource->data()); bool result = obj.MakeExternal(resource); DCHECK_IMPLIES(result, obj.IsExternalString()); return result; } bool v8::String::CanMakeExternal() { i::DisallowHeapAllocation no_allocation; i::String obj = *Utils::OpenHandle(this); if (obj.IsThinString()) { obj = i::ThinString::cast(obj).actual(); } if (!obj.SupportsExternalization()) { return false; } // Only old space strings should be externalized. return !i::Heap::InYoungGeneration(obj); } bool v8::String::StringEquals(Local<String> that) { auto self = Utils::OpenHandle(this); auto other = Utils::OpenHandle(*that); return self->Equals(*other); } Isolate* v8::Object::GetIsolate() { i::Isolate* i_isolate = Utils::OpenHandle(this)->GetIsolate(); return reinterpret_cast<Isolate*>(i_isolate); } Local<v8::Object> v8::Object::New(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, Object, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::Handle<i::JSObject> obj = i_isolate->factory()->NewJSObject(i_isolate->object_function()); return Utils::ToLocal(obj); } Local<v8::Object> v8::Object::New(Isolate* isolate, Local<Value> prototype_or_null, Local<Name>* names, Local<Value>* values, size_t length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::Object> proto = Utils::OpenHandle(*prototype_or_null); if (!Utils::ApiCheck(proto->IsNull() || proto->IsJSReceiver(), "v8::Object::New", "prototype must be null or object")) { return Local<v8::Object>(); } LOG_API(i_isolate, Object, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); // We assume that this API is mostly used to create objects with named // properties, and so we default to creating a properties backing store // large enough to hold all of them, while we start with no elements // (see http://bit.ly/v8-fast-object-create-cpp for the motivation). i::Handle<i::NameDictionary> properties = i::NameDictionary::New(i_isolate, static_cast<int>(length)); i::Handle<i::FixedArrayBase> elements = i_isolate->factory()->empty_fixed_array(); for (size_t i = 0; i < length; ++i) { i::Handle<i::Name> name = Utils::OpenHandle(*names[i]); i::Handle<i::Object> value = Utils::OpenHandle(*values[i]); // See if the {name} is a valid array index, in which case we need to // add the {name}/{value} pair to the {elements}, otherwise they end // up in the {properties} backing store. uint32_t index; if (name->AsArrayIndex(&index)) { // If this is the first element, allocate a proper // dictionary elements backing store for {elements}. if (!elements->IsNumberDictionary()) { elements = i::NumberDictionary::New(i_isolate, static_cast<int>(length)); } elements = i::NumberDictionary::Set( i_isolate, i::Handle<i::NumberDictionary>::cast(elements), index, value); } else { // Internalize the {name} first. name = i_isolate->factory()->InternalizeName(name); i::InternalIndex const entry = properties->FindEntry(i_isolate, name); if (entry.is_not_found()) { // Add the {name}/{value} pair as a new entry. properties = i::NameDictionary::Add(i_isolate, properties, name, value, i::PropertyDetails::Empty()); } else { // Overwrite the {entry} with the {value}. properties->ValueAtPut(entry, *value); } } } i::Handle<i::JSObject> obj = i_isolate->factory()->NewSlowJSObjectWithPropertiesAndElements( i::Handle<i::HeapObject>::cast(proto), properties, elements); return Utils::ToLocal(obj); } Local<v8::Value> v8::NumberObject::New(Isolate* isolate, double value) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, NumberObject, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::Handle<i::Object> number = i_isolate->factory()->NewNumber(value); i::Handle<i::Object> obj = i::Object::ToObject(i_isolate, number).ToHandleChecked(); return Utils::ToLocal(obj); } double v8::NumberObject::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSPrimitiveWrapper> js_primitive_wrapper = i::Handle<i::JSPrimitiveWrapper>::cast(obj); i::Isolate* isolate = js_primitive_wrapper->GetIsolate(); LOG_API(isolate, NumberObject, NumberValue); return js_primitive_wrapper->value().Number(); } Local<v8::Value> v8::BigIntObject::New(Isolate* isolate, int64_t value) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, BigIntObject, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::Handle<i::Object> bigint = i::BigInt::FromInt64(i_isolate, value); i::Handle<i::Object> obj = i::Object::ToObject(i_isolate, bigint).ToHandleChecked(); return Utils::ToLocal(obj); } Local<v8::BigInt> v8::BigIntObject::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSPrimitiveWrapper> js_primitive_wrapper = i::Handle<i::JSPrimitiveWrapper>::cast(obj); i::Isolate* isolate = js_primitive_wrapper->GetIsolate(); LOG_API(isolate, BigIntObject, BigIntValue); return Utils::ToLocal(i::Handle<i::BigInt>( i::BigInt::cast(js_primitive_wrapper->value()), isolate)); } Local<v8::Value> v8::BooleanObject::New(Isolate* isolate, bool value) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, BooleanObject, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::Handle<i::Object> boolean(value ? i::ReadOnlyRoots(i_isolate).true_value() : i::ReadOnlyRoots(i_isolate).false_value(), i_isolate); i::Handle<i::Object> obj = i::Object::ToObject(i_isolate, boolean).ToHandleChecked(); return Utils::ToLocal(obj); } bool v8::BooleanObject::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSPrimitiveWrapper> js_primitive_wrapper = i::Handle<i::JSPrimitiveWrapper>::cast(obj); i::Isolate* isolate = js_primitive_wrapper->GetIsolate(); LOG_API(isolate, BooleanObject, BooleanValue); return js_primitive_wrapper->value().IsTrue(isolate); } Local<v8::Value> v8::StringObject::New(Isolate* v8_isolate, Local<String> value) { i::Handle<i::String> string = Utils::OpenHandle(*value); i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); LOG_API(isolate, StringObject, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::Handle<i::Object> obj = i::Object::ToObject(isolate, string).ToHandleChecked(); return Utils::ToLocal(obj); } Local<v8::String> v8::StringObject::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSPrimitiveWrapper> js_primitive_wrapper = i::Handle<i::JSPrimitiveWrapper>::cast(obj); i::Isolate* isolate = js_primitive_wrapper->GetIsolate(); LOG_API(isolate, StringObject, StringValue); return Utils::ToLocal(i::Handle<i::String>( i::String::cast(js_primitive_wrapper->value()), isolate)); } Local<v8::Value> v8::SymbolObject::New(Isolate* isolate, Local<Symbol> value) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, SymbolObject, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::Handle<i::Object> obj = i::Object::ToObject(i_isolate, Utils::OpenHandle(*value)) .ToHandleChecked(); return Utils::ToLocal(obj); } Local<v8::Symbol> v8::SymbolObject::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSPrimitiveWrapper> js_primitive_wrapper = i::Handle<i::JSPrimitiveWrapper>::cast(obj); i::Isolate* isolate = js_primitive_wrapper->GetIsolate(); LOG_API(isolate, SymbolObject, SymbolValue); return Utils::ToLocal(i::Handle<i::Symbol>( i::Symbol::cast(js_primitive_wrapper->value()), isolate)); } MaybeLocal<v8::Value> v8::Date::New(Local<Context> context, double time) { if (std::isnan(time)) { // Introduce only canonical NaN value into the VM, to avoid signaling NaNs. time = std::numeric_limits<double>::quiet_NaN(); } PREPARE_FOR_EXECUTION(context, Date, New, Value); Local<Value> result; has_pending_exception = !ToLocal<Value>( i::JSDate::New(isolate->date_function(), isolate->date_function(), time), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } double v8::Date::ValueOf() const { i::Handle<i::Object> obj = Utils::OpenHandle(this); i::Handle<i::JSDate> jsdate = i::Handle<i::JSDate>::cast(obj); i::Isolate* isolate = jsdate->GetIsolate(); LOG_API(isolate, Date, NumberValue); return jsdate->value().Number(); } // Assert that the static TimeZoneDetection cast in // DateTimeConfigurationChangeNotification is valid. #define TIME_ZONE_DETECTION_ASSERT_EQ(value) \ STATIC_ASSERT( \ static_cast<int>(v8::Isolate::TimeZoneDetection::value) == \ static_cast<int>(base::TimezoneCache::TimeZoneDetection::value)); TIME_ZONE_DETECTION_ASSERT_EQ(kSkip) TIME_ZONE_DETECTION_ASSERT_EQ(kRedetect) #undef TIME_ZONE_DETECTION_ASSERT_EQ MaybeLocal<v8::RegExp> v8::RegExp::New(Local<Context> context, Local<String> pattern, Flags flags) { PREPARE_FOR_EXECUTION(context, RegExp, New, RegExp); Local<v8::RegExp> result; has_pending_exception = !ToLocal<RegExp>(i::JSRegExp::New(isolate, Utils::OpenHandle(*pattern), static_cast<i::JSRegExp::Flags>(flags)), &result); RETURN_ON_FAILED_EXECUTION(RegExp); RETURN_ESCAPED(result); } MaybeLocal<v8::RegExp> v8::RegExp::NewWithBacktrackLimit( Local<Context> context, Local<String> pattern, Flags flags, uint32_t backtrack_limit) { CHECK(i::Smi::IsValid(backtrack_limit)); CHECK_NE(backtrack_limit, i::JSRegExp::kNoBacktrackLimit); PREPARE_FOR_EXECUTION(context, RegExp, New, RegExp); Local<v8::RegExp> result; has_pending_exception = !ToLocal<RegExp>( i::JSRegExp::New(isolate, Utils::OpenHandle(*pattern), static_cast<i::JSRegExp::Flags>(flags), backtrack_limit), &result); RETURN_ON_FAILED_EXECUTION(RegExp); RETURN_ESCAPED(result); } Local<v8::String> v8::RegExp::GetSource() const { i::Handle<i::JSRegExp> obj = Utils::OpenHandle(this); return Utils::ToLocal( i::Handle<i::String>(obj->Pattern(), obj->GetIsolate())); } // Assert that the static flags cast in GetFlags is valid. #define REGEXP_FLAG_ASSERT_EQ(flag) \ STATIC_ASSERT(static_cast<int>(v8::RegExp::flag) == \ static_cast<int>(i::JSRegExp::flag)) REGEXP_FLAG_ASSERT_EQ(kNone); REGEXP_FLAG_ASSERT_EQ(kGlobal); REGEXP_FLAG_ASSERT_EQ(kIgnoreCase); REGEXP_FLAG_ASSERT_EQ(kMultiline); REGEXP_FLAG_ASSERT_EQ(kSticky); REGEXP_FLAG_ASSERT_EQ(kUnicode); #undef REGEXP_FLAG_ASSERT_EQ v8::RegExp::Flags v8::RegExp::GetFlags() const { i::Handle<i::JSRegExp> obj = Utils::OpenHandle(this); return RegExp::Flags(static_cast<int>(obj->GetFlags())); } MaybeLocal<v8::Object> v8::RegExp::Exec(Local<Context> context, Local<v8::String> subject) { PREPARE_FOR_EXECUTION(context, RegExp, Exec, Object); i::Handle<i::JSRegExp> regexp = Utils::OpenHandle(this); i::Handle<i::String> subject_string = Utils::OpenHandle(*subject); // TODO(jgruber): RegExpUtils::RegExpExec was not written with efficiency in // mind. It fetches the 'exec' property and then calls it through JSEntry. // Unfortunately, this is currently the only full implementation of // RegExp.prototype.exec available in C++. Local<v8::Object> result; has_pending_exception = !ToLocal<Object>( i::RegExpUtils::RegExpExec(isolate, regexp, subject_string, isolate->factory()->undefined_value()), &result); RETURN_ON_FAILED_EXECUTION(Object); RETURN_ESCAPED(result); } Local<v8::Array> v8::Array::New(Isolate* isolate, int length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, Array, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); int real_length = length > 0 ? length : 0; i::Handle<i::JSArray> obj = i_isolate->factory()->NewJSArray(real_length); i::Handle<i::Object> length_obj = i_isolate->factory()->NewNumberFromInt(real_length); obj->set_length(*length_obj); return Utils::ToLocal(obj); } Local<v8::Array> v8::Array::New(Isolate* isolate, Local<Value>* elements, size_t length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Factory* factory = i_isolate->factory(); LOG_API(i_isolate, Array, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); int len = static_cast<int>(length); i::Handle<i::FixedArray> result = factory->NewFixedArray(len); for (int i = 0; i < len; i++) { i::Handle<i::Object> element = Utils::OpenHandle(*elements[i]); result->set(i, *element); } return Utils::ToLocal( factory->NewJSArrayWithElements(result, i::PACKED_ELEMENTS, len)); } uint32_t v8::Array::Length() const { i::Handle<i::JSArray> obj = Utils::OpenHandle(this); i::Object length = obj->length(); if (length.IsSmi()) { return i::Smi::ToInt(length); } else { return static_cast<uint32_t>(length.Number()); } } Local<v8::Map> v8::Map::New(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, Map, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::Handle<i::JSMap> obj = i_isolate->factory()->NewJSMap(); return Utils::ToLocal(obj); } size_t v8::Map::Size() const { i::Handle<i::JSMap> obj = Utils::OpenHandle(this); return i::OrderedHashMap::cast(obj->table()).NumberOfElements(); } void Map::Clear() { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); LOG_API(isolate, Map, Clear); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::JSMap::Clear(isolate, self); } MaybeLocal<Value> Map::Get(Local<Context> context, Local<Value> key) { PREPARE_FOR_EXECUTION(context, Map, Get, Value); auto self = Utils::OpenHandle(this); Local<Value> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)}; has_pending_exception = !ToLocal<Value>(i::Execution::CallBuiltin(isolate, isolate->map_get(), self, arraysize(argv), argv), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } MaybeLocal<Map> Map::Set(Local<Context> context, Local<Value> key, Local<Value> value) { PREPARE_FOR_EXECUTION(context, Map, Set, Map); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key), Utils::OpenHandle(*value)}; has_pending_exception = !i::Execution::CallBuiltin(isolate, isolate->map_set(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Map); RETURN_ESCAPED(Local<Map>::Cast(Utils::ToLocal(result))); } Maybe<bool> Map::Has(Local<Context> context, Local<Value> key) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Map, Has, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)}; has_pending_exception = !i::Execution::CallBuiltin(isolate, isolate->map_has(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(result->IsTrue(isolate)); } Maybe<bool> Map::Delete(Local<Context> context, Local<Value> key) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Map, Delete, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)}; has_pending_exception = !i::Execution::CallBuiltin(isolate, isolate->map_delete(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(result->IsTrue(isolate)); } namespace { enum class MapAsArrayKind { kEntries = i::JS_MAP_KEY_VALUE_ITERATOR_TYPE, kKeys = i::JS_MAP_KEY_ITERATOR_TYPE, kValues = i::JS_MAP_VALUE_ITERATOR_TYPE }; enum class SetAsArrayKind { kEntries = i::JS_SET_KEY_VALUE_ITERATOR_TYPE, kValues = i::JS_SET_VALUE_ITERATOR_TYPE }; i::Handle<i::JSArray> MapAsArray(i::Isolate* isolate, i::Object table_obj, int offset, MapAsArrayKind kind) { i::Factory* factory = isolate->factory(); i::Handle<i::OrderedHashMap> table(i::OrderedHashMap::cast(table_obj), isolate); const bool collect_keys = kind == MapAsArrayKind::kEntries || kind == MapAsArrayKind::kKeys; const bool collect_values = kind == MapAsArrayKind::kEntries || kind == MapAsArrayKind::kValues; int capacity = table->UsedCapacity(); int max_length = (capacity - offset) * ((collect_keys && collect_values) ? 2 : 1); i::Handle<i::FixedArray> result = factory->NewFixedArray(max_length); int result_index = 0; { i::DisallowHeapAllocation no_gc; i::Oddball the_hole = i::ReadOnlyRoots(isolate).the_hole_value(); for (int i = offset; i < capacity; ++i) { i::Object key = table->KeyAt(i); if (key == the_hole) continue; if (collect_keys) result->set(result_index++, key); if (collect_values) result->set(result_index++, table->ValueAt(i)); } } DCHECK_GE(max_length, result_index); if (result_index == 0) return factory->NewJSArray(0); result->Shrink(isolate, result_index); return factory->NewJSArrayWithElements(result, i::PACKED_ELEMENTS, result_index); } } // namespace Local<Array> Map::AsArray() const { i::Handle<i::JSMap> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); LOG_API(isolate, Map, AsArray); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); return Utils::ToLocal( MapAsArray(isolate, obj->table(), 0, MapAsArrayKind::kEntries)); } Local<v8::Set> v8::Set::New(Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, Set, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::Handle<i::JSSet> obj = i_isolate->factory()->NewJSSet(); return Utils::ToLocal(obj); } size_t v8::Set::Size() const { i::Handle<i::JSSet> obj = Utils::OpenHandle(this); return i::OrderedHashSet::cast(obj->table()).NumberOfElements(); } void Set::Clear() { auto self = Utils::OpenHandle(this); i::Isolate* isolate = self->GetIsolate(); LOG_API(isolate, Set, Clear); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::JSSet::Clear(isolate, self); } MaybeLocal<Set> Set::Add(Local<Context> context, Local<Value> key) { PREPARE_FOR_EXECUTION(context, Set, Add, Set); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)}; has_pending_exception = !i::Execution::CallBuiltin(isolate, isolate->set_add(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Set); RETURN_ESCAPED(Local<Set>::Cast(Utils::ToLocal(result))); } Maybe<bool> Set::Has(Local<Context> context, Local<Value> key) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Set, Has, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)}; has_pending_exception = !i::Execution::CallBuiltin(isolate, isolate->set_has(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(result->IsTrue(isolate)); } Maybe<bool> Set::Delete(Local<Context> context, Local<Value> key) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Set, Delete, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)}; has_pending_exception = !i::Execution::CallBuiltin(isolate, isolate->set_delete(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(result->IsTrue(isolate)); } namespace { i::Handle<i::JSArray> SetAsArray(i::Isolate* isolate, i::Object table_obj, int offset, SetAsArrayKind kind) { i::Factory* factory = isolate->factory(); i::Handle<i::OrderedHashSet> table(i::OrderedHashSet::cast(table_obj), isolate); // Elements skipped by |offset| may already be deleted. int capacity = table->UsedCapacity(); const bool collect_key_values = kind == SetAsArrayKind::kEntries; int max_length = (capacity - offset) * (collect_key_values ? 2 : 1); if (max_length == 0) return factory->NewJSArray(0); i::Handle<i::FixedArray> result = factory->NewFixedArray(max_length); int result_index = 0; { i::DisallowHeapAllocation no_gc; i::Oddball the_hole = i::ReadOnlyRoots(isolate).the_hole_value(); for (int i = offset; i < capacity; ++i) { i::Object key = table->KeyAt(i); if (key == the_hole) continue; result->set(result_index++, key); if (collect_key_values) result->set(result_index++, key); } } DCHECK_GE(max_length, result_index); if (result_index == 0) return factory->NewJSArray(0); result->Shrink(isolate, result_index); return factory->NewJSArrayWithElements(result, i::PACKED_ELEMENTS, result_index); } } // namespace Local<Array> Set::AsArray() const { i::Handle<i::JSSet> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); LOG_API(isolate, Set, AsArray); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); return Utils::ToLocal( SetAsArray(isolate, obj->table(), 0, SetAsArrayKind::kValues)); } MaybeLocal<Promise::Resolver> Promise::Resolver::New(Local<Context> context) { PREPARE_FOR_EXECUTION(context, Promise_Resolver, New, Resolver); Local<Promise::Resolver> result; has_pending_exception = !ToLocal<Promise::Resolver>(isolate->factory()->NewJSPromise(), &result); RETURN_ON_FAILED_EXECUTION(Promise::Resolver); RETURN_ESCAPED(result); } Local<Promise> Promise::Resolver::GetPromise() { i::Handle<i::JSReceiver> promise = Utils::OpenHandle(this); return Local<Promise>::Cast(Utils::ToLocal(promise)); } Maybe<bool> Promise::Resolver::Resolve(Local<Context> context, Local<Value> value) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Promise_Resolver, Resolve, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); auto promise = i::Handle<i::JSPromise>::cast(self); if (promise->status() != Promise::kPending) { return Just(true); } has_pending_exception = i::JSPromise::Resolve(promise, Utils::OpenHandle(*value)).is_null(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } Maybe<bool> Promise::Resolver::Reject(Local<Context> context, Local<Value> value) { auto isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8(isolate, context, Promise_Resolver, Reject, Nothing<bool>(), i::HandleScope); auto self = Utils::OpenHandle(this); auto promise = i::Handle<i::JSPromise>::cast(self); if (promise->status() != Promise::kPending) { return Just(true); } has_pending_exception = i::JSPromise::Reject(promise, Utils::OpenHandle(*value)).is_null(); RETURN_ON_FAILED_EXECUTION_PRIMITIVE(bool); return Just(true); } MaybeLocal<Promise> Promise::Catch(Local<Context> context, Local<Function> handler) { PREPARE_FOR_EXECUTION(context, Promise, Catch, Promise); auto self = Utils::OpenHandle(this); i::Handle<i::Object> argv[] = {Utils::OpenHandle(*handler)}; i::Handle<i::Object> result; has_pending_exception = !i::Execution::CallBuiltin(isolate, isolate->promise_catch(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Promise); RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result))); } MaybeLocal<Promise> Promise::Then(Local<Context> context, Local<Function> handler) { PREPARE_FOR_EXECUTION(context, Promise, Then, Promise); auto self = Utils::OpenHandle(this); i::Handle<i::Object> argv[] = {Utils::OpenHandle(*handler)}; i::Handle<i::Object> result; has_pending_exception = !i::Execution::CallBuiltin(isolate, isolate->promise_then(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Promise); RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result))); } MaybeLocal<Promise> Promise::Then(Local<Context> context, Local<Function> on_fulfilled, Local<Function> on_rejected) { PREPARE_FOR_EXECUTION(context, Promise, Then, Promise); auto self = Utils::OpenHandle(this); i::Handle<i::Object> argv[] = {Utils::OpenHandle(*on_fulfilled), Utils::OpenHandle(*on_rejected)}; i::Handle<i::Object> result; has_pending_exception = !i::Execution::CallBuiltin(isolate, isolate->promise_then(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION(Promise); RETURN_ESCAPED(Local<Promise>::Cast(Utils::ToLocal(result))); } bool Promise::HasHandler() { i::Handle<i::JSReceiver> promise = Utils::OpenHandle(this); i::Isolate* isolate = promise->GetIsolate(); LOG_API(isolate, Promise, HasRejectHandler); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); if (promise->IsJSPromise()) { i::Handle<i::JSPromise> js_promise = i::Handle<i::JSPromise>::cast(promise); return js_promise->has_handler(); } return false; } Local<Value> Promise::Result() { i::Handle<i::JSReceiver> promise = Utils::OpenHandle(this); i::Isolate* isolate = promise->GetIsolate(); LOG_API(isolate, Promise, Result); i::Handle<i::JSPromise> js_promise = i::Handle<i::JSPromise>::cast(promise); Utils::ApiCheck(js_promise->status() != kPending, "v8_Promise_Result", "Promise is still pending"); i::Handle<i::Object> result(js_promise->result(), isolate); return Utils::ToLocal(result); } Promise::PromiseState Promise::State() { i::Handle<i::JSReceiver> promise = Utils::OpenHandle(this); i::Isolate* isolate = promise->GetIsolate(); LOG_API(isolate, Promise, Status); i::Handle<i::JSPromise> js_promise = i::Handle<i::JSPromise>::cast(promise); return static_cast<PromiseState>(js_promise->status()); } void Promise::MarkAsHandled() { i::Handle<i::JSPromise> js_promise = Utils::OpenHandle(this); js_promise->set_has_handler(true); } Local<Value> Proxy::GetTarget() { i::Handle<i::JSProxy> self = Utils::OpenHandle(this); i::Handle<i::Object> target(self->target(), self->GetIsolate()); return Utils::ToLocal(target); } Local<Value> Proxy::GetHandler() { i::Handle<i::JSProxy> self = Utils::OpenHandle(this); i::Handle<i::Object> handler(self->handler(), self->GetIsolate()); return Utils::ToLocal(handler); } bool Proxy::IsRevoked() { i::Handle<i::JSProxy> self = Utils::OpenHandle(this); return self->IsRevoked(); } void Proxy::Revoke() { i::Handle<i::JSProxy> self = Utils::OpenHandle(this); i::JSProxy::Revoke(self); } MaybeLocal<Proxy> Proxy::New(Local<Context> context, Local<Object> local_target, Local<Object> local_handler) { PREPARE_FOR_EXECUTION(context, Proxy, New, Proxy); i::Handle<i::JSReceiver> target = Utils::OpenHandle(*local_target); i::Handle<i::JSReceiver> handler = Utils::OpenHandle(*local_handler); Local<Proxy> result; has_pending_exception = !ToLocal<Proxy>(i::JSProxy::New(isolate, target, handler), &result); RETURN_ON_FAILED_EXECUTION(Proxy); RETURN_ESCAPED(result); } CompiledWasmModule::CompiledWasmModule( std::shared_ptr<internal::wasm::NativeModule> native_module, const char* source_url, size_t url_length) : native_module_(std::move(native_module)), source_url_(source_url, url_length) { CHECK_NOT_NULL(native_module_); } OwnedBuffer CompiledWasmModule::Serialize() { i::wasm::WasmSerializer wasm_serializer(native_module_.get()); size_t buffer_size = wasm_serializer.GetSerializedNativeModuleSize(); std::unique_ptr<uint8_t[]> buffer(new uint8_t[buffer_size]); if (!wasm_serializer.SerializeNativeModule({buffer.get(), buffer_size})) return {}; return {std::move(buffer), buffer_size}; } MemorySpan<const uint8_t> CompiledWasmModule::GetWireBytesRef() { i::Vector<const uint8_t> bytes_vec = native_module_->wire_bytes(); return {bytes_vec.begin(), bytes_vec.size()}; } CompiledWasmModule WasmModuleObject::GetCompiledModule() { i::Handle<i::WasmModuleObject> obj = i::Handle<i::WasmModuleObject>::cast(Utils::OpenHandle(this)); auto source_url = i::String::cast(obj->script().source_url()); int length; std::unique_ptr<char[]> cstring = source_url.ToCString( i::DISALLOW_NULLS, i::FAST_STRING_TRAVERSAL, &length); i::Handle<i::String> url(source_url, obj->GetIsolate()); return CompiledWasmModule(std::move(obj->shared_native_module()), cstring.get(), length); } MaybeLocal<WasmModuleObject> WasmModuleObject::FromCompiledModule( Isolate* isolate, const CompiledWasmModule& compiled_module) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::WasmModuleObject> module_object = i_isolate->wasm_engine()->ImportNativeModule( i_isolate, compiled_module.native_module_, i::VectorOf(compiled_module.source_url())); return Local<WasmModuleObject>::Cast( Utils::ToLocal(i::Handle<i::JSObject>::cast(module_object))); } WasmModuleObjectBuilderStreaming::WasmModuleObjectBuilderStreaming( Isolate* isolate) { USE(isolate_); } Local<Promise> WasmModuleObjectBuilderStreaming::GetPromise() { return {}; } void WasmModuleObjectBuilderStreaming::OnBytesReceived(const uint8_t* bytes, size_t size) {} void WasmModuleObjectBuilderStreaming::Finish() {} void WasmModuleObjectBuilderStreaming::Abort(MaybeLocal<Value> exception) {} void* v8::ArrayBuffer::Allocator::Reallocate(void* data, size_t old_length, size_t new_length) { if (old_length == new_length) return data; uint8_t* new_data = reinterpret_cast<uint8_t*>(AllocateUninitialized(new_length)); if (new_data == nullptr) return nullptr; size_t bytes_to_copy = std::min(old_length, new_length); memcpy(new_data, data, bytes_to_copy); if (new_length > bytes_to_copy) { memset(new_data + bytes_to_copy, 0, new_length - bytes_to_copy); } Free(data, old_length); return new_data; } // static v8::ArrayBuffer::Allocator* v8::ArrayBuffer::Allocator::NewDefaultAllocator() { return new ArrayBufferAllocator(); } bool v8::ArrayBuffer::IsExternal() const { return Utils::OpenHandle(this)->is_external(); } bool v8::ArrayBuffer::IsDetachable() const { return Utils::OpenHandle(this)->is_detachable(); } namespace { // The backing store deleter just deletes the indirection, which downrefs // the shared pointer. It will get collected normally. void BackingStoreDeleter(void* buffer, size_t length, void* info) { std::shared_ptr<i::BackingStore>* bs_indirection = reinterpret_cast<std::shared_ptr<i::BackingStore>*>(info); if (bs_indirection) { i::BackingStore* backing_store = bs_indirection->get(); TRACE_BS("API:delete bs=%p mem=%p (length=%zu)\n", backing_store, backing_store->buffer_start(), backing_store->byte_length()); USE(backing_store); } delete bs_indirection; } void* MakeDeleterData(std::shared_ptr<i::BackingStore> backing_store) { if (!backing_store) return nullptr; TRACE_BS("API:extern bs=%p mem=%p (length=%zu)\n", backing_store.get(), backing_store->buffer_start(), backing_store->byte_length()); return new std::shared_ptr<i::BackingStore>(backing_store); } std::shared_ptr<i::BackingStore> LookupOrCreateBackingStore( i::Isolate* i_isolate, void* data, size_t byte_length, i::SharedFlag shared, ArrayBufferCreationMode mode) { // "internalized" means that the storage was allocated by the // ArrayBufferAllocator and thus should be freed upon destruction. bool free_on_destruct = mode == ArrayBufferCreationMode::kInternalized; // Try to lookup a previously-registered backing store in the global // registry. If found, use that instead of wrapping an embedder allocation. std::shared_ptr<i::BackingStore> backing_store = i::GlobalBackingStoreRegistry::Lookup(data, byte_length); if (backing_store) { // Check invariants for a previously-found backing store. // 1. We cannot allow an embedder to first allocate a backing store that // should not be freed upon destruct, and then allocate an alias that should // destruct it. The other order is fine. bool changing_destruct_mode = free_on_destruct && !backing_store->free_on_destruct(); Utils::ApiCheck( !changing_destruct_mode, "v8_[Shared]ArrayBuffer_New", "previous backing store found that should not be freed on destruct"); // 2. We cannot allow embedders to use the same backing store for both // SharedArrayBuffers and regular ArrayBuffers. bool changing_shared_flag = (shared == i::SharedFlag::kShared) != backing_store->is_shared(); Utils::ApiCheck( !changing_shared_flag, "v8_[Shared]ArrayBuffer_New", "previous backing store found that does not match shared flag"); } else { // No previous backing store found. backing_store = i::BackingStore::WrapAllocation( i_isolate, data, byte_length, shared, free_on_destruct); // The embedder already has a direct pointer to the buffer start, so // globally register the backing store in case they come back with the // same buffer start and the backing store is marked as free_on_destruct. i::GlobalBackingStoreRegistry::Register(backing_store); } return backing_store; } std::shared_ptr<i::BackingStore> ToInternal( std::shared_ptr<i::BackingStoreBase> backing_store) { return std::static_pointer_cast<i::BackingStore>(backing_store); } } // namespace v8::ArrayBuffer::Contents::Contents(void* data, size_t byte_length, void* allocation_base, size_t allocation_length, Allocator::AllocationMode allocation_mode, DeleterCallback deleter, void* deleter_data) : data_(data), byte_length_(byte_length), allocation_base_(allocation_base), allocation_length_(allocation_length), allocation_mode_(allocation_mode), deleter_(deleter), deleter_data_(deleter_data) { DCHECK_LE(allocation_base_, data_); DCHECK_LE(byte_length_, allocation_length_); } v8::ArrayBuffer::Contents v8::ArrayBuffer::Externalize() { return GetContents(true); } void v8::ArrayBuffer::Externalize( const std::shared_ptr<BackingStore>& backing_store) { i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this); Utils::ApiCheck(!self->is_external(), "v8_ArrayBuffer_Externalize", "ArrayBuffer already externalized"); self->set_is_external(true); DCHECK_EQ(self->backing_store(), backing_store->Data()); } v8::ArrayBuffer::Contents v8::ArrayBuffer::GetContents() { return GetContents(false); } v8::ArrayBuffer::Contents v8::ArrayBuffer::GetContents(bool externalize) { // TODO(titzer): reduce duplication between shared/unshared GetContents() using BufferType = v8::ArrayBuffer; i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this); std::shared_ptr<i::BackingStore> backing_store = self->GetBackingStore(); void* deleter_data = nullptr; if (externalize) { Utils::ApiCheck(!self->is_external(), "v8_ArrayBuffer_Externalize", "ArrayBuffer already externalized"); self->set_is_external(true); // When externalizing, upref the shared pointer to the backing store // and store that as the deleter data. When the embedder calls the deleter // callback, we will delete the additional (on-heap) shared_ptr. deleter_data = MakeDeleterData(backing_store); } if (!backing_store) { // If the array buffer has zero length or was detached, return empty // contents. DCHECK_EQ(0, self->byte_length()); BufferType::Contents contents( nullptr, 0, nullptr, 0, v8::ArrayBuffer::Allocator::AllocationMode::kNormal, BackingStoreDeleter, deleter_data); return contents; } // Backing stores that given to the embedder might be passed back through // the API using only the start of the buffer. We need to find such // backing stores using global registration until the API is changed. i::GlobalBackingStoreRegistry::Register(backing_store); auto allocation_mode = backing_store->is_wasm_memory() ? v8::ArrayBuffer::Allocator::AllocationMode::kReservation : v8::ArrayBuffer::Allocator::AllocationMode::kNormal; BufferType::Contents contents(backing_store->buffer_start(), // -- backing_store->byte_length(), // -- backing_store->buffer_start(), // -- backing_store->byte_length(), // -- allocation_mode, // -- BackingStoreDeleter, // -- deleter_data); return contents; } void v8::ArrayBuffer::Detach() { i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this); i::Isolate* isolate = obj->GetIsolate(); Utils::ApiCheck(obj->is_detachable(), "v8::ArrayBuffer::Detach", "Only detachable ArrayBuffers can be detached"); LOG_API(isolate, ArrayBuffer, Detach); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); obj->Detach(); } size_t v8::ArrayBuffer::ByteLength() const { i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this); return obj->byte_length(); } Local<ArrayBuffer> v8::ArrayBuffer::New(Isolate* isolate, size_t byte_length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, ArrayBuffer, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::MaybeHandle<i::JSArrayBuffer> result = i_isolate->factory()->NewJSArrayBufferAndBackingStore( byte_length, i::InitializedFlag::kZeroInitialized); i::Handle<i::JSArrayBuffer> array_buffer; if (!result.ToHandle(&array_buffer)) { // TODO(jbroman): It may be useful in the future to provide a MaybeLocal // version that throws an exception or otherwise does not crash. i::FatalProcessOutOfMemory(i_isolate, "v8::ArrayBuffer::New"); } return Utils::ToLocal(array_buffer); } Local<ArrayBuffer> v8::ArrayBuffer::New(Isolate* isolate, void* data, size_t byte_length, ArrayBufferCreationMode mode) { // Embedders must guarantee that the external backing store is valid. CHECK_IMPLIES(byte_length != 0, data != nullptr); CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength); i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, ArrayBuffer, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); std::shared_ptr<i::BackingStore> backing_store = LookupOrCreateBackingStore( i_isolate, data, byte_length, i::SharedFlag::kNotShared, mode); i::Handle<i::JSArrayBuffer> obj = i_isolate->factory()->NewJSArrayBuffer(std::move(backing_store)); if (mode == ArrayBufferCreationMode::kExternalized) { obj->set_is_external(true); } return Utils::ToLocal(obj); } Local<ArrayBuffer> v8::ArrayBuffer::New( Isolate* isolate, std::shared_ptr<BackingStore> backing_store) { CHECK_IMPLIES(backing_store->ByteLength() != 0, backing_store->Data() != nullptr); i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, ArrayBuffer, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); std::shared_ptr<i::BackingStore> i_backing_store( ToInternal(std::move(backing_store))); Utils::ApiCheck( !i_backing_store->is_shared(), "v8_ArrayBuffer_New", "Cannot construct ArrayBuffer with a BackingStore of SharedArrayBuffer"); i::Handle<i::JSArrayBuffer> obj = i_isolate->factory()->NewJSArrayBuffer(std::move(i_backing_store)); return Utils::ToLocal(obj); } std::unique_ptr<v8::BackingStore> v8::ArrayBuffer::NewBackingStore( Isolate* isolate, size_t byte_length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, ArrayBuffer, NewBackingStore); CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); std::unique_ptr<i::BackingStoreBase> backing_store = i::BackingStore::Allocate(i_isolate, byte_length, i::SharedFlag::kNotShared, i::InitializedFlag::kZeroInitialized); if (!backing_store) { i::FatalProcessOutOfMemory(i_isolate, "v8::ArrayBuffer::NewBackingStore"); } return std::unique_ptr<v8::BackingStore>( static_cast<v8::BackingStore*>(backing_store.release())); } std::unique_ptr<v8::BackingStore> v8::ArrayBuffer::NewBackingStore( void* data, size_t byte_length, v8::BackingStore::DeleterCallback deleter, void* deleter_data) { CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength); std::unique_ptr<i::BackingStoreBase> backing_store = i::BackingStore::WrapAllocation(data, byte_length, deleter, deleter_data, i::SharedFlag::kNotShared); return std::unique_ptr<v8::BackingStore>( static_cast<v8::BackingStore*>(backing_store.release())); } Local<ArrayBuffer> v8::ArrayBufferView::Buffer() { i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this); i::Handle<i::JSArrayBuffer> buffer; if (obj->IsJSDataView()) { i::Handle<i::JSDataView> data_view(i::JSDataView::cast(*obj), obj->GetIsolate()); DCHECK(data_view->buffer().IsJSArrayBuffer()); buffer = i::handle(i::JSArrayBuffer::cast(data_view->buffer()), data_view->GetIsolate()); } else { DCHECK(obj->IsJSTypedArray()); buffer = i::JSTypedArray::cast(*obj).GetBuffer(); } return Utils::ToLocal(buffer); } size_t v8::ArrayBufferView::CopyContents(void* dest, size_t byte_length) { i::Handle<i::JSArrayBufferView> self = Utils::OpenHandle(this); size_t byte_offset = self->byte_offset(); size_t bytes_to_copy = i::Min(byte_length, self->byte_length()); if (bytes_to_copy) { i::DisallowHeapAllocation no_gc; i::Isolate* isolate = self->GetIsolate(); i::Handle<i::JSArrayBuffer> buffer(i::JSArrayBuffer::cast(self->buffer()), isolate); const char* source = reinterpret_cast<char*>(buffer->backing_store()); if (source == nullptr) { DCHECK(self->IsJSTypedArray()); i::Handle<i::JSTypedArray> typed_array(i::JSTypedArray::cast(*self), isolate); source = reinterpret_cast<char*>(typed_array->DataPtr()); } memcpy(dest, source + byte_offset, bytes_to_copy); } return bytes_to_copy; } bool v8::ArrayBufferView::HasBuffer() const { i::Handle<i::JSArrayBufferView> self = Utils::OpenHandle(this); if (!self->IsJSTypedArray()) return true; auto typed_array = i::Handle<i::JSTypedArray>::cast(self); return !typed_array->is_on_heap(); } size_t v8::ArrayBufferView::ByteOffset() { i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this); return obj->WasDetached() ? 0 : obj->byte_offset(); } size_t v8::ArrayBufferView::ByteLength() { i::Handle<i::JSArrayBufferView> obj = Utils::OpenHandle(this); return obj->WasDetached() ? 0 : obj->byte_length(); } size_t v8::TypedArray::Length() { i::Handle<i::JSTypedArray> obj = Utils::OpenHandle(this); return obj->WasDetached() ? 0 : obj->length(); } static_assert( v8::TypedArray::kMaxLength == i::JSTypedArray::kMaxLength, "v8::TypedArray::kMaxLength must match i::JSTypedArray::kMaxLength"); #define TYPED_ARRAY_NEW(Type, type, TYPE, ctype) \ Local<Type##Array> Type##Array::New(Local<ArrayBuffer> array_buffer, \ size_t byte_offset, size_t length) { \ i::Isolate* isolate = Utils::OpenHandle(*array_buffer)->GetIsolate(); \ LOG_API(isolate, Type##Array, New); \ ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); \ if (!Utils::ApiCheck(length <= kMaxLength, \ "v8::" #Type \ "Array::New(Local<ArrayBuffer>, size_t, size_t)", \ "length exceeds max allowed value")) { \ return Local<Type##Array>(); \ } \ i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*array_buffer); \ i::Handle<i::JSTypedArray> obj = isolate->factory()->NewJSTypedArray( \ i::kExternal##Type##Array, buffer, byte_offset, length); \ return Utils::ToLocal##Type##Array(obj); \ } \ Local<Type##Array> Type##Array::New( \ Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, \ size_t length) { \ CHECK(i::FLAG_harmony_sharedarraybuffer); \ i::Isolate* isolate = \ Utils::OpenHandle(*shared_array_buffer)->GetIsolate(); \ LOG_API(isolate, Type##Array, New); \ ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); \ if (!Utils::ApiCheck( \ length <= kMaxLength, \ "v8::" #Type \ "Array::New(Local<SharedArrayBuffer>, size_t, size_t)", \ "length exceeds max allowed value")) { \ return Local<Type##Array>(); \ } \ i::Handle<i::JSArrayBuffer> buffer = \ Utils::OpenHandle(*shared_array_buffer); \ i::Handle<i::JSTypedArray> obj = isolate->factory()->NewJSTypedArray( \ i::kExternal##Type##Array, buffer, byte_offset, length); \ return Utils::ToLocal##Type##Array(obj); \ } TYPED_ARRAYS(TYPED_ARRAY_NEW) #undef TYPED_ARRAY_NEW Local<DataView> DataView::New(Local<ArrayBuffer> array_buffer, size_t byte_offset, size_t byte_length) { i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*array_buffer); i::Isolate* isolate = buffer->GetIsolate(); LOG_API(isolate, DataView, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::Handle<i::JSDataView> obj = isolate->factory()->NewJSDataView(buffer, byte_offset, byte_length); return Utils::ToLocal(obj); } Local<DataView> DataView::New(Local<SharedArrayBuffer> shared_array_buffer, size_t byte_offset, size_t byte_length) { CHECK(i::FLAG_harmony_sharedarraybuffer); i::Handle<i::JSArrayBuffer> buffer = Utils::OpenHandle(*shared_array_buffer); i::Isolate* isolate = buffer->GetIsolate(); LOG_API(isolate, DataView, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::Handle<i::JSDataView> obj = isolate->factory()->NewJSDataView(buffer, byte_offset, byte_length); return Utils::ToLocal(obj); } namespace { i::Handle<i::JSArrayBuffer> SetupSharedArrayBuffer( Isolate* isolate, void* data, size_t byte_length, ArrayBufferCreationMode mode) { CHECK(i::FLAG_harmony_sharedarraybuffer); // Embedders must guarantee that the external backing store is valid. CHECK(byte_length == 0 || data != nullptr); i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, SharedArrayBuffer, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); std::shared_ptr<i::BackingStore> backing_store = LookupOrCreateBackingStore( i_isolate, data, byte_length, i::SharedFlag::kShared, mode); i::Handle<i::JSArrayBuffer> obj = i_isolate->factory()->NewJSSharedArrayBuffer(std::move(backing_store)); if (mode == ArrayBufferCreationMode::kExternalized) { obj->set_is_external(true); } return obj; } } // namespace bool v8::SharedArrayBuffer::IsExternal() const { return Utils::OpenHandle(this)->is_external(); } v8::SharedArrayBuffer::Contents::Contents( void* data, size_t byte_length, void* allocation_base, size_t allocation_length, Allocator::AllocationMode allocation_mode, DeleterCallback deleter, void* deleter_data) : data_(data), byte_length_(byte_length), allocation_base_(allocation_base), allocation_length_(allocation_length), allocation_mode_(allocation_mode), deleter_(deleter), deleter_data_(deleter_data) { DCHECK_LE(allocation_base_, data_); DCHECK_LE(byte_length_, allocation_length_); } v8::SharedArrayBuffer::Contents v8::SharedArrayBuffer::Externalize() { return GetContents(true); } void v8::SharedArrayBuffer::Externalize( const std::shared_ptr<BackingStore>& backing_store) { i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this); Utils::ApiCheck(!self->is_external(), "v8_SharedArrayBuffer_Externalize", "SharedArrayBuffer already externalized"); self->set_is_external(true); DCHECK_EQ(self->backing_store(), backing_store->Data()); } v8::SharedArrayBuffer::Contents v8::SharedArrayBuffer::GetContents() { return GetContents(false); } v8::SharedArrayBuffer::Contents v8::SharedArrayBuffer::GetContents( bool externalize) { // TODO(titzer): reduce duplication between shared/unshared GetContents() using BufferType = v8::SharedArrayBuffer; i::Handle<i::JSArrayBuffer> self = Utils::OpenHandle(this); std::shared_ptr<i::BackingStore> backing_store = self->GetBackingStore(); void* deleter_data = nullptr; if (externalize) { Utils::ApiCheck(!self->is_external(), "v8_SharedArrayBuffer_Externalize", "SharedArrayBuffer already externalized"); self->set_is_external(true); // When externalizing, upref the shared pointer to the backing store // and store that as the deleter data. When the embedder calls the deleter // callback, we will delete the additional (on-heap) shared_ptr. deleter_data = MakeDeleterData(backing_store); } if (!backing_store) { // If the array buffer has zero length or was detached, return empty // contents. DCHECK_EQ(0, self->byte_length()); BufferType::Contents contents( nullptr, 0, nullptr, 0, v8::ArrayBuffer::Allocator::AllocationMode::kNormal, BackingStoreDeleter, deleter_data); return contents; } // Backing stores that given to the embedder might be passed back through // the API using only the start of the buffer. We need to find such // backing stores using global registration until the API is changed. i::GlobalBackingStoreRegistry::Register(backing_store); auto allocation_mode = backing_store->is_wasm_memory() ? v8::ArrayBuffer::Allocator::AllocationMode::kReservation : v8::ArrayBuffer::Allocator::AllocationMode::kNormal; BufferType::Contents contents(backing_store->buffer_start(), // -- backing_store->byte_length(), // -- backing_store->buffer_start(), // -- backing_store->byte_length(), // -- allocation_mode, // -- BackingStoreDeleter, // -- deleter_data); return contents; } size_t v8::SharedArrayBuffer::ByteLength() const { i::Handle<i::JSArrayBuffer> obj = Utils::OpenHandle(this); return obj->byte_length(); } Local<SharedArrayBuffer> v8::SharedArrayBuffer::New(Isolate* isolate, size_t byte_length) { CHECK(i::FLAG_harmony_sharedarraybuffer); i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, SharedArrayBuffer, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); std::unique_ptr<i::BackingStore> backing_store = i::BackingStore::Allocate(i_isolate, byte_length, i::SharedFlag::kShared, i::InitializedFlag::kZeroInitialized); if (!backing_store) { // TODO(jbroman): It may be useful in the future to provide a MaybeLocal // version that throws an exception or otherwise does not crash. i::FatalProcessOutOfMemory(i_isolate, "v8::SharedArrayBuffer::New"); } i::Handle<i::JSArrayBuffer> obj = i_isolate->factory()->NewJSSharedArrayBuffer(std::move(backing_store)); return Utils::ToLocalShared(obj); } Local<SharedArrayBuffer> v8::SharedArrayBuffer::New( Isolate* isolate, void* data, size_t byte_length, ArrayBufferCreationMode mode) { i::Handle<i::JSArrayBuffer> buffer = SetupSharedArrayBuffer(isolate, data, byte_length, mode); return Utils::ToLocalShared(buffer); } Local<SharedArrayBuffer> v8::SharedArrayBuffer::New( Isolate* isolate, std::shared_ptr<BackingStore> backing_store) { CHECK(i::FLAG_harmony_sharedarraybuffer); CHECK_IMPLIES(backing_store->ByteLength() != 0, backing_store->Data() != nullptr); i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, SharedArrayBuffer, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); std::shared_ptr<i::BackingStore> i_backing_store(ToInternal(backing_store)); Utils::ApiCheck( i_backing_store->is_shared(), "v8_SharedArrayBuffer_New", "Cannot construct SharedArrayBuffer with BackingStore of ArrayBuffer"); i::Handle<i::JSArrayBuffer> obj = i_isolate->factory()->NewJSSharedArrayBuffer(std::move(i_backing_store)); return Utils::ToLocalShared(obj); } Local<SharedArrayBuffer> v8::SharedArrayBuffer::New( Isolate* isolate, const SharedArrayBuffer::Contents& contents, ArrayBufferCreationMode mode) { i::Handle<i::JSArrayBuffer> buffer = SetupSharedArrayBuffer( isolate, contents.Data(), contents.ByteLength(), mode); return Utils::ToLocalShared(buffer); } std::unique_ptr<v8::BackingStore> v8::SharedArrayBuffer::NewBackingStore( Isolate* isolate, size_t byte_length) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, SharedArrayBuffer, NewBackingStore); CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); std::unique_ptr<i::BackingStoreBase> backing_store = i::BackingStore::Allocate(i_isolate, byte_length, i::SharedFlag::kShared, i::InitializedFlag::kZeroInitialized); if (!backing_store) { i::FatalProcessOutOfMemory(i_isolate, "v8::SharedArrayBuffer::NewBackingStore"); } return std::unique_ptr<v8::BackingStore>( static_cast<v8::BackingStore*>(backing_store.release())); } std::unique_ptr<v8::BackingStore> v8::SharedArrayBuffer::NewBackingStore( void* data, size_t byte_length, v8::BackingStore::DeleterCallback deleter, void* deleter_data) { CHECK_LE(byte_length, i::JSArrayBuffer::kMaxByteLength); std::unique_ptr<i::BackingStoreBase> backing_store = i::BackingStore::WrapAllocation(data, byte_length, deleter, deleter_data, i::SharedFlag::kShared); return std::unique_ptr<v8::BackingStore>( static_cast<v8::BackingStore*>(backing_store.release())); } Local<Symbol> v8::Symbol::New(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, Symbol, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::Handle<i::Symbol> result = i_isolate->factory()->NewSymbol(); if (!name.IsEmpty()) result->set_description(*Utils::OpenHandle(*name)); return Utils::ToLocal(result); } Local<Symbol> v8::Symbol::For(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::String> i_name = Utils::OpenHandle(*name); return Utils::ToLocal( i_isolate->SymbolFor(i::RootIndex::kPublicSymbolTable, i_name, false)); } Local<Symbol> v8::Symbol::ForApi(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::String> i_name = Utils::OpenHandle(*name); return Utils::ToLocal( i_isolate->SymbolFor(i::RootIndex::kApiSymbolTable, i_name, false)); } #define WELL_KNOWN_SYMBOLS(V) \ V(AsyncIterator, async_iterator) \ V(HasInstance, has_instance) \ V(IsConcatSpreadable, is_concat_spreadable) \ V(Iterator, iterator) \ V(Match, match) \ V(Replace, replace) \ V(Search, search) \ V(Split, split) \ V(ToPrimitive, to_primitive) \ V(ToStringTag, to_string_tag) \ V(Unscopables, unscopables) #define SYMBOL_GETTER(Name, name) \ Local<Symbol> v8::Symbol::Get##Name(Isolate* isolate) { \ i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); \ return Utils::ToLocal(i_isolate->factory()->name##_symbol()); \ } WELL_KNOWN_SYMBOLS(SYMBOL_GETTER) #undef SYMBOL_GETTER #undef WELL_KNOWN_SYMBOLS Local<Private> v8::Private::New(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, Private, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::Handle<i::Symbol> symbol = i_isolate->factory()->NewPrivateSymbol(); if (!name.IsEmpty()) symbol->set_description(*Utils::OpenHandle(*name)); Local<Symbol> result = Utils::ToLocal(symbol); return v8::Local<Private>(reinterpret_cast<Private*>(*result)); } Local<Private> v8::Private::ForApi(Isolate* isolate, Local<String> name) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::String> i_name = Utils::OpenHandle(*name); Local<Symbol> result = Utils::ToLocal( i_isolate->SymbolFor(i::RootIndex::kApiPrivateSymbolTable, i_name, true)); return v8::Local<Private>(reinterpret_cast<Private*>(*result)); } Local<Number> v8::Number::New(Isolate* isolate, double value) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); if (std::isnan(value)) { // Introduce only canonical NaN value into the VM, to avoid signaling NaNs. value = std::numeric_limits<double>::quiet_NaN(); } ENTER_V8_NO_SCRIPT_NO_EXCEPTION(internal_isolate); i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value); return Utils::NumberToLocal(result); } Local<Integer> v8::Integer::New(Isolate* isolate, int32_t value) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); if (i::Smi::IsValid(value)) { return Utils::IntegerToLocal( i::Handle<i::Object>(i::Smi::FromInt(value), internal_isolate)); } ENTER_V8_NO_SCRIPT_NO_EXCEPTION(internal_isolate); i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value); return Utils::IntegerToLocal(result); } Local<Integer> v8::Integer::NewFromUnsigned(Isolate* isolate, uint32_t value) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); bool fits_into_int32_t = (value & (1 << 31)) == 0; if (fits_into_int32_t) { return Integer::New(isolate, static_cast<int32_t>(value)); } ENTER_V8_NO_SCRIPT_NO_EXCEPTION(internal_isolate); i::Handle<i::Object> result = internal_isolate->factory()->NewNumber(value); return Utils::IntegerToLocal(result); } Local<BigInt> v8::BigInt::New(Isolate* isolate, int64_t value) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(internal_isolate); i::Handle<i::BigInt> result = i::BigInt::FromInt64(internal_isolate, value); return Utils::ToLocal(result); } Local<BigInt> v8::BigInt::NewFromUnsigned(Isolate* isolate, uint64_t value) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(internal_isolate); i::Handle<i::BigInt> result = i::BigInt::FromUint64(internal_isolate, value); return Utils::ToLocal(result); } MaybeLocal<BigInt> v8::BigInt::NewFromWords(Local<Context> context, int sign_bit, int word_count, const uint64_t* words) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); ENTER_V8_NO_SCRIPT(isolate, context, BigInt, NewFromWords, MaybeLocal<BigInt>(), InternalEscapableScope); i::MaybeHandle<i::BigInt> result = i::BigInt::FromWords64(isolate, sign_bit, word_count, words); has_pending_exception = result.is_null(); RETURN_ON_FAILED_EXECUTION(BigInt); RETURN_ESCAPED(Utils::ToLocal(result.ToHandleChecked())); } uint64_t v8::BigInt::Uint64Value(bool* lossless) const { i::Handle<i::BigInt> handle = Utils::OpenHandle(this); return handle->AsUint64(lossless); } int64_t v8::BigInt::Int64Value(bool* lossless) const { i::Handle<i::BigInt> handle = Utils::OpenHandle(this); return handle->AsInt64(lossless); } int BigInt::WordCount() const { i::Handle<i::BigInt> handle = Utils::OpenHandle(this); return handle->Words64Count(); } void BigInt::ToWordsArray(int* sign_bit, int* word_count, uint64_t* words) const { i::Handle<i::BigInt> handle = Utils::OpenHandle(this); return handle->ToWordsArray64(sign_bit, word_count, words); } void Isolate::ReportExternalAllocationLimitReached() { i::Heap* heap = reinterpret_cast<i::Isolate*>(this)->heap(); if (heap->gc_state() != i::Heap::NOT_IN_GC) return; heap->ReportExternalMemoryPressure(); } HeapProfiler* Isolate::GetHeapProfiler() { i::HeapProfiler* heap_profiler = reinterpret_cast<i::Isolate*>(this)->heap_profiler(); return reinterpret_cast<HeapProfiler*>(heap_profiler); } void Isolate::SetIdle(bool is_idle) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetIdle(is_idle); } ArrayBuffer::Allocator* Isolate::GetArrayBufferAllocator() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->array_buffer_allocator(); } bool Isolate::InContext() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return !isolate->context().is_null(); } void Isolate::ClearKeptObjects() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->ClearKeptObjects(); } v8::Local<v8::Context> Isolate::GetCurrentContext() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Context context = isolate->context(); if (context.is_null()) return Local<Context>(); i::Context native_context = context.native_context(); if (native_context.is_null()) return Local<Context>(); return Utils::ToLocal(i::Handle<i::Context>(native_context, isolate)); } v8::Local<v8::Context> Isolate::GetEnteredContext() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Handle<i::Object> last = isolate->handle_scope_implementer()->LastEnteredContext(); if (last.is_null()) return Local<Context>(); return Utils::ToLocal(i::Handle<i::Context>::cast(last)); } v8::Local<v8::Context> Isolate::GetEnteredOrMicrotaskContext() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Handle<i::Object> last = isolate->handle_scope_implementer()->LastEnteredOrMicrotaskContext(); if (last.is_null()) return Local<Context>(); DCHECK(last->IsNativeContext()); return Utils::ToLocal(i::Handle<i::Context>::cast(last)); } v8::Local<v8::Context> Isolate::GetIncumbentContext() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Handle<i::Context> context = isolate->GetIncumbentContext(); return Utils::ToLocal(context); } v8::Local<Value> Isolate::ThrowException(v8::Local<v8::Value> value) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); ENTER_V8_DO_NOT_USE(isolate); // If we're passed an empty handle, we throw an undefined exception // to deal more gracefully with out of memory situations. if (value.IsEmpty()) { isolate->ScheduleThrow(i::ReadOnlyRoots(isolate).undefined_value()); } else { isolate->ScheduleThrow(*Utils::OpenHandle(*value)); } return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } void Isolate::AddGCPrologueCallback(GCCallbackWithData callback, void* data, GCType gc_type) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->AddGCPrologueCallback(callback, gc_type, data); } void Isolate::RemoveGCPrologueCallback(GCCallbackWithData callback, void* data) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->RemoveGCPrologueCallback(callback, data); } void Isolate::AddGCEpilogueCallback(GCCallbackWithData callback, void* data, GCType gc_type) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->AddGCEpilogueCallback(callback, gc_type, data); } void Isolate::RemoveGCEpilogueCallback(GCCallbackWithData callback, void* data) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->RemoveGCEpilogueCallback(callback, data); } static void CallGCCallbackWithoutData(Isolate* isolate, GCType type, GCCallbackFlags flags, void* data) { reinterpret_cast<Isolate::GCCallback>(data)(isolate, type, flags); } void Isolate::AddGCPrologueCallback(GCCallback callback, GCType gc_type) { void* data = reinterpret_cast<void*>(callback); AddGCPrologueCallback(CallGCCallbackWithoutData, data, gc_type); } void Isolate::RemoveGCPrologueCallback(GCCallback callback) { void* data = reinterpret_cast<void*>(callback); RemoveGCPrologueCallback(CallGCCallbackWithoutData, data); } void Isolate::AddGCEpilogueCallback(GCCallback callback, GCType gc_type) { void* data = reinterpret_cast<void*>(callback); AddGCEpilogueCallback(CallGCCallbackWithoutData, data, gc_type); } void Isolate::RemoveGCEpilogueCallback(GCCallback callback) { void* data = reinterpret_cast<void*>(callback); RemoveGCEpilogueCallback(CallGCCallbackWithoutData, data); } void Isolate::SetEmbedderHeapTracer(EmbedderHeapTracer* tracer) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->SetEmbedderHeapTracer(tracer); } EmbedderHeapTracer* Isolate::GetEmbedderHeapTracer() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->heap()->GetEmbedderHeapTracer(); } void Isolate::SetGetExternallyAllocatedMemoryInBytesCallback( GetExternallyAllocatedMemoryInBytesCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->SetGetExternallyAllocatedMemoryInBytesCallback(callback); } void Isolate::TerminateExecution() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->stack_guard()->RequestTerminateExecution(); } bool Isolate::IsExecutionTerminating() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return IsExecutionTerminatingCheck(isolate); } void Isolate::CancelTerminateExecution() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->stack_guard()->ClearTerminateExecution(); isolate->CancelTerminateExecution(); } void Isolate::RequestInterrupt(InterruptCallback callback, void* data) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->RequestInterrupt(callback, data); } void Isolate::RequestGarbageCollectionForTesting(GarbageCollectionType type) { CHECK(i::FLAG_expose_gc); if (type == kMinorGarbageCollection) { reinterpret_cast<i::Isolate*>(this)->heap()->CollectGarbage( i::NEW_SPACE, i::GarbageCollectionReason::kTesting, kGCCallbackFlagForced); } else { DCHECK_EQ(kFullGarbageCollection, type); reinterpret_cast<i::Isolate*>(this)->heap()->PreciseCollectAllGarbage( i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting, kGCCallbackFlagForced); } } Isolate* Isolate::GetCurrent() { i::Isolate* isolate = i::Isolate::Current(); return reinterpret_cast<Isolate*>(isolate); } // static Isolate* Isolate::Allocate() { return reinterpret_cast<Isolate*>(i::Isolate::New()); } // static // This is separate so that tests can provide a different |isolate|. void Isolate::Initialize(Isolate* isolate, const v8::Isolate::CreateParams& params) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); if (auto allocator = params.array_buffer_allocator_shared) { CHECK(params.array_buffer_allocator == nullptr || params.array_buffer_allocator == allocator.get()); i_isolate->set_array_buffer_allocator(allocator.get()); i_isolate->set_array_buffer_allocator_shared(std::move(allocator)); } else { CHECK_NOT_NULL(params.array_buffer_allocator); i_isolate->set_array_buffer_allocator(params.array_buffer_allocator); } if (params.snapshot_blob != nullptr) { i_isolate->set_snapshot_blob(params.snapshot_blob); } else { i_isolate->set_snapshot_blob(i::Snapshot::DefaultSnapshotBlob()); } auto code_event_handler = params.code_event_handler; #ifdef ENABLE_GDB_JIT_INTERFACE if (code_event_handler == nullptr && i::FLAG_gdbjit) { code_event_handler = i::GDBJITInterface::EventHandler; } #endif // ENABLE_GDB_JIT_INTERFACE if (code_event_handler) { i_isolate->InitializeLoggingAndCounters(); i_isolate->logger()->SetCodeEventHandler(kJitCodeEventDefault, code_event_handler); } if (params.counter_lookup_callback) { isolate->SetCounterFunction(params.counter_lookup_callback); } if (params.create_histogram_callback) { isolate->SetCreateHistogramFunction(params.create_histogram_callback); } if (params.add_histogram_sample_callback) { isolate->SetAddHistogramSampleFunction( params.add_histogram_sample_callback); } i_isolate->set_api_external_references(params.external_references); i_isolate->set_allow_atomics_wait(params.allow_atomics_wait); i_isolate->heap()->ConfigureHeap(params.constraints); if (params.constraints.stack_limit() != nullptr) { uintptr_t limit = reinterpret_cast<uintptr_t>(params.constraints.stack_limit()); i_isolate->stack_guard()->SetStackLimit(limit); } // TODO(jochen): Once we got rid of Isolate::Current(), we can remove this. Isolate::Scope isolate_scope(isolate); if (!i::Snapshot::Initialize(i_isolate)) { // If snapshot data was provided and we failed to deserialize it must // have been corrupted. if (i_isolate->snapshot_blob() != nullptr) { FATAL( "Failed to deserialize the V8 snapshot blob. This can mean that the " "snapshot blob file is corrupted or missing."); } base::ElapsedTimer timer; if (i::FLAG_profile_deserialization) timer.Start(); i_isolate->InitWithoutSnapshot(); if (i::FLAG_profile_deserialization) { double ms = timer.Elapsed().InMillisecondsF(); i::PrintF("[Initializing isolate from scratch took %0.3f ms]\n", ms); } } i_isolate->set_only_terminate_in_safe_scope( params.only_terminate_in_safe_scope); i_isolate->set_embedder_wrapper_type_index( params.embedder_wrapper_type_index); i_isolate->set_embedder_wrapper_object_index( params.embedder_wrapper_object_index); if (!i::V8::GetCurrentPlatform() ->GetForegroundTaskRunner(isolate) ->NonNestableTasksEnabled()) { FATAL( "The current platform's foreground task runner does not have " "non-nestable tasks enabled. The embedder must provide one."); } } Isolate* Isolate::New(const Isolate::CreateParams& params) { Isolate* isolate = Allocate(); Initialize(isolate, params); return isolate; } void Isolate::Dispose() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); if (!Utils::ApiCheck(!isolate->IsInUse(), "v8::Isolate::Dispose()", "Disposing the isolate that is entered by a thread.")) { return; } i::Isolate::Delete(isolate); } void Isolate::DumpAndResetStats() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->DumpAndResetStats(); } void Isolate::DiscardThreadSpecificMetadata() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->DiscardPerThreadDataForThisThread(); } void Isolate::Enter() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->Enter(); } void Isolate::Exit() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->Exit(); } void Isolate::SetAbortOnUncaughtExceptionCallback( AbortOnUncaughtExceptionCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetAbortOnUncaughtExceptionCallback(callback); } void Isolate::SetHostImportModuleDynamicallyCallback( HostImportModuleDynamicallyCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetHostImportModuleDynamicallyCallback(callback); } void Isolate::SetHostInitializeImportMetaObjectCallback( HostInitializeImportMetaObjectCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetHostInitializeImportMetaObjectCallback(callback); } void Isolate::SetPrepareStackTraceCallback(PrepareStackTraceCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetPrepareStackTraceCallback(callback); } Isolate::DisallowJavascriptExecutionScope::DisallowJavascriptExecutionScope( Isolate* isolate, Isolate::DisallowJavascriptExecutionScope::OnFailure on_failure) : on_failure_(on_failure) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); switch (on_failure_) { case CRASH_ON_FAILURE: internal_ = reinterpret_cast<void*>( new i::DisallowJavascriptExecution(i_isolate)); break; case THROW_ON_FAILURE: DCHECK_EQ(THROW_ON_FAILURE, on_failure); internal_ = reinterpret_cast<void*>(new i::ThrowOnJavascriptExecution(i_isolate)); break; case DUMP_ON_FAILURE: internal_ = reinterpret_cast<void*>(new i::DumpOnJavascriptExecution(i_isolate)); break; default: UNREACHABLE(); } } Isolate::DisallowJavascriptExecutionScope::~DisallowJavascriptExecutionScope() { switch (on_failure_) { case CRASH_ON_FAILURE: delete reinterpret_cast<i::DisallowJavascriptExecution*>(internal_); break; case THROW_ON_FAILURE: delete reinterpret_cast<i::ThrowOnJavascriptExecution*>(internal_); break; case DUMP_ON_FAILURE: delete reinterpret_cast<i::DumpOnJavascriptExecution*>(internal_); break; default: UNREACHABLE(); } } Isolate::AllowJavascriptExecutionScope::AllowJavascriptExecutionScope( Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); internal_assert_ = reinterpret_cast<void*>(new i::AllowJavascriptExecution(i_isolate)); internal_throws_ = reinterpret_cast<void*>(new i::NoThrowOnJavascriptExecution(i_isolate)); internal_dump_ = reinterpret_cast<void*>(new i::NoDumpOnJavascriptExecution(i_isolate)); } Isolate::AllowJavascriptExecutionScope::~AllowJavascriptExecutionScope() { delete reinterpret_cast<i::AllowJavascriptExecution*>(internal_assert_); delete reinterpret_cast<i::NoThrowOnJavascriptExecution*>(internal_throws_); delete reinterpret_cast<i::NoDumpOnJavascriptExecution*>(internal_dump_); } Isolate::SuppressMicrotaskExecutionScope::SuppressMicrotaskExecutionScope( Isolate* isolate, MicrotaskQueue* microtask_queue) : isolate_(reinterpret_cast<i::Isolate*>(isolate)), microtask_queue_(microtask_queue ? static_cast<i::MicrotaskQueue*>(microtask_queue) : isolate_->default_microtask_queue()) { isolate_->thread_local_top()->IncrementCallDepth(this); microtask_queue_->IncrementMicrotasksSuppressions(); } Isolate::SuppressMicrotaskExecutionScope::~SuppressMicrotaskExecutionScope() { microtask_queue_->DecrementMicrotasksSuppressions(); isolate_->thread_local_top()->DecrementCallDepth(this); } Isolate::SafeForTerminationScope::SafeForTerminationScope(v8::Isolate* isolate) : isolate_(reinterpret_cast<i::Isolate*>(isolate)), prev_value_(isolate_->next_v8_call_is_safe_for_termination()) { isolate_->set_next_v8_call_is_safe_for_termination(true); } Isolate::SafeForTerminationScope::~SafeForTerminationScope() { isolate_->set_next_v8_call_is_safe_for_termination(prev_value_); } i::Address* Isolate::GetDataFromSnapshotOnce(size_t index) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this); i::FixedArray list = i_isolate->heap()->serialized_objects(); return GetSerializedDataFromFixedArray(i_isolate, list, index); } void Isolate::GetHeapStatistics(HeapStatistics* heap_statistics) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Heap* heap = isolate->heap(); heap_statistics->total_heap_size_ = heap->CommittedMemory(); heap_statistics->total_physical_size_ = heap->CommittedPhysicalMemory(); heap_statistics->total_available_size_ = heap->Available(); heap_statistics->used_heap_size_ = heap->SizeOfObjects(); heap_statistics->total_global_handles_size_ = heap->TotalGlobalHandlesSize(); heap_statistics->used_global_handles_size_ = heap->UsedGlobalHandlesSize(); #ifndef V8_SHARED_RO_HEAP i::ReadOnlySpace* ro_space = heap->read_only_space(); heap_statistics->total_heap_size_ += ro_space->CommittedMemory(); heap_statistics->total_physical_size_ += ro_space->CommittedPhysicalMemory(); heap_statistics->used_heap_size_ += ro_space->Size(); #endif // V8_SHARED_RO_HEAP heap_statistics->total_heap_size_executable_ = heap->CommittedMemoryExecutable(); heap_statistics->heap_size_limit_ = heap->MaxReserved(); // TODO(7424): There is no public API for the {WasmEngine} yet. Once such an // API becomes available we should report the malloced memory separately. For // now we just add the values, thereby over-approximating the peak slightly. heap_statistics->malloced_memory_ = isolate->allocator()->GetCurrentMemoryUsage() + isolate->wasm_engine()->allocator()->GetCurrentMemoryUsage(); heap_statistics->external_memory_ = isolate->heap()->backing_store_bytes(); heap_statistics->peak_malloced_memory_ = isolate->allocator()->GetMaxMemoryUsage() + isolate->wasm_engine()->allocator()->GetMaxMemoryUsage(); heap_statistics->number_of_native_contexts_ = heap->NumberOfNativeContexts(); heap_statistics->number_of_detached_contexts_ = heap->NumberOfDetachedContexts(); heap_statistics->does_zap_garbage_ = heap->ShouldZapGarbage(); } size_t Isolate::NumberOfHeapSpaces() { return i::LAST_SPACE - i::FIRST_SPACE + 1; } bool Isolate::GetHeapSpaceStatistics(HeapSpaceStatistics* space_statistics, size_t index) { if (!space_statistics) return false; if (!i::Heap::IsValidAllocationSpace(static_cast<i::AllocationSpace>(index))) return false; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Heap* heap = isolate->heap(); i::AllocationSpace allocation_space = static_cast<i::AllocationSpace>(index); space_statistics->space_name_ = i::BaseSpace::GetSpaceName(allocation_space); if (allocation_space == i::RO_SPACE) { if (V8_SHARED_RO_HEAP_BOOL) { // RO_SPACE memory is accounted for elsewhere when ReadOnlyHeap is shared. space_statistics->space_size_ = 0; space_statistics->space_used_size_ = 0; space_statistics->space_available_size_ = 0; space_statistics->physical_space_size_ = 0; } else { i::ReadOnlySpace* space = heap->read_only_space(); space_statistics->space_size_ = space->CommittedMemory(); space_statistics->space_used_size_ = space->Size(); space_statistics->space_available_size_ = 0; space_statistics->physical_space_size_ = space->CommittedPhysicalMemory(); } } else { i::Space* space = heap->space(static_cast<int>(index)); space_statistics->space_size_ = space->CommittedMemory(); space_statistics->space_used_size_ = space->SizeOfObjects(); space_statistics->space_available_size_ = space->Available(); space_statistics->physical_space_size_ = space->CommittedPhysicalMemory(); } return true; } size_t Isolate::NumberOfTrackedHeapObjectTypes() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Heap* heap = isolate->heap(); return heap->NumberOfTrackedHeapObjectTypes(); } bool Isolate::GetHeapObjectStatisticsAtLastGC( HeapObjectStatistics* object_statistics, size_t type_index) { if (!object_statistics) return false; if (V8_LIKELY(!i::TracingFlags::is_gc_stats_enabled())) return false; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Heap* heap = isolate->heap(); if (type_index >= heap->NumberOfTrackedHeapObjectTypes()) return false; const char* object_type; const char* object_sub_type; size_t object_count = heap->ObjectCountAtLastGC(type_index); size_t object_size = heap->ObjectSizeAtLastGC(type_index); if (!heap->GetObjectTypeName(type_index, &object_type, &object_sub_type)) { // There should be no objects counted when the type is unknown. DCHECK_EQ(object_count, 0U); DCHECK_EQ(object_size, 0U); return false; } object_statistics->object_type_ = object_type; object_statistics->object_sub_type_ = object_sub_type; object_statistics->object_count_ = object_count; object_statistics->object_size_ = object_size; return true; } bool Isolate::GetHeapCodeAndMetadataStatistics( HeapCodeStatistics* code_statistics) { if (!code_statistics) return false; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->CollectCodeStatistics(); code_statistics->code_and_metadata_size_ = isolate->code_and_metadata_size(); code_statistics->bytecode_and_metadata_size_ = isolate->bytecode_and_metadata_size(); code_statistics->external_script_source_size_ = isolate->external_script_source_size(); return true; } v8::MaybeLocal<v8::Promise> Isolate::MeasureMemory( v8::Local<v8::Context> context, MeasureMemoryMode mode) { return v8::MaybeLocal<v8::Promise>(); } bool Isolate::MeasureMemory(std::unique_ptr<MeasureMemoryDelegate> delegate, MeasureMemoryExecution execution) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->heap()->MeasureMemory(std::move(delegate), execution); } std::unique_ptr<MeasureMemoryDelegate> MeasureMemoryDelegate::Default( Isolate* isolate, Local<Context> context, Local<Promise::Resolver> promise_resolver, MeasureMemoryMode mode) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i::Handle<i::NativeContext> native_context = handle(Utils::OpenHandle(*context)->native_context(), i_isolate); i::Handle<i::JSPromise> js_promise = i::Handle<i::JSPromise>::cast(Utils::OpenHandle(*promise_resolver)); return i_isolate->heap()->MeasureMemoryDelegate(native_context, js_promise, mode); } void Isolate::GetStackSample(const RegisterState& state, void** frames, size_t frames_limit, SampleInfo* sample_info) { RegisterState regs = state; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); if (i::TickSample::GetStackSample(isolate, ®s, i::TickSample::kSkipCEntryFrame, frames, frames_limit, sample_info)) { return; } sample_info->frames_count = 0; sample_info->vm_state = OTHER; sample_info->external_callback_entry = nullptr; } size_t Isolate::NumberOfPhantomHandleResetsSinceLastCall() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->global_handles()->GetAndResetGlobalHandleResetCount(); } void Isolate::SetEventLogger(LogEventCallback that) { // Do not overwrite the event logger if we want to log explicitly. if (i::FLAG_log_internal_timer_events) return; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->set_event_logger(that); } void Isolate::AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback) { if (callback == nullptr) return; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->AddBeforeCallEnteredCallback(callback); } void Isolate::RemoveBeforeCallEnteredCallback( BeforeCallEnteredCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->RemoveBeforeCallEnteredCallback(callback); } void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) { if (callback == nullptr) return; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->AddCallCompletedCallback(callback); } void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->RemoveCallCompletedCallback(callback); } void Isolate::AtomicsWaitWakeHandle::Wake() { reinterpret_cast<i::AtomicsWaitWakeHandle*>(this)->Wake(); } void Isolate::SetAtomicsWaitCallback(AtomicsWaitCallback callback, void* data) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetAtomicsWaitCallback(callback, data); } void Isolate::SetPromiseHook(PromiseHook hook) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetPromiseHook(hook); } void Isolate::SetPromiseRejectCallback(PromiseRejectCallback callback) { if (callback == nullptr) return; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetPromiseRejectCallback(callback); } void Isolate::PerformMicrotaskCheckpoint() { DCHECK_NE(MicrotasksPolicy::kScoped, GetMicrotasksPolicy()); i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->default_microtask_queue()->PerformCheckpoint(this); } void Isolate::EnqueueMicrotask(Local<Function> v8_function) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::Handle<i::JSReceiver> function = Utils::OpenHandle(*v8_function); i::Handle<i::NativeContext> handler_context; if (!i::JSReceiver::GetContextForMicrotask(function).ToHandle( &handler_context)) handler_context = isolate->native_context(); MicrotaskQueue* microtask_queue = handler_context->microtask_queue(); if (microtask_queue) microtask_queue->EnqueueMicrotask(this, v8_function); } void Isolate::EnqueueMicrotask(MicrotaskCallback callback, void* data) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->default_microtask_queue()->EnqueueMicrotask(this, callback, data); } void Isolate::SetMicrotasksPolicy(MicrotasksPolicy policy) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->default_microtask_queue()->set_microtasks_policy(policy); } MicrotasksPolicy Isolate::GetMicrotasksPolicy() const { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(const_cast<Isolate*>(this)); return isolate->default_microtask_queue()->microtasks_policy(); } namespace { void MicrotasksCompletedCallbackAdapter(v8::Isolate* isolate, void* data) { auto callback = reinterpret_cast<void (*)(v8::Isolate*)>(data); callback(isolate); } } // namespace void Isolate::AddMicrotasksCompletedCallback( MicrotasksCompletedCallback callback) { DCHECK(callback); i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->default_microtask_queue()->AddMicrotasksCompletedCallback( &MicrotasksCompletedCallbackAdapter, reinterpret_cast<void*>(callback)); } void Isolate::AddMicrotasksCompletedCallback( MicrotasksCompletedCallbackWithData callback, void* data) { DCHECK(callback); i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->default_microtask_queue()->AddMicrotasksCompletedCallback(callback, data); } void Isolate::RemoveMicrotasksCompletedCallback( MicrotasksCompletedCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->default_microtask_queue()->RemoveMicrotasksCompletedCallback( &MicrotasksCompletedCallbackAdapter, reinterpret_cast<void*>(callback)); } void Isolate::RemoveMicrotasksCompletedCallback( MicrotasksCompletedCallbackWithData callback, void* data) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->default_microtask_queue()->RemoveMicrotasksCompletedCallback( callback, data); } void Isolate::SetUseCounterCallback(UseCounterCallback callback) { reinterpret_cast<i::Isolate*>(this)->SetUseCounterCallback(callback); } void Isolate::SetCounterFunction(CounterLookupCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->counters()->ResetCounterFunction(callback); } void Isolate::SetCreateHistogramFunction(CreateHistogramCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->counters()->ResetCreateHistogramFunction(callback); } void Isolate::SetAddHistogramSampleFunction( AddHistogramSampleCallback callback) { reinterpret_cast<i::Isolate*>(this) ->counters() ->SetAddHistogramSampleFunction(callback); } void Isolate::SetMetricsRecorder( const std::shared_ptr<metrics::Recorder>& metrics_recorder) { reinterpret_cast<i::Isolate*>(this)->metrics_recorder()->SetRecorder( metrics_recorder); } void Isolate::SetAddCrashKeyCallback(AddCrashKeyCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetAddCrashKeyCallback(callback); } bool Isolate::IdleNotificationDeadline(double deadline_in_seconds) { // Returning true tells the caller that it need not // continue to call IdleNotification. i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); if (!i::FLAG_use_idle_notification) return true; return isolate->heap()->IdleNotification(deadline_in_seconds); } void Isolate::LowMemoryNotification() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); { i::HistogramTimerScope idle_notification_scope( isolate->counters()->gc_low_memory_notification()); TRACE_EVENT0("v8", "V8.GCLowMemoryNotification"); isolate->heap()->CollectAllAvailableGarbage( i::GarbageCollectionReason::kLowMemoryNotification); } } int Isolate::ContextDisposedNotification(bool dependant_context) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); if (!dependant_context) { if (!isolate->context().is_null()) { // We left the current context, we can abort all WebAssembly compilations // of that context. // A handle scope for the native context. i::HandleScope handle_scope(isolate); isolate->wasm_engine()->DeleteCompileJobsOnContext( isolate->native_context()); } } // TODO(ahaas): move other non-heap activity out of the heap call. return isolate->heap()->NotifyContextDisposed(dependant_context); } void Isolate::IsolateInForegroundNotification() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->IsolateInForegroundNotification(); } void Isolate::IsolateInBackgroundNotification() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->IsolateInBackgroundNotification(); } void Isolate::MemoryPressureNotification(MemoryPressureLevel level) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); bool on_isolate_thread = v8::Locker::IsActive() ? isolate->thread_manager()->IsLockedByCurrentThread() : i::ThreadId::Current() == isolate->thread_id(); isolate->heap()->MemoryPressureNotification(level, on_isolate_thread); } void Isolate::EnableMemorySavingsMode() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->EnableMemorySavingsMode(); } void Isolate::DisableMemorySavingsMode() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->DisableMemorySavingsMode(); } void Isolate::SetRAILMode(RAILMode rail_mode) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->SetRAILMode(rail_mode); } void Isolate::IncreaseHeapLimitForDebugging() { // No-op. } void Isolate::RestoreOriginalHeapLimit() { // No-op. } bool Isolate::IsHeapLimitIncreasedForDebugging() { return false; } void Isolate::SetJitCodeEventHandler(JitCodeEventOptions options, JitCodeEventHandler event_handler) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); // Ensure that logging is initialized for our isolate. isolate->InitializeLoggingAndCounters(); isolate->logger()->SetCodeEventHandler(options, event_handler); } void Isolate::SetStackLimit(uintptr_t stack_limit) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); CHECK(stack_limit); isolate->stack_guard()->SetStackLimit(stack_limit); } void Isolate::GetCodeRange(void** start, size_t* length_in_bytes) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); const base::AddressRegion& code_range = isolate->heap()->memory_allocator()->code_range(); *start = reinterpret_cast<void*>(code_range.begin()); *length_in_bytes = code_range.size(); } UnwindState Isolate::GetUnwindState() { UnwindState unwind_state; void* code_range_start; GetCodeRange(&code_range_start, &unwind_state.code_range.length_in_bytes); unwind_state.code_range.start = code_range_start; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); unwind_state.embedded_code_range.start = reinterpret_cast<const void*>(isolate->embedded_blob_code()); unwind_state.embedded_code_range.length_in_bytes = isolate->embedded_blob_code_size(); std::array<std::pair<i::Builtins::Name, JSEntryStub*>, 3> entry_stubs = { {{i::Builtins::kJSEntry, &unwind_state.js_entry_stub}, {i::Builtins::kJSConstructEntry, &unwind_state.js_construct_entry_stub}, {i::Builtins::kJSRunMicrotasksEntry, &unwind_state.js_run_microtasks_entry_stub}}}; for (auto& pair : entry_stubs) { i::Code js_entry = isolate->heap()->builtin(pair.first); pair.second->code.start = reinterpret_cast<const void*>(js_entry.InstructionStart()); pair.second->code.length_in_bytes = js_entry.InstructionSize(); } return unwind_state; } JSEntryStubs Isolate::GetJSEntryStubs() { JSEntryStubs entry_stubs; i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); std::array<std::pair<i::Builtins::Name, JSEntryStub*>, 3> stubs = { {{i::Builtins::kJSEntry, &entry_stubs.js_entry_stub}, {i::Builtins::kJSConstructEntry, &entry_stubs.js_construct_entry_stub}, {i::Builtins::kJSRunMicrotasksEntry, &entry_stubs.js_run_microtasks_entry_stub}}}; for (auto& pair : stubs) { i::Code js_entry = isolate->heap()->builtin(pair.first); pair.second->code.start = reinterpret_cast<const void*>(js_entry.InstructionStart()); pair.second->code.length_in_bytes = js_entry.InstructionSize(); } return entry_stubs; } size_t Isolate::CopyCodePages(size_t capacity, MemoryRange* code_pages_out) { #if !defined(V8_TARGET_ARCH_64_BIT) && !defined(V8_TARGET_ARCH_ARM) // Not implemented on other platforms. UNREACHABLE(); #else i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); std::vector<MemoryRange>* code_pages = isolate->GetCodePages(); DCHECK_NOT_NULL(code_pages); // Copy as many elements into the output vector as we can. If the // caller-provided buffer is not big enough, we fill it, and the caller can // provide a bigger one next time. We do it this way because allocation is not // allowed in signal handlers. size_t limit = std::min(capacity, code_pages->size()); for (size_t i = 0; i < limit; i++) { code_pages_out[i] = code_pages->at(i); } return code_pages->size(); #endif } #define CALLBACK_SETTER(ExternalName, Type, InternalName) \ void Isolate::Set##ExternalName(Type callback) { \ i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); \ isolate->set_##InternalName(callback); \ } CALLBACK_SETTER(FatalErrorHandler, FatalErrorCallback, exception_behavior) CALLBACK_SETTER(OOMErrorHandler, OOMErrorCallback, oom_behavior) CALLBACK_SETTER(AllowCodeGenerationFromStringsCallback, AllowCodeGenerationFromStringsCallback, allow_code_gen_callback) CALLBACK_SETTER(ModifyCodeGenerationFromStringsCallback, ModifyCodeGenerationFromStringsCallback, modify_code_gen_callback) CALLBACK_SETTER(AllowWasmCodeGenerationCallback, AllowWasmCodeGenerationCallback, allow_wasm_code_gen_callback) CALLBACK_SETTER(WasmModuleCallback, ExtensionCallback, wasm_module_callback) CALLBACK_SETTER(WasmInstanceCallback, ExtensionCallback, wasm_instance_callback) CALLBACK_SETTER(WasmStreamingCallback, WasmStreamingCallback, wasm_streaming_callback) CALLBACK_SETTER(WasmThreadsEnabledCallback, WasmThreadsEnabledCallback, wasm_threads_enabled_callback) CALLBACK_SETTER(WasmLoadSourceMapCallback, WasmLoadSourceMapCallback, wasm_load_source_map_callback) CALLBACK_SETTER(WasmSimdEnabledCallback, WasmSimdEnabledCallback, wasm_simd_enabled_callback) void Isolate::AddNearHeapLimitCallback(v8::NearHeapLimitCallback callback, void* data) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->AddNearHeapLimitCallback(callback, data); } void Isolate::RemoveNearHeapLimitCallback(v8::NearHeapLimitCallback callback, size_t heap_limit) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->RemoveNearHeapLimitCallback(callback, heap_limit); } void Isolate::AutomaticallyRestoreInitialHeapLimit(double threshold_percent) { DCHECK_GT(threshold_percent, 0.0); DCHECK_LT(threshold_percent, 1.0); i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->AutomaticallyRestoreInitialHeapLimit(threshold_percent); } bool Isolate::IsDead() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->IsDead(); } bool Isolate::AddMessageListener(MessageCallback that, Local<Value> data) { return AddMessageListenerWithErrorLevel(that, kMessageError, data); } bool Isolate::AddMessageListenerWithErrorLevel(MessageCallback that, int message_levels, Local<Value> data) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScope scope(isolate); i::Handle<i::TemplateList> list = isolate->factory()->message_listeners(); i::Handle<i::FixedArray> listener = isolate->factory()->NewFixedArray(3); i::Handle<i::Foreign> foreign = isolate->factory()->NewForeign(FUNCTION_ADDR(that)); listener->set(0, *foreign); listener->set(1, data.IsEmpty() ? i::ReadOnlyRoots(isolate).undefined_value() : *Utils::OpenHandle(*data)); listener->set(2, i::Smi::FromInt(message_levels)); list = i::TemplateList::Add(isolate, list, listener); isolate->heap()->SetMessageListeners(*list); return true; } void Isolate::RemoveMessageListeners(MessageCallback that) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScope scope(isolate); i::DisallowHeapAllocation no_gc; i::TemplateList listeners = isolate->heap()->message_listeners(); for (int i = 0; i < listeners.length(); i++) { if (listeners.get(i).IsUndefined(isolate)) continue; // skip deleted ones i::FixedArray listener = i::FixedArray::cast(listeners.get(i)); i::Foreign callback_obj = i::Foreign::cast(listener.get(0)); if (callback_obj.foreign_address() == FUNCTION_ADDR(that)) { listeners.set(i, i::ReadOnlyRoots(isolate).undefined_value()); } } } void Isolate::SetFailedAccessCheckCallbackFunction( FailedAccessCheckCallback callback) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetFailedAccessCheckCallback(callback); } void Isolate::SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit, StackTrace::StackTraceOptions options) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->SetCaptureStackTraceForUncaughtExceptions(capture, frame_limit, options); } void Isolate::VisitExternalResources(ExternalResourceVisitor* visitor) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->heap()->VisitExternalResources(visitor); } bool Isolate::IsInUse() { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); return isolate->IsInUse(); } void Isolate::VisitHandlesWithClassIds(PersistentHandleVisitor* visitor) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::DisallowHeapAllocation no_allocation; isolate->global_handles()->IterateAllRootsWithClassIds(visitor); } void Isolate::VisitWeakHandles(PersistentHandleVisitor* visitor) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); i::DisallowHeapAllocation no_allocation; isolate->global_handles()->IterateYoungWeakRootsWithClassIds(visitor); } void Isolate::SetAllowAtomicsWait(bool allow) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(this); isolate->set_allow_atomics_wait(allow); } void v8::Isolate::DateTimeConfigurationChangeNotification( TimeZoneDetection time_zone_detection) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this); LOG_API(i_isolate, Isolate, DateTimeConfigurationChangeNotification); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i_isolate->date_cache()->ResetDateCache( static_cast<base::TimezoneCache::TimeZoneDetection>(time_zone_detection)); #ifdef V8_INTL_SUPPORT i_isolate->clear_cached_icu_object( i::Isolate::ICUObjectCacheType::kDefaultSimpleDateFormat); i_isolate->clear_cached_icu_object( i::Isolate::ICUObjectCacheType::kDefaultSimpleDateFormatForTime); i_isolate->clear_cached_icu_object( i::Isolate::ICUObjectCacheType::kDefaultSimpleDateFormatForDate); #endif // V8_INTL_SUPPORT } void v8::Isolate::LocaleConfigurationChangeNotification() { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(this); LOG_API(i_isolate, Isolate, LocaleConfigurationChangeNotification); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); #ifdef V8_INTL_SUPPORT i_isolate->ResetDefaultLocale(); i_isolate->ClearCachedIcuObjects(); #endif // V8_INTL_SUPPORT } // static std::unique_ptr<MicrotaskQueue> MicrotaskQueue::New(Isolate* isolate, MicrotasksPolicy policy) { auto microtask_queue = i::MicrotaskQueue::New(reinterpret_cast<i::Isolate*>(isolate)); microtask_queue->set_microtasks_policy(policy); std::unique_ptr<MicrotaskQueue> ret(std::move(microtask_queue)); return ret; } MicrotasksScope::MicrotasksScope(Isolate* isolate, MicrotasksScope::Type type) : MicrotasksScope(isolate, nullptr, type) {} MicrotasksScope::MicrotasksScope(Isolate* isolate, MicrotaskQueue* microtask_queue, MicrotasksScope::Type type) : isolate_(reinterpret_cast<i::Isolate*>(isolate)), microtask_queue_(microtask_queue ? static_cast<i::MicrotaskQueue*>(microtask_queue) : isolate_->default_microtask_queue()), run_(type == MicrotasksScope::kRunMicrotasks) { if (run_) microtask_queue_->IncrementMicrotasksScopeDepth(); #ifdef DEBUG if (!run_) microtask_queue_->IncrementDebugMicrotasksScopeDepth(); #endif } MicrotasksScope::~MicrotasksScope() { if (run_) { microtask_queue_->DecrementMicrotasksScopeDepth(); if (MicrotasksPolicy::kScoped == microtask_queue_->microtasks_policy() && !isolate_->has_scheduled_exception()) { DCHECK_IMPLIES(isolate_->has_scheduled_exception(), isolate_->scheduled_exception() == i::ReadOnlyRoots(isolate_).termination_exception()); microtask_queue_->PerformCheckpoint(reinterpret_cast<Isolate*>(isolate_)); } } #ifdef DEBUG if (!run_) microtask_queue_->DecrementDebugMicrotasksScopeDepth(); #endif } void MicrotasksScope::PerformCheckpoint(Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); auto* microtask_queue = isolate->default_microtask_queue(); microtask_queue->PerformCheckpoint(v8_isolate); } int MicrotasksScope::GetCurrentDepth(Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); auto* microtask_queue = isolate->default_microtask_queue(); return microtask_queue->GetMicrotasksScopeDepth(); } bool MicrotasksScope::IsRunningMicrotasks(Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); auto* microtask_queue = isolate->default_microtask_queue(); return microtask_queue->IsRunningMicrotasks(); } String::Utf8Value::Utf8Value(v8::Isolate* isolate, v8::Local<v8::Value> obj) : str_(nullptr), length_(0) { if (obj.IsEmpty()) return; i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8_DO_NOT_USE(i_isolate); i::HandleScope scope(i_isolate); Local<Context> context = isolate->GetCurrentContext(); TryCatch try_catch(isolate); Local<String> str; if (!obj->ToString(context).ToLocal(&str)) return; length_ = str->Utf8Length(isolate); str_ = i::NewArray<char>(length_ + 1); str->WriteUtf8(isolate, str_); } String::Utf8Value::~Utf8Value() { i::DeleteArray(str_); } String::Value::Value(v8::Isolate* isolate, v8::Local<v8::Value> obj) : str_(nullptr), length_(0) { if (obj.IsEmpty()) return; i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8_DO_NOT_USE(i_isolate); i::HandleScope scope(i_isolate); Local<Context> context = isolate->GetCurrentContext(); TryCatch try_catch(isolate); Local<String> str; if (!obj->ToString(context).ToLocal(&str)) return; length_ = str->Length(); str_ = i::NewArray<uint16_t>(length_ + 1); str->Write(isolate, str_); } String::Value::~Value() { i::DeleteArray(str_); } #define DEFINE_ERROR(NAME, name) \ Local<Value> Exception::NAME(v8::Local<v8::String> raw_message) { \ i::Isolate* isolate = i::Isolate::Current(); \ LOG_API(isolate, NAME, New); \ ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); \ i::Object error; \ { \ i::HandleScope scope(isolate); \ i::Handle<i::String> message = Utils::OpenHandle(*raw_message); \ i::Handle<i::JSFunction> constructor = isolate->name##_function(); \ error = *isolate->factory()->NewError(constructor, message); \ } \ i::Handle<i::Object> result(error, isolate); \ return Utils::ToLocal(result); \ } DEFINE_ERROR(RangeError, range_error) DEFINE_ERROR(ReferenceError, reference_error) DEFINE_ERROR(SyntaxError, syntax_error) DEFINE_ERROR(TypeError, type_error) DEFINE_ERROR(WasmCompileError, wasm_compile_error) DEFINE_ERROR(WasmLinkError, wasm_link_error) DEFINE_ERROR(WasmRuntimeError, wasm_runtime_error) DEFINE_ERROR(Error, error) #undef DEFINE_ERROR Local<Message> Exception::CreateMessage(Isolate* isolate, Local<Value> exception) { i::Handle<i::Object> obj = Utils::OpenHandle(*exception); i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::HandleScope scope(i_isolate); return Utils::MessageToLocal( scope.CloseAndEscape(i_isolate->CreateMessage(obj, nullptr))); } Local<StackTrace> Exception::GetStackTrace(Local<Value> exception) { i::Handle<i::Object> obj = Utils::OpenHandle(*exception); if (!obj->IsJSObject()) return Local<StackTrace>(); i::Handle<i::JSObject> js_obj = i::Handle<i::JSObject>::cast(obj); i::Isolate* isolate = js_obj->GetIsolate(); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); return Utils::StackTraceToLocal(isolate->GetDetailedStackTrace(js_obj)); } // --- D e b u g S u p p o r t --- void debug::SetContextId(Local<Context> context, int id) { Utils::OpenHandle(*context)->set_debug_context_id(i::Smi::FromInt(id)); } int debug::GetContextId(Local<Context> context) { i::Object value = Utils::OpenHandle(*context)->debug_context_id(); return (value.IsSmi()) ? i::Smi::ToInt(value) : 0; } void debug::SetInspector(Isolate* isolate, v8_inspector::V8Inspector* inspector) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); i_isolate->set_inspector(inspector); } v8_inspector::V8Inspector* debug::GetInspector(Isolate* isolate) { return reinterpret_cast<i::Isolate*>(isolate)->inspector(); } void debug::SetBreakOnNextFunctionCall(Isolate* isolate) { reinterpret_cast<i::Isolate*>(isolate)->debug()->SetBreakOnNextFunctionCall(); } void debug::ClearBreakOnNextFunctionCall(Isolate* isolate) { reinterpret_cast<i::Isolate*>(isolate) ->debug() ->ClearBreakOnNextFunctionCall(); } MaybeLocal<Array> debug::GetInternalProperties(Isolate* v8_isolate, Local<Value> value) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::Handle<i::Object> val = Utils::OpenHandle(*value); i::Handle<i::JSArray> result; if (!i::Runtime::GetInternalProperties(isolate, val).ToHandle(&result)) return MaybeLocal<Array>(); return Utils::ToLocal(result); } namespace { void CollectPrivateMethodsAndAccessorsFromContext( i::Isolate* isolate, i::Handle<i::Context> context, i::IsStaticFlag is_static_flag, std::vector<Local<Value>>* names_out, std::vector<Local<Value>>* values_out) { i::Handle<i::ScopeInfo> scope_info(context->scope_info(), isolate); int local_count = scope_info->ContextLocalCount(); for (int j = 0; j < local_count; ++j) { i::VariableMode mode = scope_info->ContextLocalMode(j); i::IsStaticFlag flag = scope_info->ContextLocalIsStaticFlag(j); if (!i::IsPrivateMethodOrAccessorVariableMode(mode) || flag != is_static_flag) { continue; } i::Handle<i::String> name(scope_info->ContextLocalName(j), isolate); int context_index = scope_info->ContextHeaderLength() + j; i::Handle<i::Object> slot_value(context->get(context_index), isolate); DCHECK_IMPLIES(mode == i::VariableMode::kPrivateMethod, slot_value->IsJSFunction()); DCHECK_IMPLIES(mode != i::VariableMode::kPrivateMethod, slot_value->IsAccessorPair()); names_out->push_back(Utils::ToLocal(name)); values_out->push_back(Utils::ToLocal(slot_value)); } } } // anonymous namespace bool debug::GetPrivateMembers(Local<Context> context, Local<Object> value, std::vector<Local<Value>>* names_out, std::vector<Local<Value>>* values_out) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(context->GetIsolate()); LOG_API(isolate, debug, GetPrivateMembers); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::Handle<i::JSReceiver> receiver = Utils::OpenHandle(*value); i::Handle<i::JSArray> names; i::Handle<i::FixedArray> values; i::PropertyFilter key_filter = static_cast<i::PropertyFilter>(i::PropertyFilter::PRIVATE_NAMES_ONLY); i::Handle<i::FixedArray> keys; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, keys, i::KeyAccumulator::GetKeys(receiver, i::KeyCollectionMode::kOwnOnly, key_filter, i::GetKeysConversion::kConvertToString), false); // Estimate number of private fields and private instance methods/accessors. int private_entries_count = 0; for (int i = 0; i < keys->length(); ++i) { // Exclude the private brand symbols. i::Handle<i::Symbol> key(i::Symbol::cast(keys->get(i)), isolate); if (key->is_private_brand()) { i::Handle<i::Object> value; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, value, i::Object::GetProperty(isolate, receiver, key), false); i::Handle<i::Context> context(i::Context::cast(*value), isolate); i::Handle<i::ScopeInfo> scope_info(context->scope_info(), isolate); // At least one slot contains the brand symbol so it does not count. private_entries_count += (scope_info->ContextLocalCount() - 1); } else { private_entries_count++; } } // Estimate number of static private methods/accessors for classes. bool has_static_private_methods_or_accessors = false; if (receiver->IsJSFunction()) { i::Handle<i::JSFunction> func(i::JSFunction::cast(*receiver), isolate); i::Handle<i::SharedFunctionInfo> shared(func->shared(), isolate); if (shared->is_class_constructor() && shared->has_static_private_methods_or_accessors()) { has_static_private_methods_or_accessors = true; i::Handle<i::Context> context(func->context(), isolate); i::Handle<i::ScopeInfo> scope_info(context->scope_info(), isolate); int local_count = scope_info->ContextLocalCount(); for (int j = 0; j < local_count; ++j) { i::VariableMode mode = scope_info->ContextLocalMode(j); i::IsStaticFlag is_static_flag = scope_info->ContextLocalIsStaticFlag(j); if (i::IsPrivateMethodOrAccessorVariableMode(mode) && is_static_flag == i::IsStaticFlag::kStatic) { private_entries_count += local_count; break; } } } } DCHECK(names_out->empty()); names_out->reserve(private_entries_count); DCHECK(values_out->empty()); values_out->reserve(private_entries_count); if (has_static_private_methods_or_accessors) { i::Handle<i::Context> context(i::JSFunction::cast(*receiver).context(), isolate); CollectPrivateMethodsAndAccessorsFromContext( isolate, context, i::IsStaticFlag::kStatic, names_out, values_out); } for (int i = 0; i < keys->length(); ++i) { i::Handle<i::Object> obj_key(keys->get(i), isolate); i::Handle<i::Symbol> key(i::Symbol::cast(*obj_key), isolate); CHECK(key->is_private_name()); i::Handle<i::Object> value; ASSIGN_RETURN_ON_EXCEPTION_VALUE( isolate, value, i::Object::GetProperty(isolate, receiver, key), false); if (key->is_private_brand()) { DCHECK(value->IsContext()); i::Handle<i::Context> context(i::Context::cast(*value), isolate); CollectPrivateMethodsAndAccessorsFromContext( isolate, context, i::IsStaticFlag::kNotStatic, names_out, values_out); } else { // Private fields i::Handle<i::String> name( i::String::cast(i::Symbol::cast(*key).description()), isolate); names_out->push_back(Utils::ToLocal(name)); values_out->push_back(Utils::ToLocal(value)); } } DCHECK_EQ(names_out->size(), values_out->size()); DCHECK_LE(names_out->size(), private_entries_count); return true; } Local<Context> debug::GetCreationContext(Local<Object> value) { i::Handle<i::Object> val = Utils::OpenHandle(*value); if (val->IsJSGlobalProxy()) { return Local<Context>(); } return value->CreationContext(); } void debug::ChangeBreakOnException(Isolate* isolate, ExceptionBreakState type) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); internal_isolate->debug()->ChangeBreakOnException( i::BreakException, type == BreakOnAnyException); internal_isolate->debug()->ChangeBreakOnException(i::BreakUncaughtException, type != NoBreakOnException); } void debug::SetBreakPointsActive(Isolate* v8_isolate, bool is_active) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); isolate->debug()->set_break_points_active(is_active); } void debug::PrepareStep(Isolate* v8_isolate, StepAction action) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8_DO_NOT_USE(isolate); CHECK(isolate->debug()->CheckExecutionState()); // Clear all current stepping setup. isolate->debug()->ClearStepping(); // Prepare step. isolate->debug()->PrepareStep(static_cast<i::StepAction>(action)); } void debug::ClearStepping(Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); // Clear all current stepping setup. isolate->debug()->ClearStepping(); } void debug::BreakRightNow(Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8_DO_NOT_USE(isolate); isolate->debug()->HandleDebugBreak(i::kIgnoreIfAllFramesBlackboxed); } void debug::SetTerminateOnResume(Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); isolate->debug()->SetTerminateOnResume(); } bool debug::AllFramesOnStackAreBlackboxed(Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8_DO_NOT_USE(isolate); return isolate->debug()->AllFramesOnStackAreBlackboxed(); } v8::Isolate* debug::Script::GetIsolate() const { return reinterpret_cast<v8::Isolate*>(Utils::OpenHandle(this)->GetIsolate()); } ScriptOriginOptions debug::Script::OriginOptions() const { return Utils::OpenHandle(this)->origin_options(); } bool debug::Script::WasCompiled() const { return Utils::OpenHandle(this)->compilation_state() == i::Script::COMPILATION_STATE_COMPILED; } bool debug::Script::IsEmbedded() const { i::Handle<i::Script> script = Utils::OpenHandle(this); return script->context_data() == script->GetReadOnlyRoots().uninitialized_symbol(); } int debug::Script::Id() const { return Utils::OpenHandle(this)->id(); } int debug::Script::LineOffset() const { return Utils::OpenHandle(this)->line_offset(); } int debug::Script::ColumnOffset() const { return Utils::OpenHandle(this)->column_offset(); } std::vector<int> debug::Script::LineEnds() const { i::Handle<i::Script> script = Utils::OpenHandle(this); if (script->type() == i::Script::TYPE_WASM) return std::vector<int>(); i::Isolate* isolate = script->GetIsolate(); i::HandleScope scope(isolate); i::Script::InitLineEnds(isolate, script); CHECK(script->line_ends().IsFixedArray()); i::Handle<i::FixedArray> line_ends(i::FixedArray::cast(script->line_ends()), isolate); std::vector<int> result(line_ends->length()); for (int i = 0; i < line_ends->length(); ++i) { i::Smi line_end = i::Smi::cast(line_ends->get(i)); result[i] = line_end.value(); } return result; } MaybeLocal<String> debug::Script::Name() const { i::Handle<i::Script> script = Utils::OpenHandle(this); i::Isolate* isolate = script->GetIsolate(); i::HandleScope handle_scope(isolate); i::Handle<i::Object> value(script->name(), isolate); if (!value->IsString()) return MaybeLocal<String>(); return Utils::ToLocal( handle_scope.CloseAndEscape(i::Handle<i::String>::cast(value))); } MaybeLocal<String> debug::Script::SourceURL() const { i::Handle<i::Script> script = Utils::OpenHandle(this); i::Isolate* isolate = script->GetIsolate(); i::HandleScope handle_scope(isolate); i::Handle<i::Object> value(script->source_url(), isolate); if (!value->IsString()) return MaybeLocal<String>(); return Utils::ToLocal( handle_scope.CloseAndEscape(i::Handle<i::String>::cast(value))); } MaybeLocal<String> debug::Script::SourceMappingURL() const { i::Handle<i::Script> script = Utils::OpenHandle(this); i::Isolate* isolate = script->GetIsolate(); i::HandleScope handle_scope(isolate); i::Handle<i::Object> value(script->source_mapping_url(), isolate); if (!value->IsString()) return MaybeLocal<String>(); return Utils::ToLocal( handle_scope.CloseAndEscape(i::Handle<i::String>::cast(value))); } Maybe<int> debug::Script::ContextId() const { i::Handle<i::Script> script = Utils::OpenHandle(this); i::Isolate* isolate = script->GetIsolate(); i::HandleScope handle_scope(isolate); i::Object value = script->context_data(); if (value.IsSmi()) return Just(i::Smi::ToInt(value)); return Nothing<int>(); } MaybeLocal<String> debug::Script::Source() const { i::Handle<i::Script> script = Utils::OpenHandle(this); i::Isolate* isolate = script->GetIsolate(); i::HandleScope handle_scope(isolate); i::Handle<i::Object> value(script->source(), isolate); if (!value->IsString()) return MaybeLocal<String>(); return Utils::ToLocal( handle_scope.CloseAndEscape(i::Handle<i::String>::cast(value))); } bool debug::Script::IsWasm() const { return Utils::OpenHandle(this)->type() == i::Script::TYPE_WASM; } bool debug::Script::IsModule() const { return Utils::OpenHandle(this)->origin_options().IsModule(); } namespace { int GetSmiValue(i::Handle<i::FixedArray> array, int index) { return i::Smi::ToInt(array->get(index)); } bool CompareBreakLocation(const i::BreakLocation& loc1, const i::BreakLocation& loc2) { return loc1.position() < loc2.position(); } } // namespace bool debug::Script::GetPossibleBreakpoints( const debug::Location& start, const debug::Location& end, bool restrict_to_function, std::vector<debug::BreakLocation>* locations) const { CHECK(!start.IsEmpty()); i::Handle<i::Script> script = Utils::OpenHandle(this); if (script->type() == i::Script::TYPE_WASM) { i::wasm::NativeModule* native_module = script->wasm_native_module(); return i::WasmScript::GetPossibleBreakpoints(native_module, start, end, locations); } i::Isolate* isolate = script->GetIsolate(); i::Script::InitLineEnds(isolate, script); CHECK(script->line_ends().IsFixedArray()); i::Handle<i::FixedArray> line_ends = i::Handle<i::FixedArray>::cast(i::handle(script->line_ends(), isolate)); CHECK(line_ends->length()); int start_offset = GetSourceOffset(start); int end_offset = end.IsEmpty() ? GetSmiValue(line_ends, line_ends->length() - 1) + 1 : GetSourceOffset(end); if (start_offset >= end_offset) return true; std::vector<i::BreakLocation> v8_locations; if (!isolate->debug()->GetPossibleBreakpoints( script, start_offset, end_offset, restrict_to_function, &v8_locations)) { return false; } std::sort(v8_locations.begin(), v8_locations.end(), CompareBreakLocation); int current_line_end_index = 0; for (const auto& v8_location : v8_locations) { int offset = v8_location.position(); while (offset > GetSmiValue(line_ends, current_line_end_index)) { ++current_line_end_index; CHECK(current_line_end_index < line_ends->length()); } int line_offset = 0; if (current_line_end_index > 0) { line_offset = GetSmiValue(line_ends, current_line_end_index - 1) + 1; } locations->emplace_back( current_line_end_index + script->line_offset(), offset - line_offset + (current_line_end_index == 0 ? script->column_offset() : 0), v8_location.type()); } return true; } int debug::Script::GetSourceOffset(const debug::Location& location) const { i::Handle<i::Script> script = Utils::OpenHandle(this); if (script->type() == i::Script::TYPE_WASM) { DCHECK_EQ(0, location.GetLineNumber()); return location.GetColumnNumber(); } int line = std::max(location.GetLineNumber() - script->line_offset(), 0); int column = location.GetColumnNumber(); if (line == 0) { column = std::max(0, column - script->column_offset()); } i::Script::InitLineEnds(script->GetIsolate(), script); CHECK(script->line_ends().IsFixedArray()); i::Handle<i::FixedArray> line_ends = i::Handle<i::FixedArray>::cast( i::handle(script->line_ends(), script->GetIsolate())); CHECK(line_ends->length()); if (line >= line_ends->length()) return GetSmiValue(line_ends, line_ends->length() - 1); int line_offset = GetSmiValue(line_ends, line); if (line == 0) return std::min(column, line_offset); int prev_line_offset = GetSmiValue(line_ends, line - 1); return std::min(prev_line_offset + column + 1, line_offset); } v8::debug::Location debug::Script::GetSourceLocation(int offset) const { i::Handle<i::Script> script = Utils::OpenHandle(this); i::Script::PositionInfo info; i::Script::GetPositionInfo(script, offset, &info, i::Script::WITH_OFFSET); return debug::Location(info.line, info.column); } bool debug::Script::SetScriptSource(v8::Local<v8::String> newSource, bool preview, debug::LiveEditResult* result) const { i::Handle<i::Script> script = Utils::OpenHandle(this); i::Isolate* isolate = script->GetIsolate(); return isolate->debug()->SetScriptSource( script, Utils::OpenHandle(*newSource), preview, result); } bool debug::Script::SetBreakpoint(v8::Local<v8::String> condition, debug::Location* location, debug::BreakpointId* id) const { i::Handle<i::Script> script = Utils::OpenHandle(this); i::Isolate* isolate = script->GetIsolate(); int offset = GetSourceOffset(*location); if (!isolate->debug()->SetBreakPointForScript( script, Utils::OpenHandle(*condition), &offset, id)) { return false; } *location = GetSourceLocation(offset); return true; } bool debug::Script::SetBreakpointOnScriptEntry(BreakpointId* id) const { i::Handle<i::Script> script = Utils::OpenHandle(this); i::Isolate* isolate = script->GetIsolate(); i::SharedFunctionInfo::ScriptIterator it(isolate, *script); for (i::SharedFunctionInfo sfi = it.Next(); !sfi.is_null(); sfi = it.Next()) { if (sfi.is_toplevel()) { return isolate->debug()->SetBreakpointForFunction( handle(sfi, isolate), isolate->factory()->empty_string(), id); } } return false; } void debug::Script::RemoveWasmBreakpoint(debug::BreakpointId id) { i::Handle<i::Script> script = Utils::OpenHandle(this); i::Isolate* isolate = script->GetIsolate(); isolate->debug()->RemoveBreakpointForWasmScript(script, id); } void debug::RemoveBreakpoint(Isolate* v8_isolate, BreakpointId id) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); i::HandleScope handle_scope(isolate); isolate->debug()->RemoveBreakpoint(id); } v8::Platform* debug::GetCurrentPlatform() { return i::V8::GetCurrentPlatform(); } debug::WasmScript* debug::WasmScript::Cast(debug::Script* script) { CHECK(script->IsWasm()); return static_cast<WasmScript*>(script); } debug::WasmScript::DebugSymbolsType debug::WasmScript::GetDebugSymbolType() const { i::Handle<i::Script> script = Utils::OpenHandle(this); DCHECK_EQ(i::Script::TYPE_WASM, script->type()); switch (script->wasm_native_module()->module()->debug_symbols.type) { case i::wasm::WasmDebugSymbols::Type::None: return debug::WasmScript::DebugSymbolsType::None; case i::wasm::WasmDebugSymbols::Type::EmbeddedDWARF: return debug::WasmScript::DebugSymbolsType::EmbeddedDWARF; case i::wasm::WasmDebugSymbols::Type::ExternalDWARF: return debug::WasmScript::DebugSymbolsType::ExternalDWARF; case i::wasm::WasmDebugSymbols::Type::SourceMap: return debug::WasmScript::DebugSymbolsType::SourceMap; } } MemorySpan<const char> debug::WasmScript::ExternalSymbolsURL() const { i::Handle<i::Script> script = Utils::OpenHandle(this); DCHECK_EQ(i::Script::TYPE_WASM, script->type()); const i::wasm::WasmDebugSymbols& symbols = script->wasm_native_module()->module()->debug_symbols; if (symbols.external_url.is_empty()) return {}; internal::wasm::ModuleWireBytes wire_bytes( script->wasm_native_module()->wire_bytes()); i::wasm::WasmName external_url = wire_bytes.GetNameOrNull(symbols.external_url); return {external_url.data(), external_url.size()}; } int debug::WasmScript::NumFunctions() const { i::DisallowHeapAllocation no_gc; i::Handle<i::Script> script = Utils::OpenHandle(this); DCHECK_EQ(i::Script::TYPE_WASM, script->type()); i::wasm::NativeModule* native_module = script->wasm_native_module(); const i::wasm::WasmModule* module = native_module->module(); DCHECK_GE(i::kMaxInt, module->functions.size()); return static_cast<int>(module->functions.size()); } int debug::WasmScript::NumImportedFunctions() const { i::DisallowHeapAllocation no_gc; i::Handle<i::Script> script = Utils::OpenHandle(this); DCHECK_EQ(i::Script::TYPE_WASM, script->type()); i::wasm::NativeModule* native_module = script->wasm_native_module(); const i::wasm::WasmModule* module = native_module->module(); DCHECK_GE(i::kMaxInt, module->num_imported_functions); return static_cast<int>(module->num_imported_functions); } MemorySpan<const uint8_t> debug::WasmScript::Bytecode() const { i::Handle<i::Script> script = Utils::OpenHandle(this); i::Vector<const uint8_t> wire_bytes = script->wasm_native_module()->wire_bytes(); return {wire_bytes.begin(), wire_bytes.size()}; } std::pair<int, int> debug::WasmScript::GetFunctionRange( int function_index) const { i::DisallowHeapAllocation no_gc; i::Handle<i::Script> script = Utils::OpenHandle(this); DCHECK_EQ(i::Script::TYPE_WASM, script->type()); i::wasm::NativeModule* native_module = script->wasm_native_module(); const i::wasm::WasmModule* module = native_module->module(); DCHECK_LE(0, function_index); DCHECK_GT(module->functions.size(), function_index); const i::wasm::WasmFunction& func = module->functions[function_index]; DCHECK_GE(i::kMaxInt, func.code.offset()); DCHECK_GE(i::kMaxInt, func.code.end_offset()); return std::make_pair(static_cast<int>(func.code.offset()), static_cast<int>(func.code.end_offset())); } int debug::WasmScript::GetContainingFunction(int byte_offset) const { i::DisallowHeapAllocation no_gc; i::Handle<i::Script> script = Utils::OpenHandle(this); DCHECK_EQ(i::Script::TYPE_WASM, script->type()); i::wasm::NativeModule* native_module = script->wasm_native_module(); const i::wasm::WasmModule* module = native_module->module(); DCHECK_LE(0, byte_offset); return i::wasm::GetContainingWasmFunction(module, byte_offset); } uint32_t debug::WasmScript::GetFunctionHash(int function_index) { i::DisallowHeapAllocation no_gc; i::Handle<i::Script> script = Utils::OpenHandle(this); DCHECK_EQ(i::Script::TYPE_WASM, script->type()); i::wasm::NativeModule* native_module = script->wasm_native_module(); const i::wasm::WasmModule* module = native_module->module(); DCHECK_LE(0, function_index); DCHECK_GT(module->functions.size(), function_index); const i::wasm::WasmFunction& func = module->functions[function_index]; i::wasm::ModuleWireBytes wire_bytes(native_module->wire_bytes()); i::Vector<const i::byte> function_bytes = wire_bytes.GetFunctionBytes(&func); // TODO(herhut): Maybe also take module, name and signature into account. return i::StringHasher::HashSequentialString(function_bytes.begin(), function_bytes.length(), 0); } int debug::WasmScript::CodeOffset() const { i::Handle<i::Script> script = Utils::OpenHandle(this); DCHECK_EQ(i::Script::TYPE_WASM, script->type()); i::wasm::NativeModule* native_module = script->wasm_native_module(); const i::wasm::WasmModule* module = native_module->module(); return module->code.offset(); } debug::Location::Location(int line_number, int column_number) : line_number_(line_number), column_number_(column_number), is_empty_(false) {} debug::Location::Location() : line_number_(v8::Function::kLineOffsetNotFound), column_number_(v8::Function::kLineOffsetNotFound), is_empty_(true) {} int debug::Location::GetLineNumber() const { DCHECK(!IsEmpty()); return line_number_; } int debug::Location::GetColumnNumber() const { DCHECK(!IsEmpty()); return column_number_; } bool debug::Location::IsEmpty() const { return is_empty_; } void debug::GetLoadedScripts(v8::Isolate* v8_isolate, PersistentValueVector<debug::Script>& scripts) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); { i::DisallowHeapAllocation no_gc; i::Script::Iterator iterator(isolate); for (i::Script script = iterator.Next(); !script.is_null(); script = iterator.Next()) { if (script.type() == i::Script::TYPE_NORMAL || script.type() == i::Script::TYPE_WASM) { if (script.HasValidSource()) { i::HandleScope handle_scope(isolate); i::Handle<i::Script> script_handle(script, isolate); scripts.Append(ToApiHandle<Script>(script_handle)); } } } } } MaybeLocal<UnboundScript> debug::CompileInspectorScript(Isolate* v8_isolate, Local<String> source) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); PREPARE_FOR_DEBUG_INTERFACE_EXECUTION_WITH_ISOLATE(isolate, UnboundScript); i::Handle<i::String> str = Utils::OpenHandle(*source); i::Handle<i::SharedFunctionInfo> result; { ScriptOriginOptions origin_options; i::ScriptData* script_data = nullptr; i::MaybeHandle<i::SharedFunctionInfo> maybe_function_info = i::Compiler::GetSharedFunctionInfoForScript( isolate, str, i::Compiler::ScriptDetails(), origin_options, nullptr, script_data, ScriptCompiler::kNoCompileOptions, ScriptCompiler::kNoCacheBecauseInspector, i::FLAG_expose_inspector_scripts ? i::NOT_NATIVES_CODE : i::INSPECTOR_CODE); has_pending_exception = !maybe_function_info.ToHandle(&result); RETURN_ON_FAILED_EXECUTION(UnboundScript); } RETURN_ESCAPED(ToApiHandle<UnboundScript>(result)); } void debug::TierDownAllModulesPerIsolate(Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); isolate->wasm_engine()->TierDownAllModulesPerIsolate(isolate); } void debug::TierUpAllModulesPerIsolate(Isolate* v8_isolate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); isolate->wasm_engine()->TierUpAllModulesPerIsolate(isolate); } void debug::SetDebugDelegate(Isolate* v8_isolate, debug::DebugDelegate* delegate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); isolate->debug()->SetDebugDelegate(delegate); } void debug::SetAsyncEventDelegate(Isolate* v8_isolate, debug::AsyncEventDelegate* delegate) { reinterpret_cast<i::Isolate*>(v8_isolate)->set_async_event_delegate(delegate); } void debug::ResetBlackboxedStateCache(Isolate* v8_isolate, v8::Local<debug::Script> script) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::DisallowHeapAllocation no_gc; i::SharedFunctionInfo::ScriptIterator iter(isolate, *Utils::OpenHandle(*script)); for (i::SharedFunctionInfo info = iter.Next(); !info.is_null(); info = iter.Next()) { if (info.HasDebugInfo()) { info.GetDebugInfo().set_computed_debug_is_blackboxed(false); } } } int debug::EstimatedValueSize(Isolate* v8_isolate, v8::Local<v8::Value> value) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::Handle<i::Object> object = Utils::OpenHandle(*value); if (object->IsSmi()) return i::kTaggedSize; CHECK(object->IsHeapObject()); return i::Handle<i::HeapObject>::cast(object)->Size(); } v8::MaybeLocal<v8::Array> v8::Object::PreviewEntries(bool* is_key_value) { if (IsMap()) { *is_key_value = true; return Map::Cast(this)->AsArray(); } if (IsSet()) { *is_key_value = false; return Set::Cast(this)->AsArray(); } i::Handle<i::JSReceiver> object = Utils::OpenHandle(this); i::Isolate* isolate = object->GetIsolate(); Isolate* v8_isolate = reinterpret_cast<Isolate*>(isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); if (object->IsJSWeakCollection()) { *is_key_value = object->IsJSWeakMap(); return Utils::ToLocal(i::JSWeakCollection::GetEntries( i::Handle<i::JSWeakCollection>::cast(object), 0)); } if (object->IsJSMapIterator()) { i::Handle<i::JSMapIterator> it = i::Handle<i::JSMapIterator>::cast(object); MapAsArrayKind const kind = static_cast<MapAsArrayKind>(it->map().instance_type()); *is_key_value = kind == MapAsArrayKind::kEntries; if (!it->HasMore()) return v8::Array::New(v8_isolate); return Utils::ToLocal( MapAsArray(isolate, it->table(), i::Smi::ToInt(it->index()), kind)); } if (object->IsJSSetIterator()) { i::Handle<i::JSSetIterator> it = i::Handle<i::JSSetIterator>::cast(object); SetAsArrayKind const kind = static_cast<SetAsArrayKind>(it->map().instance_type()); *is_key_value = kind == SetAsArrayKind::kEntries; if (!it->HasMore()) return v8::Array::New(v8_isolate); return Utils::ToLocal( SetAsArray(isolate, it->table(), i::Smi::ToInt(it->index()), kind)); } return v8::MaybeLocal<v8::Array>(); } Local<Function> debug::GetBuiltin(Isolate* v8_isolate, Builtin builtin) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); i::HandleScope handle_scope(isolate); i::Builtins::Name builtin_id; switch (builtin) { case kStringToLowerCase: builtin_id = i::Builtins::kStringPrototypeToLocaleLowerCase; break; default: UNREACHABLE(); } i::Handle<i::String> name = isolate->factory()->empty_string(); i::NewFunctionArgs args = i::NewFunctionArgs::ForBuiltinWithoutPrototype( name, builtin_id, i::LanguageMode::kStrict); i::Handle<i::JSFunction> fun = isolate->factory()->NewFunction(args); fun->shared().set_internal_formal_parameter_count(0); fun->shared().set_length(0); return Utils::ToLocal(handle_scope.CloseAndEscape(fun)); } void debug::SetConsoleDelegate(Isolate* v8_isolate, ConsoleDelegate* delegate) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); isolate->set_console_delegate(delegate); } debug::ConsoleCallArguments::ConsoleCallArguments( const v8::FunctionCallbackInfo<v8::Value>& info) : v8::FunctionCallbackInfo<v8::Value>(nullptr, info.values_, info.length_) { } debug::ConsoleCallArguments::ConsoleCallArguments( const internal::BuiltinArguments& args) : v8::FunctionCallbackInfo<v8::Value>( nullptr, // Drop the first argument (receiver, i.e. the "console" object). args.length() > 1 ? args.address_of_first_argument() : nullptr, args.length() - 1) {} int debug::GetStackFrameId(v8::Local<v8::StackFrame> frame) { return Utils::OpenHandle(*frame)->id(); } v8::Local<v8::StackTrace> debug::GetDetailedStackTrace( Isolate* v8_isolate, v8::Local<v8::Object> v8_error) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); i::Handle<i::JSReceiver> error = Utils::OpenHandle(*v8_error); if (!error->IsJSObject()) { return v8::Local<v8::StackTrace>(); } i::Handle<i::FixedArray> stack_trace = isolate->GetDetailedStackTrace(i::Handle<i::JSObject>::cast(error)); return Utils::StackTraceToLocal(stack_trace); } MaybeLocal<debug::Script> debug::GeneratorObject::Script() { i::Handle<i::JSGeneratorObject> obj = Utils::OpenHandle(this); i::Object maybe_script = obj->function().shared().script(); if (!maybe_script.IsScript()) return MaybeLocal<debug::Script>(); i::Handle<i::Script> script(i::Script::cast(maybe_script), obj->GetIsolate()); return ToApiHandle<debug::Script>(script); } Local<Function> debug::GeneratorObject::Function() { i::Handle<i::JSGeneratorObject> obj = Utils::OpenHandle(this); return Utils::ToLocal(handle(obj->function(), obj->GetIsolate())); } debug::Location debug::GeneratorObject::SuspendedLocation() { i::Handle<i::JSGeneratorObject> obj = Utils::OpenHandle(this); CHECK(obj->is_suspended()); i::Object maybe_script = obj->function().shared().script(); if (!maybe_script.IsScript()) return debug::Location(); i::Isolate* isolate = obj->GetIsolate(); i::Handle<i::Script> script(i::Script::cast(maybe_script), isolate); i::Script::PositionInfo info; i::SharedFunctionInfo::EnsureSourcePositionsAvailable( isolate, i::handle(obj->function().shared(), isolate)); i::Script::GetPositionInfo(script, obj->source_position(), &info, i::Script::WITH_OFFSET); return debug::Location(info.line, info.column); } bool debug::GeneratorObject::IsSuspended() { return Utils::OpenHandle(this)->is_suspended(); } v8::Local<debug::GeneratorObject> debug::GeneratorObject::Cast( v8::Local<v8::Value> value) { CHECK(value->IsGeneratorObject()); return ToApiHandle<debug::GeneratorObject>(Utils::OpenHandle(*value)); } MaybeLocal<v8::Value> debug::EvaluateGlobal(v8::Isolate* isolate, v8::Local<v8::String> source, EvaluateGlobalMode mode, bool repl) { i::Isolate* internal_isolate = reinterpret_cast<i::Isolate*>(isolate); PREPARE_FOR_DEBUG_INTERFACE_EXECUTION_WITH_ISOLATE(internal_isolate, Value); i::REPLMode repl_mode = repl ? i::REPLMode::kYes : i::REPLMode::kNo; Local<Value> result; has_pending_exception = !ToLocal<Value>( i::DebugEvaluate::Global(internal_isolate, Utils::OpenHandle(*source), mode, repl_mode), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } void debug::QueryObjects(v8::Local<v8::Context> v8_context, QueryObjectPredicate* predicate, PersistentValueVector<v8::Object>* objects) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_context->GetIsolate()); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(isolate); isolate->heap_profiler()->QueryObjects(Utils::OpenHandle(*v8_context), predicate, objects); } void debug::GlobalLexicalScopeNames( v8::Local<v8::Context> v8_context, v8::PersistentValueVector<v8::String>* names) { i::Handle<i::Context> context = Utils::OpenHandle(*v8_context); i::Isolate* isolate = context->GetIsolate(); i::Handle<i::ScriptContextTable> table( context->global_object().native_context().script_context_table(), isolate); for (int i = 0; i < table->synchronized_used(); i++) { i::Handle<i::Context> context = i::ScriptContextTable::GetContext(isolate, table, i); DCHECK(context->IsScriptContext()); i::Handle<i::ScopeInfo> scope_info(context->scope_info(), isolate); int local_count = scope_info->ContextLocalCount(); for (int j = 0; j < local_count; ++j) { i::String name = scope_info->ContextLocalName(j); if (i::ScopeInfo::VariableIsSynthetic(name)) continue; names->Append(Utils::ToLocal(handle(name, isolate))); } } } void debug::SetReturnValue(v8::Isolate* v8_isolate, v8::Local<v8::Value> value) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(v8_isolate); isolate->debug()->set_return_value(*Utils::OpenHandle(*value)); } int64_t debug::GetNextRandomInt64(v8::Isolate* v8_isolate) { return reinterpret_cast<i::Isolate*>(v8_isolate) ->random_number_generator() ->NextInt64(); } int debug::GetDebuggingId(v8::Local<v8::Function> function) { i::Handle<i::JSReceiver> callable = v8::Utils::OpenHandle(*function); if (!callable->IsJSFunction()) return i::DebugInfo::kNoDebuggingId; i::Handle<i::JSFunction> func = i::Handle<i::JSFunction>::cast(callable); int id = func->GetIsolate()->debug()->GetFunctionDebuggingId(func); DCHECK_NE(i::DebugInfo::kNoDebuggingId, id); return id; } bool debug::SetFunctionBreakpoint(v8::Local<v8::Function> function, v8::Local<v8::String> condition, BreakpointId* id) { i::Handle<i::JSReceiver> callable = Utils::OpenHandle(*function); if (!callable->IsJSFunction()) return false; i::Handle<i::JSFunction> jsfunction = i::Handle<i::JSFunction>::cast(callable); i::Isolate* isolate = jsfunction->GetIsolate(); i::Handle<i::String> condition_string = condition.IsEmpty() ? isolate->factory()->empty_string() : Utils::OpenHandle(*condition); return isolate->debug()->SetBreakpointForFunction( handle(jsfunction->shared(), isolate), condition_string, id); } debug::PostponeInterruptsScope::PostponeInterruptsScope(v8::Isolate* isolate) : scope_( new i::PostponeInterruptsScope(reinterpret_cast<i::Isolate*>(isolate), i::StackGuard::API_INTERRUPT)) {} debug::PostponeInterruptsScope::~PostponeInterruptsScope() = default; Local<String> CpuProfileNode::GetFunctionName() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); i::Isolate* isolate = node->isolate(); const i::CodeEntry* entry = node->entry(); i::Handle<i::String> name = isolate->factory()->InternalizeUtf8String(entry->name()); return ToApiHandle<String>(name); } int debug::Coverage::BlockData::StartOffset() const { return block_->start; } int debug::Coverage::BlockData::EndOffset() const { return block_->end; } uint32_t debug::Coverage::BlockData::Count() const { return block_->count; } int debug::Coverage::FunctionData::StartOffset() const { return function_->start; } int debug::Coverage::FunctionData::EndOffset() const { return function_->end; } uint32_t debug::Coverage::FunctionData::Count() const { return function_->count; } MaybeLocal<String> debug::Coverage::FunctionData::Name() const { return ToApiHandle<String>(function_->name); } size_t debug::Coverage::FunctionData::BlockCount() const { return function_->blocks.size(); } bool debug::Coverage::FunctionData::HasBlockCoverage() const { return function_->has_block_coverage; } debug::Coverage::BlockData debug::Coverage::FunctionData::GetBlockData( size_t i) const { return BlockData(&function_->blocks.at(i), coverage_); } Local<debug::Script> debug::Coverage::ScriptData::GetScript() const { return ToApiHandle<debug::Script>(script_->script); } size_t debug::Coverage::ScriptData::FunctionCount() const { return script_->functions.size(); } debug::Coverage::FunctionData debug::Coverage::ScriptData::GetFunctionData( size_t i) const { return FunctionData(&script_->functions.at(i), coverage_); } debug::Coverage::ScriptData::ScriptData(size_t index, std::shared_ptr<i::Coverage> coverage) : script_(&coverage->at(index)), coverage_(std::move(coverage)) {} size_t debug::Coverage::ScriptCount() const { return coverage_->size(); } debug::Coverage::ScriptData debug::Coverage::GetScriptData(size_t i) const { return ScriptData(i, coverage_); } debug::Coverage debug::Coverage::CollectPrecise(Isolate* isolate) { return Coverage( i::Coverage::CollectPrecise(reinterpret_cast<i::Isolate*>(isolate))); } debug::Coverage debug::Coverage::CollectBestEffort(Isolate* isolate) { return Coverage( i::Coverage::CollectBestEffort(reinterpret_cast<i::Isolate*>(isolate))); } void debug::Coverage::SelectMode(Isolate* isolate, debug::CoverageMode mode) { i::Coverage::SelectMode(reinterpret_cast<i::Isolate*>(isolate), mode); } int debug::TypeProfile::Entry::SourcePosition() const { return entry_->position; } std::vector<MaybeLocal<String>> debug::TypeProfile::Entry::Types() const { std::vector<MaybeLocal<String>> result; for (const internal::Handle<internal::String>& type : entry_->types) { result.emplace_back(ToApiHandle<String>(type)); } return result; } debug::TypeProfile::ScriptData::ScriptData( size_t index, std::shared_ptr<i::TypeProfile> type_profile) : script_(&type_profile->at(index)), type_profile_(std::move(type_profile)) {} Local<debug::Script> debug::TypeProfile::ScriptData::GetScript() const { return ToApiHandle<debug::Script>(script_->script); } std::vector<debug::TypeProfile::Entry> debug::TypeProfile::ScriptData::Entries() const { std::vector<debug::TypeProfile::Entry> result; for (const internal::TypeProfileEntry& entry : script_->entries) { result.push_back(debug::TypeProfile::Entry(&entry, type_profile_)); } return result; } debug::TypeProfile debug::TypeProfile::Collect(Isolate* isolate) { return TypeProfile( i::TypeProfile::Collect(reinterpret_cast<i::Isolate*>(isolate))); } void debug::TypeProfile::SelectMode(Isolate* isolate, debug::TypeProfileMode mode) { i::TypeProfile::SelectMode(reinterpret_cast<i::Isolate*>(isolate), mode); } size_t debug::TypeProfile::ScriptCount() const { return type_profile_->size(); } debug::TypeProfile::ScriptData debug::TypeProfile::GetScriptData( size_t i) const { return ScriptData(i, type_profile_); } v8::MaybeLocal<v8::Value> debug::WeakMap::Get(v8::Local<v8::Context> context, v8::Local<v8::Value> key) { PREPARE_FOR_EXECUTION(context, WeakMap, Get, Value); auto self = Utils::OpenHandle(this); Local<Value> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key)}; has_pending_exception = !ToLocal<Value>(i::Execution::CallBuiltin(isolate, isolate->weakmap_get(), self, arraysize(argv), argv), &result); RETURN_ON_FAILED_EXECUTION(Value); RETURN_ESCAPED(result); } v8::MaybeLocal<debug::WeakMap> debug::WeakMap::Set( v8::Local<v8::Context> context, v8::Local<v8::Value> key, v8::Local<v8::Value> value) { PREPARE_FOR_EXECUTION(context, WeakMap, Set, WeakMap); auto self = Utils::OpenHandle(this); i::Handle<i::Object> result; i::Handle<i::Object> argv[] = {Utils::OpenHandle(*key), Utils::OpenHandle(*value)}; has_pending_exception = !i::Execution::CallBuiltin(isolate, isolate->weakmap_set(), self, arraysize(argv), argv) .ToHandle(&result); RETURN_ON_FAILED_EXECUTION(WeakMap); RETURN_ESCAPED(Local<WeakMap>::Cast(Utils::ToLocal(result))); } Local<debug::WeakMap> debug::WeakMap::New(v8::Isolate* isolate) { i::Isolate* i_isolate = reinterpret_cast<i::Isolate*>(isolate); LOG_API(i_isolate, WeakMap, New); ENTER_V8_NO_SCRIPT_NO_EXCEPTION(i_isolate); i::Handle<i::JSWeakMap> obj = i_isolate->factory()->NewJSWeakMap(); return ToApiHandle<debug::WeakMap>(obj); } debug::WeakMap* debug::WeakMap::Cast(v8::Value* value) { return static_cast<debug::WeakMap*>(value); } Local<Value> debug::AccessorPair::getter() { i::Handle<i::AccessorPair> accessors = Utils::OpenHandle(this); i::Isolate* isolate = accessors->GetIsolate(); i::Handle<i::Object> getter(accessors->getter(), isolate); return Utils::ToLocal(getter); } Local<Value> debug::AccessorPair::setter() { i::Handle<i::AccessorPair> accessors = Utils::OpenHandle(this); i::Isolate* isolate = accessors->GetIsolate(); i::Handle<i::Object> setter(accessors->setter(), isolate); return Utils::ToLocal(setter); } bool debug::AccessorPair::IsAccessorPair(Local<Value> that) { i::Handle<i::Object> obj = Utils::OpenHandle(*that); return obj->IsAccessorPair(); } int debug::WasmValue::value_type() { i::Handle<i::WasmValue> obj = Utils::OpenHandle(this); return obj->value_type(); } v8::Local<v8::Array> debug::WasmValue::bytes() { i::Handle<i::WasmValue> obj = Utils::OpenHandle(this); DCHECK(i::wasm::ValueType::Kind::kI32 == obj->value_type() || i::wasm::ValueType::Kind::kI64 == obj->value_type() || i::wasm::ValueType::Kind::kF32 == obj->value_type() || i::wasm::ValueType::Kind::kF64 == obj->value_type() || i::wasm::ValueType::Kind::kS128 == obj->value_type()); i::Isolate* isolate = obj->GetIsolate(); i::Handle<i::Object> bytes_or_ref(obj->bytes_or_ref(), isolate); i::Handle<i::ByteArray> bytes(i::Handle<i::ByteArray>::cast(bytes_or_ref)); int length = bytes->length(); i::Handle<i::FixedArray> fa = isolate->factory()->NewFixedArray(length); i::Handle<i::JSArray> arr = obj->GetIsolate()->factory()->NewJSArray( i::PACKED_SMI_ELEMENTS, length, length); i::JSArray::SetContent(arr, fa); for (int i = 0; i < length; i++) { fa->set(i, i::Smi::FromInt(bytes->get(i))); } return Utils::ToLocal(arr); } v8::Local<v8::Value> debug::WasmValue::ref() { i::Handle<i::WasmValue> obj = Utils::OpenHandle(this); DCHECK_EQ(i::wasm::HeapType::kExtern, obj->value_type()); i::Isolate* isolate = obj->GetIsolate(); i::Handle<i::Object> bytes_or_ref(obj->bytes_or_ref(), isolate); return Utils::ToLocal(bytes_or_ref); } bool debug::WasmValue::IsWasmValue(Local<Value> that) { i::Handle<i::Object> obj = Utils::OpenHandle(*that); return obj->IsWasmValue(); } MaybeLocal<Message> debug::GetMessageFromPromise(Local<Promise> p) { i::Handle<i::JSPromise> promise = Utils::OpenHandle(*p); i::Isolate* isolate = promise->GetIsolate(); i::Handle<i::Symbol> key = isolate->factory()->promise_debug_message_symbol(); i::Handle<i::Object> maybeMessage = i::JSReceiver::GetDataProperty(promise, key); if (!maybeMessage->IsJSMessageObject(isolate)) return MaybeLocal<Message>(); return ToApiHandle<Message>( i::Handle<i::JSMessageObject>::cast(maybeMessage)); } const char* CpuProfileNode::GetFunctionNameStr() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); return node->entry()->name(); } int CpuProfileNode::GetScriptId() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); const i::CodeEntry* entry = node->entry(); return entry->script_id(); } Local<String> CpuProfileNode::GetScriptResourceName() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); i::Isolate* isolate = node->isolate(); return ToApiHandle<String>(isolate->factory()->InternalizeUtf8String( node->entry()->resource_name())); } const char* CpuProfileNode::GetScriptResourceNameStr() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); return node->entry()->resource_name(); } bool CpuProfileNode::IsScriptSharedCrossOrigin() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); return node->entry()->is_shared_cross_origin(); } int CpuProfileNode::GetLineNumber() const { return reinterpret_cast<const i::ProfileNode*>(this)->line_number(); } int CpuProfileNode::GetColumnNumber() const { return reinterpret_cast<const i::ProfileNode*>(this) ->entry() ->column_number(); } unsigned int CpuProfileNode::GetHitLineCount() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); return node->GetHitLineCount(); } bool CpuProfileNode::GetLineTicks(LineTick* entries, unsigned int length) const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); return node->GetLineTicks(entries, length); } const char* CpuProfileNode::GetBailoutReason() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); return node->entry()->bailout_reason(); } unsigned CpuProfileNode::GetHitCount() const { return reinterpret_cast<const i::ProfileNode*>(this)->self_ticks(); } unsigned CpuProfileNode::GetNodeId() const { return reinterpret_cast<const i::ProfileNode*>(this)->id(); } CpuProfileNode::SourceType CpuProfileNode::GetSourceType() const { return reinterpret_cast<const i::ProfileNode*>(this)->source_type(); } int CpuProfileNode::GetChildrenCount() const { return static_cast<int>( reinterpret_cast<const i::ProfileNode*>(this)->children()->size()); } const CpuProfileNode* CpuProfileNode::GetChild(int index) const { const i::ProfileNode* child = reinterpret_cast<const i::ProfileNode*>(this)->children()->at(index); return reinterpret_cast<const CpuProfileNode*>(child); } const CpuProfileNode* CpuProfileNode::GetParent() const { const i::ProfileNode* parent = reinterpret_cast<const i::ProfileNode*>(this)->parent(); return reinterpret_cast<const CpuProfileNode*>(parent); } const std::vector<CpuProfileDeoptInfo>& CpuProfileNode::GetDeoptInfos() const { const i::ProfileNode* node = reinterpret_cast<const i::ProfileNode*>(this); return node->deopt_infos(); } void CpuProfile::Delete() { i::CpuProfile* profile = reinterpret_cast<i::CpuProfile*>(this); i::CpuProfiler* profiler = profile->cpu_profiler(); DCHECK_NOT_NULL(profiler); profiler->DeleteProfile(profile); } Local<String> CpuProfile::GetTitle() const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); i::Isolate* isolate = profile->top_down()->isolate(); return ToApiHandle<String>( isolate->factory()->InternalizeUtf8String(profile->title())); } const CpuProfileNode* CpuProfile::GetTopDownRoot() const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return reinterpret_cast<const CpuProfileNode*>(profile->top_down()->root()); } const CpuProfileNode* CpuProfile::GetSample(int index) const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return reinterpret_cast<const CpuProfileNode*>(profile->sample(index).node); } int64_t CpuProfile::GetSampleTimestamp(int index) const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return profile->sample(index).timestamp.since_origin().InMicroseconds(); } int64_t CpuProfile::GetStartTime() const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return profile->start_time().since_origin().InMicroseconds(); } int64_t CpuProfile::GetEndTime() const { const i::CpuProfile* profile = reinterpret_cast<const i::CpuProfile*>(this); return profile->end_time().since_origin().InMicroseconds(); } int CpuProfile::GetSamplesCount() const { return reinterpret_cast<const i::CpuProfile*>(this)->samples_count(); } CpuProfiler* CpuProfiler::New(Isolate* isolate, CpuProfilingNamingMode naming_mode, CpuProfilingLoggingMode logging_mode) { return reinterpret_cast<CpuProfiler*>(new i::CpuProfiler( reinterpret_cast<i::Isolate*>(isolate), naming_mode, logging_mode)); } CpuProfilingOptions::CpuProfilingOptions(CpuProfilingMode mode, unsigned max_samples, int sampling_interval_us, MaybeLocal<Context> filter_context) : mode_(mode), max_samples_(max_samples), sampling_interval_us_(sampling_interval_us) { if (!filter_context.IsEmpty()) { Local<Context> local_filter_context = filter_context.ToLocalChecked(); filter_context_.Reset(local_filter_context->GetIsolate(), local_filter_context); } } void* CpuProfilingOptions::raw_filter_context() const { return reinterpret_cast<void*>( i::Context::cast(*Utils::OpenPersistent(filter_context_)) .native_context() .address()); } void CpuProfiler::Dispose() { delete reinterpret_cast<i::CpuProfiler*>(this); } // static void CpuProfiler::CollectSample(Isolate* isolate) { i::CpuProfiler::CollectSample(reinterpret_cast<i::Isolate*>(isolate)); } void CpuProfiler::SetSamplingInterval(int us) { DCHECK_GE(us, 0); return reinterpret_cast<i::CpuProfiler*>(this)->set_sampling_interval( base::TimeDelta::FromMicroseconds(us)); } void CpuProfiler::SetUsePreciseSampling(bool use_precise_sampling) { reinterpret_cast<i::CpuProfiler*>(this)->set_use_precise_sampling( use_precise_sampling); } void CpuProfiler::StartProfiling(Local<String> title, CpuProfilingOptions options) { reinterpret_cast<i::CpuProfiler*>(this)->StartProfiling( *Utils::OpenHandle(*title), options); } void CpuProfiler::StartProfiling(Local<String> title, bool record_samples) { CpuProfilingOptions options( kLeafNodeLineNumbers, record_samples ? CpuProfilingOptions::kNoSampleLimit : 0); reinterpret_cast<i::CpuProfiler*>(this)->StartProfiling( *Utils::OpenHandle(*title), options); } void CpuProfiler::StartProfiling(Local<String> title, CpuProfilingMode mode, bool record_samples, unsigned max_samples) { CpuProfilingOptions options(mode, record_samples ? max_samples : 0); reinterpret_cast<i::CpuProfiler*>(this)->StartProfiling( *Utils::OpenHandle(*title), options); } CpuProfile* CpuProfiler::StopProfiling(Local<String> title) { return reinterpret_cast<CpuProfile*>( reinterpret_cast<i::CpuProfiler*>(this)->StopProfiling( *Utils::OpenHandle(*title))); } void CpuProfiler::UseDetailedSourcePositionsForProfiling(Isolate* isolate) { reinterpret_cast<i::Isolate*>(isolate) ->set_detailed_source_positions_for_profiling(true); } uintptr_t CodeEvent::GetCodeStartAddress() { return reinterpret_cast<i::CodeEvent*>(this)->code_start_address; } size_t CodeEvent::GetCodeSize() { return reinterpret_cast<i::CodeEvent*>(this)->code_size; } Local<String> CodeEvent::GetFunctionName() { return ToApiHandle<String>( reinterpret_cast<i::CodeEvent*>(this)->function_name); } Local<String> CodeEvent::GetScriptName() { return ToApiHandle<String>( reinterpret_cast<i::CodeEvent*>(this)->script_name); } int CodeEvent::GetScriptLine() { return reinterpret_cast<i::CodeEvent*>(this)->script_line; } int CodeEvent::GetScriptColumn() { return reinterpret_cast<i::CodeEvent*>(this)->script_column; } CodeEventType CodeEvent::GetCodeType() { return reinterpret_cast<i::CodeEvent*>(this)->code_type; } const char* CodeEvent::GetComment() { return reinterpret_cast<i::CodeEvent*>(this)->comment; } uintptr_t CodeEvent::GetPreviousCodeStartAddress() { return reinterpret_cast<i::CodeEvent*>(this)->previous_code_start_address; } const char* CodeEvent::GetCodeEventTypeName(CodeEventType code_event_type) { switch (code_event_type) { case kUnknownType: return "Unknown"; #define V(Name) \ case k##Name##Type: \ return #Name; CODE_EVENTS_LIST(V) #undef V } // The execution should never pass here UNREACHABLE(); // NOTE(mmarchini): Workaround to fix a compiler failure on GCC 4.9 return "Unknown"; } CodeEventHandler::CodeEventHandler(Isolate* isolate) { internal_listener_ = new i::ExternalCodeEventListener(reinterpret_cast<i::Isolate*>(isolate)); } CodeEventHandler::~CodeEventHandler() { delete reinterpret_cast<i::ExternalCodeEventListener*>(internal_listener_); } void CodeEventHandler::Enable() { reinterpret_cast<i::ExternalCodeEventListener*>(internal_listener_) ->StartListening(this); } void CodeEventHandler::Disable() { reinterpret_cast<i::ExternalCodeEventListener*>(internal_listener_) ->StopListening(); } static i::HeapGraphEdge* ToInternal(const HeapGraphEdge* edge) { return const_cast<i::HeapGraphEdge*>( reinterpret_cast<const i::HeapGraphEdge*>(edge)); } HeapGraphEdge::Type HeapGraphEdge::GetType() const { return static_cast<HeapGraphEdge::Type>(ToInternal(this)->type()); } Local<Value> HeapGraphEdge::GetName() const { i::HeapGraphEdge* edge = ToInternal(this); i::Isolate* isolate = edge->isolate(); switch (edge->type()) { case i::HeapGraphEdge::kContextVariable: case i::HeapGraphEdge::kInternal: case i::HeapGraphEdge::kProperty: case i::HeapGraphEdge::kShortcut: case i::HeapGraphEdge::kWeak: return ToApiHandle<String>( isolate->factory()->InternalizeUtf8String(edge->name())); case i::HeapGraphEdge::kElement: case i::HeapGraphEdge::kHidden: return ToApiHandle<Number>( isolate->factory()->NewNumberFromInt(edge->index())); default: UNREACHABLE(); } return v8::Undefined(reinterpret_cast<v8::Isolate*>(isolate)); } const HeapGraphNode* HeapGraphEdge::GetFromNode() const { const i::HeapEntry* from = ToInternal(this)->from(); return reinterpret_cast<const HeapGraphNode*>(from); } const HeapGraphNode* HeapGraphEdge::GetToNode() const { const i::HeapEntry* to = ToInternal(this)->to(); return reinterpret_cast<const HeapGraphNode*>(to); } static i::HeapEntry* ToInternal(const HeapGraphNode* entry) { return const_cast<i::HeapEntry*>( reinterpret_cast<const i::HeapEntry*>(entry)); } HeapGraphNode::Type HeapGraphNode::GetType() const { return static_cast<HeapGraphNode::Type>(ToInternal(this)->type()); } Local<String> HeapGraphNode::GetName() const { i::Isolate* isolate = ToInternal(this)->isolate(); return ToApiHandle<String>( isolate->factory()->InternalizeUtf8String(ToInternal(this)->name())); } SnapshotObjectId HeapGraphNode::GetId() const { return ToInternal(this)->id(); } size_t HeapGraphNode::GetShallowSize() const { return ToInternal(this)->self_size(); } int HeapGraphNode::GetChildrenCount() const { return ToInternal(this)->children_count(); } const HeapGraphEdge* HeapGraphNode::GetChild(int index) const { return reinterpret_cast<const HeapGraphEdge*>(ToInternal(this)->child(index)); } static i::HeapSnapshot* ToInternal(const HeapSnapshot* snapshot) { return const_cast<i::HeapSnapshot*>( reinterpret_cast<const i::HeapSnapshot*>(snapshot)); } void HeapSnapshot::Delete() { i::Isolate* isolate = ToInternal(this)->profiler()->isolate(); if (isolate->heap_profiler()->GetSnapshotsCount() > 1) { ToInternal(this)->Delete(); } else { // If this is the last snapshot, clean up all accessory data as well. isolate->heap_profiler()->DeleteAllSnapshots(); } } const HeapGraphNode* HeapSnapshot::GetRoot() const { return reinterpret_cast<const HeapGraphNode*>(ToInternal(this)->root()); } const HeapGraphNode* HeapSnapshot::GetNodeById(SnapshotObjectId id) const { return reinterpret_cast<const HeapGraphNode*>( ToInternal(this)->GetEntryById(id)); } int HeapSnapshot::GetNodesCount() const { return static_cast<int>(ToInternal(this)->entries().size()); } const HeapGraphNode* HeapSnapshot::GetNode(int index) const { return reinterpret_cast<const HeapGraphNode*>( &ToInternal(this)->entries().at(index)); } SnapshotObjectId HeapSnapshot::GetMaxSnapshotJSObjectId() const { return ToInternal(this)->max_snapshot_js_object_id(); } void HeapSnapshot::Serialize(OutputStream* stream, HeapSnapshot::SerializationFormat format) const { Utils::ApiCheck(format == kJSON, "v8::HeapSnapshot::Serialize", "Unknown serialization format"); Utils::ApiCheck(stream->GetChunkSize() > 0, "v8::HeapSnapshot::Serialize", "Invalid stream chunk size"); i::HeapSnapshotJSONSerializer serializer(ToInternal(this)); serializer.Serialize(stream); } // static STATIC_CONST_MEMBER_DEFINITION const SnapshotObjectId HeapProfiler::kUnknownObjectId; int HeapProfiler::GetSnapshotCount() { return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotsCount(); } const HeapSnapshot* HeapProfiler::GetHeapSnapshot(int index) { return reinterpret_cast<const HeapSnapshot*>( reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshot(index)); } SnapshotObjectId HeapProfiler::GetObjectId(Local<Value> value) { i::Handle<i::Object> obj = Utils::OpenHandle(*value); return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotObjectId(obj); } SnapshotObjectId HeapProfiler::GetObjectId(NativeObject value) { return reinterpret_cast<i::HeapProfiler*>(this)->GetSnapshotObjectId(value); } Local<Value> HeapProfiler::FindObjectById(SnapshotObjectId id) { i::Handle<i::Object> obj = reinterpret_cast<i::HeapProfiler*>(this)->FindHeapObjectById(id); if (obj.is_null()) return Local<Value>(); return Utils::ToLocal(obj); } void HeapProfiler::ClearObjectIds() { reinterpret_cast<i::HeapProfiler*>(this)->ClearHeapObjectMap(); } const HeapSnapshot* HeapProfiler::TakeHeapSnapshot( ActivityControl* control, ObjectNameResolver* resolver, bool treat_global_objects_as_roots) { return reinterpret_cast<const HeapSnapshot*>( reinterpret_cast<i::HeapProfiler*>(this)->TakeSnapshot( control, resolver, treat_global_objects_as_roots)); } void HeapProfiler::StartTrackingHeapObjects(bool track_allocations) { reinterpret_cast<i::HeapProfiler*>(this)->StartHeapObjectsTracking( track_allocations); } void HeapProfiler::StopTrackingHeapObjects() { reinterpret_cast<i::HeapProfiler*>(this)->StopHeapObjectsTracking(); } SnapshotObjectId HeapProfiler::GetHeapStats(OutputStream* stream, int64_t* timestamp_us) { i::HeapProfiler* heap_profiler = reinterpret_cast<i::HeapProfiler*>(this); return heap_profiler->PushHeapObjectsStats(stream, timestamp_us); } bool HeapProfiler::StartSamplingHeapProfiler(uint64_t sample_interval, int stack_depth, SamplingFlags flags) { return reinterpret_cast<i::HeapProfiler*>(this)->StartSamplingHeapProfiler( sample_interval, stack_depth, flags); } void HeapProfiler::StopSamplingHeapProfiler() { reinterpret_cast<i::HeapProfiler*>(this)->StopSamplingHeapProfiler(); } AllocationProfile* HeapProfiler::GetAllocationProfile() { return reinterpret_cast<i::HeapProfiler*>(this)->GetAllocationProfile(); } void HeapProfiler::DeleteAllHeapSnapshots() { reinterpret_cast<i::HeapProfiler*>(this)->DeleteAllSnapshots(); } void HeapProfiler::AddBuildEmbedderGraphCallback( BuildEmbedderGraphCallback callback, void* data) { reinterpret_cast<i::HeapProfiler*>(this)->AddBuildEmbedderGraphCallback( callback, data); } void HeapProfiler::RemoveBuildEmbedderGraphCallback( BuildEmbedderGraphCallback callback, void* data) { reinterpret_cast<i::HeapProfiler*>(this)->RemoveBuildEmbedderGraphCallback( callback, data); } void EmbedderHeapTracer::SetStackStart(void* stack_start) { CHECK(isolate_); reinterpret_cast<i::Isolate*>(isolate_)->global_handles()->SetStackStart( stack_start); } void EmbedderHeapTracer::NotifyEmptyEmbedderStack() { CHECK(isolate_); reinterpret_cast<i::Isolate*>(isolate_) ->global_handles() ->NotifyEmptyEmbedderStack(); } void EmbedderHeapTracer::FinalizeTracing() { if (isolate_) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(isolate_); if (isolate->heap()->incremental_marking()->IsMarking()) { isolate->heap()->FinalizeIncrementalMarkingAtomically( i::GarbageCollectionReason::kExternalFinalize); } } } void EmbedderHeapTracer::GarbageCollectionForTesting( EmbedderStackState stack_state) { CHECK(isolate_); CHECK(i::FLAG_expose_gc); i::Heap* const heap = reinterpret_cast<i::Isolate*>(isolate_)->heap(); heap->SetEmbedderStackStateForNextFinalizaton(stack_state); heap->PreciseCollectAllGarbage(i::Heap::kNoGCFlags, i::GarbageCollectionReason::kTesting, kGCCallbackFlagForced); } void EmbedderHeapTracer::IncreaseAllocatedSize(size_t bytes) { if (isolate_) { i::LocalEmbedderHeapTracer* const tracer = reinterpret_cast<i::Isolate*>(isolate_) ->heap() ->local_embedder_heap_tracer(); DCHECK_NOT_NULL(tracer); tracer->IncreaseAllocatedSize(bytes); } } void EmbedderHeapTracer::DecreaseAllocatedSize(size_t bytes) { if (isolate_) { i::LocalEmbedderHeapTracer* const tracer = reinterpret_cast<i::Isolate*>(isolate_) ->heap() ->local_embedder_heap_tracer(); DCHECK_NOT_NULL(tracer); tracer->DecreaseAllocatedSize(bytes); } } void EmbedderHeapTracer::RegisterEmbedderReference( const TracedReferenceBase<v8::Data>& ref) { if (ref.IsEmpty()) return; i::Heap* const heap = reinterpret_cast<i::Isolate*>(isolate_)->heap(); heap->RegisterExternallyReferencedObject( reinterpret_cast<i::Address*>(ref.val_)); } void EmbedderHeapTracer::IterateTracedGlobalHandles( TracedGlobalHandleVisitor* visitor) { i::Isolate* isolate = reinterpret_cast<i::Isolate*>(isolate_); i::DisallowHeapAllocation no_allocation; isolate->global_handles()->IterateTracedNodes(visitor); } bool EmbedderHeapTracer::IsRootForNonTracingGC( const v8::TracedReference<v8::Value>& handle) { return true; } bool EmbedderHeapTracer::IsRootForNonTracingGC( const v8::TracedGlobal<v8::Value>& handle) { return true; } void EmbedderHeapTracer::ResetHandleInNonTracingGC( const v8::TracedReference<v8::Value>& handle) { UNREACHABLE(); } const void* CTypeInfo::GetWrapperInfo() const { DCHECK(payload_ & kWrapperTypeInfoMask); return reinterpret_cast<const void*>(payload_ & kWrapperTypeInfoMask); } CFunction::CFunction(const void* address, const CFunctionInfo* type_info) : address_(address), type_info_(type_info) { CHECK_NOT_NULL(address_); CHECK_NOT_NULL(type_info_); for (unsigned int i = 0; i < type_info_->ArgumentCount(); ++i) { if (type_info_->ArgumentInfo(i).IsArray()) { // Array args require an integer passed for their length // as the next argument. DCHECK_LT(i + 1, type_info_->ArgumentCount()); switch (type_info_->ArgumentInfo(i + 1).GetType()) { case CTypeInfo::Type::kInt32: case CTypeInfo::Type::kUint32: case CTypeInfo::Type::kInt64: case CTypeInfo::Type::kUint64: break; default: UNREACHABLE(); break; } } } } namespace internal { const size_t HandleScopeImplementer::kEnteredContextsOffset = offsetof(HandleScopeImplementer, entered_contexts_); const size_t HandleScopeImplementer::kIsMicrotaskContextOffset = offsetof(HandleScopeImplementer, is_microtask_context_); void HandleScopeImplementer::FreeThreadResources() { Free(); } char* HandleScopeImplementer::ArchiveThread(char* storage) { HandleScopeData* current = isolate_->handle_scope_data(); handle_scope_data_ = *current; MemCopy(storage, this, sizeof(*this)); ResetAfterArchive(); current->Initialize(); return storage + ArchiveSpacePerThread(); } int HandleScopeImplementer::ArchiveSpacePerThread() { return sizeof(HandleScopeImplementer); } char* HandleScopeImplementer::RestoreThread(char* storage) { MemCopy(this, storage, sizeof(*this)); *isolate_->handle_scope_data() = handle_scope_data_; return storage + ArchiveSpacePerThread(); } void HandleScopeImplementer::IterateThis(RootVisitor* v) { #ifdef DEBUG bool found_block_before_deferred = false; #endif // Iterate over all handles in the blocks except for the last. for (int i = static_cast<int>(blocks()->size()) - 2; i >= 0; --i) { Address* block = blocks()->at(i); // Cast possibly-unrelated pointers to plain Address before comparing them // to avoid undefined behavior. if (last_handle_before_deferred_block_ != nullptr && (reinterpret_cast<Address>(last_handle_before_deferred_block_) <= reinterpret_cast<Address>(&block[kHandleBlockSize])) && (reinterpret_cast<Address>(last_handle_before_deferred_block_) >= reinterpret_cast<Address>(block))) { v->VisitRootPointers(Root::kHandleScope, nullptr, FullObjectSlot(block), FullObjectSlot(last_handle_before_deferred_block_)); DCHECK(!found_block_before_deferred); #ifdef DEBUG found_block_before_deferred = true; #endif } else { v->VisitRootPointers(Root::kHandleScope, nullptr, FullObjectSlot(block), FullObjectSlot(&block[kHandleBlockSize])); } } DCHECK(last_handle_before_deferred_block_ == nullptr || found_block_before_deferred); // Iterate over live handles in the last block (if any). if (!blocks()->empty()) { v->VisitRootPointers(Root::kHandleScope, nullptr, FullObjectSlot(blocks()->back()), FullObjectSlot(handle_scope_data_.next)); } DetachableVector<Context>* context_lists[2] = {&saved_contexts_, &entered_contexts_}; for (unsigned i = 0; i < arraysize(context_lists); i++) { context_lists[i]->shrink_to_fit(); if (context_lists[i]->empty()) continue; FullObjectSlot start(&context_lists[i]->front()); v->VisitRootPointers(Root::kHandleScope, nullptr, start, start + static_cast<int>(context_lists[i]->size())); } } void HandleScopeImplementer::Iterate(RootVisitor* v) { HandleScopeData* current = isolate_->handle_scope_data(); handle_scope_data_ = *current; IterateThis(v); } char* HandleScopeImplementer::Iterate(RootVisitor* v, char* storage) { HandleScopeImplementer* scope_implementer = reinterpret_cast<HandleScopeImplementer*>(storage); scope_implementer->IterateThis(v); return storage + ArchiveSpacePerThread(); } std::unique_ptr<DeferredHandles> HandleScopeImplementer::Detach( Address* prev_limit) { std::unique_ptr<DeferredHandles> deferred( new DeferredHandles(isolate()->handle_scope_data()->next, isolate())); DCHECK_NOT_NULL(prev_limit); while (!blocks_.empty()) { Address* block_start = blocks_.back(); Address* block_limit = &block_start[kHandleBlockSize]; // We should not need to check for SealHandleScope here. Assert this. DCHECK_IMPLIES(block_start <= prev_limit && prev_limit <= block_limit, prev_limit == block_limit); if (prev_limit == block_limit) break; deferred->blocks_.push_back(blocks_.back()); blocks_.pop_back(); } // deferred->blocks_ now contains the blocks installed on the // HandleScope stack since BeginDeferredScope was called, but in // reverse order. DCHECK(!blocks_.empty() && !deferred->blocks_.empty()); DCHECK_NOT_NULL(last_handle_before_deferred_block_); last_handle_before_deferred_block_ = nullptr; return deferred; } std::unique_ptr<PersistentHandles> HandleScopeImplementer::DetachPersistent( Address* prev_limit) { std::unique_ptr<PersistentHandles> ph(new PersistentHandles(isolate())); DCHECK_NOT_NULL(prev_limit); while (!blocks_.empty()) { Address* block_start = blocks_.back(); Address* block_limit = &block_start[kHandleBlockSize]; // We should not need to check for SealHandleScope here. Assert this. DCHECK_IMPLIES(block_start <= prev_limit && prev_limit <= block_limit, prev_limit == block_limit); if (prev_limit == block_limit) break; ph->blocks_.push_back(blocks_.back()); blocks_.pop_back(); } // ph->blocks_ now contains the blocks installed on the // HandleScope stack since BeginDeferredScope was called, but in // reverse order. // Switch first and last blocks, such that the last block is the one // that is potentially half full. DCHECK(!blocks_.empty() && !ph->blocks_.empty()); std::swap(ph->blocks_.front(), ph->blocks_.back()); ph->block_next_ = isolate()->handle_scope_data()->next; Address* block_start = ph->blocks_.back(); ph->block_limit_ = block_start + kHandleBlockSize; DCHECK_NOT_NULL(last_handle_before_deferred_block_); last_handle_before_deferred_block_ = nullptr; return ph; } void HandleScopeImplementer::BeginDeferredScope() { DCHECK_NULL(last_handle_before_deferred_block_); last_handle_before_deferred_block_ = isolate()->handle_scope_data()->next; } DeferredHandles::~DeferredHandles() { isolate_->UnlinkDeferredHandles(this); for (size_t i = 0; i < blocks_.size(); i++) { #ifdef ENABLE_HANDLE_ZAPPING HandleScope::ZapRange(blocks_[i], &blocks_[i][kHandleBlockSize]); #endif isolate_->handle_scope_implementer()->ReturnBlock(blocks_[i]); } } void DeferredHandles::Iterate(RootVisitor* v) { DCHECK(!blocks_.empty()); // Comparing pointers that do not point into the same array is undefined // behavior, which means if we didn't cast everything to plain Address // before comparing, the compiler would be allowed to assume that all // comparisons evaluate to true and drop the entire check. DCHECK((reinterpret_cast<Address>(first_block_limit_) >= reinterpret_cast<Address>(blocks_.front())) && (reinterpret_cast<Address>(first_block_limit_) <= reinterpret_cast<Address>(&(blocks_.front())[kHandleBlockSize]))); v->VisitRootPointers(Root::kHandleScope, nullptr, FullObjectSlot(blocks_.front()), FullObjectSlot(first_block_limit_)); for (size_t i = 1; i < blocks_.size(); i++) { v->VisitRootPointers(Root::kHandleScope, nullptr, FullObjectSlot(blocks_[i]), FullObjectSlot(&blocks_[i][kHandleBlockSize])); } } void InvokeAccessorGetterCallback( v8::Local<v8::Name> property, const v8::PropertyCallbackInfo<v8::Value>& info, v8::AccessorNameGetterCallback getter) { // Leaving JavaScript. Isolate* isolate = reinterpret_cast<Isolate*>(info.GetIsolate()); RuntimeCallTimerScope timer(isolate, RuntimeCallCounterId::kAccessorGetterCallback); Address getter_address = reinterpret_cast<Address>(getter); VMState<EXTERNAL> state(isolate); ExternalCallbackScope call_scope(isolate, getter_address); getter(property, info); } void InvokeFunctionCallback(const v8::FunctionCallbackInfo<v8::Value>& info, v8::FunctionCallback callback) { Isolate* isolate = reinterpret_cast<Isolate*>(info.GetIsolate()); RuntimeCallTimerScope timer(isolate, RuntimeCallCounterId::kFunctionCallback); Address callback_address = reinterpret_cast<Address>(callback); VMState<EXTERNAL> state(isolate); ExternalCallbackScope call_scope(isolate, callback_address); callback(info); } void InvokeFinalizationRegistryCleanupFromTask( Handle<Context> context, Handle<JSFinalizationRegistry> finalization_registry, Handle<Object> callback) { Isolate* isolate = finalization_registry->native_context().GetIsolate(); RuntimeCallTimerScope timer( isolate, RuntimeCallCounterId::kFinalizationRegistryCleanupFromTask); // Do not use ENTER_V8 because this is always called from a running // FinalizationRegistryCleanupTask within V8 and we should not log it as an // API call. This method is implemented here to avoid duplication of the // exception handling and microtask running logic in CallDepthScope. if (IsExecutionTerminatingCheck(isolate)) return; Local<v8::Context> api_context = Utils::ToLocal(context); CallDepthScope<true> call_depth_scope(isolate, api_context); VMState<OTHER> state(isolate); Handle<Object> argv[] = {callback}; if (Execution::CallBuiltin(isolate, isolate->finalization_registry_cleanup_some(), finalization_registry, arraysize(argv), argv) .is_null()) { call_depth_scope.Escape(); } } // Undefine macros for jumbo build. #undef LOG_API #undef ENTER_V8_DO_NOT_USE #undef ENTER_V8_HELPER_DO_NOT_USE #undef PREPARE_FOR_DEBUG_INTERFACE_EXECUTION_WITH_ISOLATE #undef PREPARE_FOR_EXECUTION_WITH_CONTEXT #undef PREPARE_FOR_EXECUTION #undef ENTER_V8 #undef ENTER_V8_NO_SCRIPT #undef ENTER_V8_NO_SCRIPT_NO_EXCEPTION #undef ENTER_V8_FOR_NEW_CONTEXT #undef EXCEPTION_BAILOUT_CHECK_SCOPED_DO_NOT_USE #undef RETURN_ON_FAILED_EXECUTION #undef RETURN_ON_FAILED_EXECUTION_PRIMITIVE #undef RETURN_ESCAPED #undef SET_FIELD_WRAPPED #undef NEW_STRING #undef CALLBACK_SETTER } // namespace internal } // namespace v8 #undef TRACE_BS